
J. Numer. Math., Vol. 12, No. 4, pp. 285–296 (2004)
c© VSP 2004

Multigrid analysis for higher order finite difference scheme

D. Y. KWAK∗ and J. S. LEE∗

Received June 10, 2003

Received in revised form June 17, 2004

Abstract — We introduce and analyze a multigrid algorithm for higher order finite difference schemes
for elliptic problems on a nonuniform rectangular mesh. These schemes are presented by 9-point
stencils. We prove the V-cycle convergence adopting the theory developed for finite element methods
to these schemes. To be more precise, we show that the energy norm of the prolongation operator is less
than one and hence obtain the conclusion using the approximation and regularity property as in [2]. In
the numerical experiment section, we report contraction numbers, eigenvalues and condition numbers
of the multigrid algorithm. The numerical test shows that for higher order schemes the multigrid
algorithm converges much faster than for low order schemes. We also test the case of a nonuniform
grid with a line smoother which also shows good convergence behavior.
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1. INTRODUCTION

The multigrid method has been widely used and proven to be effective for a large
class of problems and has been the subject of extensive research [2,4,5,6,8,11,14].
V-cycle multigrid convergence has been analyzed for 2-nd order elliptic equations
using finite element, finite difference, cell-centered finite difference methods and its
behavior is well known [2,6,8,11]. On the other hand, compact schemes are shown to
be effective for a class of problems including convection-diffusion equations when
combined with multigrid algorithms [4,5]. These schemes are of higher order which
are often used to solve the Laplace equation on a domain which can be partitioned
into rectangular subdomains. These schemes can be adjusted to handle a nonuni-
form grid which has different mesh sizes along two coordinate axes [1]. Numerical
experiments in [1] show relatively higher order convergence even for less smooth
problems. The purpose of this paper is to introduce a multigrid algorithm for these
higher order schemes and prove V-cycle convergence.

While there are plenty of finite element multigrid theories, few results are avail-
able for finite difference methods (see the references cited above). One of the reason
is that in most finite element methods, all the spaces involved in the algorithm are
nested. Hence, the bilinear forms on all levels are inherited and many well known
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finite element theories apply. For the cell-centered finite difference (CCFD) or the
low order finite difference method (FDM) on a rectangular domain, V-cycle conver-
gence is proved [2,8] using the fact that the stencil of FDM on a rectangular domain
is similar to, or the same as that of the finite element method (FEM) on a certain
triangular grid. However, there is no rigorous V-cycle multigrid convergence proof
for higher order finite difference schemes although they have been used for many
practical problems and show good convergence behavior [1,7,9,10,12,15].

In this paper, we prove the convergence by estimating the energy norm of the
prolongation operator, thus adopting the theory developed by Bramble et al. [2]. Our
approach can be adapted to show multigrid convergence for other finite difference
schemes. The rest of this paper is organized as follows. In Section 2, we briefly
introduce multigrid algorithms together with energy norm estimation. In Section
3, we report the eigenvalues, condition numbers and contraction numbers of the
multigrid algorithm for a model problem.

2. MULTIGRID METHOD FOR HIGHER ORDER
FINITE DIFFERENCE SCHEME

In this section, we briefly consider some families of higher order finite difference
schemes in [1] and introduce a multigrid algorithm for these schemes. Here, as a
model problem, we consider the following reaction-diffusion equation with Dirich-
let boundary condition: {

−∆u+qu = f in Ω
u = ϕ on ∂Ω

where q � 0 and Ω is any region in R
2 covered by rectangles. For simplicity, we

assume Ω is the unit square. Let hx and hy = ϑhx be the mesh sizes of x-axis and
y-axis, respectively. We consider a class of fourth-order discretizations introduced
in [1], denoted by P(h,1,ϑ ,q), Q(h,1,ϑ ,q), P(h,1/2,1,q), and Q(h,1/2,1,q). In
this analysis, we choose the scheme P(h,1,ϑ ,q):

1
6hxhy

[
20ui, j −aui−1, j −aui+1, j −bui, j−1 −bui, j+1

− (ui−1, j−1 +ui+1, j−1 +ui−1, j+1 +ui+1, j+1)
]

+2rq[8ui, j +ui, j−1 +ui−1, j +ui+1, j +ui, j+1] = Fi, j

where a = (10ϑ2 − 2)/(1 + ϑ2), b = (10− 2ϑ2)/(1 + ϑ2), r = ϑ/(12(1 + ϑ2)),
and Fi, j = 2r(8 fi, j + fi, j−1 + fi−1, j + fi+1, j + fi, j+1) (see Fig. 1). Other schemes can
be analyzed similarly.

