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We consider a multigrid algorithm for the cell centered finite difference scheme with a prolongation
operator depending on the diffusion coefficient. This prolongation operator is designed mainly for solving
diffusion equations with strong varying or discontinuous coefficient and it reduces to the usual bilinear
interpolation for Laplace equation. For simple interface problem, we show that the energy norm of this
operator is uniformly bounded by 11/8, no matter how large the jump is, from which one can prove that
W-cycle with one smoothing converges with reduction factor independent of the size of jump using the
theory developed by Bramble et al. (Math Comp 56 (1991), 1–34). For general interface problem, we show
that the energy norm is bounded by some constant C* (independent of the jumps of the coefficient). In this
case, we can conclude W-cycle converges with sufficiently many smoothings. Numerical experiment
shows that even V-cycle multigrid algorithm with our prolongation works well for various interface
problems. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 000–000, 2004

Keywords: discontinuous coefficient; cell-centered finite difference methods; finite volume methods;
multigrid methods

I. INTRODUCTION

Elliptic differential equations with discontinuous coefficients arise from many areas of appli-
cations and are difficult to handle, numerically or analytically. Of many such problems, a few
examples are flows through porous media with different porosity, electric currents through
material of different conductivities and heat flows through heterogeneous materials, etc. [1, 2].
The numerical methods treating such problems are important areas of research. Among them,
the cell-centered finite difference (CCFD) is a finite volume type of method and has been used
by many engineers because of its simplicity and local conservation. It also arises from the saddle
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point formulation of the Raviart-Thomas mixed method by taking certain quadrature. On the
other hand, the multigrid algorithms have proven to be very effective for a large class of
problems [3, 4] and have been the subject of extensive research [5–10], whose convergence
analysis was carried out mostly for finite element methods [5, 7–9].

In this article, we consider multigrid algorithm for the cell centered finite difference (CCFD)
scheme for problems where the coefficient is discontinuous. The multigrid algorithm for CCFD
was considered by a few authors [6, 10–13] and its W-cycle convergence for Laplace equation
was first proved by Bramble et al. [6]. However, their use of natural injection as a prolongation
operator is not an optimal choice; the V-cycle convergence is slow. As is shown by Kwak [10],
certain weighted prolongation works much better and guarantees V-cycle convergence. Still, it
is restricted to problems with smooth coefficients. It does not work well when the jump of the
diffusion coefficient is severe. In early years, there have been some efforts to handle discon-
tinuous coefficient problem using Galerkin coarse grid approximation [12, 13]. In the finite
difference case, Alcouffe et al. [14] and Kettler [15] suggested a prolongation operator based on
the continuity of flux at finer grid points. However, in this method stiffness matrices of the
coarse grids no longer have 5-point structure and the prolongation is nontrivial. Hence extra cost
is needed to generate stiffness matrices and its implementation is difficult. There is an effort to
overcome this difficulty. Liu et al. [16] generated coarse grids matrices using flux continuity,
thus preserving 5-point stencil. Instead, they designed a new prolongation operator depending
on the jump of the diffusion coefficient. Their numerical result shows that V(2, 2)-cycle is a good
reducer but there is neither any report for V(1, 1)-cycle nor any kind of convergence proof. In
this article, we introduce a new multigrid algorithm with a prolongation depending on the
diffusion coefficient. We use standard 5-point stencil for every level so that the implementation
is straightforward. We first consider a prolongation based on the bilinear interpolation and show
the V-cycle convergence for model problems. We then modify it using the coefficients as
weights for the problems with nonsmooth coefficients. The motivation lies in physical meaning:
the flux continuity. As for the behavior of multigrid algorithm, it seems that smaller energy norm
of a prolongation yields better convergence behavior. We estimate the energy norm of our
prolongation operator and show it is bounded by 11/8 at least for a simple discontinuity. The
other ingredient in showing multigrid convergence is “regularity and approximation property,”
which is not known to hold for problems with discontinuous coefficient. However, we can use
this property of a nearby smooth problem and prove W-cycle convergence with one smoothing
(see Section 2). For more general discontinuities, we show the operator norm is bounded by a
constant, from which one can deduce W-cycle convergence with sufficiently many smoothings.
Numerical experiment shows that even V-cycle multigrid with 1 smoothing works very well for
problems with discontinuous coefficients.

The rest of this article is as follows. In Section 2, we briefly describe CCFD for elliptic
problem and multigrid algorithm convergence together with some general theory. In Section 3,
we introduce a prolongation operator based on the bilinear interpolation and show the energy
norm is bounded by 1 for the constant diffusion case, thus show the V-cycle convergence. We
modify it to handle the discontinuous coefficients. It is designed so that the resulting function
has continuous flux at grid cell points in some sense. We estimate the energy norm and show
W-cycle convergence of multigrid algorithms for problems with junction discontinuity. Finally,
we report some numerical results in Section 4. For some problems, V-cycle with one smoothing
converges while for some other problems, W-cycle is required. Variable V-cycle works well for
all our test problems.
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II. MULTIGRID ALGORITHM FOR THE CELL-CENTERED METHOD

In this section, we briefly describe CCFD and multigrid algorithm to solve the resulting system
of linear equations. We first consider the following model problem:

�� � p�ũ � f in �, (2.1)

ũ � 0 on ��, (2.2)

where � is the unit square. We assume that ũ � H1��(�) for some 0 � � � 1. For k � 1,
2, . . . , J, divide � into n � n axis-parallel subsquares, where n � 2k. Such triangulations are
denoted by {�k}. Each subsquare in �k is called a cell and denoted by Eij

k , i, j � 1, . . . , 2k and
has ui, j as its value at center. For k � 1, 2, . . . , J, let Vk denote the space of functions that are
piecewise constant on each cell. Integrating equation (2.1) by parts on each cell and replacing
the normal derivative �ũ/�n on the edges by difference quotient of function u in Vk, we have the
finite difference equations as follows:

�pi�1/2,j�ui�1,j � ui,j	 � pi�1/2,j�ui�1,j � ui,j	

�pi,j�1/2�ui,j�1 � ui,j	 � pi,j�1/2�ui,j�1 � ui,j	 � fi,jh
2,

where h � hk � 1/2k and pi�1/2, j � p(xi�1/2, yj), etc. When p is discontinuous along the
interface, we take pi�1/2, j as

pi�1/2,j �
2pi�1,jpi,j

pi�1,j � pi,j
. (2.3)

Similarly, pi�1/2, j, pi, j�1/2 and pi, j�1/2 are defined. When one of the edge coincides with the
boundary of �, we assume a fictitious value by reflection. For example, u0, j is taken as �u1, j

and thus �ũ/�n at x � 0 is approximated by �2u1, j /h. Similar rules apply to the other parts of
the boundary of �. After dividing the resulting equation by h2, we obtain a system of linear
equation of the form

