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Abstract: The purpose of this paper is to develop a reduced Crouzeix–Raviart immersed finite elementmethod
(RCRIFEM) for two-dimensional elasticity problems with interface, which is based on the Kouhia–Stenberg
finite element method (Kouhia et al. 1995) and Crouzeix–Raviart IFEM (CRIFEM) (Kwak et al. 2017). We use
a P1-conforming like element for one of the components of the displacement vector, and a P1-nonconforming
like element for the other component. The number of degrees of freedom of our scheme is reduced to two
thirds of CRIFEM. Furthermore, we can choose penalty parameters independent of the Poisson ratio. One of
the penalty parameters depends on Lamé’s second constant μ, and the other penalty parameter is indepen-
dent of both μ and λ. We prove the optimal order error estimates in piecewise H1-norm, which is independent
of the Poisson ratio. Numerical experiments show optimal order of convergence both in L2 and piecewise
H1-norms for all problems including nearly incompressible cases.

Keywords: Immersed Finite Element Method, Elasticity Equation With Interface, Kouhia–Stenberg Element,
Nearly Incompressible, Locking Free, Korn’s Inequality
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1 Introduction

Linear elasticity equations, which describe the deformation of solid objects under the external force, play an
important role in solid mechanics. One of the difficulties in solving the equations by finite element methods
(FEMs) is that, when thematerial’s Poisson ratio approaches 1

2 , the material becomes nearly incompressible.
In this situation, the so-called “locking phenomenon” occurs for low-order standard nodal-based methods,
i.e., they fail to converge to the correct solution. For example, for a linear element, FEM fails to converge
to the solution when material is nearly incompressible. For the P2 and P3-conforming elements, the con-
vergence orders tend to be suboptimal when the material is nearly incompressible [30]. On the other hand,
a P1-nonconforming element can not be used since it fails to satisfy Korn’s inequality [11].

To overcome theses difficulties, several approaches were suggested. The nonconforming element of
degree ≥ 2 converges uniformly [11] as the Poisson ratio approaches 1

2 . The mixed methods [7] can be
applied to elasticity equations by introducing a new variable representing the divergence of the displace-
ment. For a good review of mixed methods for linear elasticity, we refer to [29]. On the other hand, Kouhia
and Stenberg (KS) introduced a new element which partially relaxes the continuity along the edges [16].
They use a P1-conforming element for one component of the displacement and a P1-nonconforming element
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for the other. Recently, Hansbo introduced a nonconforming Galerkinmethod based on the Crouzeix–Raviart
element with a stabilizing term [13].

Another difficulty thatmay arise in numerically solving the elasticity equations is that, when thematerial
property changes across some interface, the Lamé constants become discontinuous. To solve such problems,
FEMs are usually implemented with grids fitted to the interface.

On the other hand, there have been new developments for interface problems in the FEM community.
We review two types of structured grids based methods. The first one is the extended finite element method
(XFEM) [3, 4, 17, 22, 27] type, and the other one is the immersed finite element method (IFEM) [9, 14, 15,
18, 20, 21, 24, 25] type. In the XFEM type methods, one adds the enriched basis obtained by truncating
the shape function along the interface. Therefore, extra degrees of freedom appear on each element cut by
interface. In some cases, they remesh near the tip of crack.

IFEM, which allows the interface to cut through the elements, has been introduced by Z. Li, T. Lin and
Y. Lin and their coworkers [24, 25], and its convergence behavior was investigated by Kwak et al. [9, 20] for
elliptic problems. In IFEM type methods, we do not require extra degrees of freedom; instead, the basis func-
tions aremodified along the interface so that they satisfy the flux continuity conditions. One of the advantages
of structured grid based methods is that we are free to use any regular grid for the interface problems. Thus,
there is no need for grid generation. Furthermore, it is easy to develop fast solvers.

The Crouzeix–Raviart based IFEM (CRIFEM) for elasticity equations was recently developed in [14, 18,
21]. A rigorous error analysis was shown in [18], and the method was modified in [14] by adding the consis-
tency terms. The advantage of the latter scheme is that we do not need extra regularity assumptions. For both
methods, we observe the optimal order errors, even for the nearly incompressible case. For elasticity prob-
lems with spring-type non-homogeneous jumps [2], a scheme based on the concept of the discontinuous
bubble [8] was developed in [21].

In this paper, we propose a new IFEM for linear elasticity equations having interfaces. First, we develop
a new immersed finite element space based on KSFEM [16] and CRIFEM [18]. We use P1-conforming like
space for one of the displacement components, and P1-nonconforming like space for the other. The KS basis
functions are modified so that they satisfy the balance of traction along the interface. Next, we add a new
penalty termwhich is different from the one in [13, 18, 28]. The advantage is that the parameters of the stabi-
lizing terms are independent of λ which may approach infinity as the material becomes incompressible. We
will call this method reduced Crouzeix–Raviart IFEM (RCRIFEM). We will prove the optimal order error esti-
mates in piecewise H1-norm, which is independent of the Poisson ratio. The total degrees of freedoms (dofs)
of RCRIFEM are reduced to two thirds of the CRIFEM. Similar schemes can be derived for three-dimensional
problems.

The rest of the paper is organized as follows. The governing equations of elasticity problems having an
interface are described in Section 2. In Section 3, we develop a RCRIFEM for elasticity equations. In Section 4,
we prove the optimal error estimates in piecewise H1-norm independent of the Poisson ratio. The numerical
results supporting our analysis are given in Section 5. The conclusion follows in Section 6.

2 Preliminaries

Let Ω = Ω+ ∪ Ω− be a convex polygonal domain in ℝ2 separated by a C1-interface Γ (Figure 1). For conve-
nience’s sake, we assume Ω is a rectangular domain. We assume the subdomains Ω+ and Ω− are occupied
by different elastic materials having distinct Lamé constants; μ = μ+ and λ = λ+ on Ω+ and μ = μ− and λ = λ−
on Ω−.

We use the notation u = (u1, u2) for the displacement variable. We define the strain tensor ϵ(u) and the
stress tensor σ(u) as usual,

ϵij(u) =
1
2(

∂ui
∂xj
+
∂uj
∂xi
), σ(u) = 2μϵ(u) + λ tr(ϵ(u))I,

where I is a 2 × 2 identity matrix.
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Figure 1: A domain Ω with interface.

