Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author's institution, sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

A nonconforming covolume method for elliptic problems

Yun K. Hyon ${ }^{\text {a }}$, Ho J. Jang ${ }^{\text {b }}$, Do Y. Kwak ${ }^{\text {a,*, }}$
a Department of Mathematics, KAIST, Daejeon, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematics, Han Yang University, Seoul, South Korea

Abstract

We consider a control volume (covolume) method for second-order elliptic PDEs with the rotated- Q_{1} nonconforming finite element on rectangular grids. The coefficient κ may a variable, diagonal tensor, or discontinuous. We prove firstorder convergence in H^{1} norm and second order convergence in L^{2} norm when the partition is square. Our numerical experiments show that our covolume scheme has about 30% less error than FEM even when κ is discontinuous tensor. © 2007 Elsevier Inc. All rights reserved.

Keywords: Covolume method; Rotated bilinear finite element method; Duality; Optimal order

1. Introduction

In this paper, we consider a covolume scheme with Q_{1} nonconforming finite element method (FEM) for the second-order elliptic equations with tensor coefficients. We prove first-order convergence in H^{1} norm and sec-ond-order convergence in L^{2} norm. This scheme was first introduced for Stokes problems in [3,6]. We apply it to elliptic problems with variable, discontinuous, and tensor coefficient. For other type of finite volume methods, we refer to $[1,2,4-7,11-13,15]$ and for finite element method, we refer to $[8,9,14]$.

The analysis of these covolume methods can be well described if we introduce a transfer operator γ from usual FEM space to the space of piecewise constant. As a result, the scheme can be viewed as a Galerkin scheme rather than a Petrov-Galerkin scheme.

Let Ω be a bounded polygonal domain in \mathbb{R}^{2} with the boundary $\partial \Omega$. We consider the following second-order elliptic boundary value problem:

$$
\begin{array}{rlr}
-\operatorname{div}(\kappa \nabla u)=f, & & \text { in } \Omega, \\
u & =0, & \tag{1}\\
\text { on } \partial \Omega,
\end{array}
$$

where $\kappa=\kappa(x):=\operatorname{diag}\left(\kappa_{1}(x), \kappa_{2}(x)\right)$ is a diagonal and uniformly positive definite matrix. For Q_{1} nonconforming finite element method, we only consider the case where Ω is a union of axi-parallel domain. Let $h>0$ be a

[^0]parameter and let $\mathscr{T}_{h}=\{K\}$ be a regular family of partition into rectangles of Ω in the sense that there exist constants $c>0, C>0$ such that
$$
c h^{2} \leqslant|K| \leqslant C h^{2} \quad \text { for all } \quad K \in \mathscr{T}_{h} .
$$

Now we describe a Q_{1} nonconforming finite element method. Let $S_{K}=\left\{v_{h}=a+b x_{1}+c x_{2}+d\left(x_{1}^{2}-x_{2}^{2}\right)\right.$ on $\left.K\right\}$ and let

$$
\begin{equation*}
N_{h}=\left\{\left.v_{h}\right|_{K} \in S_{K}, \int_{K \cap \cap K} v_{h} \mathrm{~d} \sigma=\int_{K^{\prime} \cap \cap K^{\prime}} v_{h} \mathrm{~d} \sigma \quad \text { if } K, K^{\prime} \text { are adjacent, and } \int_{\partial К \cap \cap \Omega} v_{h} \mathrm{~d} \sigma=0\right\} . \tag{2}
\end{equation*}
$$

The usual nonconforming variational formulation of (1) is defined through element-wise form, i.e, we let

$$
a_{h}\left(v_{h}, w_{h}\right)=\sum_{K}\left(\kappa \nabla v_{h}, \nabla w_{h}\right)_{K}, \quad \text { for } v_{h}, w_{h} \in N_{h} .
$$

Let $\|\cdot\|_{0, D}$ (dropping D when $D=\Omega$) denote the usual $L^{2}(D)$ norm on a domain $D ; D=K$ or $\Omega, \partial K, \partial \Omega$, etc., and $|\cdot|_{1, h}=\left|a_{h}(\cdot, \cdot)\right|^{1 / 2}$ be the discrete energy norm induced by $a_{h}(\cdot, \cdot)$. Then it is well-known $[14,4,12,8]$ that the nonconforming finite element solution defined by

$$
a_{h}\left(\tilde{u}_{h}, v_{h}\right)=\left(f, v_{h}\right), \quad \text { for all } v_{h} \in N_{h},
$$

satisfies

$$
\begin{equation*}
\left\|u-\tilde{u}_{h}\right\|_{0}+h\left|u-\tilde{u}_{h}\right|_{1} \leqslant C h^{2}\|f\|_{0} . \tag{3}
\end{equation*}
$$

