
Numerical Algorithms
https://doi.org/10.1007/s11075-022-01333-8

ORIGINAL PAPER

Locally conservative discontinuous bubble scheme
for Darcy flow and its application to Hele-Shaw
equation based on structured grids

Yoonjeong Choi1 ·Gwanghyun Jo2 ·Do Y. Kwak3 ·Young Ju Lee4

Received: 5 July 2021 / Accepted: 9 May 2022
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2022

Abstract
In this paper, we present an algorithm to solve the Darcy flow coupled with a trans-
port for the interface tracking and apply the algorithm to solve a Hele-Shaw flow.
The main challenge in the solution of the Hele-Shaw flow can be found at the change
in the jump of the pressure along with the moving interface. We notice that such a
challenge can be adequately handled by maintaining the conservation of the flux. Our
algorithm employs the immersed finite element method equipped with the enrich-
ment of piecewise constants to guarantee the conservative flux while the change of
the jump condition for the pressure is handled via discontinuous bubble function,
non-zero only near the interface. On the other hand, the interface motion is modeled
and solved by the level set framework and WENO scheme. One important advantage
of the proposed scheme is that the resulting algebraic system is efficiently handled
by a proven-to-be fast and optimal algorithm in time evolution. A number of numer-
ical tests are given to demonstrate the simplicity, efficiency and robustness of the
proposed scheme.

� Gwanghyun Jo
gwanghyun@kunsan.ac.kr

Yoonjeong Choi
yjchoi7166@gmail.com

Do Y. Kwak
kdy@kaist.ac.kr

Young Ju Lee
yjlee@txstate.edu

1 Urbanbase Inc, Seocho-gu, Seoul, Republic of Korea

2 Department of Mathematics, Kunsan National University, Runsan-si, Republic of Korea

3 Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea

4 Department of Mathematics, Texas State University, San Marcos, TX, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01333-8&domain=pdf
http://orcid.org/0000-0002-0635-2897
mailto: gwanghyun@kunsan.ac.kr
mailto: yjchoi7166@gmail.com
mailto: kdy@kaist.ac.kr
mailto: yjlee@txstate.edu

Numerical Algorithms

Keywords Discontinuous bubble schemes · Immersed finite element method ·
Elliptic equation with interface · Hele-Shaw flows

Mathematics Subject Classification (2010) 65M60 · 65N30

1 Introduction

Hele-Shaw equation can be formulated as the Darcy flow coupled with the transport
that describes the interface motion. It describes flows between two parallel flat plates
with small gap [14, 16], where there is an interface determined by two different fluids.
The challenges in the solution of Hele-Shaw equation lie in two factors: (1) due to the
different properties of the fluid in the domain, the pressure is discontinuous across
the interface, which is proportional to the curvature of the interface. Typically, the
curvature of the interface affects the pressures and velocity, and the interface goes
through big and abrupt changes in time evolution; (2) the interface motion occurs
along with the Darcy velocity and it has to be carefully tracked to arrive at a reliable
solution.

In this paper, we shall employ the level set equation to capture the interface motion
and solve it using the technique of the weighted essentially non-oscillatory (WENO)
scheme [19, 20, 41]. WENO scheme is a powerful method for solving (essentially)
hyperbolic type partial differential equations (PDEs). Our observation is that the level
set transport equation coupled with Darcy velocity and the Darcy velocity should be
conservative to obtain robust interface tracking. Therefore, we employ the locally
conservative enriched Galerkin finite element methods to solve the Darcy law.

The importance of the conservative flux has been documented in a number of lit-
erature (see [31, 43] and references cited therein) and there are a number of research
performed for this purpose. For fitted grids to the interface or the mesh resolving
interface, for example, mixed finite element methods (MFEMs) are most frequently
used to approximate the velocity [7, 42]. Hybrid formulation of MFEMs using the
Lagrangian multipliers can be found at Arnold et al. [1] for example. Another class of
conservative schemes can be constructed by the discontinuous Galerkin (DG) com-
munity. However, typically DG introduces a number of degrees of freedom and the
system is difficult to solve. A similar, but much efficient approach we use in this
paper is the enriched Galerkin (EG) methodology [31, 43], which is constructed
by enriching the conforming finite element spaces with piecewise constants. There
are other types of conservative schemes based on conforming Galerkin finite ele-
ments. However, extra works have to be applied to obtain a conservative flux [3,
15]. For moving interface problem such as Hele-Shaw flow, these methods may not
be adequate and it is much desirable to apply or devise the conservative methods
for the unfitted grid. More precisely, handling the interface in an unfitted grid pro-
vides a number of advantages, among others, a structured grid can be used for the
discretization, resulting in simple data structures. For unfitted grids, we note that
finite difference method (FDM) type method, immersed interface method (IIM) was
introduced by [33] and used effectively in [16, 30, 34, 35, 45]. In particular, IIM
type methods were used effectively to simulate Hele-Shaw flows in [16]. Meanwhile

Numerical Algorithms

immersed hybrid difference methods were introduced in [17, 18]. Also, extended
finite element methods (XFEMs) [4, 5, 24, 32, 40] use extra degrees of freedom
(DOFs) obtained by truncating the shape function along the interface. Hence, XFEM
requires more DOFs. On the other hand, immersed finite element method was (IFEM)
introduced in [36, 37]. The concept of IFEM modifies the basis functions across the
interface so that they satisfy the local flux continuity. One of the differences of IFEM
from the XFEM is that the former does not require extra degrees of freedom. The
convergence analysis was investigated in [10, 25, 26, 39] and many applications were
obtained effectively, for example, in flows through the porous media [21], elasticity
equation [26, 29], Poisson Bolzmann [28].

In this paper, we propose a new method based on the enriched immersed finite ele-
ment method (EIFEM) recently published in [22] to tackle the Hele-Shaw flow. The
novelty of the current work is the modification of EIFEM so that it can handle the
abrupt change in the pressure jump along with the interface, still resulting in a locally
conservative flux while keeping the numerical efficiency. To handle the pressure
jump condition, we modify the discontinuous bubble IFEM (DB-IFEM) [9] frame-
work. It is a powerful method to handle the nonhomogeneous jump conditions along
the interface. Therefore, we obtain a new methodology to solve the elliptic equation
with nonhomogeneous jumps by combining the EIFEM and DB-IFEM introduced
in [9]. The use of discontinuous bubble function provides a framework in which the
fast solver based on algebraic multigrid method can still be successfully applied just
like the case of the homogeneous jump condition as discussed in [22]. The proposed
scheme in this paper will be called the discontinuous bubble-enriched immersed
finite element method (DB-EIFEM). To the best knowledge of authors, the proposed
scheme is the first structured grids based H(div) flux recovery for elliptic interface
problems with nonhomogeneous jump condition for the pressure. This technique is
then combined with WENO scheme for solving the level set formalism to track the
interface. WENO, the weighted essentially non-oscillatory (WENO) scheme [19, 20,
41] is a powerful method for solving hyperbolic type partial differential equations
(PDEs).

