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Abstract

We consider a control volume (covolume) method for second-order elliptic PDEs with the rotated-Q1 nonconforming
finite element on rectangular grids. The coefficient j may a variable, diagonal tensor, or discontinuous. We prove first-
order convergence in H1 norm and second order convergence in L2 norm when the partition is square. Our numerical
experiments show that our covolume scheme has about 30% less error than FEM even when j is discontinuous tensor.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider a covolume scheme with Q1 nonconforming finite element method (FEM) for the
second-order elliptic equations with tensor coefficients. We prove first-order convergence in H1 norm and sec-
ond-order convergence in L2 norm. This scheme was first introduced for Stokes problems in [3,6]. We apply it
to elliptic problems with variable, discontinuous, and tensor coefficient. For other type of finite volume meth-
ods, we refer to [1,2,4–7,11–13,15] and for finite element method, we refer to [8,9,14].

The analysis of these covolume methods can be well described if we introduce a transfer operator c from
usual FEM space to the space of piecewise constant. As a result, the scheme can be viewed as a Galerkin
scheme rather than a Petrov–Galerkin scheme.

Let X be a bounded polygonal domain in R2 with the boundary oX. We consider the following second-order
elliptic boundary value problem:

�divðjruÞ ¼ f ; in X;

u ¼ 0; on oX; ð1Þ

where j ¼ jðxÞ :¼ diagðj1ðxÞ; j2ðxÞÞ is a diagonal and uniformly positive definite matrix. For Q1 nonconform-
ing finite element method, we only consider the case where X is a union of axi-parallel domain. Let h > 0 be a
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parameter and let Th ¼ fKg be a regular family of partition into rectangles of X in the sense that there exist
constants c > 0, C > 0 such that

ch2
6 jKj 6 Ch2 for all K 2Th:

Now we describe a Q1 nonconforming finite element method. Let SK ¼ fvh ¼ aþ bx1 þ cx2 þ dðx2
1 � x2

2Þ on Kg
and let

Nh ¼ vhjK 2 SK ;

Z
K\oK

vh dr ¼
Z

K 0\oK 0
vh dr if K;K 0are adjacent; and

Z
oK\oX

vh dr ¼ 0

� �
: ð2Þ

The usual nonconforming variational formulation of (1) is defined through element-wise form, i.e, we let

ahðvh;whÞ ¼
X

K

ðjrvh;rwhÞK ; for vh;wh 2 Nh:

Let k � k0;D (dropping D when D ¼ X) denote the usual L2ðDÞ norm on a domain D; D ¼ K or X, oK, oX, etc.,
and j � j1;h ¼ jahð�; �Þj1=2 be the discrete energy norm induced by ahð�; �Þ. Then it is well-known [14,4,12,8] that
the nonconforming finite element solution defined by

ahð~uh; vhÞ ¼ ðf ; vhÞ; for all vh 2 N h;

satisfies

ku� ~uhk0 þ hju� ~uhj1 6 Ch2kf k0: ð3Þ
Now we consider a covolume formulation of the problem (1). For that purpose, we need to subdivide the given
partition by connecting the vertices of each element with its center C, resulting in four subtriangles. Now the
region consisting of two adjacent triangles sharing a common edge is denoted by K�, called a covolume. The
midpoints of edges are denoted by mi; i ¼ 1; . . . ; 4. To define the covolume method, we need another space
(Fig. 1)

W h ¼ fvhjK� is constant on each K�; and 0 on the boundary covolumesg ð4Þ
and an operator connecting Nh to Wh. Let K�j be the covolume with associated edge ej, and mj denote its mid
point. Let �vh ¼ 1

jejj
R

ej
vhdr be the average of vh on the edge ej. Then we introduce a transfer operator

c : N h ! W h by

cvhjK� ¼
X

K�j

�vhðmjÞvjðxÞ;

where vj is the characteristic function of K�j .
Find u�h 2 N h such that

a�hðu�h; vhÞ ¼ ðf ; cvhÞ for all vh 2 N h; ð5Þ

K,4

a1

a2
a3

a4

m 4

m 3 m 1

m 2

*K

K

K,1

K,2

K,3

Fig. 1. A typical element K and its covolume partition K�.
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where

a�hðvh; zhÞ ¼ �
X

K�

Z
oK�

jrvh � nczh dr; for vh; zh 2 N h: ð6Þ

Then the covolume scheme can be regard as a Galerkin method.
Now we show an optimal order error estimate.

2. Constant coefficient

In this section, we shall prove error estimates in case of constant tensor coefficient, possibly discontinuous.

Lemma 2.1. When j is constant, we have

a�hðzh; vhÞ ¼ ahðzh; vhÞ ð7Þ
for all zh; vh 2 Nh.

