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An immersed nonconforming finite element method based on the flux continuity on
intercell boundaries is introduced. The direct application of flux continuity across the
support of basis functions yields a nonsymmetric stiffness system for interface elements. To
overcome non-symmetry of the stiffness system we introduce a modification based on the
Riesz representation and a local postprocessing to recover local fluxes. This approach yields
a P1 immersed nonconforming finite element method with a slightly different source term
from the standard nonconforming finite element method. The recovered numerical flux
conserves total flux in arbitrary sub-domain. An optimal rate of convergence in the energy
norm is obtained and numerical examples are provided to confirm our analysis.

© 2014 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

In this paper, we consider a simple model interface problem:

−div (κ∇u) = f in Ω,

u = 0 on ∂Ω, (1.1)

where the domain Ω = Ω− ∪ Ω+ is a simply connected, bounded polygonal domain with a piecewise smooth interface Γ .
The conductivity, κ is piecewise constant so that κ = κ± on each Ω± .

The finite element (FE) formulation for (1.1) traces back to Babuska et al. [1–3]. They developed the partition of unity FE
methods in which the finite elements are constructed by solving the interface problem locally. The local basis functions in
these methods are able to capture very well the important features of the exact solution and they can be non-polynomials.
Bramble and King derived a finite element method in which the smooth boundary and interface of the problem domain
are approximated by polygonal domain and interface [4]. Later, the immersed finite element method (IFE) was introduced,
where they allow the interface to cut through the element and the local basis functions constructed to satisfy the interface
jump conditions of normal fluxes. IFE methods do not locally solve the interface problem and their basis functions are
piecewise polynomials [9,10,14–17].

It is known that the finite volume method produces physically more relevant solutions for evolution equations than the
usual finite element does. There have been studies in this direction for interface problems in the name of the immersed
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finite volume method [8,13]. The purpose of our paper is to introduce a P1-nonconforming finite element induced by
hybridization and a post processing to recover flux conserving numerical fluxes. By hybridization, we mean a construction
of the linear system using flux continuity on the support of a local basis function. The major advantage of hybridization is
that it produces flux preserving numerical schemes like a finite volume method, however it does not need a control volume
generation. For details of hybridized methods we refer to [6,11,12]. As observed in [11,12], the P1 and P2 type hybridized
methods yield symmetric linear systems for problems without an immersed interface. Especially, for a nonconforming P1
method the hybridized method results in a symmetric nonconforming finite element system with a modified right hand
side. A direct hybridization of immersed finite element method for interface problems yields a nonsymmetric linear system
due to the interface elements. Non-symmetry of a linear system can cause difficulties in developing fast convergent iterative
schemes.

In this paper we consider a modification of the hybridized method to obtain a symmetric stiffness system. The mod-
ification is needed only for elements with an immersed interface. The modification is composed of two procedures: (1)
conversion of the nonsymmetric hybridized system into a symmetric nonconforming finite element system by using the
Riesz representation, (2) a postprocessing to recover flux by an inverse Riesz representation so that it satisfies intercell flux
continuity.

The paper is organized as follows. In Section 2, the function spaces, triangulation and its skeleton, and a hybridization
approach are described. In Section 3, a conversion of a hybridized method into a typical nonconforming finite element
method by using the Riesz representation is introduced. An analysis in the energy norm is provided in Section 4. In Sec-
tion 5, we consider the rectangular elements. It is not difficult to see that the analysis in the previous section for triangular
elements can be extended directly. In Section 6, we provide numerical results for simple elliptic interface problems by
varying conductivity ratio. Numerical experiments are performed for both triangular and rectangular triangulations.

2. Hybridization

Let us first introduce triangulations and functional spaces. Let Th be a shape regular, quasi-uniform triangular (or rect-
angular in Section 5) triangulation of Ω , where maxK∈Th diam(K ) = h. The skeleton Kh of a triangulation Th is

Kh =
⋃

e∈Eh

e,

where Eh is the set of edges. When the interface Γ trespasses a triangle T , it is called an (immersed) interface triangle.
Otherwise, it is a noninterface triangle.

Let Hm(D) = W m
2 (D) be the usual Sobolev space of order m with the norm ‖ · ‖m,D . Here, D ⊂ R

2 can be the whole
domain Ω or a triangle T . The optimal function space for strong solutions of (1.1) is

H1
div(Ω) = {

u ∈ H1(Ω): div (κ∇u) ∈ L2(Ω)
}
.

