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We consider a multigrid algorithm (MG) for the cell centered finite difference scheme (CCFD) on general
triangular meshes using a new prolongation operator. This prolongation is designed to solve the diffusion
equation with strongly discontinuous coefficient as well as with smooth one. We compare our new prolon-
gation with the natural injection and the weighted operator in Kwak, Kwon, and Lee (Appl Math Comput 21
(1999), 552–564) and the behaviors of these three prolongation are discussed. Numerical experiments show
that (i) for smooth problems, the multigrid with our new prolongation is fastest, the next is the weighted
prolongation, and the third is the natural injection; and (ii) for nonsmooth problems, our new prolongation
is again fastest, the next is the natural injection, and the third is the weighted prolongation. In conclusion,
our new prolongation works better than the natural injection and the weighted operator for both smooth and
nonsmooth problems. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 22: 1080–1089, 2006

Keywords: discontinuous coefficient; cell-centered finite difference methods; finite volume methods;
multigrid methods

I. INTRODUCTION

The multigrid method has been widely used and proven to be effective for a large class of problems
and has been the subject of extensive research [1,3,4,6–8,12]. One of the main idea of multigrid
method is the use of multi-levels and the prolongation/restriction operators between these levels
play key role in transferring vector components or errors. For conforming finite element methods,
the finite element spaces corresponding to these levels are all nested, hence natural injections
between levels can be used as a prolongation.

The multigrid method with this prolongation works well for various kinds of problems. But for
nonconforming finite elements, in general, either there does not exist a natural injection, or the
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injection does not provide good convergence. The cell centered finite difference method, which
is widely used because of its local mass conservation, is a nonconforming example. On rectan-
gular grids, a few authors have studied the behavior of various multigrid methods for smooth and
nonsmooth problems [5, 9, 10, 12]. Bramble et al. analyzed W -cycle multigrid convergence [3]
with the natural injection as a prolongation, while Kwak showed V -cycle multigrid convergence
with certain weighted prolongation [7]. On the other hand, on triangular grids, Kwak et al. in [8]
proposed a weighted prolongation and numerical results show that the weighted prolongation
converges faster than the natural injection for smooth problems. But the weighted prolongation
does not show a good convergence for nonsmooth problems as we show in section 4. In fact,
it is worse than the natural injection when the diffusion coefficient is strongly discontinuous.
Additionally, the motivation of the weighted prolongation becomes vague when the triangles
are not equilateral. In this article, we design a new prolongation that works for both smooth
and nonsmooth problems and makes sense on more general triangulation. This prolongation is
motivated by the continuity of flux and use P1-nonconforming interpolation. Some prolongation
operators based on the flux continuity have been considered and successful in accelerating con-
vergence of multigrid algorithm [2, 9, 10]. This article is organized as follows: In section 2, we
briefly introduce the cell-centered finite difference (CCFD) method on triangular grid and multi-
grid algorithms. In section 3, we propose a new prolongation operator and compare it with other
prolongations for smooth and nonsmooth problems. In section 4, we test various problems and
report the eigenvalues, condition numbers, and contraction numbers.

II. MULTIGRID ALGORITHM FOR THE CELL-CENTERED METHOD

In this section, we briefly describe CCFD and the multigrid algorithm. We consider the following
model problem:

−∇ · p∇u = f , in �, (2.1)

u = 0, on ∂�. (2.2)

Let � be a unit parallelogram with unit side length. For k = 1, 2, . . . , J , � is divided by Nk :=
22k+1 equilateral triangles. Such triangulations are denoted by {Tk}. Given a coarse triangulation
{Tk}, we connect midpoints of edges of triangles in {Tk} to obtain {Tk+1}. Each triangle T in {Tk}
is called a cell. The grid point of each cell is the circumcenter of the triangle. For k = 1, 2, . . . , J ,
we let Vk denote the space of functions, which are piecewise constant on each cell.

The cell centered discretization is obtained as follows: Integrate the model equation (2.1) on
each cell Tj and then use divergence theorem to get

−
∫

∂Tj

p
∂u

∂n
=

∫
Tj

f dx, (2.3)

for j = 1, 2, . . . , Nk . For the sake of simplicity, we assume that p is piecewise constant on each
triangles. We approximate the equation (2.3) using functions in Vk by central difference method.
Let u in Vk and ui denote its value on ith cell. For two adjacent triangles Ti and Tj , we let xi and
xj be the circumcenters of Ti and Tj , respectively. We denote h by the length of the edge of a
triangle and h′ by |xi − xj |. Let θ = h/h′. Then we take pij θ(uj − ui) as an approximation to
p∂u/∂nij , where nij is the unit normal vector from the center of Ti to that of Tj and pij is the
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value of p(x) at center of the common edge of Ti and Tj . When p is discontinuous across the
common edge of Ti and Tj , pij is defined by the harmonic average of pi and pj . That is

pij = 2pipj

pi + pj

.