Proof. First arranging the terms with respect to K, we see

a�hðzh; vhÞ ¼ �
X

K�

Z
oK�

jrzh � n�vhðmiÞdr

¼ �
X

K

X4

j¼1

�vhðmjÞ
Z

ajþ1caj

jrzh � ndr

since j is constant; we have by divergence theorem

¼ �
X

K

X4

j¼1

�vhðmjÞ
Z

oDK;j

jrzh � ndr�
Z

ajajþ1

jrzh � n dr

" #

¼
X

K

X4

j¼1

�vhðmjÞ
Z

ajajþ1

jrzh � ndr

rearranging terms on each edges of K

¼ �
X

K

X2

j¼1

�vhðmjþ2Þ
Z

ajþ2ajþ3

jj
ozh

oxj
dr� �vhðmjÞ

Z
ajajþ1

jj
ozh

oxj
dr

" #
:

Here we adopted the convention that ajþ4 ¼ aj, j ¼ 1; . . . ; 4. Now fix a K and let us look at terms in each sum.
Since ozh

ox1
is constant in x2 and ozh

ox2
is constant in x1, we have using the notation jejj ¼ the length of the edge ajajþ1

or ajþ2ajþ3,

�
X2

j¼1

�vhðmjþ2Þ
Z

ajþ2ajþ3

jj
ozh

oxj
dr� �vhðmjÞ

Z
ajajþ1

jj
ozh

oxj
dr

" #

¼ �
X2

j¼1

jejj jj
ozh

oxj
�vhðmjþ2Þ � jj

ozh

oxj
�vhðmjÞ

� �

¼ �
X2

j¼1

Z
ajþ2ajþ3

jj
ozh

oxj
vh dr�

Z
ajajþ1

jj
ozh

oxj
vh dr

 !
¼
Z

oK
jrzh � nvh dr ¼

Z
K

jrzh � rvh dx:

The last equality is obtained by divergence theorem and the fact that vh is harmonic and j is constant on K.
Now summing over all K, we obtain ahðzh; vhÞ which completes the proof. h

Now we show H1 error estimate. Since the usual Q1 nonconforming finite element solution ~uh satisfies

ahð~uh; vhÞ ¼
X

K

ðjruh;rvhÞK ¼ ðf ; vhÞ; vh 2 N h ð8Þ
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and by above lemma the covolume solution satisfies

ahðu�h; vhÞ ¼ ðf ; cvhÞ; vh 2 Nh: ð9Þ

Subtracting,

ahð~uh � u�h; vhÞ ¼ ðf ; ðI � cÞvhÞ; vh 2 Nh: ð10Þ
Set vh ¼ ~uh � u�h. Then by coerciveness,

j~uh � u�hj
2
1;h 6 Ckf k0kðI � cÞð~uh � u�hÞk0 6 Chkf k0j~uh � u�hj1;h: ð11Þ

Hence

j~uh � u�hj1;h 6 Chkf k0: ð12Þ

Thus, we have the following result for an H1 error analysis.

Theorem 2.2. Let u 2 H 2ðXÞ be the solution of problem (1), and let u�h be the solution of the covolume (5). Then

ju� u�hj1;h 6 Chkf k0: ð13Þ

Proof. Let ~uh be the Q1 nonconforming solution. Then by (3) and (12)

ju� u�hj1;h 6ju� ~uhj1;h þ j~uh � u�hj1;h
6Chðkuk2 þ kf k0Þ 6 Chkf k0: � ð14Þ

2.1. Duality

For L2 error estimate we use the duality argument. Let eh ¼ u� u�h and consider

� divðjrUÞ ¼ eh in X;

U ¼ 0 on oX:
ð15Þ

Then the regularity of the problem (15) implies that kUk2 6 Ckehk0. Multiply (15) by eh and integrate, we
obtain

kehk2
0 ¼ ð�divðjrUÞ; ehÞ ¼ ahðU ; ehÞ �

X
K2Th

j
oU
om

; eh

� �
oKnoX

: ð16Þ

We present the proof when the domain is partitioned into squares.

Lemma 2.3. For any v 2 H2ðXÞ, wh 2 N h, and w 2 C0ðXÞ \ H 1
0ðXÞ, we haveX

K2Th

Z
oK

vðwh � �whÞdr 6 Chjvj1;hjwh � wj1;h: ð17Þ

The proof of this lemma can be found in [10].