For our numerical purpose we introduce the space H̃2(D) ⊂ H1
div(D) such that

H̃2(D) := {
u ∈ H1(D): κ∇u ∈ [

H1(D)
]2}

,

equipped with the norm

‖u‖2
H̃2(D)

:= ‖u‖2
1,D + ‖κ∇u‖2

1,D .

In the finite element analysis we require a regularity of solution

‖u‖2
H2(Ω+∪Ω−)

= ‖u‖2
1,Ω + ‖u‖2

2,Ω+ + ‖u‖2
2,Ω− < ∞

with the interface condition, [[∂κ
ν u]]Γ = (κ+ ∂u

∂ν+ + κ− ∂u
∂ν− )|Γ = 0 to have an optimal order of convergence. However, in our

approach we require a stronger regularity u ∈ H̃2(Ω) for an optimal convergence analysis.
We denote the skeleton trace of H1(Ω) by H1/2(Kh) and that of H1

0(Ω) by H1/2
0 (Kh). By the nature of nonconforming

methods our analysis is based on the discrete Sobolev space H1(Th) = ∏
T ∈Th

H1(T ) with the norm and seminorm:

‖u‖2
1,h :=

∑
T ∈Th

‖u‖2
1,T , |u|21,h :=

∑
T ∈Th

|u|21,T .

The discrete inner product is given as

(κ∇u,∇v)h =
∑

(κ∇u,∇u)T .
T ∈Th
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For simplicity of presentation we introduce the notation A � B , which means that A � cB for some constant c > 0, inde-
pendent of h. Our formulation relies on a simple but fundamental property of the solution of (1.1). Namely, the solution u
satisfies the localized problem: for u ∈ H2(Th) ∩ H1(Ω),

−div (κ∇u) = f in T

[[κ∇u]] := κ
∂u

∂ν
+ κ ′ ∂u

∂ν ′ = 0, on e = ∂T ∩ ∂T ′. (2.1)

From here on, we use the abbreviation, ∂κ
ν u := (κ∇u) ·ν . The solution u of (2.1) admits locally the following decomposition:

with λ = u|Kh ,

u = uλ + u f on T , (2.2)

where the pair (uλ, u f ) satisfies

−div (κ∇uλ) = 0 on T , uλ = λ on ∂T (2.3)

and

−div
(
κ∇u f ) = f on T , u f = 0 on ∂T , (2.4)

respectively. Then uλ and u f satisfy the flux continuity equation:〈[[κ∇uλ]],μ
〉
Kh

= −〈[[
κ∇u f ]],μ〉

Kh
, μ ∈ H1/2

0 (Kh). (2.5)

The pair 〈·,·〉 represents the L2 inner product on Kh or ∂T from here on.
Eqs. (2.2)–(2.5) can be summarized into a hybridized form: find (u, λ) ∈ H̃2

0(Ω) ∩ H1/2
0 (Kh) such that

−(
div (κ∇u), w

)
h +

∑
T ∈Th

〈
u, ∂κ

ν w
〉
∂T = ( f , w)h +

∑
T ∈Th

〈
λ, ∂κ

ν w
〉
∂T , (2.6a)

〈[[κ∇u]],μ〉
Kh

= 0 (2.6b)

for any (w,μ) ∈ H1(Th) × H1/2
0 (Kh). Because of the above formulation we call our approach as a hybridized method. For

computation and numerical analysis we invoke Eqs. (2.2)–(2.5) rather than the hybridized form (2.6) and it turns out that
our method can be analyzed by following the standard finite element analysis of elliptic equations with the unknown uλ .

3. A nonconforming finite element formulation

Let us introduce local and global immersed finite element spaces. For simplification of our discussion we assume that
the interface Γ is a straight line within a triangle. A rationale for this assumption is given in [14].

• If T is not an interface triangle, then the space of local finite elements is defined as

WT = span{1, x, y}, F = −1

4

(
x2 + y2).