Here, pi and pj are values of p at circumcenters of Ti and Tj , respectively. See [11] for the details.
Note that there are only three directions of nij . When one of the edges coincides with the boundary
of �, we assume a fictitious value by reflection. Collecting these, we have a system of algebraic
equations

Akū = f̄ , (2.4)

where Ak is symmetric positive definite, and ū and f̄ are vectors whose entries are uj and the
integral of f over Tj , respectively. Define a discrete L2-inner product on Vk by

(v, w)k =
Nk∑
i=1

h2
kviwi , ∀v, w ∈ Vk ,

where hk denotes the length of edge of a triangle in {Tk}. If we identify Ak with a quadratic form
on Vk × Vk defined by

Ak(v, w) = (Akv, w)k ,

then the problem (2.4) is equivalent to: Find u ∈ Vk satisfying

Ak(ū, φ) = (f̄ , φ), ∀φ ∈ Vk . (2.5)

The error analysis for the triangular CCFD method has been presented by Vassilevsk et al. [11].
Let Qk be the L2(�) projection onto Vk . If u is the solution of (2.5), then

Ak(ū − Qku, ū − Qku) ≤ Ch2
k‖f ‖2.

Now, we will describe the multigrid algorithm for the CCFD methods on triangular mesh. First,
we need certain intergrid operators between Vk−1 and Vk . Assuming we are given a certain pro-
longation operator I k

k−1: Vk−1 → Vk , we define the restriction operator I k−1
k : Vk → Vk−1 as its

adjoint with respect to (·, ·) :

(
I k−1
k u, v

)
k−1

= (
u, I k

k−1v
)
k

∀u ∈ Vk , v ∈ Vk−1.

The multigrid method also requires linear smoothing operators. Let R
(l)

k : Vk → Vk be a smoother
and its adjoint Rt

k with respect to (·, ·)k . The smoother Rk , as usual, can be taken as the Jacobi,
Red-Black, or Gauss-Seidel relaxation. To define, multigrid algorithm, we define

R
(l)

k =
{

Rk if l is odd,

Rt
k if l is even.

Now multigrid algorithm for solving (2.4) is defined as follows.
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Multigrid Algorithm

Set B1 = A−1
1 . For 1 < k ≤ J , assume that Bk−1 has been defined and define Bkf for f ∈ Vk as

follows:

1. Set x0 = 0 and q0 = 0.
2. Define xl for l = 1, . . . , m by

xl = xl−1 + R
(l+m)

k (f − Akx
l−1).

3. Define ym = xm + I k
k−1q

s , where qi for i = 1, . . . , s is defined by

qi = qi−1 + Bk−1

[
I k−1
k (f − Akx

m) − Ak−1q
i−1

]
4. Define yl for l = m + 1, . . . , 2m by

yl = yl−1 + R
(l+m)

k (f − Aky
l−1).

5. Set Bkf = y2m.

Here, m is a fixed positive integer that is the number of smoothings and s is a positive integer. If
s = 1, we obtain V -cycle and if s = 2, we obtain W -cycle.

III. INTERPOLATION OPERATOR USING FLUX CONTINUITY
AND NONCONFORMING INTERPOLATION

In this section, we briefly describe two interpolation operators in [3, 8] and introduce a new
prolongation operator. For the Laplace equation, the natural injection is used in [3] and W -cycle
convergence is proved by showing that the energy norm of the natural injection is

√
2. And V -

cycle with this injection is very slow. Kwak et al. proposed a weighted prolongation operator
whose energy norm is still

√
2 on regular triangular grids [8], where even the V -cycle with

one pre-post smoothing works almost as well as a conforming example, i.e., the contraction
number is independent of levels. On the other hand, the multigrid convergence with the weighted
prolongation degrades as is shown in section 4 when the diffusion coefficient is nonsmooth (for
example, discontinuous). To describe these prolongation, we assume, for simplicity, that triangles
are equilateral and interfaces are aligned with coarse grid sides and the diffusion coefficient is
piecewise constant. For subtriangles in a fixed triangle T in Tk−1, there are two cases (see Fig. 1).

Case I. The triangle of Tk is the interior subtriangle of Tk−1, i.e., those represented by black
beads v0, v1, v2, and v3.

Case II. The triangle of Tk is sharing edges with two triangles of Tk−1, i.e., those represented
by white beads u0, u1, u2, and u3.