The governing equation of the elasticity with an interface on the heterogeneous domain Ω is

−div σ(u) = f in Ω±, (2.1a)
[u]Γ = 0, (2.1b)

[σ(u) ⋅ n]Γ = 0, (2.1c)
u = 0 in ∂Ω, (2.1d)

where f ∈ [L2(Ω)]2 is an external force and the bracket [ ⋅ ]Γ means the jump across the interface, i.e.,
[u]Γ := v|Ω+ − v|Ω− . Equation (2.1c) is the balance of traction. The Lamé constants μ and λ are given in
terms of modulus of elasticity E > 0 and Poisson’s ratio 0 < ν < 1

2 ,

μ = E
2(1 + ν) , λ = Eν

(1 + ν)(1 − 2ν) .

We note that, as ν → 1
2 , the parameter λ goes to infinity in the incompressible case. We assume that μ is

bounded by two positive constants μ and μ such that 0 < μ ≤ μ ≤ μ.
We introduce Sobolev spaces and their norms. Let p ≥ 1 andm ≥ 0 be integers. For any domain D, we let

Wm
p (D) be the usual Sobolev space with (semi-)norms denoted by | ⋅ |m,p,D and ‖ ⋅ ‖m,p,D. Let Hm(D) = Wm

2 (D)
with (semi-)norms denoted by | ⋅ |m,D = | ⋅ |m,2,D and ‖ ⋅ ‖m,D = ‖ ⋅ ‖m,2,D. Let

(H1
0(Ω))2 = {u ∈ (H1(Ω))2 : u = 0 on ∂Ω}.

The following regularity result is well known from [12, 23].

Theorem 2.1. There exists a unique u ∈ (H1
0(Ω))2 ∩ (H2(Ω+))2 ∩ (H2(Ω−))2, satisfying (2.1).

Remark 2.2. In fact, the convexity assumption on the domain is only necessary to ensure u ∈ (H2(Ωs))2,
s = ±. When the domain is nonconvex polygon, one can only guarantee that u ∈ (H1+ϵ(Ωs))2, s = ±, for some
0 < ϵ < 1. In this case, even the standard FEM using fitted grid produces O(hϵ) error in H1-norm. Our scheme
to be presented below should have the same effect for nonconvex domain.

3 RCRIFEM for Elasticity Equation with Interface

3.1 RCRIFEM Space

Let Th be a triangulation of Ω by triangles not necessarily aligning with the interface. We define local spaces
on each element T ∈ Th. Let Sh(T) be the space of P1 functions defined by vertex dof, and let Nh(T) be the
space of P1 functions defined by edge average dof. We first recall the KS space for elasticity problems having
continuous material constants in [16]. For any function ϕ ∈ H1(T), let ϕ be the edge average function along
an edge e of T defined by

ϕ|e =
1
|e| ∫

e

ϕ ds.
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Figure 2: A typical interface triangle.

Here, |e| is the Lebesguemeasure of e. With the local space given byUh(T) := Nh(T) × Sh(T), the global space
is defined by

Uh =

{{{{{{{{
{{{{{{{{
{

ϕh = (ϕh,1, ϕh,2) ∈ Uh(T) for any T ∈ Th ,

∫
e

ϕh,1|T1 = ∫
e

ϕh,1|T2 , where e is a common edge of T1 and T2,

ϕh,2 is continuous on each vertex of T ∈ Th ,
ϕh,1|∂T∩∂Ω = ϕh,2 = 0 for any T ∈ Th

}}}}}}}}
}}}}}}}}
}

.

Now, we define a RCRIFEM space by modifying the basis function of KS element. We call T an inter-
face element if the interface intersects the interior of T; otherwise, T is called a noninterface element. We
assume that the interface intersects an element at no more than two points, which are satisfied when h is
small enough. Suppose T is an interface element with vertices Ai, i = 1, 2, 3, having E1 and E2 as points of
intersections of Γ and edges (Figure 2). We let T+ and T− be the two regions separated by E1E2. For a given
function ϕ = (ϕ1, ϕ2) ∈ Uh(T), we modify it so that the new function ϕ̂ is a piecewise linear vector function
on T given by

ϕ̂ =

{{{{{
{{{{{
{

(
ϕ̂+1
ϕ̂+2
) = (

a+1 + b
+
1x + c

+
1y

a+2 + b
+
1x + c

+
2y
), (x, y) ∈ T+,

(
ϕ̂−1
ϕ̂−2
) = (

a−1 + b
−
1x + c

−
1y

a−2 + b
−
2x + c

−
2y
), (x, y) ∈ T−.

(3.1)

The coefficients in (3.1) are determined by the edge averages for ϕ̂1, the nodal values for ϕ̂2, and the interface
conditions (2.1b), (2.1c) as follows:

ϕ̂1|ei = ϕ1|ei , i = 1, 2, 3, (3.2a)
ϕ̂2(Ai) = ϕ2(Ai), i = 1, 2, 3, (3.2b)

ϕ̂
−
(Ei) = ϕ̂

+
(Ei), i = 1, 2, (3.2c)

∫

E1E2

σ(ϕ̂)− ⋅ nE1E2 = ∫
E1E2

σ(ϕ̂)+ ⋅ nE1E2 , (3.2d)

where
σ(ϕ̂)− = 2μ−ϵ(ϕ̂) + λ− div ϕ̂,
σ(ϕ̂)+ = 2μ+ϵ(ϕ̂) + λ+ div ϕ̂.

Proposition 3.1. The function ϕ̂ in (3.1) is determined uniquely by conditions (3.2).

Proof. See the appendix.

When T is an interface element, we define the local immersed finite element space Ûh(T) as a set of piece-
wise linear functions ϕ̂ in the form of (3.1) satisfying conditions (3.2). The global immersed finite element
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space Ûh is defined as the set of functions ϕ = (ϕ1, ϕ2) in L2(Ω) satisfying the following conditions:

{{{{{{{{{{{{
{{{{{{{{{{{{
{

ϕ|T ∈ Uh(T) if T is a noninterface element,
ϕ|T ∈ Ûh(T) if T is an interface element,
∫e ϕh,1|T1 = ∫e ϕh,1|T2 if e is the common edges of T1 and T2,
ϕh,2|T1 = ϕh,2|T2 at common nodes of T1 and T2,
ϕh,1|e = 0 if e ∈ ∂T is a part of the boundary ∂Ω,
ϕh,2 = 0 at the boundary edges.