The rest of the paper is organized as follows. In Section 2, the governing equation
and the temporal discretization of Hele-Shaw equation are described. We describe
the DB-EIFEM for elliptic interface problems with nonhomogeneous jump condition
in Section 3. WENO scheme for level set equation is then described in Section 4.
Section 5 presents a number of numerical experiments to demonstrate the perfor-
mance of proposed algorithms. Finally, we conclude the paper with concluding
remarks in Section 6.

2 Governing equation and its temporal discretization

We consider Hele-Shaw flows governed by Darcy laws where two different fluids
meet along some interface. We shall assume that one of the fluids is injected at the

Numerical Algorithms

center of the region Ω in R
2 whose underlying subregion is Ω−(t). The other fluid

is located on Ω+(t) = Ω/ Ω−(t) and the interface is �(t) = ∂Ω−(t). The pressure
p and velocity field u obey the governing equation:

divu = f, in Ω+(t) ∪ Ω−(t), and (1a)

u = −β∇p, in Ω+(t) ∪ Ω−(t), (1b)

subject to the interface, initial and boundary conditions:

[[p]]�(t) = τκ(t), [[β∇p · n]]�(t) = 0, p|t=0 = p0, and p|∂Ω = g, (2)

where the coefficients β± := β|Ω±(t) are positive constants and n is a unit normal
vector to �(t), outward to ∂Ω− so n = n− indeed, and bracket [[·]]� means the
jump, i.e., [[u]]� = u|Ω− − u|Ω+ . We assume that the source term f is zero on Ω+.
Here, τ is the surface tension and κ is the curvature of the interface. We note that
amalgamated surface tension d0 satisfies

d0 = 2τπβ+

IR
,

where IR is the injection rate. Physically, this indicates that for the high injection rate,
surface tension increases, leading to the high jump of pressure across the interface.
Also, we observe that the curvature affects the flow since the jump is proportional to
the curvature. The motion of the interface �(t) at any given time level t is described
by some level set of 	(x, t), where 	(x, t) satisfies

∂	

∂t
+ u · ∇	 = 0, in Ω, with �(0) = {	(x, t = 0) = 0}, (3)

for which the zero-level set of 	 is set to define the interface, i.e., �(t) = {	(x, t) =
0}. Therefore, the governing equation for the Hele-Shaw flow we are concerned with
in this paper, consists of total three equations with initial, interface, and boundary
conditions, i.e., (1a), (1b), (2) and (3).

We now discuss how to obtain the approximate evolution of solutions to the Hele-
Shaw equation. Given a time domain, [0, Tf], where Tf is the final time level, we
divide the time interval, uniformly with the temporal mesh size
t , which will be
specified in terms of the spatial mesh size h, so that
t = O(h2). The break points of
time discretization are denoted by tn = n
t . For the sake of simplicity, we let pn,nn,
	n, κn and �n to denote temporal approximations of p(tn), u(tn), 	(tn), κ(tn), and
�(tn), respectively for any given n ≥ 0. The basic algorithm will be based on a
semi-implicit scheme. More precisely, we shall perform the following time evolution
algorithm:

Numerical Algorithms

3 Discontinuous bubble-enriched immersed finite element method
(DB-EIFEM)

The purpose of this section is to discuss how to obtain the spatial approximations,
i.e., pn+1

h and un+1
h for given κn

h and �n
h . For the sake of simplicity, we shall omit the

superscript n+1 and n. Namely, we let p := pn+1,u := un+1, κ := κn and � = �n.
We also denote Ω± := Ω±(tn). From now on, we impose homogeneous boundary
condition for the pressure variable for the ease of presentation, i.e., we set g = 0 in
(2).

We shall assume that the domain Ω is of a rectangular shape. Note that this
assumption is given so that one can use the structured grid to discretize the domain.
If Ω is not of the rectangular shape, then it is subtle, but one can consider the domain
of rectangular shape that contains Ω and then formulate the Hele-Shaw problem in
an extended domain, which is the future research. Let Th be a triangulation of Ω by
the squares, whose mesh size h and Eh be the set of all edges. Here, Eh = Eo

h ∪ E∂
h ,

where Eo
h is the set of interior edges while E∂

h is the set of boundary edges. Note that
there are triangles T ∈ Th that contain the part of interface and such T will be called
an interface element. In fact, since the interface is moving, the interface elements
can be different with time evolution. When T ∈ Th does not contain any part of the
interface, such T will be called a noninterface element.

We begin our discussion with some notation of function spaces and norms. Note
that we shall use standard Sobolev space notation. For any bounded subdomain D ⊂
Ω , we denote D+ = D ∩ Ω+, D− = D ∩ Ω−. We shall use standard Sobolev
space, i.e., Hm(D) and H 1

0 (D) denote the ordinary Sobolev spaces of order m with
the norm || · ||m,D and the semi-norm | · |m,D . For m = 1, 2, the broken Sobolev space
˜Hm(D) is defined as follows:

˜Hm(D) := Hm(D+) ∩ Hm(D−),

Numerical Algorithms

with norms (semi-norms)

||u||2
˜Hm(D)

:= ||u||2
Hm(D+)

+ ||u||2
Hm(D−)

, ∀u ∈ ˜Hm(D).

The space ˜H 1
0 (D) is defined by the following:

˜H 1
0 (D) := {u ∈ ˜H 1(D) | u = 0 on ∂D}.

Step 1 is to solve the (1a) and (1b). We shall solve this equation by simply
considering a pressure formulation given as follows:

− divβ∇p = f in Ω+ ∪ Ω−, (4)

subject to the interface and boundary conditions:

[[p]]� = τκ, [[β∇p · n]]� = 0, and p|∂Ω = 0, (5)

The weak formulation can be given as follows [9]: find p ∈ ˜H 1
0 (Ω) such that [[p]]� =

τκ and
a(p, q) = (f, q), ∀q ∈ H 1

0 (Ω), (6)

where

a(p, q) :=
∫

Ω

β∇p · ∇qdx and (f, q) :=
∫

Ω

f q dx. (7)

When it comes to the spatial discretization of the above equation, the issue arises
in how to incorporate the nonhomogeneous jump condition, i.e., [[p]]� = τκ . We
propose to use the discontinuous bubble function as discussed below (see also [9]).

3.1 Discontinuous bubble-immersed finite elementmethod (DB-IFEM)

In this section, we describe the discontinuous bubble-immersed finite element
method, first introduced in [9]. The main idea is to introduce a special function
p∗ ∈ ˜H 1

0 (Ω) such that [[p∗]]� = τκ and to consider the following:

p = p̂ + p∗.

Note that if τκ = 0, then we can simply set p∗ = 0 and in case τκ
= 0, there are
infinitely many ways to choose such p∗. To specify the particular choice of p∗, we let
S� be a thin tube containing the interface � in its interior as shown in Fig. 1. We then
construct p∗ so that it satisfies the jump condition [[p∗]]� = τκ and p∗ is supported
within S� .

