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1. INTRODUCTION

Consider the time-dependent advection-dominated diffusion problem on a bounded polygonal
domain �⊂ R2 with boundary � for the unknown solution p:

�(cp)

�t
+ ∇ · (bp − a∇p) + Rp= f (1)

where c, b (vector), a (tensor), R, and f are given functions. This problem involves advection
(b), diffusion (a), reaction (R), and accumulation (c). Many problems arise in form (1), such as
transport problems for multiphase flow in porous media and density problems for semiconductor
modelling [1]. When diffusion dominates advection, finite element approximation methods that in-
volve a backward Euler scheme for the accumulation term produce satisfactory numerical solutions
for (1). When advection dominates diffusion, however, these methods may not perform well. In
particular, they exhibit excessive non-physical oscillations when the solution to (1) is not smooth.
Standard upstream weighting approaches have been applied to finite difference and finite element
methods with the purpose of eliminating the non-physical oscillations, but these approaches sig-
nificantly smear sharp fronts of the solution and suffer from grid-orientation difficulties. While
extremely fine mesh refinement is possible to overcome these drawbacks, it is not feasible because
of the excessive computational effort involved (particularly in multiple dimensions).

Many numerical techniques have been proposed to avoid the non-physical oscillations when
advection dominates, such as the optimal spatial technique. This technique employs an Eulerian
approach based on the minimization of the error in the approximation of spatial derivatives and
the use of optimal test functions satisfying a local adjoint problem [2, 3]. It produces an upstream
bias in the resulting approximation and has the numerical properties: (a) time truncation errors
dominate the solution. (b) The solution has significant numerical diffusion and phase errors. (c)
The Courant number (i.e. |b�t/(ch)|) is in general restricted to be smaller than one, where �t and
h are the temporal and spatial mesh sizes, respectively.

Other Eulerian techniques such as the Petrov–Galerkin finite element techniques have been
proposed to employ non-zero spatial truncation errors to cancel temporal errors and thus reduce the
overall truncation errors [4, 5]. Although these techniques improve accuracy in the approximation
of the solution, they still suffer from the strict Courant number limitation mentioned above.

Another class of approximation techniques for the numerical solution of Equation (1) are the
Eulerian–Lagrangian techniques. Because of the Lagrangian nature of advection in (1), these tech-
niques treat the advection and accumulation by a characteristic tracking approach. The properties of
this class include: (a) the Courant number restriction of the purely Eulerian techniques is alleviated
because of the use of the characteristic tracking; (b) because the temporal and spatial dimensions
are coupled via the characteristic tracking, the effect of time truncation errors present in optimal
spatial techniques is significantly reduced; and (c) they yield non-oscillatory solutions without
numerical diffusion, using reasonably large time steps on grids no finer than necessary to resolve
the solution on the moving fronts [1]. The Eulerian–Lagrangian techniques have been applied in
the context of finite element methods [6–10]. In this paper, we generalize these techniques to the
setting of covolume methods applied to the mixed formulation of problem (1).

In some applications, such as those mentioned above, the vector variable bp−a∇p is the primary
variable in which one is interested. Standard mixed finite element methods were introduced to
approximate both this vector and the scalar variable p simultaneously and to give a high-order
approximation of both variables [1, 11]. On the other hand, mixed covolume methods have been
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CHARACTERISTIC-MIXED COVOLUME METHODS 679

developed with the same purpose, in addition to that they often produce smaller solution errors [12].
Unlike the mixed finite element methods that use a primary grid, the mixed covolume methods
use a conservation law on a primary volume grid for the scalar variable and a constitutive law on
a dual volume or covolume grid for the vector variable. Depending on how they are interpreted,
these methods are referred to as mixed covolume methods (preferred by us), mixed control volume
methods, and mixed balance methods [13–17]. Regardless of their physical interpretations, this
class of numerical methods can mathematically be studied as Petrov–Galerkin methods with trial
spaces associated with certain finite element spaces and test spaces related to finite volumes.

Covolume methods are particularly popular in computational fluid dynamics thanks to their
local conservative properties [18, 19]. They generate the discrete counterpart of an underlying
physical conservation law governing the behaviour of the fluid system. These methods were
originally interpreted as finite difference methods on an irregular grid that compute only the
normal components of the flux variable in fluid dynamics [19]. Only recently has Chou connected
them to the mixed finite element framework of the Stokes equations [20].