Aku � f, (2.4)

where Ak is the typical sparse, n2 � n2 symmetric, positive definite matrix similar to those
arising in the vertex finite difference method and u is the vector whose entries are ui, j and f is
the vector whose entries are f (xi, yj). We identify the vector u, v in Vk with their matrix
representation in R2k

. For analysis, we define a quadratic form Ak(�, �) on Vk � Vk in an obvious
manner by

Ak�u, v	 � hk
2 �

i,j

�Aku	i,jvi,j, @u, v � Vk. (2.5)

Then (2.4) is equivalent to the following problem: Find u � Vk satisfying
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Ak�u, � 	 � � f, � 	, @� � Vk, (2.6)

where (�, �) is the L2 inner product. The error analysis of the cell centered finite difference
method is well known (cf. [17–19]). Let Qk : L2(�)3 Vk denote the usual L2(�) projection. If
u is the solution of (2.6), then

Ak�u � Qkũ, u � Qkũ	 � Chk
2�f�2,

where ��� is the usual L2 norm. Given a certain prolongation operator Ik�1
k : Vk�13 Vk, we define

the restriction operator Ik
k�1 : Vk 3 Vk�1 as its adjoint with respect to (�, �)k:

�Ik
k�1u, v	 � �u, Ik�1

k v	, @u � Vk, @v � Vk�1.

Because the space Vk can be viewed as the space of vectors having entries ui, j, we also use Ik�1
k

and Ik
k�1 to denote their matrix representations. Now multigrid algorithm for solving (2.4) is

defined as follows.

Multigrid Algorithm

Set B0 � A0
�1. For 1 � k � J, assume that Bk�1 has been defined and define Bkf for f � Vk as

follows:

1. Set x0 � 0 and q0 � 0.
2. Define xl for l � 1, . . . , m(k) by

xl � xl�1 � Rk
�l�m�k		� f � Akx

l�1	.

3. Define ym(k) � xm(k) � Ik�1
k qs, where qi for i � 1, . . . , s is defined by

qi � qi�1 � Bk�1
Pk�1
0 � f � Akx

m�k		 � Ak�1q
i�1�,

where Pk�1
0 : Vk 3 Vk�1 is the L2-projection.

4. Define yl for l � m(k) � 1, . . . , 2m(k) by

yl � yl�1 � Rk
�l�m�k		� f � Aky

l�1	.

5. Set Bkf � y2m(k).

If s � 1, we obtain V(m(k), m(k))-cycle and if s � 2, we obtain W(m(k), m(k))-cycle. If m(k)
varies with k, we call it variable V-cycle. Here Rk

(l ) is a smoother on Vk, which alternates between
Rk and its adjoint Rk

t , and m(k) is the number of smoothings that can vary depending on k. The
smoother Rk, as usual, can be taken as the Jacobi or Gauss-Seidel relaxation. There are several
approaches in showing the convergence of multigrid algorithms. In this article, we will adopt the
framework in [20] and briefly describe it for our purpose. According to this framework, there
are two main conditions for multigrid convergence. The first one is for the operator Ik�1

k : There
exists a constant C* � 0 such that

Ak�Ik�1
k v, Ik�1

k v	 � C*Ak�1�v, v	, @v � Vk�1. (2.7)

The second one is a “regularity and approximation property” assumption of the form
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Ak��I � Ik�1
k Pk�1	u, u	 � C���Aku�2

�k
��

Ak�u, u	1��, @u � Vk. (2.8)

Here, �k is the largest eigenvalue of Ak and Pk�1 is the elliptic projection defined by

Ak�1�Pk�1u, v	 � Ak�u, Ik�1
k v	, @u � Vk, v � Vk�1. (2.9)

Under these conditions, we have the following results from Theorems 2, 8, 6, and of [20]. Let
Ek � I � BkAk in multigrid algorithm.

Theorem 2.1. Let s � 1(V-cycle). Then there is 0 � 	k � 1 such that

(i ) when C* � 1 in (2.7), we have with m(k) � m

Ak�Eku, Eku	 � 	kAk�u, u	, 
 u � Vk, (2.10)

with

	k �
Mk�1��	/�

Mk�1��	/� � m� ,

where M is a constant depending on C* and C� but independent of p and k;
(ii ) when C* � 1 � Ch, then V-cycle multigrid with m(k) � m is a good preconditioner in

the sense that

�0Ak�u, u	 � Ak�BkAku, u	 � �1Ak�u, u	, 
 u � Vk, (2.11)

where �1 is independent of k and �0 � 1 � 	k;
(iii ) for general constant C*, the variable V-cycle multigrid with �0m(k) � m(k � 1)

� �1m(k) satisfies (2.11) with

�0 
m�k	�

M � m�k	� and �1 �
M � m�k	�

m�k	� .

Here, �0 and �1 are constants which are greater than one and independent of k.

Theorem 2.2. Let s � 2(W-cycle) and C* is constant (independent of k). Then, for sufficiently
large m, (2.10) holds with 	k � M/(M � m�). Moreover, if C* � 2, then W-cycle converges with
m � 1.

III. W-CYCLE CONVERGENCE

We first consider bilinear prolongation for a smooth problem and show V-cycle converges for
Laplace problem and is a good preconditioner for problems with smooth coefficient. In Section
3.2, we modify the prolongation using the coefficient as weight and consider a simple discon-
tinuity. We show the convergence of W-cycle with one smoothing by estimating its energy norm
and proving “regularity and approximation property.” In Section 3.3, we deal with more general
discontinuous problem, where one or more junction points exist.
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A. Smooth Coefficient

We choose a prolongation based on the bilinear interpolation. Although well known, we inspect
its energy norm in some detail because the same technique can be used in the nonsmooth case.

Let Ei, j
k�1 be a cell at level k � 1, and vi, j be the values at the center of each cells. Let uI,J be

the value of upper right subcell of Ei, j
k�1 and uI,J1

, uI1,J
and uI1,J1

be those of lower right, upper
left, lower left subcells of Ei, j

k�1 [see Fig. 1(b)]. Here we use the notation I1 � I � 1, J1 � J � 1,
etc. For v � Vk�1, define u � Ik�1

k v as follows:

uI,J �
9vi,j � 3vi,j�1 � 3vi�1,j � vi�1,j�1

16
,

uI1,J �
9vi�1,j � 3vi,j � 3vi�1,j�1 � vi,j�1

16
,

uI,J1 �
9vi,j�1 � 3vi,j � 3vi�1,j�1 � vi�1,j

16
,

uI1,J1 �
9vi�1,j�1 � 3vi�1,j � 3vi,j�1 � vi,j

16
. (3.1)