Such chosen p∗ will be called a discontinuous bubble function since it is locally
supported near the interface. Once p∗ is constructed, by subtracting p∗ from p in
the (6), we obtain a new weak problem for p̂ with the homogeneous jump condition.
Namely, find p̂ ∈ ˜H 1

0 (Ω) such that

a(p̂, q) = (f, q) − a(p∗, q), ∀q ∈ H 1
0 (Ω). (8)

In the remainder of this section, we discuss how to incorporate the discrete p∗
h

as well as the discrete version of the (8). We consider the Q1-conforming immersed
finite element method introduced in [38]. Let Sh(T) be a space of standard bilinear
functions on T with degree of freedoms given at nodes. Note that this local space
needs to be modified when T is an interface element. More precisely, let the element

Numerical Algorithms

Fig. 1 Example of thin strip S� (left) and discretized strip Sh
� (right) for the case of circular interface (blue

curve) with radius r = 0.6

T be cut by the interface � at the two edges e1 and e3 at points E1 and E2. This
divides T into two parts, denoted by T + = T ∩ Ω+ and T − = T ∩ Ω− as shown in
Fig. 2.

The basis function λ ∈ Sh(T) should be modified into a piecewise linear ̂λ of the
following form:

̂λ(x, y) :=
{

̂λ+(x, y) = a+ + b+x + c+y + d+xy, (x, y) ∈ T +,
̂λ−(x, y) = a− + b−x + c−y + d−xy, (x, y) ∈ T −,

(9)

Fig. 2 An interface element T cut by interface �

Numerical Algorithms

where we impose d+ = d− and other coefficients are determined by vertex degree
of freedoms and the homogeneous jump conditions, namely,

̂λ(Ai) = λ(Ai), i = 1, 2, 3, 4, (10a)
̂λ+(Ei) = ̂λ−(Ei), i = 1, 2, (10b)

∫

E1E2

β+∇̂λ+ · nE1E2
=

∫

E1E2

β−∇̂λ− · nE1E2
. (10c)

The reason why we set d+ = d− is that the conditions (10a)–(10c) then uniquely
determine the local basis function̂λ [38]. We shall denote by ̂Sh(T) the space of mod-
ified functions that satisfy the homogeneous jump conditions. By gluing the modified
local spaces, we obtain the immersed finite element method based on Q1-conforming
space ̂Sh(Ω), which is defined as follows: for φ ∈ ̂Sh(Ω), it holds that

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

φ|T ∈ Sh(T) if T is a noninterface element,
φ|T ∈ ̂Sh(T) if T is an interface element,
φ|T1(X) = φ|T2(X) if T1 and T2 are adjacent elements

and X is a common node of T1 and T2,

φ(X) = 0 if X is a node on the boundary edges.

We are now in a position to construct a discontinuous bubble function p∗ in a dis-
cretized domain. Basically, we shall simply define p∗

h as a piecewise bilinear function
in each element, so that (p∗

h)|T = 0 for any non interface element, T ∈ Th and
if T is an interface element, we define (p∗

h)|T so that it satisfies the following
nonhomogeneous jump conditions:

p∗
h(Ai) = 0, i = 1, 2, 3, 4

[[p∗
h]]�(Ei) = τκ(Ei), i = 1, 2,

∫

E1E2

β+∇p∗
h|T + · nE1E2

=
∫

E1E2

β−∇p∗
h|T − · nE1E2

.

It is remarkable that such discontinuous bubble function p∗
h can be obtained uniquely

[9]. With the introduction of p∗
h, we then arrive at the following discontinuous bubble-

immersed finite element method (DB-IFEM) as follows: Find p̂h ∈ ̂Sh(Ω) such
that

a(p̂h, qh) = (f, qh) − a(p∗
h, qh), ∀qh ∈ ̂Sh(Ω). (12)

3.2 Discontinuous bubble-enriched immersed finite element method (DB-EIFEM)

We would like to remark that DB-IFEM is shown to perform successfully for han-
dling nonhomogeneous jump conditions [9]. On the other hand, it does not lead to
the locally conservative flux and therefore, it is numerically shown that for Hele-
Shaw flow of our interest, this method suffers from the difficulty in the long term
computation. Namely, the interface breaks down in the convergence in the time
evolution.

We begin this section by recalling the local and global conservation of the flux
variable.

Numerical Algorithms

Definition 1 (Local conservation) Given a triangulation Th, we say that the discrete
flux uh is conservative if the following holds true:

∫

∂T

uh · n ds =
∫

T

f dx, ∀T ∈ Th, (13)

where n is the unit outward normal vector to ∂T . The corresponding global
conservation is with T replaced by Ω in the equation,

We would like to remark that the conservation is dependent on the choice of
triangulations, Th. The issue with the conservation has drawn a lot of attention in
literatures (see [31, 43] and references cited therein). Due to the absence of the piece-
wise constant in the DB-IFEM, the standard and its variant IFEMs are not locally
or globally conservative. We shall discuss a simple method to remedy the issue aris-
ing in DB-IFEM, leading the locally conservative flux variable. Basically, we shall
consider to enrich the space ̂Sh(Ω) by adding the locally defined piecewise constant
functions. This concept has been introduced in prior works [31, 43]. However, it is
the first time in this work to combine it with the discontinuous bubble functions to
handle the nonhomogeneous jump conditions. We begin our discussion by enriching
the pressure space by piecewise constants, namely, we define the enriched immersed
finite element (EIFEM) space as follows:

Eh(Ω) := ̂Sh(Ω) + M0
h(Ω), (14)

where M0
h(Ω) is piecewise constant functions defined on Th. Note that the dimension

of the space ̂Sh(Ω) is the number of interior nodes for the triangulation Th, which will
be denoted by N0 while the dimension of the space M0

h is the number of elements,
denoted by NE . For each e ∈ Eh, we associate a unit vector ne at e. We define the
jump [[φ]]e and average {{φ}}e for φ ∈ H 1(Th) as follows:

[[φ]]e(x) := lim
δ→0+(φ(x − δne) − φ(x + δne)),

{{φ}}e(x) := 1

2
lim

δ→0+(φ(x − δne) + φ(x + δne)),

if e does not belong to ∂Ω and

[[φ]]e(x) := limδ→0+(φ(x − δn∂Ω)), {{φ}}e(x) := limδ→0+(φ(x − δn∂Ω))

if e belongs to ∂Ω .
We first, consider the space Hh(Ω) := ˜H 1(Ω)+Eh(Ω) and equip it with a broken

H 1-norm:

|||φ|||h :=
∑

T ∈Th

||β 1
2 ∇φ||20,T +

∑

e∈Eh

1

|e|
∫

e

[[φ]]2
e ds, ∀φ ∈ Hh(Ω). (15)

Numerical Algorithms

We then define the bilinear form ah(·, ·) : Hh(Ω) × Hh(Ω) �→ R by, for all v, w ∈
Hh(Ω),

ah(v, w) =
∑

T ∈Th

∫

T

β∇v · ∇w dx −
∑

e∈Eh

∫

e

{{β∇v · ne}}e[[w]]e ds

+μ
∑

e∈Eh

∫

e

{{β∇w · ne}}e[[v]]e ds +
∑

e∈Eh

1

|e|
∫

e

σ (β)[[v]]e[[w]]e ds,

where |e| is the measure of e, the symbol μ will be discussed below, and the symbol
σ(β) is to indicate that σ , the stabilization parameter is chosen depending on β in
each edge e ∈ Eh. Theoretically, at the interface edge, σ = ζβ/β for some ζ > 0
gives sufficient stabilization.