Now we consider a covolume formulation of the problem (1). For that purpose, we need to subdivide the given partition by connecting the vertices of each element with its center C, resulting in four subtriangles. Now the region consisting of two adjacent triangles sharing a common edge is denoted by K^{*}, called a covolume. The midpoints of edges are denoted by $m_{i}, i=1, \ldots, 4$. To define the covolume method, we need another space (Fig. 1)

$$
\begin{equation*}
W_{h}=\left\{\left.v_{h}\right|_{K^{*}} \text { is constant on each } K^{*}, \text { and } 0 \text { on the boundary covolumes }\right\} \tag{4}
\end{equation*}
$$

and an operator connecting N_{h} to W_{h}. Let K_{j}^{*} be the covolume with associated edge e_{j}, and m_{j} denote its mid point. Let $\bar{v}_{h}=\frac{1}{\left|e_{j}\right|} \int_{e_{j}} v_{h} d \sigma$ be the average of v_{h} on the edge e_{j}. Then we introduce a transfer operator $\gamma: N_{h} \rightarrow W_{h}$ by

$$
\left.\gamma v_{h}\right|_{K^{*}}=\sum_{K_{j}^{*}} \bar{v}_{h}\left(m_{j}\right) \chi_{j}(x),
$$

where χ_{j} is the characteristic function of K_{j}^{*}.
Find $u_{h}^{*} \in N_{h}$ such that

$$
\begin{equation*}
a_{h}^{*}\left(u_{h}^{*}, v_{h}\right)=\left(f, \gamma v_{h}\right) \quad \text { for all } v_{h} \in N_{h}, \tag{5}
\end{equation*}
$$

Fig. 1. A typical element K and its covolume partition K^{*}.
where

$$
\begin{equation*}
a_{h}^{*}\left(v_{h}, z_{h}\right)=-\sum_{K^{*}} \int_{\partial K^{*}} \kappa \nabla v_{h} \cdot \mathbf{n} \gamma z_{h} \mathrm{~d} \sigma, \quad \text { for } v_{h}, z_{h} \in N_{h} . \tag{6}
\end{equation*}
$$

Then the covolume scheme can be regard as a Galerkin method.
Now we show an optimal order error estimate.

2. Constant coefficient

In this section, we shall prove error estimates in case of constant tensor coefficient, possibly discontinuous.
Lemma 2.1. When κ is constant, we have

$$
\begin{equation*}
a_{h}^{*}\left(z_{h}, v_{h}\right)=a_{h}\left(z_{h}, v_{h}\right) \tag{7}
\end{equation*}
$$

for all $z_{h}, v_{h} \in N_{h}$.
Proof. First arranging the terms with respect to K, we see

$$
\begin{aligned}
a_{h}^{*}\left(z_{h}, v_{h}\right) & =-\sum_{K^{*}} \int_{\partial K^{*}} \kappa \nabla z_{h} \cdot \mathbf{n} \bar{v}_{h}\left(m_{i}\right) \mathrm{d} \sigma \\
& =-\sum_{K} \sum_{j=1}^{4} \bar{v}_{h}\left(m_{j}\right) \int_{a_{j+1} c a_{j}} \kappa \nabla z_{h} \cdot \mathbf{n} \mathrm{~d} \sigma
\end{aligned}
$$

since κ is constant, we have by divergence theorem

$$
\begin{aligned}
& =-\sum_{K} \sum_{j=1}^{4} \bar{v}_{h}\left(m_{j}\right)\left[\int_{\partial \Delta K_{K, j}} \kappa \nabla z_{h} \cdot \mathbf{n d} \sigma-\int_{a_{j} a_{j+1}} \kappa \nabla z_{h} \cdot \mathbf{n} \mathrm{~d} \sigma\right] \\
& =\sum_{K} \sum_{j=1}^{4} \bar{v}_{h}\left(m_{j}\right) \int_{a_{j} a_{j+1}} \kappa \nabla z_{h} \cdot \mathbf{n} \mathrm{~d} \sigma
\end{aligned}
$$