This nine-point discretization has a truncation error of O(h8) over a square mesh
(i.e., a convergence order of O(h6)). The resulting linear system can be written as

Aku = f (2.1)
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Figure 1. Stencil of P(h,1,ϑ , f ), where a = (10ϑ2 − 2)/(1 + ϑ2), b = (10 − 2ϑ2)/(1 + ϑ 2),
r = ϑ/(12(1+ϑ2)).

where Ak is a sparse, symmetric, positive definite matrix and u is the vector whose
entries are ui, j, and f is the vector whose entries are Fi, j. To define the multigrid
algorithm, we introduce a sequence of nested grid sets Ωk, for k = 1,2, . . . ,J. Let hk

x
and hk

y be the mesh sizes of the x-axis and the y-axis at level k. Define Ωk to be the
space of points (xi,y j) = (ihk

x, jhk
y) for i = 0,1, . . . ,n(k), j = 0,1, . . . ,m(k) and Vk to

be the vector space of functions defined on Ωk. To describe the multigrid algorithm,
we need certain intergrid transfer operators between two grids. Assuming that we
are given a certain prolongation operator Ikk−1 : Vk−1 →Vk, we define the restriction
operator Ik−1

k : Vk →Vk−1 as its adjoint with respect to (·, ·)k :

(Ik−1
k u,v)k−1 = (u, Ik

k−1v)k ∀u ∈Vk, ∀v ∈Vk−1

where (·, ·)k is the discrete inner product defined by (u,v)k = hk
xh

k
y ∑ui, jvi, j . Now,

the multigrid algorithm for solving (2.1) with a certain smoother Ri
k is defined as

follows.

Multigrid Algorithm V(m,m). Set B1 = A−1
1 . Assume that Bk−1 has been de-

fined and define Bkg for g ∈Vk as follows:

Step 1 (Pre-relaxation). Set v0 = 0 and define vi for i = 1,2, . . . ,m by

vi = vi−1 +Ri
k(g−Akv

i−1)

Step 2. Define wm = vm + Ik
k−1Bk−1[Ik−1

k (g−Akvm)].
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Step 3 (Post-relaxation). Define wi for i = m+ 1, . . . ,2m by

wi = wi−1 +R(i+m)
k (z−Akw

i−1).

Step 4. Set Bkz = w2m.

Let the bilinear form Ak(·, ·) be defined as follows:

Ak(u,v) = (Aku,v)k = Dk(u,v)+qk(u,v).

Here, Dk(u,v) and qk(u,v) corresponds to the second-order and zeroth-order part of
Ak(u,v) respectively. Specifically, Dk(u,v) and qk(u,v) has the following form:

Dk(u,v) :=
1
6 ∑

i, j

[
20ui, j −aui−1, j −aui+1, j −bui, j−1 −bui, j+1)

− (ui−1, j−1 +ui+1, j−1 +ui−1, j+1 +ui+1, j+1)
]
vi, j

and
qk(u,v) := hk

xh
k
y ∑

i, j
qi, jui, jvi, j.

To define a prolongation operator, we proceed as follows: Fix a level k−1 and a cell
Ei, j at level k−1. Let ui, j,ui+1, j,ui, j+1,ui+1, j+1 be the values of u at vertices of Ei, j.
Subdividing Ei, j by half, we obtain four subcells ei, j,ei+1/2, j,ei+1/2, j+1/2,ei, j+1/2

which we label counterclockwise. The values at vertices of subcells will be de-
noted by ui, j , ui+1/2, j, ui+1/2, j+1/2, ui, j+1/2, etc., as in Figure 2. Now, we define
the prolongation operator Ikk−1 to be the bilinear interpolation through four points
ui, j,ui+1, j,ui, j+1 and ui+1, j+1. First, ui, j , ui+1, j, ui, j+1, and ui+1, j+1 of level k has the
same value as in level k − 1. The mid point values ui+1/2, j, ui+1, j+1/2, ui+1/2, j+1,
and ui, j+1/2 are given as follows:

ui+1/2, j =
ui, j +ui+1, j

2
, ui+1, j+1/2 =

ui+1, j +ui+1, j+1

2

ui+1/2, j+1 =
ui, j+1 +ui+1, j+1

2
, ui, j+1/2 =

ui, j +ui, j+1

2
.