We are now in a position to state the DB-EIFEM to solve (4) subject to the
condition (5). DB-EIFEM can then be formulated as follows: find p̂h ∈ Eh such that

ah(p̂h, wh) = (f, wh) − ah(p∗, wh), ∀wh ∈ Eh, (16)

where p∗ is the discontinuous bubble function constructed in Section 3.1. The bilin-
ear form, here is the one that corresponds to interior penalty DG method, introduced
in [44]. The symbol μ is the tuning parameter, which determines the type of interior
penalty method, i.e., μ = −1, 0 and 1 result in SIPG, IIPG and NIPG, respectively
[31, 43]. In this work, we take μ = −1 to have a symmetric algebraic system. The
reason for taking this parameter is that we can develop a fast solver for the symmetric
positive definite system (see Section 3.2.1). We can also establish its efficiency and
numerical error analysis for IIPG and NIPG. We believe their efficiency are similar
to SIPG. We briefly remarked why the fast solver should perform equally well for
IIPG below (see Section 3.2.1). Once we solve the aforementioned (16), we can set

ph := p̂h + p∗
h. (17)

We state the following consistency result:

Lemma 1 Suppose p is the solution of (4) subject to the condition (5) and ph is
defined as in (17). Then, we have

ah(p − ph, wh) = 0, ∀wh ∈ Eh. (18)

Proof This follows from the definition of the ah(·, ·) form.

Now we prove the ellipticity for the completeness even though it is basically the same
as [22]. We need the following lemma [22].

Lemma 2 For all φ ∈ Eh(Ω) and T ∈ Th and edges e of T , the following trace-like
inequality holds.

||β∇φ · ne||20,e ≤ Cth
−1||β∇φ||20,T ,

where the constant Ct is independent of both h and the location of interface.

Now, we state a lemma regarding the coerciveness of the bilinear form ah(·, ·).

Numerical Algorithms

Lemma 3 There exists some σ0 > 0 such that the following holds whenever σ(β) >

σ0,

Cα|||φh|||2h ≤ ah(φh, φh), ∀φh ∈ Eh(Ω), (19)

for some Cα > 0.

Proof Let φh be an arbitrary function in Eh(Ω). First, the following comes from the
Cauchy’s inequality:

∑

e∈Eh

∫

e

|{{β∇φh · ne}}[[φh]]| ds

≤
⎛

⎝h
∑

e∈Eh

||{{β∇φh · ne}}||20,e

⎞

⎠

1
2
⎛

⎝h−1
∑

e∈Eh

||[[φh]]||20,e

⎞

⎠

1
2

. (20)

Let T +
e and T −

e be two neighboring elements of the edge e. By applying the Lemma
2 and using the fact each edge is included at most two elements, we have that

h
∑

e∈Eh

||{{β∇φh · ne}}||20,e ≤ h
∑

e∈Eh

(

||(β∇φh)|
T

+
e

· ne||20,e + ||(β∇φh)|
T

−
e

· ne||20,e

)

≤ Ct

∑

e∈Eh

||β∇φh||20,T +
e ∪T −

e

≤ 2Ctβ
∑

T ∈Th

||β 1
2 ∇φh||20,T . (21)

Invoking Young’s inequality and using (20) and (21), we have that

∑

e∈Eh

∫

e

|{{β∇φh · ne}}[[φh]]| ds

≤ δ

2

∑

T ∈Th

||β 1
2 ∇φh||20,T + 2Ctβ

2δ

∑

e∈Eh

1

|e| ||[[φh]]||20,e, (22)

for every δ > 0. By the definition of ah(·, ·) and by the inequalities (22), we have

ah(φh, φh) =
∑

T ∈Th

∫

T

β∇φh · ∇φh dx

−2
∑

e∈Eh

∫

e

{{β∇φh · ne}}e[[φh]]e ds +
∑

e∈Eh

1

|e|
∫

e

σ (β)[[φh]]2
e ds

≥ (1 − δ)
∑

T ∈Th

||β 1
2 ∇φh||20,T +

(

min
e∈Eh

σ (β) − 2Ctβ

δ

)

∑

e∈Eh

1

|e| ||[[φh]]||20,e.

Here, we let δ = 1/2. Choosing σ0 large enough such that

σ0 > 4Ctβ,

Numerical Algorithms

we obtain the desired result when σ(β) > σ0 with

Cα = min

(

1

2
, σ0 − 4Ctβ

)

.

This completes the proof.

The following optimal convergence result for SIPG version of DB-EIFEM can be
established:

Theorem 1 Suppose p is the solution of (4) subject to the condition (5) and ph is
defined as in (17). The following error estimate holds true :

||p − ph||0,Ω + h|||p − ph|||h ≤ Ch2||f ||0,Ω . (23)

Proof When [[p]]� = 0, it can be established as in [22]. For the nonhomogeneous
case, the result can be shown similarly to [27]. This completes the proof.

3.2.1 Fast solver for EIFEM based on algebraic multigrid method

In this section, we give a description of preconditioning techniques based on fictitious
or auxiliary spaces as discussed in [31]. We let

̂Sh(Th) = span{φj }N0
j=1 and M0

h(Th) = span{ψj }Ne

j=1,

where φj is a nodal basis for the IFEM and ψj is the element-wise constant function
defined by ψj |T�

= δj�. Here, N0 is the number of total nodes in Th, which excludes
the Dirichlet nodes and Ne is the number of elements in Th. As discussed in [22],
we have imposed the strong Dirichlet boundary condition for the piecewise linear
finite element while the weakly imposed zero boundary condition is given for piece-
wise enrichment to remove the zero eigen-mode for the resulting system. The system
arising from (12) is written in N by N (N = N0 + Ne) system

A≈p
∼

= f
∼
, (24)

where the matrix can be written as

A≈ =
(

A≈11
A≈12

A≈21
A≈22

)

.

The right-hand side of (24) is (f, φi)−ah(p
∗
h, φi) for the first N0-entries and (f, ψi)−

ah(p
∗
h, ψi) for the next Ne-entries. We shall now describe the block matrices denoted

by A≈11
, A≈12

, A≈21
and A≈22

. We recall that the bilinear form is given as follows (with

μ = −1):

ah(v, w) =
∑

T ∈Th

∫

T

β∇v · ∇wdx −
∑

e∈Eh

∫

e

{{β∇v · ne}}e[[w]]eds

−
∑

e∈Eh

∫

e

{{β∇w · ne}}e[[v]]eds +
∑

e∈Eh

1

|e|
∫

e

σ (β)[[v]]e[[w]]eds.