We show the energy norm of this prolongation is bounded by 1 � Ch, C � C(p) depending on
p. It is easy to see that Ak�1(v, v) is the square sum of differences of the function values between
neighboring cells in �k�1. Writing out Ak�1(v, v) and collecting the terms corresponding to the
normal derivatives along the left walls and the top walls of each cell Ei, j

k�1, we see that

FIG. 1. Bilinear contributions and indices (I1 � I � 1, J1 � J � 1).
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Ak�1�v, v	 � �
i,j

n

vi,j
pi,j�1/2�vi,j � vi,j�1	 � pi�1/2,j�vi,j � vi�1,j	

� pi�1/2,j�vi,j � vi�1,j	 � pi,j�1/2�vi,j � vi,j�1	�

� �
i�2,j�1

n,n

pi�1/2,j�vi,j � vi�1,j	
2 � �

i�1,j�1

n,n�1

pi,j�1/2�vi,j�1 � vi,j	
2 � 4 �

l�1

n

pl,1/2vl,1
2 � 4 �

l�1

n

pl,n�1/2vl,n
2

� 4 �
m�1

n

p1/2,mv1,m
2 � 4 �

m�1

n

pn�1/2,mvn,m
2 , (3.2)

where n � 2k�1. Similarly, we have

Ak�u, u	 � �
I,J

2n


pI1/2,J1�uI,J1 � uI1,J1	
2 � pI1/2,J�uI,J � uI1,J	

2 � pI1/2,J1�uI1,J1 � uI,J1	
2

� pI1/2,J�uI1,J � uI,J	
2 � pI1,J1/2�uI1,J � uI1,J1	

2 � pI,J1/2�uI,J � uI,J1	
2

� pI1,J1/2�uI1,J1 � uI1,J	
2 � pI,J1/2�uI,J1 � uI,J	

2� � boundary terms. (3.3)

In the above equation, the first two terms come from the normal derivatives along the two left
edges of EI,J1

k and EI,J
k , whereas the second two come from the normal derivatives along two left

edges of EI 1
k

,J1
and EI 1,k

J. Similarly, the next four come by rotation. Substituting (3.1) into (3.3)
we shall count the coefficient of (vi�1, j � vi, j)

2. We can see such term will appear from 12
different terms of the form (uI,J � uI1,J

)2 as shown below [see Fig. 1(a)]. We shall use the
following general Cauchy-Schwarz inequality throughout the estimate.

� �
i�1

s

aixi� 2

� � �
i�1

s

ai�� �
i�1

s

aixi
2� , ai  0, xi � �. (3.4)

By applying (3.4), we have

�uI,J � uI1,J	
2 � �3vi�1,j � 3vi�1,j � vi�1,j�1 � vi�1,j�1

16 � 2

�

3�vi�1,j � vi,j	 � 3�vi,j � vi�1,j	 � �vi�1,j�1 � vi,j�1	 � �vi,j�1 � vi�1,j�1	�

2

256

� 
3�vi�1,j � vi,j	
2 � 3�vi,j � vi�1,j	

2 � �vi�1,j�1 � vi,j�1	
2 � �vi,j�1 � vi�1,j�1	

2�/32. (3.5)

Let us consider the term (vi�1, j � vi, j)
2 at level k � 1. Its coefficient is 3/32. By shifting index

I 3 I � 2(i 3 i � 1), J 3 J � 2( j 3 j � 1) and (I, J ) 3 (I � 2, J � 2)((i, j ) 3 (i � 1, j
� 1)), the same term appears. Thus the sum of coefficients of the term (vi�1, j � vi, j)

2 in (3.5),
multiplied by the diffusion coefficient is

3

32
�pI1/2,J � pI3/2,J	 �

1

32
�pI1/2,J2 � pI3/2,J2	. (3.6)
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Similarly, we see

�uI1,J � uI,J	
2 � 
6�vi�1,j � vi,j	 � 2�vi�1,j�1 � vi,j�1	�

2/256

�
3

16
�vi�1,j � vi,j	

2 �
1

16
�vi�1,j�1 � vi,j�1	

2. (3.7)

From this, we get 3
16

pI1/2,J
and by shifting J 3 J � 2 we obtain 1

16
pI1/2,J2

. By considering (uI,J1

� uI1,J1
)2 and (uI 1,J1

� uI,J1
)2, we can see similar terms appear. Hence the coefficient of (vi�1, j

� vi, j)
2 in Ak(u, u) is bounded by

3

32
�pI1/2,J � pI3/2,J � pI1/2,J1 � pI3/2,J1	 �

1

32
�pI1/2,J2 � pI3/2,J2 � pI1/2,J1 � pI3/2,J1	

�
3

16
�pI1/2,J � pI1/2,J1	 �

1

16
�pI1/2,J2 � pI1/2,J1	. (3.8)

The locations of the nodes of these 12 contributions are depicted in Fig. 1(a). We see that when
p is constant, the sum of the coefficients is p. Because this is true for every term, we see that
the energy norm of Ik�1

k is bounded by 1. For Lipschitz continuous p, we can easily see the norm
is bounded by 1 � Chk, C � C(p) depending on p. Thus we have proved.

Proposition 3.1. We have

Ak�Ik�1
k v, Ik�1

k v	 � C*Ak�1�v, v	, for v � Vk�1. (3.9)

where C* � 1 if p is constant, and 1 � C(p)hk if p is Lipschitz continuous.

This result together with the regularity and approximation property, which can be shown exactly
the same way as in [10], we can deduce from Theorem 2.1 that V-cycle multigrid algorithm
converges when p is constant and is a good preconditioner when p is smooth.

B. Simple Discontinuity

It is well known that when the function p is discontinuous, the multigrid scheme with the
standard prolongation does not work well. The reason seems to lie in the large energy norm of
the prolongation operator. We give a simple example. Consider the unit square with a line
interface from (1/2, 0) to (1/2, 1), where the diffusion coefficient p is p1 on the left half and p2

on the right half. As usual, we define the diffusion on the interface by the harmonic average of
p1 and p2, imposing the flux continuity across the interface. Let v be defined as follows:

�vi,j � v0 for i � n/2
vi,j � 0 otherwise. (3.10)

Assume, for simplicity, homogeneous Neumann boundary condition. Then by cancellation of
the terms except near the interface, Ak�1(v, v) is written as follows:
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Ak�1�v, v	 � �
j�1

n 2p1p2

p1 � p2
�vn/2,j � vn/2�1,j	

2 � n
2p1p2

p1 � p2
v0

2. (3.11)

Now consider Ak(Ik�1
k v, Ik�1

k v). Let I be the index so that the cell boundary between (I, J ) and
(I1, J ) aligns with the domain interface x � 1/2. Then for J � 1, . . . , 2n,

�uI,J � uI1,J	
2 �

v0
2

16
,

�uI2,J � uI1,J	
2 �

v0
2

16
,

�uI1,J � uI,J	
2 �

v0
2

4
.