Next, we show in the following lemma that the modified basis function ϕ̂ ∈ Ûh weakly satisfies the
balance of traction condition (2.1c) on the curve T ∩ Γ for every interface element T ∈ Th.

Lemma 3.2. For an interface element T, the following conditions are equivalent for a continuous piecewise
linear function ϕ:

∫
Γ∩T

(σ(ϕ)+ − σ(ϕ)−) ⋅ nΓ ds = 0,

∫

E1E2

(σ(ϕ)+ − σ(ϕ)−) ⋅ nE1E2 ds = 0.

Proof. This can be proved by Green’s theorem and the fact that divergence of a σ(ϕ) is zero.

3.2 The Associated Variational Form

We define the associated variational form for problem (2.1). By multiplying v ∈ Hh(Ω) := Ûh + (H1
0(Ω))2

to (2.1a) and integrating by parts on each element T ∈ Th, we see that the weak problem becomes

a(u, v) = (f, v),

where
a(u, v) = ∑

T∈Th

∫
T

2μϵ(u) : ϵ(v) +∑
T
∫
T

λ divudiv v − ∑
e∈Eh

∫
e

{σ(u) ⋅ n}[v]

and ( ⋅ , ⋅ ) is the L2 inner product onΩ. Here,Eh is the set of interior edges ofTh. In order to develop anFEMdis-
cretization,we need to add stability terms∑e∈Eh

τ1
|e| ∫e[u][v] and∑e∈Eh

τ2
|e| ∫e[u ⋅ n][v ⋅ n].Without the stability

terms, the form a( ⋅ , ⋅ )will not be coercive. Also, an optional symmetric term ϵ∑e∈Eh
∫e{σ(v) ⋅ n}[u] is added

to ensure symmetry as in the usual discontinuousGalerkin (DG) formulations. Thus,we define a bilinear form
ah( ⋅ , ⋅ ) on Hh(Ω) ×Hh(Ω) by

ah(u, v) := ∑
T∈Th

∫
T

2μϵ(u) : ϵ(v) +∑
T
∫
T

λ divudiv v − ∑
e∈Eh

∫
e

{σ(u) ⋅ n}[v]

+ ϵ ∑
e∈Eh

∫
e

{σ(v) ⋅ n}[u] + ∑
e∈Eh

τ1
|e| ∫

e

[u][v] + ∑
e∈Eh

τ2
|e| ∫

e

[u ⋅ n][v ⋅ n]. (3.3)

The bilinear form is similar to the DG case, corresponding to NIPG, IIPG and SIPG when ϵ = 1, ϵ = 0, ϵ = −1
respectively. However, the degrees of freedom are not completely free, i.e., dofs of the first component are
continuous across edges of elements and those of the second component have commonvertex values.Wenote
that the functions in IFEM spaces are discontinuous along the interface edges. Because of the discontinuity
of the basis in Ûh, scheme (3.3) is inconsistent without the third and fourth terms of the right-hand side. As
we will show, the terms related to consistency errors in (3.3) play important roles in the error analysis. In
fact, these kinds of terms were introduced for the IFEM in [19, 26] and were shown to enhance the accuracy
of the IFEM for the scalar elliptic interface problems. We note that, when μ is continuous, these terms vanish
naturally as in the standard FEM schemes, and the scheme reduces to the similar KSFEM in [16].

Brought to you by | Korea Advanced Institute of Science and Technology (KAIST)
Authenticated | kdy@kaist.ac.kr author's copy

Download Date | 10/7/19 12:24 PM



6 | G. Jo and D. Y. Kwak, A Reduced Crouzeix–Raviart Immersed Finite Element Method

If τ2 = 0, ah( ⋅ , ⋅ ) has the same form as the CRIFEM introduced in [14], where a Crouzeix–Raviart type of
IFEM space is used for both components. In [14], the choice of τ1 was ad hoc. In this work, we are able to
show that the threshold values of τ1 and τ2 to ensure coerciveness are bounded as λ goes to infinity. In fact,
τ1 is dependent only on μ, and τ2 is independent of both μ and λ.

Our RCRIFEM is based on the bilinear form (3.3): find uh ∈ Ûh such that

ah(uh , vh) = (f , vh) for all vh ∈ Ûh . (3.4)

The following result is immediate.

Proposition 3.3. The RCRIFEM scheme is consistent in the sense that if u is the solution of (2.1), then

ah(u, vh) = (f , vh)

holds for all vh ∈ Hh(Ω).

4 Error Analysis

First, we introduce broken function spaces and norms. Form = 1, 2 and any domain D = T ∈ Th or D = Ω, let

(H̃m(D))2 := {u ∈ (Hm−1(D))2 : u|D∩Ωs ∈ (Hm(D ∩ Ωs))2, s = +, −},

with norms
|u|2H̃m(D)

:= |u|2m,D∩Ω+ + |u|2m,D∩Ω− and ‖u‖2H̃m(D)
:= ‖u‖2m−1,D + |u|2H̃m(D).

We define piecewise Sobolev (semi-)norms ‖ ⋅ ‖m,h and energy-like norms ‖ ⋅ ‖Eh(Ω) for u ∈ Hh(Ω),

‖u‖2m,h = ∑
T∈Th

‖u‖2H̃m(T), |u|
2
m,h = ∑

T∈Th

|u|2H̃m(T), and ‖u‖2Eh := ∑
T∈Th

‖u‖2E,T ,

where
‖u‖2E,T := ‖ϵ(u)‖20,T + ‖√λ divu‖20,T + h−1 ∑

e∈∂T∩Eh

(‖[u]‖20,e + ‖[u ⋅ ne]‖
2
0,e).

We need subspaces of (H̃2(T))2 and (H̃2(Ω))2 satisfying the jump conditions

(H̃2
Γ(T))

2 := {u ∈ (H̃2(T))2 : [σ(u) ⋅ n]Γ∩T = 0},
(H̃2

Γ(Ω))2 := {u ∈ (H̃1
0(Ω))2 : u ∈ (H̃2

Γ(T))
2 for all T ∈ Th}.

Throughout the paper, the generic constants C are independent of h and λ.