• If T is an interface triangle, assume T is given by T = S− ∪ S+ and κ = κ± on S± (see Fig. 1) where the interface
satisfies the equation ν1x + ν2 y + c = 0. When 0 < κ+ � κ− , the basis for the immersed finite element is defined as

WT = span{φ̂0, φ̂1, φ̂2},
where

φ̂0(x, y) = 1, φ̂1(x, y) = −ν2x + ν1 y,

φ̂2(x, y) =
{ 1

κ− (ν1x + ν2 y + c), (x, y) ∈ S−
1
κ+ (ν1x + ν2 y + c), (x, y) ∈ S+

and

F = −
{ 1

4κ− (ν1x + ν2 y + c)2 + 1
4κ− (−ν2x + ν1 y)2, (x, y) ∈ S−

( 1
2κ+ − 1

4κ− )(ν1x + ν2 y + c)2 + 1
4κ− (−ν2x + ν1 y)2, (x, y) ∈ S+.
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Fig. 1. A reference interface triangle.

When 0 < κ− � κ+ , the formula for F changes to

F = −
{

( 1
2κ− − 1

4κ+ )(ν1x + ν2 y + c)2 + 1
4κ+ (−ν2x + ν1 y)2, (x, y) ∈ S−

1
4κ+ (ν1x + ν2 y + c)2 + 1

4κ+ (−ν2x + ν1 y)2, (x, y) ∈ S+.

The basis functions {φ̂i}2
i=0 and F are constructed to satisfy

−div (κ∇φ̂i) = 0, −div (κ∇ F ) = 1 on T = S− ∪ S+,

together with the normal flux continuity on the interface, ∂ S− ∩ ∂ S+ .
Now, the finite element space is

Wh =
{

p
∣∣∣ p ∈

⊕
T ∈Th

WT ,

∫
e

p|T ds =
∫
e

p|T ′ ds, e = ∂T ∩ ∂T ′,
∫
e

p|T ds = 0, e = ∂T ∩ ∂Ω

}
.

The corresponding interpolation operator is defined as

Ih : C(Ω) → Wh,

∫
e

(v − Ih v)ds = 0, e ⊂ Kh.

The approximation property of this interpolation operator is shown in [14]: for u ∈ H2(Ω+ ∪ Ω−)

‖u − Ihu‖0,Ω + h‖u − Ihu‖1,h � h2‖u‖H2(Ω+∪Ω−), j = 0, 1. (3.1)

Consider a decomposition of the approximate solution:

uh = vh + u f
h ∈ Wh,

where

vh ∈ Wh, u f
h = P0( f ) (F − Ih F )

with P0( f ) = 1
|T |

∫
T f dx for each T ∈ Th . It is easy to see that vh and u f

h satisfy

−div (κ∇vh) = 0 on T , Ih(vh) = Ih(uh)

and

−div
(
κ∇u f

h

) = P0( f ) on T , Ih
(
u f

h

) = 0,

respectively. Moreover, u f
h has the following estimates:∥∥u f

h

∥∥
0,T + h

∥∥u f
h

∥∥
1,T � h2‖ f ‖0,T ,∥∥u f

h

∥∥∞,T + h
∥∥∇u f

h

∥∥∞,T � h2 P0( f ). (3.2)

Hence, vh and u f
h solve Eqs. (2.3) and (2.4) approximately.

Then, the hybridized numerical scheme for (2.5) is to find vh ∈Wh that satisfies〈[[κ∇vh]],μ
〉
K 0

h
= −〈[[

κ∇u f
h

]]
,μ

〉
Kh

, μ ∈ Wh. (3.3)

Here, μ is a piecewise constant function on the skeleton Kh such that μ|e = 1 ∫
μds for edges e ⊂ Kh .
|e| e
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• If T is not an interface triangle, then ∇vh is constant on T . Therefore,〈
∂κ
ν vh,μ

〉
∂T = (κ∇vh,∇μ)T , vh,μ ∈ Wh.

• If T is an interface triangle, ∇vh is piecewise constant. Therefore,〈
∂κ
ν vh,μ

〉
∂T �= (κ∇vh,∇μ)T , vh,μ ∈ Wh.

Hence, Eq. (3.3) does not yield a symmetric discrete system in general. Being nonsymmetric is not desirable since it can
cause some difficulties in applying fast convergent iterative numerical schemes such as the conjugate gradient methods and
the multigrid methods.