Hence, we see

Ak�Ik�1
k v, Ik�1

k v	 � 2n�p1 � p2

16
�

1

4

2p1p2

p1 � p2
�v0

2 � C�p1, p2	Ak�1�v, v	, (3.12)

where

C�p1, p2	 �
�p1 � p2	

2

16p1p2
�

1

2
.

Assume, p2 � p1 and let � � p1 /p2. Then

C�p1, p2	 � C��	 �
�� � 1	2

16�
�

1

2
,

which approaches infinity as � 3 0.
This phenomenon explains why the multigrid algorithm with bilinear prolongation behaves

poorly when p has a strong discontinuity. We want to devise a new prolongation whose energy
norm remains bounded even if the jump ratio of the coefficients approaches . For a motivation,
we consider the following one-dimensional diffusion equation on [0, 1].

��
d

dx �p
du�x	

dx � � f in �0, 1	,

u�0	 � u�1	 � 0.

Let xi, i � 1, 2, . . . , n be the center of equally spaced grid on [0, 1] and h be the mesh size.
When this grid is refined, new center will have locations at xi�1/4, xi�3/4, etc. Now, we consider
how to define the values at xi�1/4. A natural way is to impose the flux continuity at xi�1/4, so that
the following equality holds:
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pi

vi�1/4 � vi

h

4

� pi�1

vi�1 � vi�1/4

3h

4

. (3.13)

Solving, we get

vi�1/4 �
3pivi � pi�1vi�1

3pi � pi�1
. (3.14)

This can be viewed as the linear interpolation of neighboring point with diffusion weights.
Motivated by this, we define a new prolongation Ik�1

k for two-dimensional problem as follows:

uI,J �
9pi,jvi,j � 3pi,j�1vi,j�1 � 3pi�1,jvi�1,j � pi�1,j�1vi�1,j�1

9pi,j � 3pi�1,j � 3pi,j�1 � pi�1,j�1
,

uI1,J �
9pi�1,jvi�1,j � 3pi,jvi,j � 3pi�1,j�1vi�1,j�1 � pi,j�1vi,j�1

9pi�1,j � 3pi,j � 3pi�1,j�1 � pi,j�1
,

uI,J1 �
9pi,j�1vi,j�1 � 3pi,jvi,j � 3pi�1,j�1vi�1,j�1 � pi�1,jvi�1,j

9pi,j�1 � 3pi,j � 3pi�1,j�1 � pi�1,j
,

uI1,J1 �
9pi�1,j�1vi�1,j�1 � 3pi�1,jvi�1,j � 3pi,j�1vi,j�1 � pi,jvi,j

9pi�1,j�1 � 3pi�1,j � 3pi,j�1 � pi,j
. (3.15)

It is easy to check that this prolongation operator reduces to the bilinear one when the diffusion
p is constant.

Proposition 3.2. Let p � p1 for x � 1/2 and p � p2 for x � 1/2. Then for any pair of positive
constants p1 and p2, we have

Ak�Ik�1
k v, Ik�1

k v	 �
11

8
Ak�1�v, v	, @v � Vk�1.

The proof is very long and technical. We need some Lemmas.

Lemma 3.3. The coefficient of (vi�1, j � vi, j)
2 appearing in the expansion of pI1/2,J

(uI,J � uI1,J
)2,

pI1/2,J2
(uI,J2

� uI1,J2
)2, pI3/2,J(uI1,J � uI2,J)

2, and pI3/2,J2
(uI2,J2

� uI1,J2
)2 is bounded by

�3p1 � 5p2	p2

4�3p1 � p2	
2 p1 �

�5p1 � 3p2	p1

4�p1 � 3p2	
2 p2. (3.16)

Proof. Fix v � Vk�1 and set u � Ik�1
k v. Then we have the same expansion for Ak�1(v, v)

and Ak(u, u) as in (3.2), (3.3). By definition of uI,J and uI1,J
, we have

uI,J � uI1,J �
9pi,jvi,j � 3pi,j�1vi,j�1 � 3pi�1,jvi�1,j � pi�1,j�1vi�1,j�1

9pi,j � 3pi�1,j � 3pi,j�1 � pi�1,j�1

�
9pi,jvi,j � 3pi,j�1vi,j�1 � 3pi�1,jvi�1,j � pi�1,j�1vi�1,j�1

9pi,j � 3pi�1,j � 3pi,j�1 � pi�1,j�1
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�
9p1vi,j � 3p1vi,j�1 � 3p2vi�1,j � p2vi�1,j�1

12p1 � 4p2
�

9vi,j � 3vi,j�1 � 3vi�1,j � vi�1,j�1

16

�
12p2�vi�1,j � vi,j	 � 3�3p1 � p2	�vi,j � vi�1,j	

16�3p1 � p2	

�
4p2�vi�1,j�1 � vi,j�1	 � �3p1 � p2	�vi,j�1 � vi�1,j�1	

16�3p1 � p2	
. (3.17)

By Cauchy-Schwarz inequality, we have

�uI,J � uI1,J	
2 � 
12p2�vi�1,j � vi,j	 � 3�3p1 � p2	�vi,j � vi�1,j	 � 4p2�vi�1,j�1 � vi,j�1	

� �3p1 � p2	�vi,j�1 � vi�1,j�1	�
2 � �12p1 � 20p2	

� �12p2�vi�1,j � vi,j	
2 � 3�3p1 � p2	�vi,j � vi�1,j	

2

256�3p1 � p2	
2

�
4p2�vi�1,j�1 � vi,j�1	

2 � �3p1 � p2	�vi,j�1 � vi�1,j�1	
2

256�3p1 � p2	
2 � . (3.18)

Similarly, by shifting j 3 j � 1, we get

�uI,J2 � uI1,J2	
2 � �12p1 � 20p2	�12p2�vi�1,j�1 � vi,j�1	

2 � 3�3p1 � p2	�vi,j�1 � vi�1,j�1	
2

256�3p1 � p2	
2

�
4p2�vi�1,j � vi,j	

2 � �3p1 � p2	�vi,j � vi�1,j	
2

256�3p1 � p2	
2 � . (3.19)

By reflection with respect to x � 1/2(i 7 i � 1, i � 1 7 i � 2, p1 7 p2),

�uI1,J � uI2,J	
2 � �20p1 � 12p2	�12p1�vi,j � vi�1,j	

2 � 3�p1 � 3p2	�vi�1,j � vi�2,j	
2

256�p1 � 3p2	
2

�
4p1�vi,j�1 � vi�1,j�1	

2 � �p1 � 3p2	�vi�1,j�1 � vi�2,j�1	
2

256�p1 � 3p2	
2 � . (3.20)

By reflection with respect to x � 1/2 and shifting j 3 j � 1,

�uI2,J2 � uI1,J2	
2 � �20p1 � 12p2	�12p1�vi,j�1 � vi�1,j�1	

2 � 3�p1 � 3p2	�vi�1,j�1 � vi�2,j�1	
2

256�p1 � 3p2	
2

�
4p1�vi,j � vi�1,j	

2 � �p1 � 3p2	�vi�1,j � vi�2,j	
2

256�p1 � 3p2	
2 � . (3.21)