Numerical Algorithms

The first block is obtained by setting v = φj and w = φi , both of which are from
̂Sh(Th). Noticing that v|e = w|e = 0 for e ∈ E∂

h , we have that

A≈11
(i, j) = ah(φj , φi) =

∑

T ∈Th

∫

T

β∇φj · ∇φidx −
∑

e∈Eo
h

∫

e

{{β∇φj · ne}}e[[φi]]eds

−
∑

e∈Eo
h

∫

e

{{β∇φi · ne}}e[[φj]]eds +
∑

e∈Eo
h

1

|e|
∫

e

σ (β)[[φj]]e[[φi]]eds.

We now consider the submatrix A≈12
. This is obtained by setting v = ψj with ψj ∈

M0
h(Th) while w = φi with φi ∈ ̂Sh(Th). Again, considering the strongly imposed

boundary condition for φi , we have that

A≈12
(i, j) = −

∑

e∈Eo
h

∫

e

{{β∇φi · ne}}e[[ψj]]eds + ∑

e∈Eo
h

1
|e|

∫

e
σ (β)[[ψj]]e[[φi]]eds.

Similarly A≈21
is obtained by setting v = φj and w = ψi . We see that A≈21

(i, j) =
A≈12

(j, i). Finally, for A≈22
, we set v = ψj and w = ψi with ψj , ψi ∈ M0

h(Th). We

then arrive at the following:

A≈22
(i, j) =

∑

e∈Eh

1

|e|
∫

e

σ (β)[[ψj]]e[[ψi]]eds.

We consider the auxiliary space preconditioner which consists of the following three
steps: step i) pre-smoothing step ii) solving each diagonal block system, A≈11

and

A≈22
, which are the restrictions of A≈ to ̂Sh(Th) and M0

h(Th), respectively, and step iii)

post-smoothing (for symmetrization).

We shall state the main result for the proposed solver without proof since it is
established in [22]. Numerical test results confirming the theory are presented in
Section 5.

Theorem 2 [22] The algorithm produces preconditioner that works independent
of mesh size and jumps whenever the block preconditioner is chosen to work
independent of mesh size and jumps.

Numerical Algorithms

We note that the block matrix A≈22
is M-matrix and weakly diagonally dominant and

therefore, it can be easily solved by a classical algebraic multigrid method [22, 31].
We remark that our solver is based on the block diagonal preconditioning. Even if
it is not the scope of this paper, especially for IIPG, the off-diagonal block A≈12

is

almost negligible, which means that the system is almost tridiagonal system. The
tridiagonal system can be easily handled if one can handle A≈11

and A≈22
. Heuristically,

this observation can explain the effectiveness of our solver for IIPG system.

3.2.2 Conservative flux reconstruction and its error analysis

In this section, we discuss the flux reconstruction. Basically, we shall apply H(div)

projection of the numerical flux to lowest order Raviart-Thomas (RT) space [42] and
this will be shown to be conservative. Let Vh(T) be the local RT space on an ele-
ment T and Vh(Ω) be the global RT space defined on Th. Note that H(div)-flux
reconstruction of DG were developed and analyzed in, e.g., [15]. The correspond-
ing EG-flux reconstruction was introduced in [31, 43]. Note that these prior works
assumed that the jump discontinuity is aligned with the mesh. In this case, the flux
recovery can be done as follows:

uh · ne = −{{β∇ph · ne}}e + σ(β)

|e| [[ph]]e.

On the other hand, for the case when the discontinuity is allowed within an element,
we modify this as follows, which will be coined as “EIFEM-flux recovery.” Namely,
for each edge e ∈ Eh, we define

uh · ne := 1

|e|
∫

e

(

−{{β∇ph · ne}}e + σ(β)

|e| [[ph]]e
)

ds, (25)

We remark that such definition produces the flux contained in the space Vh(Ω)

and the computation is completely local, and so, it is inexpensive. Furthermore, as
desired, the following local and global conservation can be shown to hold:

Proposition 1 The flux uh defined through (25) satisfies the local and global
conservation, namely,

∫

∂T

uh · n ds =
∫

T

f dx, ∀T ∈ Th, (26)

where n is the unit outward normal to ∂T , and
∫

∂Ω

uh · n ds =
∫

Ω

f dx,

where n is the unit outward normal to ∂Ω .

We note that the error estimate can be established for both ‖u − uh‖0 and ‖div(u −
uh)‖0 as follows:

Numerical Algorithms

Theorem 3 Let u be the solution of (4) with condition (5) and uh be the EIFEM-flux
computed by (25). If u ∈ (H 1(Ω))2, then the following holds.

||u − uh||L2(Ω) ≤ Ch||f ||L2(Ω).

Suppose further that for each T ∈ Th, f ∈ H 1(T), then following holds.
∑

T ∈Th

||div(u − uh)||0,T ≤ Ch||f ||1,h.

Remark 1 We can apply a posteriori error estimates developed in the literature [2, 6,
8, 13, 23] to DB-EIFEM and use it for the adaptive mesh refinement. The recovery-
based posteriori error estimates are studied for mixed finite element method in [2, 6,
13, 23], while those for discontinuous Galerkin are studied in [8]. However, due to the
presence of interface and nonhomogeneous jump conditions, we leave the technical
details for a future investigations.

4 Numerical methods for the evolution of �(t)

In this section, we discuss how to evolve the interface �(t). The proposed technique
is based on the evolution of the level set function 	. We also discuss how to obtain the
zero-level set, or the updated interface from 	. Basically, once we obtain the velocity
uh = (uh, vh) at time step, T = tn from DB-EIFEM scheme, we shall obtain the
updated level set function using the fifth-order WENO scheme and then obtain the
zero-level set using a certain projection step. Throughout this section, we denote ∂ξ

by the partial derivative with respect to the variable ξ .

4.1 WENO scheme for level set equation

As discussed in [16], we recall that the level set (3) is a Hamilton-Jacobi type, we
rewrite (3) as

	t + H(∂x	, ∂y) = 0, (27)

where H(φ, ψ) = uhφ + vhψ . To solve the (27), we propose to apply the fifth-
order WENO scheme with the local Lax-Friedrichs (LLF) flux as introduced in [19,
20]. Note that we use the lowest order RT element for the velocity whose degrees of
freedom are defined on edges. Therefore, it is more convenient to define DOFs of
	 on the cell centers (see Fig. 3). Throughout this section, for any given function,
say � dependent on time and space, by �n

i,j we mean the cell average of �n on the
(i, j)-th cell [i
x, (i +1)
x]×[j
y, (j +1)
y], whose cell center coordinate will
be denoted by (xi, yj) with �n = �(tn).