To overcome the nonsymmetric nature of the direct hybridization approach, we consider a modification of (3.3) by
introducing the Riesz representation. Let lv : Wh → R be the linear functional such that lv (μ) = 〈[[κ∇v]],μ〉Kh . By Riesz
representation theorem, there exists a σh ∈Wh such that

(κ∇σh,∇μ)h = lv(μ), μ ∈ Wh.

Now our scheme is composed of two steps:

Step 1: (Symmetric global solver) Find σh ∈Wh that satisfies

(κ∇σh,∇μ)h = −〈[[
κ∇u f

h

]]
,μ

〉
Kh

, μ ∈ Wh. (3.4)

Step 2: (Local postprocessing) Find Vh ∈ ∏
T ∈Th

WT up to a constant on each T such that〈
∂κ
ν Vh,μ

〉
∂T = (κ∇σh,∇μ)T , μ ∈ Wh. (3.5)

Remark 3.1.

• Step 2 is introduced to reproduce a globally flux preserving numerical flux κ∇Vh .
• Step 2 is required only when T is an interface triangle. If T is not an interface element we simply have Vh = σh .

Then we use separate forms of numerical solutions for approximation of u and its flux Θ = κ∇u:

Uh := σh + u f
h , Θh := κ∇Vh + κ∇u f

h .

The system in (3.4) is the same as the immersed nonconforming finite element formulation in [14] while the right hand
side is a bit different. Analysis will show that the numerical solution σh has the same convergence property as the immersed
nonconforming finite element solution in the energy norm. It is easy to see that the numerical flux κ∇Vh satisfies〈[[κ∇Vh]],1

〉
e = −〈[[

κ∇u f
h

]]
,1

〉
e, e ⊂ Kh.

Since −div Θh = P0( f ) for each T ∈ Th , we have a global flux conservation property:

−
∫
∂ D

Θh · ν ds =
∫
D

f dx (3.6)

for any subdomain D = ⋃
T ⊂D T .

For convenience of our analysis we rewrite the modified method (3.4) in a form of the standard immersed nonconforming
finite element method:

(κ∇σh,∇μ)h = (
P0( f ),μ

)
Ω

− (
κ∇u f

h ,∇μ
)

h +
∑
T ∈Th

〈
∂κ
ν u f

h ,μ − μ
〉
∂T , μ ∈ Wh. (3.7)

4. Convergence analysis

We begin this section by introducing the well-known theorems, see [5,7].

Lemma 4.1. For u ∈ H1(T ),

‖u‖∂T �
(

1

h
‖u‖2

0,T + h|u|21,T

)1/2

. (4.1)
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Corollary 4.2. Let e be an edge of T and T = S+ ∪ S− . Then,

‖u − u‖∂T � h1/2|u|1,T

and ∣∣∣∣∫
e

φ(v − v)ds

∣∣∣∣ � h|φ|1,T |v|1,T

for u ∈ H1(T ).

Proof. Using u = Ihu and the inverse estimate h|∇ Ihu|1,S+∪S− � ‖∇ Ihu‖0,T ,

‖u − u‖∂T � ‖u − Ihu‖0,∂T + ‖Ihu − Ihu‖0,∂T

� h1/2‖∇u‖0,T + h‖∇ Ihu‖0,∂T

� h1/2‖∇u‖0,T + h
(‖∇ Ihu‖0,∂ S+ + ‖∇ Ihu‖0,∂ S−

)
� h1/2‖∇u‖0,T + h

(
1

h
‖∇ Ihu‖2

0,S+∪S− + h|∇ Ihu|21,S+∪S−

)1/2

� h1/2‖∇u‖0,T .

Here, ‖u‖t,S+∪S− = ‖u‖t,S+ + ‖u‖t,S− for t = 0,1. We have the first estimate. The second estimate follows immediately. �
The following theorem states the energy norm estimate of the nonconforming finite element solution in (3.4) (equiva-

lently, (3.7)).

Theorem 4.3. Suppose u is the exact solution and σh is the finite element solution of the symmetric nonconforming method (3.4). Then
we have the following error estimate.

‖u − σh‖1,h � h
(‖ f ‖0,Ω + ‖u‖H̃2(Ω)

)
for u ∈ H̃2(Ω) and f ∈ H0(Ω).