Let us consider the term (vi�1, j � vi, j)
2. The sum of coefficients from (3.18)–(3.21) (accounting

for the coefficients in Ak form) is

�3p1 � 5p2	p2

4�3p1 � p2	
2 p1 �

�5p1 � 3p2	p1

4�p1 � 3p2	
2 p2, (3.22)

and this completes the proof of Lemma. y
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Lemma 3.4. The coefficient of (vi�1, j � vi, j)
2 from pI1/2,J(uI1,J � uI,J)

2, pI1/2,J2
(uI1,J2

� uI,J2
)2 is

bounded by

�16 � 3 � 16	p1
2p2

2

�3p1 � p2	
2�p1 � 3p2	

2 �
2p1p2

p1 � p2
. (3.23)

Proof. Since

uI1,J � uI,J �
9p2vi�1,j � 3p2vi�1,j�1 � 3p1vi,j � p1vi,j�1

9p2 � 3p2 � 3p1 � p1

�
9p1vi,j � 3p1vi,j�1 � 3p2vi�1,j � p2vi�1,j�1

9p1 � 3p1 � 3p2 � p2
�

6p1p2�vi�1,j � vi,j	 � 2p1p2�vi�1,j�1 � vi,j�1	

�3p1 � p2	�3p2 � p1	
,

we have, by Cauchy-Schwarz inequality,

�uI1,J � uI,J	
2 �

16p1
2p2

2�3�vi�1,j � vi,j	
2 � �vi�1,j�1 � vi,j�1	

2	

�3p1 � p2	
2�p1 � 3p2	

2 . (3.24)

By shifting the index j 3 j � 1, we see

�uI1,J2 � uI,J2	
2 �

16p1
2p2

2�3�vi�1,j�1 � vi,j�1	
2 � �vi�1,j � vi,j	

2	

�3p1 � p2	
2�p1 � 3p2	

2 . (3.25)

Thus the sum of the coefficient of (vi�1, j � vi, j)
2 is

�16 � 3 � 16	p1
2p2

2

�3p1 � p2	
2�p1 � 3p2	

2 �
2p1p2

p1 � p2
. (3.26)

y
Proof (of Proposition). It suffices to consider near the interface. Let (i, j ), j � 0, . . . , 2k be

the indices of cells adjacent left to the interface x � 1/2. We compare the terms (vi�1, j � vi, j)
2,

(vi, j � vi�1, j)
2 and (vi�2, j � vi�1, j)

2 in Ak(u, u) and Ak�1(v, v), respectively. By Lemma 3.3 and
3.4, the coefficient of (vi�1, j � vi, j)

2 from 6 contributions are bounded by

�3p1 � 5p2	p2

4�3p1 � p2	
2 � p1 �

�5p1 � 3p2	p1

4�p1 � 3p2	
2 � p2 �

64p1
2p2

2

�3p1 � p2	
2�p1 � 3p2	

2 �
2p1p2

p1 � p2
. (3.27)

The additional contribution to this term can be estimated by reflection (J 3 J1, J2 3 J1) in
Lemmas 3.3 and 3.4. Because p is constant along y-direction, total sum is twice of (3.27).Be-
cause the diffusion coefficient of (vi�1, j � vi, j)

2 in Ak�1(v, v) is 2p1p2 /(p1 � p2), dividing by
2p1p2 /(p1 � p2), the ratio between the coefficients of the two forms is

Xc :�
�3p1 � 5p2	�p1 � p2	

4�3p1 � p2	
2 �

�5p1 � 3p2	�p1 � p2	

4�p1 � 3p2	
2 �

128p1
2p2

2

�3p1 � p2	
2�p1 � 3p2	

2 . (3.28)
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Let � � p1 /p2. Then we can write (3.28) as

Xc��	 �
12�4 � 32�3 � 168�2 � 32� � 12

�� � 3	2�3� � 1	2 . (3.29)

Now consider (vi, j � vi�1, j)
2. From (3.18) and (3.19), we see the coefficient in (uI,J � uI1,J

)2 and
(uI,J2

� uI1,J2
)2 is, after multiplying the corresponding coefficient p1 in Ak(u, u),

�3p1 � 5p2	

16�3p1 � p2	
p1. (3.30)

Contributions from other terms such as (uI1,J
� uI2,J

)2, (uI2,J
� uI3,J

)2, (uI1,J2
� uI2,J2

)2 and (uI2,J2
�

uI3,J2
)2 are exactly the same as constant coefficient case, that is,

� 3

16
�

1

16
�

3

32
�

1

32�p1 �
3

8
p1. (3.31)

Adding (3.30) and (3.31), we get

p1

�21p1 � 11p2	

16�3p1 � p2	
. (3.32)

Shifting J by �1, the total coefficient of (vi, j � vi�1, j)
2 in Ak(u, u) is twice of (3.32), whereas

that of Ak�1(v, v) is p1. Hence in this case, the ratio is

Xl��	 :�
21� � 11

8�3� � 1	
. (3.33)

Similarly, the ratio in the term (vi�2, j � vi�1, j)
2 is

Xr��	 :�
11� � 21

8�� � 3	
. (3.34)

Hence we are finished for the terms along the x direction. We can proceed to check the ratios
of difference along the y direction in the same way, which can be shown to be

Yl��	 :�
3�2 � 11� � 2

�3� � 1	�� � 3	
, (3.35)

and

Yr��	 :�
2�2 � 11� � 3

�3� � 1	�� � 3	
, (3.36)
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for the terms (vi, j�1 � vi, j)
2 and (vi�1, j�1 � vi�1, j)

2, respectively. We shall estimate the
maximum of the quantities (3.29), (3.33), (3.34), (3.35), and (3.36). It is easy to check that
Xc(�) � Xc(1/�), Xl(�) � Xr(1/�), and Yl(�) � Yr(1/�) for all � � 0. So it suffices to check the
maximum on (0, 1]. The maximum is obtained as Xl(0) � 11/8 when 0 � � � 1. The proof is
complete. y

Now we consider “regularity and approximation property.” Because p is discontinuous, it is
not known whether the solution u belongs to H1��(�), for any � � 0. Fortunately, for CCFD,
we can find a nearby smooth problem which has enough regularity, from which we shall show
“regularity and approximation property” of discontinuous problem. Let ps be a smooth function
such that ps(1/2, y) � 2p1p2 /(p1 � p2) for all y and ps(x, y) � p1 for 0 � x � 1/2 � �, ps(x,
y) � p2 for 1/2 � � � x � 1 for some positive � less than the size of finest grid. Clearly, this
modified problem (with ps instead of p) induces the same operator Ak as in the case of
discontinuous p. Thus “regularity and approximation property” can be obtained from this
modified problem, which we will show below. First, we need the following estimate.