The value ui+1/2, j+1/2 at the center point is the average of ui, j , ui+1, j, ui, j+1, and
ui+1, j+1 :

ui+1/2, j+1/2 =
ui, j +ui+1, j +ui, j+1 +ui+1, j+1

4
.

Note that this bilinear prolongation does not depend on the ratio ϑ = hy/hx.
Now, we have the following energy norm estimation.

Theorem 2.1. When q � 0 is constant, we have

Ak(Ik
k−1u, Ik

k−1u) � Ak−1(u,u) ∀u ∈Vk−1.
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ei, j ei+1/2, j

ei+1/2, j+1/2ei, j+1/2
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ui+1, j+1ui, j+1

ui+1/2, j
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ui, j+1/2
ui+1/2, j+1/2

Figure 2. Cell Ek
i, j and its subcells.

Proof. Since the quadratic form Ak(Ik
k−1u, Ik

k−1u) can be decomposed into two
parts, the conclusion will follow if the following inequalities

Dk(Ik
k−1u, Ik

k−1u) � Dk−1(u,u) (2.2)

and
qk(Ik

k−1u, Ik
k−1u)k � qk−1(u,u) (2.3)

hold for all u ∈ Vk−1. These inequalities are shown in the following two lemmas.
�

Lemma 2.1. We have

Dk(Ik
k−1u, Ik

k−1u) � Dk−1(u,u) ∀u ∈Vk−1.

Proof. Using the symmetry of the form Dk−1 in i, j, we have

Dk−1(u,u) =
1
6 ∑

i, j

[
20ui, j − (aui−1, j +bui, j−1 +aui+1, j +bui, j+1)

− (ui−1, j−1 +ui+1, j−1 +ui−1, j+1 +ui+1, j+1)
]
ui, j

=
1
6 ∑

i, j

[
a(ui, j −ui−1, j)2 +b(ui, j −ui, j−1)2

+a(ui, j −ui+1, j)2 +b(ui, j −ui, j+1)2 ]
+

1
6 ∑

i, j

[
(ui, j −ui−1, j−1)2 +(ui, j −ui+1, j−1)2

+(ui, j −ui−1, j+1)2 +(ui, j −ui+1, j+1)2 ]
.
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Writing this cell-wise, we have

Dk−1(u,u) =
1
6 ∑

Ei, j

Si, j (2.4)

where

Si, j =
a
2
(ui+1, j+1 −ui, j+1)2 +

a
2
(ui+1, j −ui, j)2

+
b
2
(ui+1, j+1 −ui+1, j)2 +

b
2
(ui, j+1 −ui, j)2

+(ui+1, j+1 −ui, j)2 +(ui+1, j −ui, j+1)2.

(2.5)

Note that Si, j reflects the sum of two diagonal differences and the half of four axis-
parallel differences in Ei, j. Equation (2.4) means that Dk−1(u,u) can be written as
the sum of local cell differences Si, j . Set v = Ik

k−1u. Then, similar to derive (2.4), we
obtain

Dk(v,v) =
1
6 ∑

Ei, j

(si, j + si+1/2, j + si, j+1/2 + si+1/2, j+1/2)

where si, j, si+1/2, j, si, j+1/2, and si+1/2, j+1/2 are defined as in case of Si, j. By defini-
tion of the prolongation operator, we see

si, j =
a
8
(ui+1, j −ui, j)2 +

a
32

(ui+1, j+1 +ui+1, j −ui, j −ui, j+1)2

+
b
8
(ui, j+1 −ui, j)2 +

b
32

(ui+1, j+1 +ui, j+1 −ui+1, j −ui, j)2

+
1
4
(ui+1, j+1 −ui, j)2 +

1
16

(3ui+1, j −ui+1, j+1 −ui, j+1 −ui, j)2.