Proof. The exact solution u satisfies 〈[[κ∇u]],μ〉Kh = 0 for μ ∈Wh . Then,∑
T ∈Th

〈
∂κ
ν u,μ

〉
∂T =

∑
T ∈Th

〈
∂κ
ν u,μ − μ

〉
∂T . (4.2)

The integration by parts yields that

(κ∇u,∇μ)h = ( f ,μ) +
∑
T ∈Th

〈
∂κ
ν u,μ − μ

〉
∂T . (4.3)

Subtracting (4.2) from (3.7) and subtracting Ihu from both sides, we have(
κ∇(σh − Ihu),∇μ

)
h = (

κ∇(u − Ihu),∇μ
)

h + (
P0( f ) − f ,μ

)
Ω

− (
κ∇u f

h ,∇μ
)

h

+
∑
T ∈Th

〈
∂κ
ν u f

h ,μ − μ
〉
∂T −

∑
T ∈Th

〈
∂κ
ν u,μ − μ

〉
∂T

= E1 + E2 + E3 + E4 + E5. (4.4)

Simple calculation with Corollary 4.2 yields

|E1| =
∣∣(κ∇(u − Ihu),∇μ

)
h

∣∣ � h‖u‖H̃2(Ω)|μ|1,h,

|E2| =
∣∣(P0( f ) − f ,μ

)
h

∣∣ = ∣∣( f ,μ − P0(μ)
)

h

∣∣ � h‖ f ‖0,Ω |μ|1,h,

|E3| =
∣∣(κ∇u f

h ,∇μ
)

h

∣∣ � h‖ f ‖0,Ω |μ|1,h,

|E4| =
∣∣∣∣ ∑ 〈

∂κ
ν u f

h ,μ − μ
〉
∂T

∣∣∣∣

T ∈Th
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�
∑
T ∈Th

h
∣∣P0( f )

∣∣ ∫
∂T

|μ − μ|ds

�
∑
T ∈Th

h1/2‖ f ‖0,T ‖μ − μ‖0,∂T

� h‖ f ‖0,Ω |μ|1,h.

Using continuity of ∂κ
ν u on the intercell boundaries,

|E5| =
∣∣∣∣ ∑

T ∈Th

〈
∂κ
ν u,μ − μ

〉
∂T

∣∣∣∣
=

∣∣∣∣ ∑
T ∈Th

〈
∂κ
ν u − ∂κ

ν u,μ − μ
〉
∂T

∣∣∣∣
=

∑
T ∈Th

h‖κ∇u‖1,T ‖∇μ‖0,T � h‖u‖H̃2(Ω)|μ|1,h.

The theorem is proved. �
Now, we investigate the convergence property of the post-processed solution Vh .

Theorem 4.4. The flux recovery formula,〈
∂κ
ν Vh,μ

〉
∂T = (κ∇σh,∇μ)T , μ ∈ WT , (4.5)

is uniquely solvable for Vh ∈ WT up to a constant for a given σh ∈ WT . Suppose σh is the solution of (3.4) (equivalently, (3.7)). Then,
the following error estimate holds:

|u − Vh|1,T � h
(‖u‖H̃2(T ) + ‖ f ‖0,T

)
.

Proof. Let us consider a space,
o

WT = span{φ̂1 − P0(φ̂1), φ̂2 − P0(φ̂2)}. By the Riesz representation, there exists a mapping

S : o
WT → o

WT such that S(Vh) = σh − P0(σh) in (4.5). It is easy to see that the matrix representation of S is a nonsingular

2 × 2 matrix. Hence, Eq. (4.5) is uniquely solvable for Vh in
o

Wh . Then, |Su|1,T and |u|1,T are norms in
o

Wh . Using the

scale invariance, we can see that two norms are equivalent: c1|Su|1,T � |u|1,T � c2|Su|1,T for u ∈ o
WT , where c1, c2 > 0 are

constants independent of the size and shape of T for a shape regular triangulation.
Let us turn to the error analysis. The interpolation Ihu satisfies〈

∂κ
ν Ihu, w

〉
∂T = (κ∇ Ihu,∇w)T + 〈

∂κ
ν Ihu, w − w

〉
∂T , w ∈ WT

= (κ∇ Ihu,∇w)T + 〈
∂κ
ν (Ihu − u), w − w

〉
∂T + 〈

∂κ
ν u, w − w

〉
∂T .