4.1 Approximation Property of Ûh

In this subsection, we study the approximation property of Ûh by proving the interpolation error. One of the
difficulties in proving the interpolation error is that the space Ûh(T) is not a subspace of (H̃2

Γ(T))
2 when the

interface is not piecewise linear. To overcome this difficulty, we introduce a bigger space which contains both
Ûh(T) and (H̃2

Γ(T))
2. First we note that replacing the interface by a piecewise linear approximation will affect

the interpolation error only by an order of O(h2) (see, for example, [5]).
Suppose T is an interface element with curved interface Γ. Let (see Figure 3)

Tr = T − Ω− ∩ T+ − Ω+ ∩ T− and Tsr = Tr ∩ Ωs , s = −, +.

We define
X(T) := {u : u ∈ (H1(T))2, u ∈ (H2(S))2 for all S = T+r , T−r , T+ ∩ Ω+, T− ∩ Ω−},

XΓ(T) := {u ∈ X(T), ∫
Γ∩T

(σ(u)+ − σ(u)−) ⋅ nΓ ds = 0},

where σ(u)− = 2μ−ϵ(u) + λ− divu, σ(u)+ = 2μ+ϵ(u) + λ+ divu.
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Figure 3: Typical interface element.

Note the relations
(H̃2(T))2 → X(T) → (H1(T))2,

(H̃2
Γ(T))

2 ∪ Ûh(T) → XΓ(T) → X(T) → (H1(T))2.

For any u ∈ X(T), we define the norms

|u|2X(T) = |u|
2
2,T−∩Ω− + |u|22,T+∩Ω+ + |u|22,T−

r
+ |u|22,T+

r
,

‖u‖2X(T) = ‖u‖
2
1,T + |u|

2
X(T) + ‖√λ divu‖20,T + |√λ divu|21,T+ + |√λ divu|21,T− ,

⦀u⦀22,T = |u|
2
X(T) + |√λ divu|21,T+ + |√λ divu|21,T−

+

∫

Γ∩T

(σ(ϕ)+ − σ(ϕ)−) ⋅ nΓ ds


2
+

3
∑
i=1
|u1|ei |2 +

3
∑
i=1
|u2(Ai)|2.

We now prove the approximation property.

Lemma 4.1. ⦀ ⋅ ⦀2,T is a norm on the space XΓ(T) which is equivalent to ‖ ⋅ ‖X(T).

Proof. Assume u ∈ XΓ(T) satisfies ⦀ ⋅ ⦀2,T = 0. Since |u|X(T) = 0, u is linear on each of the four regions
T− ∩ Ω−, T+ ∩ Ω+, T−r and T+r . Since u ∈ H1(T), u is continuous on T. By Lemma 3.2 and the fact that
∫T∩Γ[σ(u) ⋅ nΓ]ds = 0, u satisfies the interface condition along the line segment E1E2. This implies u ∈ Ûh(T)
and together with the conditions u1|ei = 0, i = 1, 2, 3, and u2(Ai) = 0, i = 1, 2, 3, we conclude that u = 0,
which shows that ⦀ ⋅ ⦀2,T is a norm.

Next, we show the equivalence of ‖ ⋅ ‖X(T) and ⦀ ⋅ ⦀2,T . By the Sobolev embedding theorem that H2(S) is
compactly embedded in C0(S) for subregion S of T, we see that

3
∑
i=1
|u1|ei | +

3
∑
i=1
|u2(Ai)| ≤ Cmax

S∈B
‖u‖L∞(S) ≤ Cmax

S∈B
‖u‖H2(S) ≤ C‖u‖H̃2(T) ≤ C‖u‖X(T),

where B = {T+r , T−r , T+ ∩ Ω+, T− ∩ Ω−}. Hence, we see that

⦀u⦀2,T ≤ C‖u‖X(T).

The converse can be proved similarly to [18].

We define an interpolation operator: for any u ∈ (H̃2(T))2, we define Ihu ∈ Ûh(T) using the average values of
u1 and node values of u2 on each edge of T by

∫
ei

(Ihu)1 ds = ∫
ei

u1 ds, i = 1, 2, 3,

(Ihu)2(Ai) = u2(Ai), i = 1, 2, 3,

and call Ihu the interpolant of u in Ûh(T). We extend the definition of Ih for u ∈ (H̃2(Ω))2 by (Ihu)T = Ih(u|T)
for each T ∈ Th.
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Lemma 4.2. For any u ∈ (H̃2
Γ(T))

2, there exists a constant C > 0 such that, for m = 0, 1,

‖u − Ihu‖m,T + m ⋅ ‖√λ(u − Ihu)‖L2(T) ≤ Ch2−m(‖u‖H̃2(T) + m ⋅ ‖√λ divu‖H̃1(T)),
‖u − Ihu‖m,T ≤ Ch2−m‖u‖H̃2(T).

Proof. The proof follows by the definition of interpolant, ‖ ⋅ ‖X(T), ⦀ ⋅ ⦀2,h, Lemma 4.1 and a scaling argu-
ment [18].

A similar estimate holds with the energy-like norm.

Theorem 4.3. For any u ∈ (H̃2
Γ(Ω))2, there exists a constant CI > 0 such that

‖u − Ihu‖Eh ≤ CIh(‖u‖H̃2(Ω) + ‖√λ divu‖H̃1(Ω))

Proof. Given T in Th, we denote the union of all neighboring elements of T ∈ Th including T by TO. Let Te be
the neighboring element of T having e as a common edge. For the last two terms of ‖u − uh‖E,T , we have

1
h (
‖[u − Ihu]‖20,e + ‖[(u − Ihu) ⋅ ne]‖

2
0,e)

≤ C(1h ‖(u − Ihu)|T‖
2
0,e +

1
h
‖(u − Ihu)|Te‖20,e)

≤ C( 1
h2
‖u − Ihu‖20,T + |u − Ihu|

2
1,T +

1
h2
‖u − Ihu‖20,Te + |u − Ihu|

2
1,Te)

≤ Ch2‖u‖2H̃2(TO)

by the trace inequality and Lemma 4.2. Hence, by the definition of ‖ ⋅ ‖E,T and by Lemma 4.2, we have

‖u − Ihu‖E,T ≤ C(‖u − Ihu‖1,T + ‖√λ div(u − Ihu)‖L2(T) + h‖u‖H̃2(TO))

≤ Ch(‖u‖H̃2(T) + ‖√λ divu‖H̃1(T) + ‖u‖H̃2(TO)).