(2.6)

Similarly, si+1/2, j,si+1/2, j+1/2 and si, j+1/2 are given as follows:

si+1/2, j =
a
8
(ui+1, j −ui, j)2 +

a
32

(ui+1, j+1 +ui+1, j −ui, j −ui, j+1)2

+
b
8
(ui+1, j+1 −ui+1, j)2 +

b
32

(ui+1, j+1 +ui, j+1 −ui+1, j −ui, j)2

+
1
4
(ui+1, j+1 −ui, j)2 +

1
16

(3ui+1, j −ui+1, j+1 −ui, j+1 −ui, j)2

(2.7)

si+1/2, j+1/2 =
a
8
(ui+1, j+1 −ui, j+1)2 +

a
32

(ui+1, j+1 +ui+1, j −ui, j+1 −ui, j)2

+
b
8
(ui+1, j+1 −ui+1, j)2 +

b
32

(ui+1, j+1 +ui, j+1 −ui+1, j −ui, j)2

+
1
4
(ui, j+1 −ui+1, j)2 +

1
16

(3ui+1, j+1 −ui, j+1 −ui+1, j −ui, j)2

(2.8)
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si, j+1/2 =
a
8
(ui+1, j+1 −ui, j+1)2 +

a
32

(ui+1, j+1 +ui+1, j −ui, j+1 −ui, j)2

+
b
8
(ui, j+1 −ui, j)2 +

b
32

(ui+1, j+1 +ui, j+1 −ui+1, j −ui, j)2

+
1
4
(ui+1, j+1 −ui, j)2 +

1
16

(3ui, j+1 −ui+1, j+1 −ui+1, j −ui, j)2.

(2.9)

We compare Si, j with the sum of si, j + si+1/2, j + si, j+1/2 + si+1/2, j+1/2. In this way,
(2.2) will be proved, if we show the inequality Si, j − si, j − si+1/2, j − si, j+1/2 −
si+1/2, j+1/2 � 0. Summing up (2.6) through (2.9), we have

si, j + si+1/2, j + si+1/2, j+1/2 + si, j+1/2

=
a
4
(ui+1, j+1 −ui, j+1)2 +

a
4
(ui+1, j −ui, j)2

+
a
8
(ui+1, j+1 +ui+1, j −ui, j+1 −ui, j)2

+
b
4
(ui+1, j+1 −ui+1, j)2 +

b
4
(ui, j+1 −ui, j)2

+
b
8
(ui+1, j+1 +ui, j+1 −ui+1, j −ui, j)2

+
1
2
(ui, j+1 −ui+1, j)2 +

1
2
(ui+1, j+1 −ui, j)2

+
1

16
(3ui, j −ui+1, j+1 −ui+1, j −ui, j+1)2

+
1

16
(3ui+1, j −ui+1, j+1 −ui, j+1 −ui, j)2

+
1

16
(3ui+1, j+1 −ui, j+1 −ui+1, j −ui, j)2

+
1

16
(3ui, j+1 −ui+1, j+1 −ui+1, j −ui, j)2.

(2.10)

Note that the last four terms can be simplified as follows:

1
4
(ui+1, j+1 −ui, j+1)2 +

1
4
(ui, j+1 −ui, j)2 +

1
4
(ui+1, j −ui, j)2

+
1
4
(ui+1, j+1 −ui+1, j)2 +

1
4
(ui+1, j+1 −ui, j)2 +

1
4
(ui+1, j −ui, j+1)2.

(2.11)

Subtracting the first three terms in (2.10) from the first two terms in (2.5), we see
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the difference is as follows:

a
2
(ui+1, j+1 −ui, j+1)2 +

a
2
(ui+1, j −ui, j)2 −

[a
4
(ui+1, j+1 −ui, j+1)2

+
a
4
(ui+1, j −ui, j)2 +

a
8
(ui+1, j+1 +ui+1, j −ui, j+1 −ui, j)2

]
=

a
4
(ui+1, j+1 −ui, j+1)2 +

a
4
(ui+1, j −ui, j)2 − a

8
(ui+1, j+1 −ui, j+1 +ui+1, j −ui, j)2

=
a
8
(ui+1, j+1 −ui, j+1 −ui+1, j +ui, j)2.