rearranging terms on each edges of K

$$
=-\sum_{K} \sum_{j=1}^{2}\left[\bar{v}_{h}\left(m_{j+2}\right) \int_{a_{j+2} a_{j+3}} \kappa_{j} \frac{\partial z_{h}}{\partial x_{j}} \mathrm{~d} \sigma-\bar{v}_{h}\left(m_{j}\right) \int_{a_{j} a_{j+1}} \kappa_{j} \frac{\partial z_{h}}{\partial x_{j}} \mathrm{~d} \sigma\right] .
$$

Here we adopted the convention that $a_{j+4}=a_{j}, j=1, \ldots, 4$. Now fix a K and let us look at terms in each sum. Since $\frac{\partial z_{h}}{\partial x_{1}}$ is constant in x_{2} and $\frac{\partial z_{h}}{\partial x_{2}}$ is constant in x_{1}, we have using the notation $\left|e_{j}\right|=$ the length of the edge $a_{j} a_{j+1}$ or $a_{j+2} a_{j+3}$,

$$
\begin{aligned}
- & \sum_{j=1}^{2}\left[\bar{v}_{h}\left(m_{j+2}\right) \int_{a_{j+2} a_{j+3}} \kappa_{j} \frac{\partial z_{h}}{\partial x_{j}} \mathrm{~d} \sigma-\bar{v}_{h}\left(m_{j}\right) \int_{a_{j} a_{j+1}} \kappa_{j} \frac{\partial z_{h}}{\partial x_{j}} \mathrm{~d} \sigma\right] \\
& =-\sum_{j=1}^{2}\left|e_{j}\right|\left(\kappa_{j} \frac{\partial z_{h}}{\partial x_{j}} \bar{v}_{h}\left(m_{j+2}\right)-\kappa_{j} \frac{\partial z_{h}}{\partial x_{j}} \bar{v}_{h}\left(m_{j}\right)\right) \\
& =-\sum_{j=1}^{2}\left(\int_{a_{j+2} a_{j+3}} \kappa_{j} \frac{\partial z_{h}}{\partial x_{j}} v_{h} \mathrm{~d} \sigma-\int_{a_{j} a_{j+1}} \kappa_{j} \frac{\partial z_{h}}{\partial x_{j}} v_{h} \mathrm{~d} \sigma\right)=\int_{\partial K} \kappa \nabla z_{h} \cdot \mathbf{n} v_{h} \mathrm{~d} \sigma=\int_{K} \kappa \nabla z_{h} \cdot \nabla v_{h} \mathrm{~d} \mathbf{x} .
\end{aligned}
$$

The last equality is obtained by divergence theorem and the fact that v_{h} is harmonic and κ is constant on K. Now summing over all K, we obtain $a_{h}\left(z_{h}, v_{h}\right)$ which completes the proof.

Now we show H^{1} error estimate. Since the usual Q_{1} nonconforming finite element solution \tilde{u}_{h} satisfies

$$
\begin{equation*}
a_{h}\left(\tilde{u}_{h}, v_{h}\right)=\sum_{K}\left(\kappa \nabla u_{h}, \nabla v_{h}\right)_{K}=\left(f, v_{h}\right), \quad v_{h} \in N_{h} \tag{8}
\end{equation*}
$$

and by above lemma the covolume solution satisfies

$$
\begin{equation*}
a_{h}\left(u_{h}^{*}, v_{h}\right)=\left(f, \gamma v_{h}\right), \quad v_{h} \in N_{h} . \tag{9}
\end{equation*}
$$

Subtracting,

$$
\begin{equation*}
a_{h}\left(\tilde{u}_{h}-u_{h}^{*}, v_{h}\right)=\left(f,(I-\gamma) v_{h}\right), \quad v_{h} \in N_{h} . \tag{10}
\end{equation*}
$$

Set $v_{h}=\tilde{u}_{h}-u_{h}^{*}$. Then by coerciveness,

$$
\begin{equation*}
\left|\tilde{u}_{h}-u_{h}^{*}\right|_{1, h}^{2} \leqslant C\|f\|_{0}\left\|(I-\gamma)\left(\tilde{u}_{h}-u_{h}^{*}\right)\right\|_{0} \leqslant C h\|f\|_{0}\left|\tilde{u}_{h}-u_{h}^{*}\right|_{1, h} . \tag{11}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|\tilde{u}_{h}-u_{h}^{*}\right|_{1, h} \leqslant C h\|f\|_{0} . \tag{12}
\end{equation*}
$$