Lemma 3.5. We have

� �I � Ik�1
k 	v�2 � Chk

2Ak�1�v, v	, @v � Vk�1. (3.37)

Proof. For simplicity, we assume that p � 1. By definition of prolongation and using (3.4),
we have

�vi,j � uI,J	
2 � �vi,j �

9vi,j � 3vi�1,j � 3vi,j�1 � vi�1,j�1

16 � 2

�
�4�vi,j � vi�1,j	 � 3�vi,j � vi,j�1	 � �vi�1,j � vi�1,j�1		

2

256

�
4�vi,j � vi�1,j	

2 � 3�vi,j � vi,j�1	
2 � �vi�1,j � vi�1,j�1	

2

32
. (3.38)

Because ��I � Ik�1
k 	v�2 � hk

2 ¥Ei, j
k�1��k�1 ��vi, j � uI,J	

2 � �vi, j � uI1,J	
2 � �vi, j � uI,J1	

2

� �vi, j � uI1,J1	
2	, it follows from (3.38) that (3.37) holds. y

Lemma 3.6. Let the operator Pk�1 be defined by (2.9). Then (2.8) holds for � � 1
2

.
Proof. The proof is quite similar to that of Lemma 2.2 in [10], but we include it here for

completeness. Fix u � Vk and let w be the solution of the following boundary value problem:

�� � ps�w � Aku in �,

w � 0 on ��. (3.39)

Because u is the cell-centered approximation of w, we have [18],

�Ak�u � Qkw, u � Qkw	� � Chk
2�Aku�2. (3.40)

By definition of Ik�1
k , we have
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Ak��I � Ik�1
k Pk�1	u, u	 � Ak�u, u	 � Ak�1�Pk�1u, Pk�1u	

� Ak�u � Qkw, u	 � Ak�1�Qk�1w � Pk�1u, Pk�1u	

� Ak�Qkw, u	 � Ak�1�Qk�1w, Pk�1u	. (3.41)

Applying the Cauchy-Schwarz inequality to the first term, by (3.40) we have

�Ak�u � Qkw, u	� � Ak�u � Qkw, u � Qkw	1/2Ak�u, u	1/2 � Chk�Aku�Ak�u, u	1/2. (3.42)

If we define the operator P̃k�1 : Vk 3 Vk�1 by

Ak�1�P̃k�1u, v	 � Ak�u, v	 u � Vk, v � Vk�1, (3.43)

then the second term can be estimated similarly by noting that P̃k�1u is the cell-centered
approximation of w in Vk�1. By (2.9) and (3.43), we have

Ak�1�Qk�1w � Pk�1u, Pk�1u	 � Ak�1�Qk�1 � P̃k�1u, Pk�1u	 � Ak�1�P̃k�1u � Pk�1u, Pk�1u	

� Ak�1�Qk�1w � P̃k�1u, Pk�1u	 � Ak�u, �I � Ik�1
k 	Pk�1u	. (3.44)

By similar arguments as (3.42), we see that

�Ak�1�Qk�1w � P̃k�1u, Pk�1u	� � Chk�Aku�Ak�1�Pk�1u, Pk�1u	1/2. (3.45)

By Lemma 3.5, we have

�Ak�u, �I � Ik�1
k 	Pk�1u	� � �Aku� � � �I � Ik�1

k 	Pk�1u� � ChkAk�1�Pk�1u, Pk�1u	1/2�Aku�.

(3.46)

Because, by (2.7),

Ak�1�Pk�1u, Pk�1u	 � Ak�u, Ik�1
k Pk�1u	 � Ak�u, u	1/2Ak�Ik�1

k Pk�1u, Ik�1
k Pk�1u	1/2

� C*
1/2Ak�u, u	1/2Ak�1�Pk�1u, Pk�1u	1/2, (3.47)

we have

Ak�1�Pk�1u, Pk�1u	 � C*Ak�u, u	. (3.48)

Substituting (3.45) and (3.46) into (3.44), we get from (3.48) that the second term in (3.41)
satisfies

�Ak�1�Qk�1w � Pk�1u, Pk�1u	� � Chk�Aku�Ak�1�Pk�1u, Pk�1u	1/2

� Chk�Aku�Ak�u, u	1/2. (3.49)

We now estimate the third and fourth term in (3.41). By Lemma 3.5, we have that
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� �I � Ik�1
k 	Qk�1w� � ChkAk�1�Qk�1w, Qk�1w	1/2. (3.50)

So we have

�Ak�Qkw, u	 � Ak�1�Qk�1w, Pk�1u	� � �Ak�Qkw � Qk�1w, u	� � �Ak��I � Ik�1
k 	Qk�1w, u	�

� �Qkw � Qk�1w� �Aku� � ��I � Ik�1
k 	Qk�1w� �Aku� � Chk�w�1�Aku�

� ChkAk�1�Qk�1w, Qk�1w	1/2�Aku� � Chk�w�1�Aku�, (3.51)

where ���1 is the Sobolev norm of order one. It remains to bound �w�1, which can be done by
exactly the same way as in [6]. Thus, we have

�Ak�Qkw, u	 � Ak�1�Qk�1w, Pk�1u	� � Chk�Aku�Ak�u, u	1/2. (3.52)

Combining estimates (3.42), (3.49), and (3.52), together with the bound �k � Chk
�2, we obtain

(2.8). y
Now we obtain the following result from the discussion in Section 2 (Theorem 2.2).

Theorem 3.7. Let Ek � I � BkAk in multigrid algorithm with s � 2(W-cycle algorithm). Then,
for any m, we have

Ak�Eku, Eku	 � 	kAk�u, u	, @u � Vk, (3.53)

where 	k � M/(M � �m). In particular, W-cycle works with one smoothing.

C. Junction Discontinuity

We now consider the case of junction discontinuity. For simplicity, we assume p is piecewise
constant as follows:

p � 	
p1 0 � x �

1

2
, 0 � y �

1

2
,

p2

1

2
� x � 1, 0 � y �

1

2
,

p3 0 � x �
1

2
,

1

2
� y � 1,

p4

1

2
� x � 1,

1

2
� y � 1.

The case when p is piecewise smooth can be handled similarly.

Lemma 3.8. There is a constant C* such that for any quadruple of positive constants p1, p2,
p3, and p4,

Ak�Ik�1
k v, Ik�1

k v	 � C*Ak�1�v, v	, @v � Vk�1

holds.
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Proof. The proof is quite similar to that of Proposition 3.2. We shall again count the
contributions of the terms of the form (vi�1, j � vi, j)

2 from those of (uI,J � uI1,J
)2, (uI,J1

� uI1,J1
)2,

etc., and compare the coefficient between the two forms Ak(u, u) and Ak�1(v, v). Let (I, J ) be
the index of the cell located at the upper right corner of quadrant [0, 1/2] � [0, 1/2] [Fig. 1(b)].
In this case, we have

uI,J �
9p1vi,j � 3p2vi�1,j � 3p3vi,j�1 � p4vi�1,j�1

9p1 � 3p2 � 3p3 � p4
,

uI1,J �
9p1vi,j � 3p1vi�1,j � 3p3vi,j�1 � p3vi�1,j�1

12p1 � 4p3
.