The WENO scheme ([19, 41]) to approximate the Jacobi-Hamilton (27) can be
formulated as follows:

	n+1
i,j = 	n

i,j −
t ̂H((∂x)−i,j , (∂x)+i,j , (∂y)−i,j , (∂y)+i,j), (28)

where ̂H is the local Lax-Friedrichs (LLF) flux, (∂x)±i,j and (∂y)±i,j are fifth-order
WENO approximations of ∂x	

n and ∂y	
n at (xi, yj), respectively. More precisely,

Numerical Algorithms

Fig. 3 Degree of freedoms of 	h are located at cell center, while those for uh = (uh, vh) are located at
edges

the LLX flux, ̂H is given as follows:

̂H(φ−, φ+, ψ−, ψ+) = H

(

φ+ + φ−

2
,
ψ+ + ψ−

2

)

−α(φ+, φ−)

(

φ+ − φ−

2

)

− β(ψ+, ψ−)

(

ψ+ − ψ−

2

)

,

where with I (a±) = [min(a+, a−), max(a+, a−)],
α(φ+, φ−) = max

φ∈I (φ±), ψ∈I (ψ±)

∣

∣∂(∂x)H(φ, ψ)
∣

∣ , and

β(ψ+, ψ−) = max
ψ∈I (ψ±), φ∈I (φ±)

∣

∣∂(∂y)H(φ, ψ)
∣

∣ .

We now discuss approximations of the derivatives of 	n at the cell edges, i.e.,
(∂x)±i,j and (∂y)±i,j . Note that we only describe (∂x)−i,j since the others can be
obtained in a similar fashion (see [19] for detailed discussions). We let φ(x) :=
(∂x)n(x, yj). We denote φk = φ(xk) and define the left-biased difference of φ’s
at xi as
−φi = φi − φi−1. The third-order approximations of ∂xφi based on the
difference at the stencils-Sr(i) := {xi−2+r , xi−1+r , xi+r} (r = 0, 1, 2) are given as
follows:

(∂xφ)
−,0
i = 1

3

−φi−2

x
− 7

6

−φi−1

x
+ 11

6

−φi

x
,

(∂xφ)
−,1
i = −1

6

−φi−1

x
+ 5

6

−φi

x
+ 1

3

−φi+1

x
,

(∂xφ)
−,2
i = 1

3

−φi

x
+ 5

6

−φi+1

x
− 1

6

−φi+2

x
.

Numerical Algorithms

The idea of WENO reconstruction for (∂xφ)−i is then to take a linear combination of
the above approximations as follows:

(∂xφ)−i =
2

∑

k=0

ωk(∂xφ)
−,k
i ,

where weights ωk are defined as ωk = αk
∑2

s=0 αs

for k = 0, 1, 2. The parameters αk’s

are given as αk = dk

(ε+βk)
2 with dk’s and βk’s being given as follows:

d0 = 1

10
, d1 = 3

5
, d2 = 3

10
,

β0 = 13

12

(

−φi−2 − 2
−φi−1 +
−φi

x

)2

+ 1

4

(

−φi−2 − 4
−φi−1 + 3
−φi

x

)2

,

β1 = 13

12

(

−φi−1 − 2
−φi +
−φi+1

x

)2

+ 1

4

(

−φi−1 −
−φi+1

x

)2

,

β2 = 13

12

(

−φi − 2
−φi+1 +
−φi+2

x

)2

+ 1

4

(

3
−φi − 4
−φi+1 +
−φi+2

x

)2

.

Finally, the parameter ε is chosen typically as a small positive number, which is to
avoid overflow when βk is close to zero. In our experiments, we set ε at ε = 10−6.

4.2 Interface reconstruction from level set function

In this section, we describe how to obtain �n+1
h as a zero-level set of 	n+1

h , follow-
ing the technique introduced in [16]. Note that the level set function is evaluated at
centers of elements, we need to find points on the interface with these values.

We call a cell center coordinate (xi, yj) of an element, control point if 	n
i,j <

0 and there exists at least one adjacent element at which 	n takes positive value.
We then reconstruct the interface by projecting these control points on the interface,
called the interface point. With 	 := 	n, let X = (xi, yj) be a control point. We let
n be the unit gradient vector of 	, i.e.,

n = − ∇	

‖∇	‖ .

Then we can find the interface point X∗ = (x∗
i , y∗

j), which is the projection of
(xi, yj) along n. Namely,

X∗ = X + tn,

where t is the positive solution of the quadratic equation given as follows:

1

2
(nT He()n)t2 + ‖∇	(X)‖t + 	(X) = 0.

Note that He() is the Hessian matrix of 	 evaluated at the point X. Finally, the
curvature κn of the interface can be approximated by the following formula:

κ = ∇ · n = −φxxφ2
y−2φxyφxφy+φyyφ2

x

(φ2
x+φ2

y)3/2 . (29)

Numerical Algorithms

Once φx , φy , φxx , φxy , φyy are approximated by the central difference schemes, we
obtain curvature by substituting them in (29). Note that we only need to compute the
curvature for the interface elements (Fig. 4).

5 Numerical experiments

In this section, we demonstrate the performance of the proposed method by perform-
ing a couple of numerical experiments of interface problems with nonhomogeneous
jump conditions. The experiments are conducted with a variety of interfaces � and
with coefficients β± with different jumps.

For all the examples, we fix the domain Ω = (−2, 2)2. The domain Ω is then
triangulated uniformly with rectangles of size h. The triangulation will be denoted by
Th. The computational setting is similar to that presented in [16]. Let Ωr = {(x, y) ∈
Ω : √

x2 + y2 ≤ r} for any r ∈ R. Let α be a fixed positive real number. The source
term f and boundary condition for p are given as follows:

f (x, y) =
{ 6V0

α2 (α − √

x2 + y2), if (x, y) ∈ Ωα

0, otherwise,

p(x, y) = −V0α

β+ log(

√

x2 + y2), on ∂Ω,

where V0 is a controlling parameter. For all the experiments, we set the injection
rate IR as IR = 2πV0α. We remark that surface tension τ is then determined by the

Fig. 4 Blue circles are control points and black circles are the projected points along the red lines

Numerical Algorithms

Fig. 5 Inner interface shows the interface at t = 0 and outer interface shows the interface at t = 8 for
Example 1

following equation:

τ = d0IR

2πβ+ . (30)

All the numerical experiments below are conducted on PC with an Intel(R) Core(TM)
i7-3770 CPU@ 3.40GHz processor. The DB-EIFEM system is solved by applying
the solver discussed in Section 3.2.1. For the implementation of AMG precondi-
tioner, C++ open software library AMGCL developed by Demidov [11, 12] were
employed.

We begin with an example for which analytic solution is given. The main purpose
of this setting is to consider the convergence of the method.