Thus, we have the following result for an H^{1} error analysis.
Theorem 2.2. Let $u \in H^{2}(\Omega)$ be the solution of problem (1), and let u_{h}^{*} be the solution of the covolume (5). Then

$$
\begin{equation*}
\left|u-u_{h}^{*}\right|_{1, h} \leqslant C h\|f\|_{0} . \tag{13}
\end{equation*}
$$

Proof. Let \tilde{u}_{h} be the Q_{1} nonconforming solution. Then by (3) and (12)

$$
\begin{align*}
\left|u-u_{h}^{*}\right|_{1, h} & \leqslant\left|u-\tilde{u}_{h}\right|_{1, h}+\left|\tilde{u}_{h}-u_{h}^{*}\right|_{1, h} \\
& \leqslant \operatorname{Ch}\left(\|u\|_{2}+\|f\|_{0}\right) \leqslant C h\|f\|_{0} . \tag{14}
\end{align*}
$$

2.1. Duality

For L^{2} error estimate we use the duality argument. Let $e_{h}=u-u_{h}^{*}$ and consider

$$
\begin{align*}
& -\operatorname{div}(\kappa \nabla U)=e_{h} \quad \text { in } \Omega, \\
& U=0 \quad \text { on } \partial \Omega . \tag{15}
\end{align*}
$$

Then the regularity of the problem (15) implies that $\|U\|_{2} \leqslant C\left\|e_{h}\right\|_{0}$. Multiply (15) by e_{h} and integrate, we obtain

$$
\begin{equation*}
\left\|e_{h}\right\|_{0}^{2}=\left(-\operatorname{div}(\kappa \nabla U), e_{h}\right)=a_{h}\left(U, e_{h}\right)-\sum_{K \in \mathscr{F}_{h}}\left\langle\kappa \frac{\partial U}{\partial v}, e_{h}\right\rangle_{\partial K \mid \partial \Omega} \tag{16}
\end{equation*}
$$

We present the proof when the domain is partitioned into squares.
Lemma 2.3. For any $v \in H^{2}(\Omega), \psi_{h} \in N_{h}$, and $\psi \in C^{0}(\Omega) \cap H_{0}^{1}(\Omega)$, we have

$$
\begin{equation*}
\sum_{K \in \mathscr{F}_{h}} \int_{\partial K} v\left(\psi_{h}-\bar{\psi}_{h}\right) \mathrm{d} \sigma \leqslant C h|v|_{1, h}\left|\psi_{h}-\psi\right|_{1, h} . \tag{17}
\end{equation*}
$$

The proof of this lemma can be found in [10].
Lemma 2.4. Suppose the solution u of (1) belongs to $H^{3}(\Omega)$ and u_{h}^{*} is the solution of covolume scheme. Then for any $\psi_{h} \in N_{h}$, and $\psi \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, we have

$$
\begin{equation*}
a_{h}\left(u-u_{h}^{*}, \psi_{h}\right) \leqslant C h\|f\|_{0}\left|\psi-\psi_{h}\right|_{1, h}+C h^{2}\|u\|_{3}\left|\psi_{h}\right|_{1, h}+C h^{2}\|f\|_{0}|\psi|_{2} . \tag{18}
\end{equation*}
$$

The proof of this lemma essentially follows from Lemma 3.8 of [12] as long as we use

$$
\int_{K}\left(\psi_{h}-\gamma \psi_{h}\right) d x=0, \quad \text { for } \quad \psi_{h} \in N_{h}
$$

which holds when K is a square.