Subtraction of the above equation from (4.5) yields〈
∂κ
ν (Vh − Ihu), w

〉
∂T = (

κ∇(σh − Ihu),∇w
)

T − 〈
∂κ
ν (Ihu − u), w − w

〉
∂T − 〈

∂κ
ν u, w − w

〉
∂T

= E1 + E2 + E3.

Using the approximation property of σh (Theorem 4.3) and Ihu (see (3.1)),

|E1| =
∣∣(κ∇(σh − Ihu),∇w

)
T

∣∣ � h
(‖u‖H̃2(T ) + ‖ f ‖0,T

)|w|1,T .

We need some care for the estimate of E2 when T = S− ∪ S+ since Ihu /∈ H̃2(T ). First we extend the definition of w so
that it is defined on the part of interface ∂ S− ∩ ∂ S+ also. Since ∂κ

ν (Ihu − u) is continuous on ∂ S− ∩ ∂ S+ , we have by the
approximation property of Ihu,

|E2| =
∣∣〈∂κ

ν (u − Ihu), w − w
〉
∂T

∣∣
= ∣∣〈∂κ

ν (u − Ihu), w − w
〉
∂ S− + 〈

∂κ
ν (u − Ihu), w − w

〉
∂ S+

∣∣
�

∣∣〈∂κ
ν (u − Ihu), w − w

〉
∂ S−

∣∣ + ∣∣〈∂κ
ν (u − Ihu), w − w

〉
∂ S+

∣∣
�

∥∥κ∇(u − Ihu)
∥∥ ‖w − w‖0,∂ S− + ∥∥κ∇(u − Ihu)

∥∥ ‖w − w‖0,∂ S+
0,∂ S− 0,∂ S+
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Fig. 2. A reference interface rectangle.

�
(

1

h

∥∥κ∇(u − Ihu)
∥∥2

0,S−∪S+ + h
∥∥κ∇(u − Ihu)

∥∥2
1,S−∪S+

)1/2(‖w − w‖0,∂T + ‖w − w‖0,Γ ∩T
)

� h|u|H̃2(T )|w|1,T .

As the proof of E5 in Theorem 4.3,

|E3| =
∣∣〈∂κ

ν u, w − w
〉
∂T

∣∣
� h|u|H̃2(T )|w|1,T .

As a result, we have

|Vh − Ihu|1,T � h
(‖u‖H̃2(T ) + ‖ f ‖0,T

)
.

From this and the interpolation property, the theorem is immediate. �
As a result of the above theorems and the estimate for u f

h in (3.2), we have

‖Θ − Θh‖0,h � h
(‖u‖H̃2(T ) + ‖ f ‖0,T

)
.

5. Rectangular elements

In this section we introduce rectangular elements. It is easy to see that the same kind of analysis in the previous section
for triangular meshes is applicable to rectangular meshes.

Let us firstly introduce the local rectangular elements.

• When T is not an interface rectangle, the local finite element space is

WT = span
{

1, x, y,
(
x2 − y2)}.

• When T = S− ∪ S+(κ = κ± on S±) is an interface rectangle (Fig. 2) with the interface, ν1x +ν2 y + c = 0, the local finite
element space is

WT = span
{
φ̂0, φ̂1, φ̂2, φ̂

α
3

}
,

where φ̂0, φ̂1 and φ̂2 are the same as the triangular case and

φ̂α
3 (x, y) = (ν1x + ν2 y + c)2 − (−ν2x + ν1 y)2 + αφ̂1(x, y)φ̂2(x, y)

with a proper real number α. We use the same F as in the triangular case.

The term αφ̂1φ̂2 with α �= 0 in φ̂α
3 is essential for the unique representation of approximate solutions when the normal

vector on an interface satisfies |ν1| = |ν2|. It is easy to see that

−div
(
κ∇φ̂α

3

) = 0, on T = S− ∪ S+.

Then, the finite element space for a rectangular mesh is

Wh =
{

p
∣∣ p ∈

⊕
T ∈Th

WT ,

∫
e

p|T ds =
∫
e

p|T ′ ds, e = ∂T ∩ ∂T ′,
∫
e

p|T ds = 0, e = ∂T ∩ Γ

}
.

Then we apply the same algorithm as in Section 3. Firstly, find

u f
h = P0( f )(F − Ih F ).
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Fig. 3. The L2 (left) and H1 (right) errors for rectangular partitions with various conductivity ratio τ = 1,10,100,1000 for Example 6.1.