Example 1 We shall consider the benchmark problem [16], formulated with an
analytic solution and the interface of initial circle shape given as follows:

p(x, y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

V0
β−

(

2
√

x2+y2
3

3α2 − 3
√

x2+y2
2

2α

)

+ C1, if 0 ≤ √

x2 + y2 ≤ α

−V0α
β− log(

√

x2 + y2) + C0 if α <
√

x2 + y2 ≤ r�

−V0α
β+ log(

√

x2 + y2), otherwise,

Numerical Algorithms

Fig. 6 Pressure field at T = 0 and at T = 16, respectively for Example 1

where r� =
√

2αV0t + r2
0 with r0 the radius of the initial interface of the circle shape,

V0 = 0.25, β+ = 1, β− = 100, α = 0.1, d0 = 2.5E−3 and

C0 = τ

r�
+ V0α log(r�)

(

1

β− − 1

β+

)

,

C1 = C0 − V0α log(α)

β− + 5V0α

6β− .

Note that the initial interface is given as �(0) = {x2 +y2 = r2
0 } with r0 = 0.41. Note

that Fig. 5 shows the evolution of the interface from the time level t = 0 to the time
level t = 16 in the collage images.

Figures 6 and 7 show the pressure and velocity fields at time level t = 0 and
t = 16 as snap shots. We present two tables, one for error analysis of the pressure
(see Table 1) and the other for error analysis for the velocity (see Table 2). These
results show the optimal convergence rate, which is predicted by the theory.

The performance of the preconditioner proposed in Section 3.2.1 for resulting
system is reported in Table 3. As demonstrated, the optimal performance of the solver

Fig. 7 Velocity field at T = 0 and at T = 16 (Example 1)

Numerical Algorithms

Table 1 L2 and Energy norm error for pressure approximation for Example 1. Both errors are computed
at the time level T = 1 and the time step size is set at
t = (1/16)h2

of elements ‖p − ph‖0,Ω Order ‖p − ph‖1,h Order

162 7.014E−3 1.221E−2

322 2.233E−3 1.651 4.750E−3 1.362

642 4.539E−4 2.299 1.901E−3 1.321

1282 1.446E−5 4.972 8.776E−4 1.115

is established. Note that the maximum number of AMG iterations for block matrices,
A≈11

and A≈22
were set at the fixed number 10 with one Gauss-seidel iteration. We

note that DB-EIFEM scheme provides a setting where the system solved changes
only due to the location of interface and therefore, the performance of the proposed
preconditioner stays the same with the different time levels.

In the following, we shall present more challenging case where the interface
conditions are complicated. For the next two examples, we shall consider the stan-
dard cylindrical coordinate of (x, y) ∈ Ω , which will be denoted by (ρ, θ) :=
(ρ(x, y), θ(x, y))}. This is convenient to express the interface conditions.

Example 2 We consider the problem with a symmetric star-shaped interface (Figs. 8,
9 and 10). The initial interface is given as follows:

�(0) = {(x, y) ∈ Ω : ρ(x, y) = r0 + 0.1 sin(5θ(x, y))} ,

where r0 = 0.7. Parameters used are V0 = 0.25, β+ = 1, β− = 100, α = 0.3, and
d0 = 2.3E−3 and r0 = 0.7.

Example 3 We consider the problem with two different initial asymmetric interfaces
(Fig. 11), which are given as follows, respectively:

�1(0) = {(x, y) ∈ Ω : ρ = r0 + 0.05(sin(2θ) + cos(3θ))}
�2(0) = {(x, y) ∈ Ω : ρ = r0 + 0.05(sin(5θ) + cos(3θ))},

where r0 = 0.55. The parameters used are V0 = 0.25, β+ = 1, β− = 100, α = 0.3,
d0 = 2.1E−3.

Table 2 L2 norm error for velocity approximation for Example 1. It is computed at the time level T = 1
and the time step size is set at
t = (1/16)h2

of elements ‖u − uh‖0,Ω Order ‖∇ · (u − uh)‖0,Ω Order

162 5.317E−2 1.204 · E−0

322 3.534E−2 0.589 8.709 · E−1 0.467

642 1.197E−2 0.562 4.302 · E−1 1.018

1282 5.500E−3 1.122 2.316 · E−1 0.893

Numerical Algorithms

Table 3 Performance of
auxiliary space
preconditioner-PCG for
Example 1

of elements # of iterations CPU time

162 10 0.16

322 12 0.57

642 11 2.60

1282 12 8.59

2562 12 25.49

5122 12 101.46

Fig. 8 Inner interface shows the interface at T = 0 and outer interface shows the interface at T = 8 for
Example 2

Fig. 9 Pressure (left column) and velocity field (right column) for T = 0 for Example 2

Numerical Algorithms

Fig. 10 Pressure (left column) and velocity field (right column) for T = 8 for Example 2

Figure 12 shows the importance of flux and its conservative property. We have
attempted to use flux obtained from the DB-IFEM [9] method, which is not locally
conservative instead of the flux we proposed to use. It is noticed that the computation
breaks down at the time level t = 0.25.

6 Conclusions

We presented a locally conservative discontinuous bubble scheme for interface prob-
lem with nonhomogeneous interface problem coupled with transports of level set
formulation for evolution of the interface. For simulating a coupled-flow and trans-
port, particularly the Hele-Shaw equation, we demonstrate the importance of the
locally conservative flow scheme. We also demonstrate the newly proposed scheme

Fig. 11 Evolution of interfaces for �1(t) for t ≥ 0 (left) and �2(t) for t ≥ 0 (right). For both cases, inner
interface shows the interface at T = 0 and outer interface shows the interface at T = 8 for Example 3

Numerical Algorithms

Fig. 12 Interface at time t = 0.25 where initial interface is �2(0). Left is a numerical result by DB-EIFEM
and right is a numerical result by DB-IFEM

is ideal for the evolution problem since a fast solver based on the algebraic multigrid
method can be incorporated.

Funding The second author is supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIT) (No. 2020R1C1C1A01005396).

Data availability The datasets generated during the current study are available from the corresponding
author on reasonable request.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation,
postprocessing and error estimates. ESAIM: Math. Model. Numer. Anal. 19, 7–32 (1985)

2. Bank, R.E., Li, Y.: Superconvergent recovery of Raviart–Thomas mixed finite elements on triangular
grids. J. Sci. Comput. 81, 1882–1905 (2019)

3. Bastian, P., Rivière, B.: Superconvergence and H(div) projection for discontinuous galerkin methods.
Int. J. Numer. Methods Fluids 42, 1043–1057 (2003)

4. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J.
Numer. Methods Eng. 45, 601–620 (1999)

5. Belytschko, T., Parimi, C., Moës, N., Sukumar, N., Usui, S.: Structured extended finite element
methods for solids defined by implicit surfaces. Int. J. Numer. Methods Eng. 56, 609–635 (2003)

6. Brandts, J.H.: Superconvergence for triangular order k = 1 Raviart–Thomas mixed finite elements
and for triangular standard quadratic finite element methods. Appl. Numer. Math. 34, 39–58 (2000)