Now, for the error bound of $a_{h}\left(U, e_{h}\right)$ in (16) we need the following lemma:
Lemma 2.5. Let u be the solution of the problem (1). Assume that $u \in H^{3}(\Omega)$. Then for any $\psi \in H^{2}(\Omega), \psi_{h} \in N_{h}$, we have

$$
\begin{equation*}
a_{h}\left(\psi, u-u_{h}^{*}\right) \leqslant C\left|\psi-\psi_{h}\right|_{1, h}\left|u-u_{h}^{*}\right|_{1, h}+C h\|f\|_{0}\left|\psi_{h}-\psi\right|_{1, h}+C h^{2}\|u\|_{3}\left|\psi_{h}\right|_{1, h}+C h^{2}\|f\|_{0}|\psi|_{2} \tag{19}
\end{equation*}
$$

Proof. Since $a_{h}(\cdot, \cdot)$ is symmetric, we see that

$$
\begin{equation*}
a_{h}\left(\psi, u-u_{h}^{*}\right)=a_{h}\left(\psi-\psi_{h}, u-u_{h}^{*}\right)+a_{h}\left(u-u_{h}^{*}, \psi_{h}\right) . \tag{20}
\end{equation*}
$$

Now, the estimate of the second term is obtained from Lemma 2.4. Since the first term of (20) can be estimated trivially, we complete proof.

Now we can prove the following theorem:
Theorem 2.6. Let u be the solution of problem (1). Let u_{h}^{*} be the solution of the (5). Further, assume that u is in $H^{3}(\Omega)$. Then

$$
\begin{equation*}
\left\|u-u_{h}^{*}\right\|_{0} \leqslant C h^{2}\left(\|u\|_{3}+\|f\|_{0}\right) . \tag{21}
\end{equation*}
$$

Proof. Let U_{h} be the usual nonconforming FEM solution of (15), and let $\psi=U$ in Lemma 2.5. Then the first term in right hand side of (16) satisfies

$$
\begin{align*}
\left|a_{h}\left(U, e_{h}\right)\right| & \leqslant C\left(\left|U-U_{h}\right|_{1, h}\left|e_{h}\right|_{1, h}+C h\|f\|_{0}\left|U_{h}-U\right|_{1, h}+C h^{2}\|u\|_{3}\left|U_{h}\right|_{1, h}+C h^{2}\|f\|_{0}|U|_{2}\right) \\
& \leqslant C h^{2}\|U\|_{2}\left(\mid f\left\|_{0}+\right\| u \|_{3}\right) \leqslant C h^{2}\left\|e_{h}\right\|_{0}\left(\|f\|_{0}+\|u\|_{3}\right) . \tag{22}
\end{align*}
$$

The second term in (16) can be estimated by Lemma 2.3 as

$$
\begin{equation*}
\left|\sum_{K \in \mathscr{F}_{h}}\left\langle\kappa \frac{\partial U}{\partial v}, e_{h}\right\rangle_{\partial K \mid \partial \Omega}\right| \leqslant C h\|U\|_{2}\left|e_{h}\right|_{1, h} \leqslant C h\left\|e_{h}\right\|_{0}\left|e_{h}\right|_{1, h} \leqslant C h^{2}\left\|e_{h}\right\|_{0}\|f\|_{0} . \tag{23}
\end{equation*}
$$

From (22), (23), we obtain (21).

3. Nonconstant coefficient case

In this section, we define a covolume scheme using the projected coefficient and prove the optimal error estimates when κ is of class $C^{1}(\bar{K})$ for all element K. We do this by comparing the finite element solution with our covolume solution with projected coefficient. Let \tilde{u}_{h} satisfy

$$
\begin{equation*}
\sum_{K \in \mathscr{F}_{h}}\left(\kappa \nabla \tilde{u}_{h}, \nabla v_{h}\right)_{K}=\left(f, v_{h}\right)_{\Omega}, \quad v_{h} \in N_{h} \tag{24}
\end{equation*}
$$

while u_{h}^{*} satisfy

$$
\begin{equation*}
\sum_{K \in \mathscr{F}_{h}}\left(\bar{\kappa} \nabla u_{h}^{*}, \nabla v_{h}\right)_{K}=\left(f, \gamma v_{h}\right)_{\Omega}, \quad v_{h} \in N_{h}, \tag{25}
\end{equation*}
$$

where $\bar{\kappa}=\frac{1}{|K|} \int_{K} \kappa \mathrm{~d} x$. Then we have
Lemma 3.1. Let $u \in H^{2}(\Omega)$ be the solution of problem (1), and let \tilde{u}_{h}, and u_{h}^{*} be the solution of (24) and (25), respectively. Then we have

$$
\begin{equation*}
\left\|u_{h}^{*}-\tilde{u}_{h}\right\|_{1, h} \leqslant C h\|f\|_{0} . \tag{26}
\end{equation*}
$$