(2.12)
Similarly, the terms regarding b become

b
2
(ui+1, j+1 −ui+1, j)2 +

b
2
(ui, j+1 −ui, j)2 −

[
b
4
(ui+1, j+1 −ui+1, j)2

+
b
4
(ui, j+1 −ui, j)2 +

b
8
(ui+1, j+1 +ui, j+1 −ui+1, j −ui, j)2

]

=
b
8
(ui+1, j+1 −ui, j+1 −ui+1, j +ui, j)2.

(2.13)

Noting that a+b = 8, the sum of (2.12) and (2.13) is equal to

(ui+1, j+1 −ui, j+1 −ui+1, j +ui, j)2. (2.14)

By elementary algebra, with (2.11) and (2.14), we see

Si, j − si, j − si+1/2, j − si, j+1/2 − si+1/2, j+1/2

= (ui+1, j+1 −ui, j+1 −ui+1, j +ui, j)2

+
1
4
(ui+1, j+1 −ui, j)2 +

1
4
(ui+1, j −ui, j+1)2

− 1
4
(ui+1, j+1 −ui, j+1)2 − 1

4
(ui, j+1 −ui, j)2

− 1
4
(ui+1, j −ui, j)2 − 1

4
(ui+1, j+1 −ui+1, j)2

=
3
4
(ui, j −ui+1, j +ui+1, j+1 −ui, j+1)2 � 0.

This completes the proof. �

Lemma 2.2. For a nonnegative constant q, we have

qk(Ik
k−1u, Ik

k−1u) � qk−1(u,u) ∀u ∈Vk−1.
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Proof. For simplicity, we let q = 1. Using symmetry, we have

qk−1(u,u) = hk−1
x hk−1

y ∑
i, j

[8ui, j +ui−1, j +ui, j−1 +ui+1, j +ui, j+1)]ui, j

= hk−1
x hk−1

y ∑
i, j

[
4u2

i, j +(ui, j +ui−1, j)2/2+(ui, j +ui, j−1)2/2

+(ui, j +ui+1, j)2/2+(ui, j +ui, j+1)2/2
]

= hk−1
x hk−1

y ∑
Ei, j

[
u2

i, j +u2
i+1, j +u2

i, j+1 +u2
i+1, j+1

+(ui, j +ui−1, j)2/2+(ui, j +ui, j−1)2/2

+(ui, j +ui+1, j)2/2+(ui, j +ui, j+1)2/2
]
.

Writing this cell-wise as in the proof Lemma 2.1, we have

qk−1(u,u) = hk−1
x hk−1

y ∑
Ei, j

Ti, j

where
Ti, j = u2

i, j +u2
i+1, j +u2

i, j+1 +u2
i+1, j+1

+(ui, j +ui−1, j)2/2+(ui, j +ui, j−1)2/2

+(ui, j +ui+1, j)2/2+(ui, j +ui, j+1)2/2.

Set v = Ik
k−1u then, similarly, we have

qk(v,v) = hk
xh

k
y ∑

Ei, j

(ti, j + ti+1/2, j + ti, j+1/2 + ti+1/2, j+1/2)

where ti, j, ti+1/2, j, ti, j+1/2, ti+1/2, j+1/2 are defined as in the case of Ti, j. To com-
plete the proof, noting that hk−1

x hk−1
y = 4hk

xh
k
y, we only need to show the following

inequality
ti, j + ti+1/2, j + ti, j+1/2 + ti+1/2, j+1/2 � 4Ti, j

which is a result of some algebraic calculation

4Ti, j − (ti, j + ti+1/2, j + ti, j+1/2 + ti+1/2, j+1/2)

= (ui, j −ui+1, j+1)2 +(ui+1, j −ui, j+1)2

+
1
2
(ui, j −ui+1, j)2 +

1
2
(ui+1, j −ui+1, j+1)2

+
1
2
(ui+1, j+1 −ui, j+1)2 +

1
2
(ui, j+1 −ui, j)2 � 0.