7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, vol. 15. Springer, New York (1991)
8. Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: a

priori and a posteriori error estimations. SIAM J. Numer. Anal. 49, 1761–1787 (2011)
9. Chang, K.S., Kwak, D.Y.: Discontinuous bubble scheme for elliptic problems with jumps in the

solution. Comput. Methods Appl. Mech. Eng. 200, 494–508 (2011)

Numerical Algorithms

10. Chou, S.H., Kwak, D.Y., Wee, K.T.: Optimal convergence analysis of an immersed interface finite
element method. Adv. Comput. Math. 33, 149–168 (2010)

11. Demidov, D.: Amgcl: a c++ library for solution of large sparse linear systems with algebraic multigrid
method. https://github.com/ddemidov/amgcl (2017)

12. Demidov, D.: amgcl: an efficient, flexible, and extensible algebraic multigrid implementation.
Lobachevskii J. Math. 40, 535–546 (2019)

13. Dupont, T.F., Keenan, P.T.: Superconvergence and postprocessing of fluxes from lowest-order mixed
methods on triangles and tetrahedra. SIAM J. Sci. Comput. 19, 1322–1332 (1998)

14. Entov, V., Etingof, P.: On a generalized two-fluid hele-shaw flow. Eur. J. Appl. Math. 18, 103–128
(2007)

15. Ern, A., Nicaise, S., Vohralı́k, M.: An accurate H(div) flux reconstruction for discontinuous galerkin
approximations of elliptic problems. C. R. Math. 345, 709–712 (2007)

16. Hou, T.Y., Li, Z., Osher, S., Zhao, H.: A hybrid method for moving interface problems with application
to the Hele–Shaw flow. J. Comput. Phys. 134, 236–252 (1997)

17. Jeon, Y., Tran, M.L.: Numerical analysis of interface hybrid difference methods for elliptic interface
equations. J. Comput. Appl. Math. 377, 112869 (2020)

18. Jeon, Y., Shin, D.: Immersed hybrid difference methods for elliptic boundary value problems by
artificial interface conditions. Electron. Res. Arch. 29, 3361 (2021)

19. Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput.
21, 2126–2143 (2000)

20. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126,
202–228 (1996)

21. Jo, G., Kwak, D.Y.: An IMPES scheme for a two-phase flow in heterogeneous porous media using a
structured grid. Comput. Methods Appl. Mech. Eng. 317, 684–701 (2017)

22. Jo, G., Young, K.D., Lee, Y.-J.: Locally conservative immersed finite element method for elliptic
interface problems. J. Sci. Comput. 87 (2021)

23. Kim, K.-Y.: Guaranteed and asymptotically exact a posteriori error estimator for lowest-order Raviart–
Thomas mixed finite element method. Appl. Numer. Math. 165, 357–375 (2021)

24. Krysl, P., Belytschko, T.: An efficient linear-precision partition of unity basis for unstructured
meshless methods. Commun. Numer. Methods Eng. 16, 239–255 (2000)

25. Kwak, D.Y., Wee, K.T., Chang, K.S.: An analysis of a broken p1-nonconforming finite element
method for interface problems. SIAM J. Numer. Anal. 48, 2117–2134 (2010)

26. Kwak, D.Y., Jin, S., Kyeong, D.: A stabilized p1-nonconforming immersed finite element method for
the interface elasticity problems. ESAIM: Math. Model. Numer. Anal. 51, 187–207 (2017)

27. Kwon, I., Jo, G.: A consistent discontinuous bubble scheme for elliptic problems with interface jumps.
J. Korean Soc. Ind. Appl. Math. 24, 143–159 (2020)

28. Kwon, I., Kwak, D.Y.: Discontinuous bubble immersed finite element method for Poisson-Boltzmann
equation. Commun. Comput. Phys. 25, 928–946 (2019)

29. Kyeong, D., Kwak, D.Y.: An immersed finite element method for the elasticity problems with
displacement jump. Adv. Appl. Math. Mech. 9, 407–428 (2017)

30. Lee, L., LeVeque, R.J.: An immersed interface method for incompressible Navier–Stokes equations.
Wave Motion 25, 832–856 (2003)

31. Lee, S., Lee, Y., Wheeler, M.: A locally conservative enriched Galerkin approximation and efficient
solver for elliptic and parabolic problems. SIAM J. Sci. Comput. 38, A1404–A1429 (2016)

32. Legrain, G., Moes, N., Verron, E.: Stress analysis around crack tips in finite strain problems using the
extended finite element method. Int. J. Numer. Methods Eng. 63, 290–314 (2005)

33. Leveque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous
coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)

34. LeVeque, R.J., Li, Z.: Immersed interface methods for stokes flow with elastic boundaries or surface
tension. SIAM J. Sci. Comput. 18, 709–735 (1997)

35. Li, Z.: Immersed interface methods for moving interface problems. Numer. Algorithms 14, 269–293
(1997)

36. Li, Z., Lin, T., Wu, X.: New cartesian grid methods for interface problems using the finite element
formulation. Numer. Math. 96, 61–98 (2003)

37. Li, Z., Lin, T., Lin, Y., Rogers, R.C.: An immersed finite element space and its approximation
capability. Numer. Methods Partial Differ. Equ. 20, 338–367 (2004)

https://github.com/ddemidov/amgcl

Numerical Algorithms

38. Lin, T., Lin, Y., Rogers, R., Ryan, M.L.: A rectangular immersed finite element space for interface
problems. Adv. Comput. Theory Pract. 7, 107–114 (2001)

39. Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface
problems. SIAM J. Numer. Anal. 53, 1121–1144 (2015)

40. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing.
Int. J. Numer. Methods Eng. 46, 131–150 (1999)

41. Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations.
SIAM J. Numer. Anal. 28, 907–922 (1991)

42. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problems.
Mathematical aspects of finite element methods, pp. 292–315 (1977)

43. Sun, S., Liu, J.: A locally conservative finite element method based on piecewise constant enrichment
of the continuous galerkin method. SIAM J. Sci. Comput. 31, 2528–2548 (2009)

44. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer.
Anal. 15, 152–161 (1978)

45. Zhang, C., LeVeque, R.J.: The immersed interface method for acoustic wave equations with
discontinuous coefficients. Wave Motion 25, 237–263 (1997)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Locally conservative discontinuous bubble scheme for Darcy flow and its application to Hele-Shaw equation based on structured grids
	Abstract
	Introduction
	Governing equation and its temporal discretization
	Discontinuous bubble-enriched immersed finite element method (DB-EIFEM)
	Discontinuous bubble-immersed finite element method (DB-IFEM)
	Discontinuous bubble-enriched immersed finite element method (DB-EIFEM)
	Fast solver for EIFEM based on algebraic multigrid method
	Conservative flux reconstruction and its error analysis

	Numerical methods for the evolution of (t)
	WENO scheme for level set equation
	Interface reconstruction from level set function

	Numerical experiments
	Conclusions
	References