Summing over T completes the proof.

Remark 4.4. The above lemma was proved for the case of a line segment.

4.2 H1-Error Estimate

We first show that the piecewise H1-norm is bounded by ‖ ⋅ ‖Eh , and we proceed the analysis using the ‖ ⋅ ‖Eh
norm. We need the discrete Poincaré inequality.

Lemma 4.5. There exists a constant C > 0 such that, for any vh ∈ Ûh,

C‖vh‖2L2(Ω) ≤ |vh|
2
1,h . (4.1)

Proof. This can be proved with similar techniques as in [9, 20].

We need the discrete Korn inequality for piecewise H1-vector fields to bound the broken H1-semi-norm by
the energy-like norm ‖ ⋅ ‖Eh .

Lemma 4.6 ([6, 10]). There exists a constant C > 0 such that

|vh|21,h ≤ C( ∑
T∈Th

(‖ϵ(vh)‖20,T + ‖Q(vh)‖
2
0,T) + ∑

e∈Eh

τ1
|e| ∫

e

[vh]2 ds)

for all vh ∈ Ûh, where Q(vh) := vh − 1
|T| ∫T vh dx.

Corollary 4.7. There exists C > 0 such that ‖vh‖21,h ≤ C‖vh‖
2
Eh holds for all vh ∈ Û(T) when h > 0 is sufficiently

small.
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G. Jo and D. Y. Kwak, A Reduced Crouzeix–Raviart Immersed Finite Element Method | 9

Proof. Given T ∈ Th, since Ûh(T) ∈ (H1(T))2, there exists C > 0 such that ‖Q(vh)‖20,T ≤ Ch2|vh|21,T holds.
Hence, by Lemma 4.6, we have |vh|21,h ≤ C‖vh‖

2
Eh for all sufficiently small h > 0. Hence, by the discrete

Poincaré inequality (4.1), we obtain the result.

Now, we show the coerciveness of ah( ⋅ , ⋅ ) as defined in (3.3). Let CN be the number of maximum neighbors
that one element can meet in the triangulation Th.

Lemma 4.8. If τ1 and τ2 are sufficiently large, then there exists a constant CA such that CA‖vh‖2Eh ≤ ah(vh , vh)
holds for all vh ∈ Ûh.

Proof. When ϵ = 1, there is nothing to prove. Suppose ϵ = −1 or ϵ = 0. It suffices to bound the third and fourth
terms of ah(vh , vh) in (3.3). The third term of ah(vh , vh) is written as

∑
e∈Eh

∫
e

{σ(vh) ⋅ n}[vh]ds = ∑
e∈Eh

∫
e

μ{ϵ(vh) ⋅ n}[vh]ds + ∑
e∈Eh

∫
e

λ{div(vh) ⋅ n}[vh]ds. (4.2)

By the Cauchy–Schwarz inequality, the first term of (4.2) is bounded as

∑
e∈Eh

∫
e

|μ{ϵ(vh) ⋅ n}[vh]ds| ≤ ∑
e∈Eh

(hμ‖{ϵ(vh) ⋅ n}‖20,e)
1
2 (h−1‖[vh]‖20,e)

1
2 .

However, using the similar techniques in [19], we can prove that there exists C0 > 0 such that, for all vh ∈ Ûh
and for all T ∈ T,

h‖{ϵ(vh) ⋅ n}‖20,e ≤ C0‖ϵ(vh)‖
2
0,T

holds, where e ∈ ∂T is an edge of T. Thus, by Young’s inequality, we have

∑
e∈Eh

∫
e

|μ{ϵ(vh) ⋅ n}[vh]ds| ≤ ( ∑
T∈Th

μCNC0‖ϵ(vh)‖20,T)
1
2
( ∑
e∈Eh

h−1‖[vh]‖20,e)
1
2

≤
γ1
2 ( ∑T∈Th

‖ϵ(vh)‖20,T) +
μCNC0
2γ1
( ∑
e∈Eh

h−1‖[vh]‖20,e) for any γ1 > 0.

Similarly,

∑
e∈Eh

∫
e

|λ{div(vh)I ⋅ n}[vh]ds| = ∑
e∈Eh

∫
e

|λ{div(vh)}[vh ⋅ n]ds|

≤
γ2
2 ( ∑T∈Th

‖√λ div vh‖20,T) +
CNC0
2γ2
( ∑
e∈Eh

h−1‖[vh ⋅ n]‖20,e) for any γ2 > 0.

Hence, we have

ah(v, v) = ∑
T∈Th

‖√μϵ(vh)‖20,T + ∑
T∈Th

‖√λ div vh‖20,T

− (1 − ϵ) ∑
e∈Eh

∫
e

{σ(vh) ⋅ n}[vh]ds + ∑
e∈Eh

(
τ1
h
‖vh‖20,e +

τ2
h
‖vh ⋅ n‖20,e)

≥ (μ − γ12 (1 − ϵ)) ∑T∈Th

‖ϵ(vh)‖20,T + (1 −
γ2
2 (1 − ϵ)) ∑T∈Th

‖√λ div vh‖20,T

+ (τ1 −
μCNC0
2γ1
(1 − ϵ)) ∑

e∈Eh

1
h ∫

e

[vh]2 + (τ2 −
CNC0
2γ2
(1 − ϵ)) ∑

e∈Eh

1
h ∫

e

[vh ⋅ n]2.

Take γ1 =
μ

1−ϵ and γ2 = 1
1−ϵ . Then the conclusion follows with

CA = min{
μ
2 ,

1
2 , τ1 −

μCNC0
2μ (1 − ϵ)

2, τ2 −
CNC0
2 (1 − ϵ)

2}

for τ1 > μCNC0
2μ (1 − ϵ)2 and τ2 >

CNC0
2 (1 − ϵ)2.
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10 | G. Jo and D. Y. Kwak, A Reduced Crouzeix–Raviart Immersed Finite Element Method

Remark 4.9. The choice of parameter τ1 depends on μ. However, τ2 is independent of either μ or λ. So,we can
choose τ1 and τ2 independent of λ including the nearly incompressible case. Let us look closely at the choice
of τ1. As we pointed out in the proof of Lemma 4.8, τ1 should be larger than C(μ/μ) for some C. However,
choosing τ1 the same constant on the whole domain Ωmakes the condition number growwhen the ratio μ/μ
is large. In practice, it is sufficient to choose the value of τ1 on each edge e as

τ1|e = κ1(
μ|e
μ )

for some κ1 > 0.