In this paper we propose and analyse characteristic-mixed covolume methods for problem (1).
That is, the diffusion term in (1) is discretized using mixed covolume methods, and the accumulation
and advection terms are treated by characteristic tracking schemes. The proposed methods preserve
the conceptual and computational merits of both characteristics-based schemes and the mixed
covolume methods. For example, they can take reasonably large time steps, capture sharp solution
fronts, have local conservative properties, and give high-order approximations to the flux variable.
Three characteristic tracking schemes are analysed in the context of the mixed covolume methods:
the modified method of characteristics (MMOC) [10, 21], the modified method of characteristics
with adjusted advection (MMOCAA) [22], and the Eulerian–Lagrangian localized adjoint method
(ELLAM) [7]. Existence and uniqueness of a solution to the discrete problem arising from the
characteristic-mixed covolume methods is shown. Stability and convergence properties of these
methods are also obtained; unconditionally stable results and error estimates of optimal order are
established.

There has been a question unanswered for some time: Can the Eulerian–Lagrangian techniques
be applied in the setting of mixed covolume methods? This question is valid in that covolumes
are used in these methods and these covolumes can be overlapping. In this paper, we are able to
answer this question thanks to the introduction of a critical mapping from the mixed finite element
spaces for the vector variable to the test spaces used in the mixed covolume methods.

The rest of the paper is outlined as follows. The definition and analysis of three characteristic
mixed covolume methods will be presented in the next three sections. The stability and convergence
proof will be given in Section 5.

2. MMOC-MIXED COVOLUME METHODS

2.1. The continuous problem

To explain the idea of combining a characteristic method and mixed covolume methods, we first
consider the MMOC [10, 21]. This characteristic method is easy to set up and implement, and is
still in wide use. It is based on the non-divergence form of problem (1):

c(x)
�p
�t

+ b(x, t) · ∇p − ∇ · (a(x, t)∇p) + R(x, t)p= f (x, t), x∈ �, t>0. (2)
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To complete the definition of this problem, we need boundary and initial conditions. It is well
known that the MMOC is not flexible in the treatment of general boundary conditions. Hence,
to avoid the difficulty associated with the boundary conditions, we assume that (2) is �-periodic;
i.e. � is a rectangle and all functions in (2) are spatially �-periodic. In fact, this is physically
reasonable because no-flow boundaries are usually handled by reflection and interior flow behaviour
is often much more important than boundary effects in fluid flow problems, for example. The
treatment of general boundary conditions will be considered in the fourth section where an Eulerian–
Lagrangian approach is adopted. The initial condition is

p(x, 0) = p0(x), x∈ � (3)

Let

�(x, t) = (c2(x) + |b(x, t)|2)1/2
where |b|2 = b21 + b22 and b= (b1, b2). Throughout this paper, we assume that the accumulation
and reaction coefficients, c and R, satisfy

c(x)� c∗>0, R(x, t) � 0, x∈ �, t>0 (4a)

and the diffusion tensor a= (ai j ) is bounded, symmetric, and uniformly positive-definite in x and t :

0<a∗ � |g|2
2∑

i, j=1
ai j (x, t)�i� j � a∗<∞, x∈ �, g �= 0∈ R2, t>0 (4b)

where g= (�1, �2).
Let the characteristic direction corresponding to the hyperbolic part of (2), c�p/�t + b · ∇p, be

denoted by s, so

�
�s

= c(x)
�(x, t)

�
�t

+ 1

�(x, t)
b(x, t) · ∇

With this definition, we write (2) in the system of two first-order partial differential equations:

�(x, t)
�p
�s

+ ∇ · u + R(x, t)p = f (x, t), x∈ �, t>0

u= −a(x, t)∇p, x∈ �, t>0

(5)

For k � 0, the standard Sobolev spaces Hk(�) =Wk,2(�) are used in this paper, with the usual
norms. For k = 0, set L2(�) = H0(�). In addition, we define the linear space

H(div,�) ={v= (v1, v2) ∈ (L2(�))2 : ∇ · v∈ L2(�)}
Furthermore,Hper(div,�) and L2

per(�) are defined as the closure of C∞
per(�) (the subset of C∞(R2)

of �-periodic functions) under the norms ‖ · ‖H(div,�) and ‖ · ‖L2(�), respectively. Set

V=Hper(div, �), W = L2
per(�)

We use the inner product in L2(�) or (L2(�))2, as appropriate:

(v,w)S =
∫
S
v(x)w(x) dx
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If S =�, we omit it in this notation. Now, applying Green’s formula in space and the periodic
boundary condition, (5) is recast in the equivalent mixed variational form(