To simplify computations, we introduce some notations: For any natural numbers i, j, k, l, let
Qijkl � 9pi � 3pj � 3pk � pl. By taking the difference and multiplying the denominator, we have

Q1234Q1133�uI,J � uI1,J	 � �9p1Q1133 � 9p1Q1234	vi,j � 3p2Q1133vi�1,j � 3p1Q1234vi�1,j

� �3p3Q1133 � 3p3Q1234	vi,j�1 � p4Q1133vi�1,j�1 � p3Q1234vi�1,j�1

� �9p1Q1133 � 9p1Q1234	vi,j � 3p2Q1133�vi�1,j � vi,j	 � 3p2Q1133vi,j

� 3p1Q1234�vi,j � vi�1,j	 � 3p1Q1234vi,j � �3p3Q1133 � 4p3Q1234	vi,j�1

� p4Q1133�vi�1,j�1 � vi,j�1	 � p4Q1133vi,j�1 � p3Q1234�vi,j�1 � vi�1,j�1	

� 3p1Q1234�vi,j � vi�1,j	 � 12�p1p4 � p2p3	�vi,j�1 � vi,j	 � 3p2Q1133�vi�1,j � vi,j	

� p3Q1234�vi,j�1 � vi�1,j�1	 � p4Q1133�vi�1,j�1 � vi,j�1	,

where the last equality is obtained by noting the unpaired coefficients of vi, j is

9p1Q1133 � 3p2Q1133 � 12p1Q1234 � 12�p2p3 � p1p4	,

and that of vi, j�1 is

3p3Q1133 � 4p3Q1234 � p4Q1133 � �12�p2p3 � p1p4	.

Dividing by Q1234Q1133 and squaring, we see

�uI,J � uI1,J	
2 �

�3p1 � p3	Q1234 � 12�p1p4 � p2p3	 � �3p2 � p4	Q1133

Q1234
2 Q1133

2

� 
3p1Q1234�vi,j � vi�1,j	
2 � 12�p1p4 � p2p3	�vi,j�1 � vi,j	

2 � 3p2Q1133�vi�1,j � vi,j	
2

� p3Q1234�vi,j�1 � vi�1,j�1	
2 � p4Q1133�vi�1,j�1 � vi,j�1	

2�. (3.54)

Now for the term (uI,J1
� uI1,J1

)2, simple shifting along y does not give correct coefficient as in
(3.27) because p is not constant along y direction. Instead, a closer look at uI,J1

and uI1,J1
shows

that it is obtained by reflecting with respect to y � 1/2, then shifting j by �1( j � 1 3 j � 1,
p3 3 p1, p4 3 p2). Hence
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�uI,J1 � uI1,J1	
2 �

�3p1 � p1	Q1212 � 12�p1p2 � p2p1	 � �3p2 � p2	Q1111

Q1212
2 Q1111

2

� 
3p1Q1212�vi,j � vi�1,j	
2 � 12�p1p2 � p2p1	�vi,j�1 � vi,j	

2 � 3p2Q1111�vi�1,j � vi,j	
2

� p1Q1212�vi,j�1 � vi�1,j�1	
2 � p2Q1111�vi�1,j�1 � vi,j�1	

2�. (3.55)

The term (uI 2,J � uI 1,J)
2 is obtained by reflecting (uI,J � uI1,J

)2 with respect to x � 1/2(i7 i � 1,
i � 1 7 i � 2, p2 7 p1, p4 7 p3) we see

�uI2,J � uI1,J	
2 �

�3p2 � p4	Q2143 � 12�p2p3 � p1p4	 � �3p1 � p3	Q2244

Q2143
2 Q2244

2

� 
3p2Q2143�vi�1,j � vi�2,j	
2 � 12�p2p3 � p1p4	�vi�1,j�1 � vi�1,j	

2 � 3p1Q2244�vi�1,j � vi,j	
2

� p4Q2143�vi�1,j�1 � vi�2,j�1	
2 � p3Q2244�vi�1,j�1 � vi,j�1	

2�. (3.56)

Similarly, (uI 2,J1
� uI 1,J1

)2 is obtained by reflecting (uI,J1
� uI1,J1

)2 with respect to x � 1/2(i � 1
7 i, i � 2 7 i � 1, p1 7 p2). Thus,

�uI2,J1 � uI1,J1	
2 �

�3p2 � p2	Q2121 � 12�p2p1 � p1p2	 � �3p1 � p1	Q2222

Q2121
2 Q2222

2

� 
3p2Q2121�vi�1,j � vi�2,j	
2 � 12�p2p1 � p1p2	�vi�1,j�1 � vi�1,j	

2 � 3p1Q2222�vi�1,j � vi,j	
2

� p2Q2121�vi�1,j�1 � vi�2,j�1	
2 � p1Q2222�vi�1,j�1 � vi,j�1	

2�. (3.57)

Collecting the coefficient of (vi�1, j � vi, j)
2 from (3.54)–(3.57) after multiplication by pI1/2,J

,
pI1/2,J1

, etc., we have

p1


�3p1 � p3	Q1234 � 12�p1p4 � p2p3	 � �3p2 � p4	Q1133� � 3p2Q1133

Q1234
2 Q1133

2 (3.58)

�p1


�3p1 � p1	Q1212 � 12�p1p2 � p2p1	 � �3p2 � p2	Q1111� � 3p2Q1111

Q1212
2 Q1111

2 (3.59)

�p2


�3p2 � p4	Q2143 � 12�p2p3 � p1p4	 � �3p1 � p3	Q2244� � 3p1Q2244

Q2143
2 Q2244

2 (3.60)

�p2


�3p2 � p2	Q2121 � 12�p2p1 � p1p2	 � �3p1 � p1	Q2222� � 3p1Q2222

Q2121
2 Q2222

2 . (3.61)

Let us compare (3.58) with 2p1p2 /(p1 � p2), the coefficient of (vi�1, j � vi, j)
2 in Ak�1(v, v).