Lemma 4.10. There exists constant CC > 0 such that ah(uh , vh) ≤ CC‖uh‖Eh‖vh‖Eh holds for all uh , vh ∈ Ûh.

Proof. By the Cauchy–Schwarz inequality, we have

ah(uh , vh) ≤ √ah(uh , uh)√ah(vh , vh).

Hence, it suffices to show that there is constant C > 0 such that ah(vh , vh) ≤ C‖vh‖2Eh for all vh ∈ Ûh. For the
case when ϵ = 1, there is nothing to prove. Suppose ϵ = −1 or ϵ = 0. By the same techniques used in the proof
of Lemma 4.8, we have

ah(vh , vh) ≤ (μ +
γ1
2 (1 − ϵ)) ∑T∈Th

‖ϵ(vh)‖20,T + (1 +
γ2
2 (1 − ϵ)) ∑T∈Th

‖√λ div vh‖20,T

+ (τ1 +
μCNC0
2γ1
(1 − ϵ)) ∑

e∈Eh

1
h ∫

e

[vh]2 + (τ2 +
CNC0
2γ2
(1 − ϵ)) ∑

e∈Eh

1
h ∫

e

[vh ⋅ n]2

for all γ1 > 0 and γ2 > 0. Hence, the conclusion follows.

Now we prove the energy norm error estimate.

Theorem 4.11. Let u and uh be the solutions of (2.1) and (3.4), respectively. Then we have

‖u − uh‖Eh ≤ Ch(‖u‖H̃2(Ω) + ‖√λ divu‖H̃1(Ω)).

Proof. By the triangular inequality, we have

‖u − uh‖Eh ≤ ‖uh − Ihu‖Eh + ‖u − Ihu‖Eh . (4.3)

From Lemma 4.8 and Ceá’s lemma, it follows that

‖uh − Ihu‖Eh ≤
Cc
CA
‖u − Ihu‖Eh . (4.4)

By Theorem 4.3, (4.3) and (4.4), we have

‖u − uh‖Eh ≤ (1 +
Cc
CA
)CIh(‖u‖H̃2(Ω) + ‖√λ divu‖H̃1(Ω)).

We remark that the following H2-stability [1, 30] holds for the elasticity problems if material constants μ and
λ are continuous:

‖u‖H̃2(Ω) +
1

1 − 2ν ‖divu‖H̃1(Ω) ≤ C‖f‖L2(Ω) for some C > 0. (4.5)

To the authors’ best knowledge, it is not known whether this type of estimate holds for the heterogeneous
material. So, if the H2-stability of type (4.5) holds for heterogeneous material case also, then the following
result holds.

Remark 4.12. Assume that the H2-stability argument (4.5) holds. Then there is a constant C > 0 such that
‖u − uh‖Eh ≤ Ch‖f‖L2(Ω) holds for all λ. In addition, we can obtain the L2-error estimate

‖u − uh‖L2(Ω) ≤ Ch2‖f‖L2(Ω)

by the standard duality argument.
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Case μ+ μ− ν λ+ λ− r0

1 1 100 0.3 1.5 150 0.65
2 1 10 0.49 49 490 0.4
3 1 10 0.499 499 4990 0.4
4 1 10 0.4999 4999 49990 0.4
5 1 100 0.499 499 49900 0.6
6 1 1000 0.499 499 499000 0.6

Table 1: The parameters μ, ν, λ and r0 in cases 1–6.

5 Numerical Results

In this section, we provide some numerical experiments supporting our error estimates in Section 4. The
domain is Ω = [−1, 1]2. The numerical simulations are carried out on uniform triangulation Th by right tri-
angles having size h = 2−k, k = 3, 4, . . . , 8. We let the interface be the zero set of some function L(x, y). Let
Ω− = {(x, y) ∈ Ω : L(x, y) < 0} and Ω+ = {(x, y) ∈ Ω : L(x, y) > 0}. We present three examples. In Example 5.1
and Example 5.2, the analytic solution is known. We present the results with various coefficients μ and λ
including the nearly incompressible case. In Example 5.3, we simulate the driven cavity problem. For all
tests, we use an IIPG type scheme (ϵ = 0). Results of other schemes are similar. In all examples, we see that
the proposed scheme is locking free.

Example 5.1. We choose the level set function L(x, y) = x2 + y2 − r20 and the exact solution

u = (
1
μ
(x2 + y2 − r20)y, −

1
μ
(x2 + y2 − r20)x).

We compute the numerical results for various values of μ, λ and r0. We show the results for six cases with
different coefficients.

The errors in L2 and piecewise H1-norms are given in Table 2–7 for case 1–6, respectively. We observe
O(h2) in L2 and O(h) in H1-norm for all cases.

Now we show how to choose the penalty parameters. As we mentioned in Remark 4.9, the threshold
for parameter τ1 to ensure coerciveness of ah( ⋅ , ⋅ ) depends on μ, and the threshold for parameter τ2 is
independent of both μ and λ. Thus, we set the parameters as

τ1|e = κ1 ⋅ μ|e , τ2 = κ2, (5.1)

where e ∈ Eh. We set κ1 = 2 and κ2 = 2 in all cases.
We see that the convergent rates in L2 andH1-norms are optimal for case 1 (Table 2). For cases 2, 3 and 4,

the Poisson ratio approaches 0.5 (ν = 0.49, 0.499, 0.4999). However, we see that the convergent rates in L2

and H1-norms are optimal (Tables 3, 4 and 5).
In case 5 and 6, the contrasts of μ+ and μ− are set to be different (1 vs 100, 1 vs 1000). We observe that

the convergence rates are optimal again (Tables 6 and 7).
Thus, the numerical results show that our IFEM with the choice of penalty parameters (5.1) is robust for

Poisson ratio and the scale of contrast of μ.

Comparison with CRIFEM

We compare the RCRIFEM with the CRIFEM in [18].
First, let us compare the dof. The dof of RCRIFEM is 4 ⋅ (2k+1)2 + 4 ⋅ 2k+1 + 1 and that of CRIFEM is

6 ⋅ (2k+1)2 + 4 ⋅ 2k+1. For example, when k = 8, we see that the dof of RCRIFEM is about 66.71% of that of
CRIFEM.