�
�p
�s

, w

)
+ (∇ · u, w) + (Rp, w) = ( f, w), w ∈W, t > 0

(a−1u, v) − (∇ · v, p) = 0, v∈V, t>0

p(x, 0) = p0(x), x ∈ �

(6)

2.2. MMOC-mixed covolume methods

Let 0= t0<t1< · · ·<tn< · · · be a partition in time, with �tn = tn − tn−1. For a generic function
v of time, set vn = v(tn). A characteristic is approximated by

x̌n = x − �tn

c(x)
b(x, tn) (7)

Furthermore, we see that, at t = tn ,

�
�p
�s

≈ �(x, tn)
p(x, tn) − p(x̌n, tn−1)

(|x − x̌n|2 + (�tn)2)1/2

= c(x)
p(x, tn) − p(x̌n, tn−1)

�tn
(8)

That is, a backtracking scheme is used to approximate the characteristic derivative (see Figure 1).
Let Kh be a regular partition of � into non-overlapping (open) finite elements K :

�̄ = ⋃
K∈Kh

K̄

such that no vertex of one element lies in the interior of an edge of another element, where �̄ and
K̄ represent the closure of � and K (i.e. �̄= �∪ � and K̄ = K ∪ �K ), respectively. The mesh
parameters hK and h are defined as follows:

hK = diam(K ) and h = max
K∈Kh

hK

where diam(K ) is the length of the longest edge of K̄ . Associated with Kh , let Vh ×Wh be a pair
of standard mixed finite element spaces [23–28].

t

tn

n-1

x

x n

Figure 1. An illustration of the definition x̌n .

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:677–697
DOI: 10.1002/nla



682 Z. CHEN, S.-H. CHOU AND D. Y. KWAK

Based on earlier results of Chou and Kwak [14, 20], a unified framework was presented for
a number of mixed covolume methods [29]. This framework connects all these methods to the
standard mixed finite element methods using an injective mapping ch from the space Vh to a
test space Yh . Using this mapping, we define the MMOC-mixed covolume methods for (2): For
n = 1, 2, . . . , find unh ∈Vh and pnh ∈Wh such that(

c
pnh − p̌n−1

h

�tn
, w

)
+ (∇ · unh, w) + (Rn pnh , w) = ( f n, w), w ∈Wh

((an)−1unh, chv) − b(chv, p
n
h) = 0, v∈Vh

(9)

where the bilinear form b(·, ·) (as yet unspecified) is related to the divergence term and

p̌n−1
h = ph(x̌n, tn−1) = ph

(
x − �tn

c(x)
b(x, tn), tn−1

)
(10)

The initial approximation p0h can be defined as any reasonable approximation of p0 in Wh such
as its L2-projection into Wh :

(p0h, w)= (p0, w) ∀w ∈Wh (11)

Comparing the mixed covolume methods in system (9) with the standard mixed finite element
methods, one sees the presence of the operator ch in the former. This operator and the test space
Yh remain to be constructed. Their constructions are critical for the mixed covolume methods to
produce optimal order convergence rates.

To prove the well-posedness of system (9), we make two hypotheses on ch :

b(chv, w)= (∇ · v, w) ∀v∈Vh, w ∈Wh (H1)

and there is a positive constant C1 such that

(a−1v, chv)�C1‖v‖2L2(�)
∀v∈Vh (H2)

Theorem 2.1
Under conditions (4), (H1), and (H2), system (9) has a unique solution.

Proof
Because (9) is a finite system, it suffices to show uniqueness of the solution. Setting f = p0 = 0,
it follows from (9) and (H1) that(

c
pnh − p̌n−1

h

�tn
, w

)
+ (∇ · unh, w) + (Rn pnh , w) = 0, w ∈Wh

((an)−1unh, chv) − (∇ · v, pnh) = 0, v∈Vh

We complete the proof by an induction argument. Note that p0h = 0 via assumption. Let pn−1
h = 0;

the addition of the above two equations with v= unh and w = pnh yields

1

�tn
(cpnh , p

n
h) + ((an)−1unh, chuh) + (Rn pnh , p

n
h) = 0
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which, together with (4) and (H2), implies

unh = 0, pnh = 0

Thus the desired result follows. �

In addition to assumption (4), we assume that the accumulation and advection coefficients,
c and b, satisfy

c∈W 1,∞(�), b ∈ (L∞(J ;W 1,∞(�)))2 (12)

where J = (0, T ] (T>0) is the time interval of interest.