Note that u0 and v0 are values at the same point and the black beads are fine grid point and a
coarse grid one at the same time. The natural injection is defined as follows. In Case I and II, we
define

u0 = (
I k
k−1v

)
0
= v0 = u1 = (

I k
k−1v

)
1
= u2 = (

I k
k−1v

)
2
= u3 = (

I k
k−1v

)
3
.
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FIG. 1. �: fictitious points; •: coarse grid points; ◦: fine grid points.

The weighted prolongation operator in [8] is defined as follows: In Case I, we define u0 =
(I k

k−1v)0 = v0. In Case II,

u1 = (
I k
k−1v

)
1
= 2v0 + v2 + v3

4
,

u2 = (
I k
k−1v

)
2
= 2v0 + v1 + v3

4
,

u3 = (
I k
k−1v

)
3
= 2v0 + v1 + v2

4
.

Before we introduce our new prolongation, we briefly compare the two prolongation operators.
In the case of smooth problems, the weighted interpolation works better than the natural injection
since the former gives a better approximation in case of smooth functions. On the other hand,
in case of nonsmooth problems, the solution is not so smooth across the interface, the weighted
interpolation is not a good approximation. For example, we assume that the diffusion coefficient on
the region�1 is different from that on�2 (see Fig. 1). Thenu3 defined by the weighted prolongation
is a good approximation but u1, u2 is not. In the design of a prolongation operator to accelerate
multigrid convergence, interpolations based on the flux continuity have been successful [1,2,9,10].
In these articles, they impose flux continuity across the interface and derive the relation of fine
grid points and neighboring coarser grid points. However, this idea cannot be used directly to
CCFD on triangular grids because of different grid structures. Fortunately, we could combine this
idea with an interpolation by P1-nonconforming finite element.

Now we define the prolongation. In Case I, we define u0 = (I k
k−1v)0 := v0. In Case II, we will

first define the values w1, w2, w3 by using flux continuity as follows:

p0
v0 − w1

hk−1

2
√

3

= p1
w1 − v1

hk−1

2
√

3

. (3.1)
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From (3.1), we obtain a formula for w1,

w1 = p0v0 + p1v1

p0 + p1
.

Similarly, we have formulas for w2 and w3

w2 = p0v0 + p2v2

p0 + p2
and w3 = p0v0 + p3v3

p0 + p3
.

Next, we consider the P1-nonconforming function having w1, w2, and w3 as its values at three
midpoints of edges. The values u1, u2, and u3 are interpolated using this P1-nonconforming func-
tion. Thus, substituting v1, v2, and v3 for w1, w2, and w3, we obtain the following formulas for
u1, u2, and u3:

u1 = (
I k
k−1v

)
1

:= 2w2 + 2w3 − w1

3

= 1

3

[
p0

(
2

p0 + p2
+ 2

p0 + p3
− 1

p0 + p1

)
v0

+ p2
2

p0 + p2
v2 + p3

2

p0 + p3
v3 − p1

1

p0 + p1
v1

]
,

u2 = (
I k
k−1v

)
2

:= 2w1 + 2w3 − w2

3

= 1

3

[
p0

(
2

p0 + p1
+ 2

p0 + p3
− 1

p0 + p2

)
v0

+ p1
2

p0 + p1
v1 + p3

2

p0 + p3
v3 − p2

1

p0 + p2
v2

]
,

u3 = (
I k
k−1v

)
3

:= 2w1 + 2w2 − w3

3

= 1

3

[
p0

(
2

p0 + p1
+ 2

p0 + p2
− 1

p0 + p3

)
v0

+ p1
2

p0 + p1
v1 + p2

2

p0 + p2
v3 − p3

1

p0 + p3
v3

]
.

When the diffusion coefficient is constant, these values are as follows:

u0 = v0, u1 = 3v0 + 2v2 + 2v3 − v1

6
,

u2 = 3v0 + 2v1 + 2v3 − v2

6
, u3 = 3v0 + 2v1 + 2v2 − v3

6
.

Since the values w1, w2, and w3 are obtained by imposing flux continuity, we believe that
they are good approximations at the edge points even for nonsmooth problems. Note that our
new prolongation operator is different from the weighted one, even when the diffusion p is
constant.
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FIG. 2. Problems.

Remark. From the definition of our new prolongation, it can be easily adapted to general
triangular grids.