We graph the L2 and H1-errors versus the dof for both themethods in Figure 4. Both the x-axis and y-axis
are in log2 scale. We chose the problem parameters as μ+ = 1, μ− = 100, ν = 0.499, r0 = 0.6. We see that
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12 | G. Jo and D. Y. Kwak, A Reduced Crouzeix–Raviart Immersed Finite Element Method

1/h ‖u − uh‖L2(Ω) order ‖u − uh‖1,h order

8 1.231 × 10−2 3.733 × 10−1

16 3.087 × 10−3 1.995 1.870 × 10−1 0.998
32 7.791 × 10−4 1.986 9.352 × 10−2 1.000
64 1.980 × 10−4 1.976 4.679 × 10−2 0.999

128 5.077 × 10−5 1.963 2.341 × 10−2 0.999
256 1.330 × 10−5 1.933 1.172 × 10−2 0.998

Table 2: (Example 5.1) μ+ = 1, μ− = 100, ν = 0.3, r0 = 0.65.

1/h ‖u − uh‖L2(Ω) order ‖u − uh‖1,h order

8 1.627 × 10−2 4.030 × 10−1

16 4.070 × 10−3 1.999 2.011 × 10−1 1.003
32 1.019 × 10−3 1.998 1.005 × 10−1 1.001
64 2.550 × 10−4 1.998 5.025 × 10−2 1.000

128 6.382 × 10−5 1.998 2.513 × 10−2 0.999
256 1.609 × 10−5 1.988 1.257 × 10−2 1.000

Table 3: (Example 5.1) μ+ = 1, μ− = 10, ν = 0.49, r0 = 0.4.

1/h ‖u − uh‖L2(Ω) order ‖u − uh‖1,h order

8 1.691 × 10−2 4.050 × 10−1

16 4.230 × 10−3 1.999 2.019 × 10−1 1.004
32 1.058 × 10−3 1.999 1.008 × 10−1 1.001
64 2.647 × 10−4 1.999 5.042 × 10−2 1.000

128 6.622 × 10−5 1.999 2.521 × 10−2 1.000
256 1.666 × 10−5 1.991 1.261 × 10−2 0.999

Table 4: (Example 5.1) Nearly incompressible case, μ+ = 1,
μ− = 10, ν = 0.499, r0 = 0.4.

1/h ‖u − uh‖L2(Ω) order ‖u − uh‖1,h order

8 1.699 × 10−2 4.052 × 10−1

16 4.249 × 10−3 1.999 2.019 × 10−1 1.005
32 1.062 × 10−3 2.000 1.009 × 10−1 1.001
64 2.658 × 10−4 1.999 5.044 × 10−2 1.000

128 6.650 × 10−5 1.999 2.522 × 10−2 1.000
256 1.674 × 10−5 1.990 1.262 × 10−2 0.999

Table 5: (Example 5.1) Nearly incompressible case, μ+ = 1,
μ− = 10, ν = 0.4999, r0 = 0.4.

1/h ‖u − uh‖L2(Ω) order ‖u − uh‖1,h order

8 1.730 × 10−2 3.960 × 10−1

16 4.236 × 10−3 2.030 1.961 × 10−1 1.014
32 1.053 × 10−3 2.008 9.789 × 10−2 1.003
64 2.619 × 10−4 2.007 4.885 × 10−2 1.003

128 6.554 × 10−5 1.998 2.441 × 10−2 1.001
256 1.646 × 10−5 1.993 1.221 × 10−2 1.000

Table 6: (Example 5.1) Nearly incompressible case, μ+ = 1,
μ− = 100, ν = 0.499, r0 = 0.6.

1/h ‖u − uh‖L2(Ω) order ‖u − uh‖1,h order

8 3.320 × 10−2 4.524 × 10−1

16 6.744 × 10−3 2.300 2.058 × 10−1 1.137
32 1.158 × 10−3 2.542 9.918 × 10−2 1.053
64 2.777 × 10−4 2.060 4.918 × 10−2 1.012

128 6.657 × 10−5 2.061 2.447 × 10−2 1.007
256 1.664 × 10−5 2.000 1.222 × 10−2 1.002

Table 7: (Example 5.1) Nearly incompressible case, μ+ = 1,
μ− = 1000, ν = 0.499, r0 = 0.6.

H1-errors are almost the same, and we see that L2 of RCRIFEM are slightly higher than that of CRIFEM. How-
ever, we see that the CPU time to solve the discretized systems from RCRIFEM is smaller than that of CRIFEM
(Table 8). We usedMatlab R2017a as a solver on a PC with an Intel® Core™ i7-3770 CPU at 3.40GHz proces-
sor. Thus, there is a reasonable trade-off between the accuracy and the computational complexity.

Example 5.2. We choose the level set function L(x, y) = x2 + y2/2 − 0.3 and the exact solution

u = (
1
μ(

x2 + y
2

2 − 0.3)y + 2y, −
1
μ(

x2 + y
2

2 − 0.3)x − 2x).

We set μ+ = 1 and μ− = 100. We report the L2 and piecewise H1-errors for the case of ν = 0.4 and ν = 0.4999
in Table 9 and Table 10, respectively.We see that the convergence rates are optimal for both cases.We observe
that the result for the nearly incompressible case (ν = 0.4999) is non-locking.

Example 5.3 (Driven cavity). We choose the level set function L(x, y) = x2 + y2 − 0.42. We impose the bound-
ary condition

{
{
{

u = (0, 0) on x = −1 or x = 1, or y = −1,
u = (1, 0) on y = 1.

We set μ+ = 100 and μ− = 1. We present the velocity fields for the cases ν = 0.49 and ν = 0.4999 in
Figure 5.
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CPU time (s)

1/h RCRIFEM CRIFEM

8 1.104 2.130
16 1.853 2.431
32 4.147 5.972
64 13.103 18.055

128 51.639 74.103
256 229.516 331.227

Table 8: Comparison of CPU time to solve the discretized system for RCRIFEM and CRIFEM.
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Figure 4: Comparison of L2 and H1-errors of RCRIFEM and CRIFEM in a log2 scale.