The ratio is

3�p1 � p2	
�3p1 � p3	Q1234 � 12�p1p4 � p2p3	 � �3p2 � p4	Q1133�

2Q1234
2 Q1133

. (3.62)

Because Q1234  3(p1 � p2) and Q1133 � 4(3p1 � p3), the first term of (3.62) is bounded by
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3�p1 � p2	�3p1 � p3	

2Q1234Q1133
�

1

8
. (3.63)

For the second term, we use the inequality, Q1234Q1133  12(p1p4 � p2p3) and Q1234  3(p1

� p2) to see

3�p1 � p2	 � 12�p1p4 � p2p3	

2Q1234
2 Q1133

�
3�p1 � p2	

2Q1234
�

1

2
. (3.64)

The third term is

3�p1 � p2	�3p2 � p4	

2Q1234
2 �

1

2
. (3.65)

Hence the ratio from the term (3.58) is bounded by 9/8. All other terms in (3.59)–(3.61) can be
bounded similarly.

Now the contributions from (uI 1,J � uI,J)
2 and (uI 1,J1

� uI,J1
)2 are similar, but cannot be

obtained by a simple shift or reflection. Because

uI1,J �
9p2vi�1,j � 3p1vi,j � 3p4vi�1,j�1 � p3vi,j�1

9p2 � 3p1 � 3p4 � p3
,

uI,J �
9p1vi,j � 3p2vi�1,j � 3p3vi,j�1 � p4vi�1,j�1

9p1 � 3p2 � 3p3 � p4
,

TABLE I. V(1, 1)-cycle with modified bilinear prolongation, p1 � 1, p2 � 104, p3 � 10, p4 � 102 [Fig.
2(a)].

hJ �min �max K 	

1/32 0.589 0.999 1.696 0.169
1/64 0.562 0.999 1.779 0.191
1/128 0.557 0.999 1.795 0.210

FIG. 2. Test problems.
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we see by direct computation

�uI1,J � uI,J	
2 �

24p1�3p2 � 2p4	 � 8p3�6p2 � p4	

Q1234
2 Q2143

2 � 
24�3p1p2 � p1p4	�vi�1,j � vi,j	
2

� 24�p1p4 � p2p3	�vi�1,j�1 � vi�1,j	
2 � �24p2p3 � 8p3p4	�vi�1,j�1 � vi,j�1	

2�. (3.66)

We again compare the ratio of (vi�1, j � vi, j)
2 between Ak(u, u) and Ak�1(v, v). It suffices to

estimate the first term of (3.66). Because Q2143  3(3p2 � 2p4)/2 and Q2143  3(3p2 � p4)
 3(6p2 � p4)/2, we have

24p1�3p2 � 2p4	 � 8p3�6p2 � p4	

Q1234
2 Q2143

2 � 24 � �3p1p2 � p1p4	 �
64

27
.

Shifting J 3 J � 1( j � 1 7 j � 1, p3 3 p1, p4 3 p2), we see

�uI1,J1 � uI,J1	
2 �

176p1p2

Q1212
2 Q2121

2 
96p1p2�vi�1,j � vi,j	
2

� 48p1p2�vi�1,j�1 � vi�1,j	
2 � 32p1p2�vi�1,j�1 � vi,j�1	

2�. (3.67)

Hence the ratio we are interested in is

176p1p2 � 96p1p2

Q1212
2 Q2121

2 �
11

24
.

There are contributions from y direction also, which can be guessed from the term (vi, j�1 � vi, j)
2

in (3.54) and (vi�1, j�1 � vi�1, j)
2 in (3.66), which can be similarly shown to be bounded.

Finally, the ratio of the term along y direction like (vi, j�1 � vi, j)
2 can be similarly shown to

be bounded. y
The “regularity and approximation property” can be shown similarly as in Lemma 3.6 and we

deduce the following result.

TABLE II. V(1, 1)-cycle with modified bilinear prolongation [Fig. 2(b)].

hJ �min �max K 	

1/32 0.522 1.206 2.313 0.229
1/64 0.495 1.193 2.409 0.255
1/128 0.477 1.188 2.492 0.273

TABLE III. Contraction number 	k of Problems 1 to 3 of W-cycle.

hJ Problem 1 Problem 2 Problem 3 ( j � 2) Problem 3 ( j � 3)

1/32 (1/24) 0.101 0.160 0.121 0.122
1/64 (1/48) 0.104 0.163 0.120 0.157
1/128 (1/96) 0.106 0.165 0.121 0.199
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Theorem 3.9. Let p be described as above. Then for W-cycle with the prolongation described
above, (3.53) holds for sufficiently large m.

Remark. Our proof works for problems with more than one junction points. Also, the case of
more general discontinuity can be handled similarly as long as the discontinuity arise as jumps
along some line segments parallel to the axes.

IV. NUMERICAL RESULTS

We consider the following problem on the unit square:

�� � p�ũ � f in � � �0, 1	2,

ũ � 0 on ��.

We study the performance of our algorithms with Gauss-Seidel relaxation. We compare our
modified bilinear interpolation with the bilinear interpolation, which shows similar behavior as
one in [10].

Problem 1. We partition the domain into 4 pieces as in Fig. 2(a) and take p1 � 1, p2 � 104,
p3 � 10, and p4 � 102. We report the eigenvalues, condition numbers, and reduction factors of
V-cycle multigrid with one smoothing [V(1, 1)]. Here we used the power method to estimate the
eigenvalues of BkAk and obtain the average reduction factors 	k in 15 iterations for the
homogeneous problem starting from a random initial guess. We see that it converges well with
modified bilinear prolongation (see Table I). We observed that behavior of multigrid with
standard bilinear prolongation is unacceptably slow, even with many smoothings.

Problem 2. We take p as follows

p � �104 when �x �
1

4��x �
3

4� � 0 and �y �
1

4��y �
3

4� � 0,

1 otherwise.

In this case, we also see V(1, 1)-cycle works well (see Table II).

TABLE IV. Variable V(m(k), m(k)))-cycle with m(k) � 2J�k for Problem 1.

hJ �min �max K

1/32 0.680 0.999 1.471
1/64 0.676 0.999 1.480
1/128 0.673 0.999 1.485

TABLE V. Variable V(m(k), m(k)))-cycle with m(k) � 2J�k for Problem 2.

hJ �min �max K

1/32 0.663 0.999 1.509
1/64 0.651 0.999 1.536
1/128 0.645 0.999 1.550

MULTIGRID ALGORITHM FOR THE CCFD 21



Problem 3. We take

p � �10j when �x �
1

3��y �
1

3��x �
2

3��y �
2

3� � 0,

1 otherwise.

In this case, for j � 2, V(1, 1)-cycle diverges but W(1, 1)-cycle converges. As j increases, we
see that W(1, 1) is divergent; hence, we need more smoothings; W(2, 2)-cycle is convergent for
j � 3, for example. This is in accordance with the theory that we need sufficiently many
smoothings when the energy norm is greater than 2. In Table III, the contraction numbers of all
three problems and that of W(2, 2)-cycle for problem 3 with j � 3 are reported.

Next, we report the behavior of variable V-cycle for all examples. We see variable V-cycle
is a good preconditioner in all these three cases (see Tables IV–VI).
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