Proof. Subtracting (24) and (25), then we have

$$
\sum_{K \in \mathscr{F}_{h}}\left(\bar{\kappa} \nabla\left(\tilde{u}_{h}-u_{h}^{*}\right), \nabla v_{h}\right)_{K}=\left(f,(I-\gamma) v_{h}\right)_{\Omega}-\sum_{K}\left((\kappa-\bar{\kappa}) \nabla \tilde{u}_{h}, \nabla v_{h}\right)_{K} .
$$

Table 1
Errors and orders of convergence for the rectangular meshes with $\kappa=1+10 x+y$ on $\Omega=[0,1]^{2}$

n	Nonconforming covolume				Nonconforming FEM											
	$\left\\|u-u_{h}\right\\|_{L^{2}(\Omega)}$		$\left\\|u-u_{h}\right\\|_{1, h}$		$\left\\|u-u_{h}\right\\|_{L^{2}(\Omega)}$		$\left\\|u-u_{h}\right\\|_{1, h}$									
	Error	Order	Error	Order	Error	Order	Error	Order								
4	1.7827e-03		$2.6063 \mathrm{e}-01$		$2.3529 \mathrm{e}-03$		$2.5284 \mathrm{e}-01$									
8	4.5171e-04	1.99	$1.3136 \mathrm{e}-01$	0.99	6.0136e-04	1.96	$1.3036 \mathrm{e}-01$	0.95								
16	$1.1335 \mathrm{e}-04$	1.99	$6.5800 \mathrm{e}-02$	0.99	$1.5112 \mathrm{e}-04$	1.99	$6.5675 \mathrm{e}-02$	0.98								
32	$2.8365 \mathrm{e}-05$	1.99	$3.2915 \mathrm{e}-02$	0.99	$3.7828 \mathrm{e}-05$	1.99	$3.2899 \mathrm{e}-02$	0.99								
64	7.0930e-06	1.99	$1.6459 \mathrm{e}-02$	0.99	$9.4601 \mathrm{e}-06$	1.99	$1.6457 \mathrm{e}-02$	0.99								

Table 2
Errors and orders of convergence for the rectangular meshes with $\kappa=\operatorname{diag}(10,10)$ for $0<x<0.5, \kappa=\operatorname{diag}(1,1)$ for $0.5<x<1$ on $\Omega=[0,1]^{2}$

n	Nonconforming covolume				Nonconforming FEM											
	$\left\\|u-u_{h}\right\\|_{L^{2}(\Omega)}$		$\underline{\left\\|u-u_{h}\right\\|_{1, h}}$		$\left\\|u-u_{h}\right\\|_{L^{2}(\Omega)}$		$\underline{\left\\|u-u_{h}\right\\|_{1, h}}$									
	Error	Order	Error	Order	Error	Order	Error	Order								
4	$1.3953 \mathrm{e}-02$		3.2646e-01		$1.9137 \mathrm{e}-02$		3.1250e-01									
8	3.6163e-03	1.94	$1.6855 \mathrm{e}-01$	0.95	$5.0480 \mathrm{e}-03$	1.92	$1.6674 \mathrm{e}-01$	0.90								
16	9.1251e-04	1.98	$8.4862 \mathrm{e}-02$	0.99	$1.2788 \mathrm{e}-03$	1.98	$8.4635 \mathrm{e}-02$	0.97								
32	2.2866e-04	1.99	$4.2502 \mathrm{e}-02$	0.99	$3.2077 \mathrm{e}-04$	1.99	$4.2473 \mathrm{e}-02$	0.99								
64	5.7198e-05	1.99	$2.1260 \mathrm{e}-02$	0.99	$8.0259 \mathrm{e}-05$	1.99	$2.1256 \mathrm{e}-02$	0.99								

Set $v_{h}=e_{h}:=\tilde{u}_{h}-u_{h}^{*}$. Then

$$
\left|e_{h}\right|_{1, h}^{2} \leqslant C h\left(\|f\|_{0}+|\kappa|_{1, \infty}\left|\tilde{u}_{h}\right|_{1, h}\right)\left|e_{h}\right|_{1, h} \leqslant \operatorname{Ch}\left(\|f\|_{0}+\|u\|_{2}\right)\left|e_{h}\right|_{1, h} \leqslant C h\|f\|_{0}\left|e_{h}\right|_{1, h} .
$$

This completes proof.