1/h ‖u − uh‖L2(Ω) order ‖u − uh‖1,h order

8 1.990 × 10−2 5.325 × 10−1

16 5.175 × 10−3 1.943 2.669 × 10−1 0.997
32 1.304 × 10−3 1.989 1.336 × 10−1 0.998
64 3.293 × 10−4 1.986 6.686 × 10−2 0.999

128 8.362 × 10−5 1.977 3.345 × 10−2 0.999
256 2.145 × 10−5 1.963 1.674 × 10−2 0.999

Table 9: (Example 5.2) μ+ = 1, μ− = 100, ν = 0.4.

1/h ‖u − uh‖L2(Ω) order ‖u − uh‖1,h order

8 2.514 × 10−2 5.461 × 10−1

16 6.105 × 10−3 1.943 2.711 × 10−1 1.010
32 1.497 × 10−3 1.989 1.352 × 10−1 1.003
64 3.712 × 10−4 1.986 6.763 × 10−2 1.000

128 9.278 × 10−5 1.977 3.382 × 10−2 1.000
256 2.379 × 10−5 1.963 1.691 × 10−2 1.000

Table 10: (Example 5.2) μ+ = 1, μ− = 100, ν = 0.4999.
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Figure 5: Numerical velocity field of driven cavity for the cases ν = 0.49 (left) and ν = 0.4999 (right).
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6 Conclusion

We propose a new IFEM for the interface elasticity problems. We introduce RCRIFEM by modifying KS ele-
ment to satisfy the balance of traction along the interface. We prove that our methods have optimal order
of convergence in L2 and piecewise H1-norms. The dof of our schemes is about two thirds of a previous
scheme [18], and we can choose penalty parameters independent of the Poisson ratio. In fact, one of the
parameters depends on μ, and the other parameter is independent of both μ and λ.

The numerical results show that our methods are robust as the parameter λ goes to∞.

A Appendix

We prove Proposition 3.1. Suppose a typical interface element T has vertices at A(0, 0), B(1, 0) and C(0, 1).
Assume that the interface meets with the edges at D = (x0, 0) and E = (0, y0) (Figure 6). Other cases can be
treated similarly.

Figure 6: A typical reference interface triangle.

Let ci = (a+i , b
+
i , c
+
i , a
−
i , b
−
i , c
−
i ) (i = 1, 2) be the coefficients of ϕ̂ in (3.1). Then conditions (3.2a), (3.2b)

and (3.2c) give rise to

(
A 0
0 B
)(

c1
c2
) = (

g1
g2
),

where 5 × 6matrices A and B are respectively given by

(

1 1
2

1
2 0 0 0

1 − y0 0 1
2 (1 − y20) y0 0 1

2 y
2
0

1 − x0 1
2 (1 − x20) 0 x0 1

2 x
2
0 0

−1 −x0 0 1 x0 0
−1 0 −y0 1 0 y0

), (

1 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
1 x0 0 −1 −x0 0
1 0 y0 −1 0 −y0

). (A.1)

Here, g1 = [R1, R2, R3, 0, 0] and g2 = [V1, V2, V3, 0, 0]T , where Ri is the edge average of the first component
of ϕ̂ and Vi is the nodal value of the second component. Furthermore, condition (3.2d) is written as

(
dT1 dT2
eT1 eT2

)(
c1
c2
) = (

0
0), (A.2)

where n = (n1, n2) = (y0/√x20 + y20, x0/√x20 + y20) and

dT1 = (0, (2μ+ + λ+)n1, μ+n2, 0, −(2μ− + λ−)n1, −μ−n2) := (d1i)6i=1,
dT2 = (0, μ+n2, λ+n1, 0, −μ−n2, −λ−n1) := (d2i)6i=1,
eT1 = (0, λ+n2, μ+n1, 0, −λ−n2, −μ−n1) := (e1i)6i=1,
eT2 = (0, μ+n1, (2μ+ + λ+)n2, 0, −μ−n1, −(2μ− + λ−)n2) := (e2i)6i=1.
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Arranging the equations (A.1) and (A.2), we get the 12-by-12 systems

M :=(

A 0
dT1 dT2
0 B
eT1 eT2

)(
c1
c2
) =(

g1
0
g2
0

).

It suffices to show that the determinant of M is nonzero. By adding columns 6, 5 and 4 to 3, 2 and 1,
respectively, and using the row eliminations, we see that the determinant ofM is the same as the determinant
of the matrix

M :=(

U 0 O
0 d66 dT2
O 0 B
0 e16 eT2

), where U :=(

1 1
2

1
2 0 0

0 −12 0 y0 0
0 0 −12 x0 1

2 x
2
0

0 0 0 1 x0
0 0 0 0 −x0

).

Here, d66 and e66 satisfy
x0d66 = −n1y0{(2μ+ + λ+)x0y0 + (2μ− + λ−)(1 − x0y0)} − x0n2{μ+x0y0 + μ−(1 − x0y0)},
x0e16 = −n2y0{λ+x0y0 + λ−(1 − x0y0)} − n2x0{μ+x0y0 + μ−(1 − x0y0)}.

By applying row operations to rows 7–12 of M, we have

M :=(

U 0 O
0 d66 dT2
O 0 C
0 e16

), where C :=
(((

(

1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 1 0 0
0 0 x0 − 1 0 −x0 0
0 0 y0 − 1 0 0 −y0
0 0 e22 + e23 0 e25 e26

)))

)

.

Here, it is easy to see that

√x20 + y
2
0 det(C) = y20(x0μ+ + (1 − x0)μ−) + 2x20(y0μ+ + (1 − y0)μ−) + x20(y0λ+ + (1 − y0)λ−).

Lemma A.1. The determinant of M is given by

det(M) = det(U){d66 det(C) + e16cofac},

where

cofac = det
(((

(

0 μ+n2 λ+n1 0 −μ−n2 −λ−n1
1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 1 0 0
0 0 x0 − 1 0 −x0 0
0 0 y0 − 1 0 0 −y0

)))

)

= −det(

μ+n2 λ+n1 −μ−n2 −λ−n1
−1 1 0 0
0 x0 − 1 −x0 0
0 y0 − 1 0 −y0

)

= x0y0(μ+n2 + λ+n1) + (1 − x0)y0μ−n2 + λ−n1(1 − y0)x0.
Proof. This can be obtained by expanding the determinants with respect to column 7 of M.

Proposition A.2. The determinant of M is always positive.

Proof. This can be proven directly by Lemma A.1 and the fact that

det(U) < 0, det(C) > 0, d66 < 0, e16 < 0, cofac > 0.
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