Step 1: Find σh ∈Wh that satisfies

(κ∇σh,∇μ)h = −〈[[
κ∇u f

h

]]
,μ

〉
Kh

, μ ∈ Wh.

Step 2: Find Vh ∈ ∏
T ∈Th

WT up to a constant on each T such that〈
∂κ
ν Vh,μ

〉
∂T = (κ∇σh,∇μ)T , μ ∈ Wh, T ∈ Th.

The same kind of numerical approximations of u and its flux Θ = κ∇u are given as

Uh := σh + u f
h , Θh := κ∇Vh + κ∇u f

h .

Remark 5.1. Since ∂κ
ν v is constant on each edge of T for v ∈WT when T is not an interface rectangle, we have〈

∂κ
ν vh,μ

〉
∂T = (κ∇vh,∇μ)T , vh, μ ∈ Wh.

Therefore, Step 2 is needed only for interface rectangles.

6. Numerical experiments

In this section, we present numerical results on both triangular and rectangular meshes. The computational domain is
the unit square Ω := [0,1]2 and we consider a uniform mesh so that the vertices are given as xi = ih and y j = jh, h = 1/N
for 1 � i, j � N for the rectangular mesh and the triangular mesh is then generated by bisecting each square by a diagonal
line.

Example 6.1. Consider an elliptic problem:

−div (κ∇u) = f in Ω,

u = g on ∂Ω,

where the domain Ω = Ω− ∪Ω+ with Ω− = [0, 1
2 ]×[0,1] and Ω+ = [ 1

2 ,1]×[0,1]. The conductivity, κ is piecewise constant
so that κ = κ± on each Ω± . The functions f and g are given so as to have the exact solution:

u(x, y) =
{ 1

κ− (x − 1/2)3 sin(π y), x ∈ Ω−,

1
κ+ (x − 1/2)3 sin(π y), x ∈ Ω+.

We consider both the triangular and rectangular meshes for Example 6.1 and we use the local basis {φ̂0, φ̂1, φ̂2, φ̂
0
3} for

the rectangular mesh. Numerical experiments are performed by changing the conductivity ratio τ = κ−
k+ from 1 to 1000.

Remarkably, our numerical method performs quite stably even for a large conductivity ratio. Figs. 3 and 4 represent the
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Fig. 4. The L2 (left) and H1 (right) errors for triangular partitions with various conductivity ratio τ = 1,10,100,1000 for Example 6.1.

Fig. 5. The L2 (left) and H1 (right) errors for rectangular partitions with various conductivity ratio for τ = 1,10,100,1000 for Example 6.2.

L2 and H1 errors for Example 6.1 with the rectangular and triangular meshes, respectively. Fig. 5 represents those of
Example 6.2 with the rectangular mesh. It is unexpected that the homogeneous conductivity problem yields slightly poor
numerics as shown in Figs. 3–5. We observed conservation of the total numerical flux in all numerical experiments.

Example 6.2. Consider the same elliptic problem as in Example 6.1 on the domain Ω = Ω− ∪ Ω+ with Ω− = {(x, y) ∈
Ω: y > x} and Ω+ = Ω \ Ω− . The exact solution is given as

u(x, y) =
{ 1

κ− (ex−y − 1)2, x ∈ Ω−,

1
κ+ (ex−y − 1)2, x ∈ Ω+.

In this example, we have ν1 = −ν2 = 1√
2

, therefore, the local rectangular basis {φ̂0, φ̂1, φ̂2, φ̂
0
3} causes instability in the

cell average interpolation since

φ̂0
3(x, y) = 2xy.

Therefore, the basis function, φ̂0 must be replaced by φ̂α with any nonzero α. In this numerical experiment we use α = 1.
3 3
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In all numerical tests we observe that the rates of convergence saturate to the theoretically expected orders as the num-
ber of partition increases, that is, the second order and the first order convergence in the L2 and H1 norms, respectively. The
L2-convergence analysis is not provided in this paper, however, it will be possible with the standard duality argument. For
the rectangular element the choice of α (for φα

3 ) must depend on (ν1, ν2, c) with the interface equation, ν1x + ν2 y + c = 0.
Apparently, there seems to be no problem if one chooses a nonzero α only when ν2

1 − ν2
2 = 0. More rigorous analysis on

this issue will be a subject of further investigation.
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