4. Numerical results

In this section, we present some numerical simulations which confirm our theory. We test various cases:
Example 1. Let $\bar{\Omega}=[0,1]^{2}$ be partitioned into $n_{2}\left(n=2^{k}, k=2, \ldots, 6\right)$, square grids of size $h \times h$, and let $\kappa=1+10 x+y$. We compare with FEM solutions. The results are shown in Table 1 . The L^{2} error with covolume scheme smaller than FEM about 30%.

Example 2. In this example, we test discontinuous coefficient case on the unit square with n^{2} square grids. Let

$$
\kappa=\left(\begin{array}{cc}
10 & 0 \\
0 & 10
\end{array}\right) \quad \text { for } 0<x<0.5, \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { for } 0.5<x<1,
$$

where the exact solution is given as

$$
u=\left\{\begin{array}{ll}
\left(-20 x^{2}+30 x-10\right)\left(y-y^{2}\right) & \text { for } 0<x<0.5 \tag{27}\\
\left(2 x^{2}-x\right)\left(y-y^{2}\right) & \text { for } 0.5<x<1
\end{array} .\right.
$$

The results are shown in Table 2. The L^{2} error with covolume scheme smaller than FEM about 30%.

References

[1] T. Arbogast, C.N. Dawson, P. Keenan, M.F. Wheeler, I. Yotov, Enhanced cell-centered finite differences for elliptic equations on general geometry, SIAM J. Sci. Comput. 19 (1998) 404-425.
[2] Z. Cai, S. McCormick, On the accuracy of the finite volume element method for diffusion equations on composite grids, SIAM J. Numer. Anal. 27 (1990) 636-656.
[3] S.H. Chou, Analysis and convergence of a covolume methods for the generalized Stokes problem, Math. Comp. 66 (1997) 85-104.
[4] S.H. Chou, D.Y. Kwak, Mixed Covolume Methods on Rectangular Grids for Elliptic Problems, SIAM J. Numer. Anal., 37(3), 758771.
[5] S.H. Chou, D.Y. Kwak, Analysis and convergence of a MAC-like scheme for the generalized Stokes problem, Numer. Methods Part. Diff. Eq. 13 (1997) 1-16.
[6] S.H. Chou, D.Y. Kwak, A covolume method based on rotated bilinears for the generalized Stokes problem, SIAM J. Numer. Anal. 35 (1998) 494-507.
[7] S.H. Chou, D.Y. Kwak, P.S. Vassilevski, Mixed upwinding covolume methods on rectangular grids for convection-diffusion problems, SIAM J. Sci. Comput. 21 (1999) 145-165.
[8] So-Hsiang Chou, Do Y. Kwak, Kwang Y. Kim, Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems, Math. Comput. 72 (242) (2002) 525-539.
[9] P.G. Cialet, The finite Element Method for Elliptic Equations, North-Holland, Amsterdam, 1978.
[10] M. Crouzeix, P.A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numer. 7 (1973) 33-76.
[11] R.E. Ewing, R.D. Lazarov, P.S. Vassilevski, Local refinement techniques for elliptic problems on cell-centered grids, I: Error analysis, Math. Comp. 56 (1991) 437-461.
[12] K.S. Kang, D.Y. Kwak, Error Estimate in L^{2} of a Covolume Method for the Generalized Stokes Problem, Numer. Method P.D.E 22 (2005) 165-179.
[13] R.A. Nicolaides, Direct discretization of planar div-curl problems, SIAM J. Numer. Anal., 29 (1992) 32-56.
[14] R. Rannacher, S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Methods Part. Diff. Eq. 8 (1992) $97-111$.
[15] T.F. Russell, Rigorous Block-centered Discretizations on Irregular Grids: Improved Simulation of Complex Reservoir Systems, Reservoir Simulation Research Corporation, Denver, Co, 1995.

[^0]: * Corresponding author.

 E-mail addresses: hyon70@kaist.ac.kr (Y.K. Hyon), hjjang@hanyang.ac.kr (H.J. Jang), kdy@kaist.ac.kr (D.Y. Kwak).
 ${ }^{1}$ This work supported by a grant from Korea Research Foundation, KRF-2005-013-c00009.