IV. NUMERICAL RESULTS

We consider the following problem on the unit parallelogram:

−∇ · p∇u = f , in �,

u = 0, on ∂�.

with various diffusion coefficients p (see Fig. 2). We test multigrid algorithms with three prolon-
gations described above: the natural injection, the weighted prolongation in [8] with the weight
w = 4 and our new prolongation. In all three cases, we use the V -cycle multigrid algorithm with
one Red-Black Gauss-Seidel pre-post smoothing. We report eigenvalues and condition numbers
of BkAk and reduction rate δk . First, we test three algorithms for the problem with smooth coef-
ficient (p = 1). Our new prolongation performs better than the other two (see Tables I–III). The
algorithm with new prolongation is slightly better than one with the weighted prolongation.

Second, we test the problem with jump coefficient [see (b) in Fig. 2 and Tables IV–VI]. In
this test, the weighted prolongation does not provide any convergence and has large condition
numbers, which grow as the number of levels (see Tables IV–VI). Our new prolongation converges
independent of the number of levels and does much faster than the natural one.

Next, we test two more problem with larger magnitude of jumps and different interfaces [see
(c) and (d) in Fig. 2]. The numerical result of the weighted prolongation is unacceptable. Now,
we report and compare the natural injection and new prolongation. Tables VII–X show that new

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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TABLE I. V -cycle result with the natural injection for problem 1, m = 1.

hJ λmin λmax K δ

1/32 0.503 1.757 3.491 0.725
1/64 0.496 1.896 3.824 0.853
1/128 0.492 2.014 4.093 0.962
1/256 0.487 2.118 4.349 >1

TABLE II. V -cycle result with the weighted prolongation for problem 1, m = 1.

hJ λmin λmax K δ

1/32 0.506 1.161 2.295 0.379
1/64 0.498 1.202 2.414 0.385
1/128 0.492 1.242 2.524 0.392
1/256 0.486 1.279 2.629 0.398

TABLE III. V -cycle result with new prolongation for problem 1, m = 1.

hJ λmin λmax K δ

1/32 0.558 1.135 2.035 0.357
1/64 0.556 1.135 2.043 0.365
1/128 0.555 1.135 2.043 0.371
1/256 0.555 1.135 2.043 0.375

TABLE IV. V -cycle result with the natural injection for problem 2, m = 1.

hJ λmin λmax K δ

1/32 0.506 1.763 3.487 0.739
1/64 0.497 1.903 3.824 0.879
1/128 0.492 2.021 4.103 0.990
1/256 0.489 2.112 4.319 >1

TABLE V. V -cycle result with the weighted prolongation for problem 2, m = 1.

hJ λmin λmax K δ

1/32 0.293 4.715 16.120 >1
1/64 0.258 5.734 22.243 >1
1/128 0.234 6.655 28.479 >1
1/256 0.216 7.478 34.558 >1

TABLE VI. V -cycle result with new prolongation for problem 2, m = 1.

hJ λmin λmax K δ

1/32 0.560 1.134 2.026 0.374
1/64 0.557 1.134 2.038 0.380
1/128 0.556 1.134 2.039 0.384
1/256 0.555 1.134 2.042 0.390
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TABLE VII. V -cycle result with natural injection for problem 3, m = 1.

hJ λmin λmax K δ

1/32 0.504 1.766 3.503 0.648
1/64 0.497 1.909 3.842 0.755
1/128 0.492 2.035 4.135 0.866
1/256 0.488 2.153 4.412 0.956

TABLE VIII. V -cycle result with new prolongation for problem 3, m = 1.

hJ λmin λmax K δ

1/32 0.559 1.216 2.175 0.360
1/64 0.556 1.267 2.277 0.367
1/128 0.555 1.314 2.364 0.372
1/256 0.556 1.338 2.407 0.376

TABLE IX. V -cycle result with natural injection for problem 4, m = 1.

hJ λmin λmax K δ

1/32 0.476 1.670 3.511 0.644
1/64 0.458 1.821 3.979 0.795
1/128 0.446 1.950 4.367 0.916
1/256 0.439 2.062 4.696 >1

TABLE X. V -cycle result with new prolongation for problem 4, m = 1.

hJ λmin λmax K δ

1/32 0.561 1.122 2.000 0.368
1/64 0.558 1.127 2.020 0.377
1/128 0.556 1.128 2.028 0.382
1/256 0.556 1.128 2.029 0.385

prolongation converges faster and has smaller condition number than the natural injection. In
particular, Tables VIII and X show that the condition numbers and contraction numbers of our
new one do not change much as the number of levels grows. On the other hand, Tables VII and IX
show that those of the natural one become large as the number of levels grows. As a conclusion,
our new prolongation is better than the other two for both smooth and non-smooth examples.
Also, the contraction number is independent of the number of levels, the jumps of coefficient and
the shape of interfaces.
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