This completes the proof. �
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To prove the multigrid convergence theory, we need the following property, so-
called, “approximation and regularity”: There exist a number 0 < α � 1 and a con-
stant Cα such that for all k = 1, . . . ,J,

Ak((I − Ik
k−1Pk−1)u,u) � Cα

(‖Aku‖2
k

λk

)α

Ak(u,u)1−α ∀u ∈Vk . (2.15)

Here, λk is the largest eigenvalue of Ak and Pk−1 is the elliptic projection defined
by

Ak−1(Pk−1u,v) = Ak(u, Ik
k−1v) ∀u ∈Vk, v ∈Vk−1. (2.16)

The following lemma can be proved in a similar manner as presented in [8].

Lemma 2.3. Let the operator Pk−1 be defined by (2.16). Then (2.15) holds for
α = 1/2.

Now we state the main result. Because of Theorem 2.1 and Lemma 2.3, we
can employ the framework presented in [2] to obtain the following convergence
theorem.

Theorem 2.2. Let Ek = I −BkAk in algorithm V(m,m). Then we have

Ak(Eku,u) � δkAk(u,u) ∀u ∈Vk

where δk = Ck/(Ck +
√

m).

3. NUMERICAL EXPERIMENTS

We consider the following Dirichlet problem on the unit square:

−�u+qu = f in Ω = (0,1)2

u = ϕ on ∂Ω.

First, we report the maximum, minimum eigenvalues, condition numbers and con-
tractions numbers of V (1,1)-cycle algorithms for the model problem with q = 0.
Here, we use Gauss-Seidel smoothing and 9-point interpolation. We see that the
number of V (1,1)-cycle iterations is about 7 or 8 to obtain machine accuracy. The
contraction number δ was estimated as δ = (Ak(EN

k u,u)/Ak(u,u))1/N when N ≈ 15.
When the multigrid algorithm is used as a preconditioner, it is known that the con-
traction number is asymptotically

√
K −1√
K + 1

≈ 0.05.
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Table 1.
Higher order scheme for the model problem with q = 0.

hJ λmin λmax K δ

1/16 0.826 0.999 1.211 0.119
1/32 0.823 0.999 1.215 0.123
1/64 0.823 0.999 1.215 0.125
1/128 0.822 0.999 1.216 0.126

Table 2.
5-point scheme for the model problem with q = 0.

hJ λmin λmax K δ

1/16 0.776 0.999 1.289 0.167
1/32 0.765 0.999 1.307 0.173
1/64 0.758 0.999 1.316 0.175
1/128 0.756 0.999 1.321 0.176

For comparison, we also list the result of the 5-point stencil. Table 1 and 2 show
that the multigrid algorithm for the higher order scheme converges faster than that
for the 5-point scheme. Both algorithms have contraction numbers independent of
the mesh size h and the number of levels J.

Next, we test the model problem with q = 10. In this case, the V-cycle still
converges as fast as in the case of the pure Laplace problem (see Tables 3 and 4).
For the last test, we simulate the algorithms when hx 	= hy (a/b 	= 1). The analysis
in [13,14] shows that Gauss-Seidel smoothing works well in the case of a/b ≈ 1,

Table 3.
Higher order scheme for the model problem with q = 10.

hJ λmin λmax K δ

1/16 0.830 0.999 1.204 0.112
1/32 0.824 0.999 1.213 0.118
1/64 0.823 0.999 1.216 0.122
1/128 0.822 0.999 1.216 0.125

Table 4.
5-point scheme for the model problem with q = 10.

hJ λmin λmax K δ

1/16 0.783 0.999 1.276 0.161
1/32 0.770 0.999 1.298 0.169
1/64 0.761 0.999 1.314 0.173
1/128 0.758 0.999 1.319 0.175
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Table 5.
Higher order scheme with line smoother.

ϑ = hJ
y/hJ

x λmin λmax K δ

1/2 0.802 0.999 1.247 0.151
1/4 0.802 0.999 1.247 0.147
1/8 0.801 0.999 1.247 0.143

in other words, ϑ ≈ 1. But when ϑ goes to ∞ or 0, it does not reduce the high
frequency error and the multigrid convergence is not as good as in the case of ϑ ≈ 1.
In this case, it is known [3] that the x-axis or the y-axis line smoother is necessary.
We report the result with varying ϑ = 1/2,1/4,1/8 in Table 5.
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