Lemma 2.4. Suppose the solution u of (1) belongs to H 3ðXÞ and u�h is the solution of covolume scheme. Then for

any wh 2 Nh, and w 2 H2ðXÞ \ H1
0ðXÞ, we have

ahðu� u�h;whÞ 6 Chkf k0jw� whj1;h þ Ch2kuk3jwhj1;h þ Ch2kf k0jwj2: ð18Þ

The proof of this lemma essentially follows from Lemma 3.8 of [12] as long as we useZ
K
ðwh � cwhÞdx ¼ 0; for wh 2 Nh;

which holds when K is a square.
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Now, for the error bound of ahðU ; ehÞ in (16) we need the following lemma:

Lemma 2.5. Let u be the solution of the problem (1). Assume that u 2 H 3ðXÞ. Then for any w 2 H 2ðXÞ, wh 2 N h,

we have

ahðw; u� u�hÞ 6 Cjw� whj1;hju� u�hj1;h þ Chkf k0jwh � wj1;h þ Ch2kuk3jwhj1;h þ Ch2kf k0jwj2: ð19Þ

Proof. Since ahð�; �Þ is symmetric, we see that

ahðw; u� u�hÞ ¼ ahðw� wh; u� u�hÞ þ ahðu� u�h;whÞ: ð20Þ
Now, the estimate of the second term is obtained from Lemma 2.4. Since the first term of (20) can be estimated
trivially, we complete proof. h

Now we can prove the following theorem:

Theorem 2.6. Let u be the solution of problem (1). Let u�h be the solution of the (5). Further, assume that u is in

H3ðXÞ. Then

ku� u�hk0 6 Ch2ðkuk3 þ kf k0Þ: ð21Þ

Proof. Let Uh be the usual nonconforming FEM solution of (15), and let w ¼ U in Lemma 2.5. Then the first
term in right hand side of (16) satisfies

jahðU ; ehÞj 6 CðjU � U hj1;hjehj1;h þ Chkf k0jUh � U j1;h þ Ch2kuk3jUhj1;h þ Ch2kf k0jU j2Þ
6 Ch2kUk2ðjf k0 þ kuk3Þ 6 Ch2kehk0ðkf k0 þ kuk3Þ: ð22Þ

The second term in (16) can be estimated by Lemma 2.3 as

X
K2Th

j
oU
om

; eh

� �
oKnoX

�����
����� 6 ChkUk2jehj1;h 6 Chkehk0jehj1;h 6 Ch2kehk0kf k0: ð23Þ

From (22), (23), we obtain (21). h

3. Nonconstant coefficient case

In this section, we define a covolume scheme using the projected coefficient and prove the optimal error
estimates when j is of class C1ðKÞ for all element K. We do this by comparing the finite element solution with
our covolume solution with projected coefficient. Let ~uh satisfyX

K2Th

ðjr~uh;rvhÞK ¼ ðf ; vhÞX; vh 2 Nh ð24Þ

while u�h satisfyX
K2Th

ð�jru�h;rvhÞK ¼ ðf ; cvhÞX; vh 2 Nh; ð25Þ

where �j ¼ 1
jKj
R

K jdx. Then we have

Lemma 3.1. Let u 2 H 2ðXÞ be the solution of problem (1), and let ~uh, and u�h be the solution of (24) and (25),
respectively. Then we have

ku�h � ~uhk1;h 6 Chkf k0: ð26Þ

Proof. Subtracting (24) and (25), then we haveX
K2Th

ð�jrð~uh � u�hÞ;rvhÞK ¼ ðf ; ðI � cÞvhÞX �
X

K

ððj� �jÞr~uh;rvhÞK :
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Set vh ¼ eh :¼ ~uh � u�h. Then

jehj21;h 6 Chðkf k0 þ jjj1;1j~uhj1;hÞjehj1;h;6 Chðkf k0 þ kuk2Þjehj1;h 6 Chkf k0jehj1;h:

This completes proof. h

4. Numerical results

In this section, we present some numerical simulations which confirm our theory. We test various cases:

Example 1. Let X ¼ ½0; 1�2 be partitioned into n2ðn ¼ 2k; k ¼ 2; . . . ; 6Þ, square grids of size h� h, and let
j ¼ 1þ 10xþ y. We compare with FEM solutions. The results are shown in Table 1. The L2 error with
covolume scheme smaller than FEM about 30%.

Example 2. In this example, we test discontinuous coefficient case on the unit square with n2 square grids. Let

j ¼
10 0

0 10

� �
for 0 < x < 0:5;

1 0

0 1

� �
for 0:5 < x < 1;

where the exact solution is given as

u ¼
(
ð�20x2 þ 30x� 10Þðy � y2Þ for 0 < x < 0:5;

ð2x2 � xÞðy � y2Þ for 0:5 < x < 1:
: ð27Þ

The results are shown in Table 2. The L2 error with covolume scheme smaller than FEM about 30%.
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