Theorem 2.2
Under (4), (H1), (H2), and (12), the solution of system (9) satisfies the stability result

‖ph‖L∞(J ;L2(�)) + ‖uh‖L2(�T ) �C(‖ f ‖L2(�T ) + ‖p0‖L2(�)) (13)

where �T =� × J , and the constant C is independent of h, and

‖ f ‖L2(�T ) =
(

N∑
n=1

‖ f n‖2L2(�)
�tn

)1/2

This stability result will be proven in the fifth section.

2.3. Examples

As noted, the standard mixed finite element methods use a primary partition Kh , while the mixed
covolume methods use Kh and a partition K ′

h that is dual to Kh . The most well-known example
is the MAC (marker and cell) method that employs two staggered rectangular grids [30]. These
covolume methods can use either non-overlapping (see Figure 2) or overlapping (see Figure 3)
covolumes. The left-hand figure in Figure 2 is a primary partition that consists of rectangles, and a
typical interior covolume in its dual partition is the dashed quadrilateral, the union of two triangles
T−
e ∪ T+

e with the common edge e in Kh . The two vertices inside the two rectangles are their centres.
Note that each edge in Kh corresponds to a covolume. Near the boundary � a covolume is either
T−
e or T+

e . The right-hand figure in Figure 2 has an analogous meaning when the primary partition
Kh consists of triangles. On the other hand, the dashed covolumes in Figure 3 are overlapping.
This type of staggered grid is used in the MAC method [30]. In this paper, as an example, we
focus on overlapping covolumes because the overlapping case is more difficult to handle than the
non-overlapping case [31]. Furthermore, we analyse the characteristic-mixed covolume methods

eT Te e
- +

eT

T

e

e

-

+

Figure 2. Primal and dual grids: K ′
e = T−

e ∪ e∪ T+
e .
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e e e

e

e

KK

K

i+1/2,j

i,j+1/2

i,j

i,j+1/2

i−1/2,j

i,j−1/2

i+1/2,j
i,j

(1)

Figure 3. Dual grid with overlapping covolumes.

e e e

K
K

K

i,j

i+1,j

i+1/2,j

i+1/2,j i+1,ji,j
(2) (2)

Figure 4. Primal and dual quadrilaterals.

on quadrilateral grids. Quadrilaterals can be regarded as logical rectangles or distorted rectangles
(see Figure 4). They are harder to analyse than triangles and rectangles. Finite difference and mixed
covolume methods over quadrilateral grids were considered in References [17, 31], respectively,
and the standard mixed finite element methods over these grids were studied in References [32, 33].
The quadrilateral grids are particularly of interest in petroleum reservoir simulations [34].

2.3.1. Quadrilateral and dual grids. Let Kh be a partition of � into convex quadrilaterals. The
partition is logically rectangular in the sense that each quadrilateral has a unique eastern, western,
northern, and southern adjacent neighbours if they exist. Thus, each quadrilateral can be indexed
by two indices: Kh = {Ki, j } (see Figures 3 or 4). The eastern (respectively, northern) and western
(respectively, southern) edges of Ki j are represented by

ei±1/2, j = K̄i, j ∩ K̄i±1, j (respectively, ei, j±1/2 = K̄i, j ∩ K̄i, j±1)
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In addition, the line segment joining the midpoints of ei−1/2, j and ei+1/2, j (respectively, ei, j−1/2

and ei, j+1/2) is indicated by e(1)
i, j (respectively, e(2)

i, j ). The covolume formed by the left-hand

quadrilateral between the edges e(2)
i, j and ei+1/2, j and the right-hand quadrilateral between the

edges ei+1/2, j and e(2)
i+1, j is Ki+1/2, j (see Figure 4). The covolume Ki, j+1/2 is defined in an

analogous manner.
Denote by Ti the subtriangle of K ∈ Kh with vertices mi−1, mi , and mi+1, i = 1, 2, 3, 4, where

m0 =m4. Define �K = 2min1� i � 4{diameter of the circle inscribed in Ti }. As in the triangular
case, the partition Kh is regular if

hK �C2�K ∀K ∈ Kh

where the constant C2 is independent of h.
The test function space Yh will be defined through a Piola transformationPK from the reference

rectangle K̂ =[0, 1] × [0, 1] to all quadrilaterals {K }. The vertices of K̂ in the x̂ ŷ-plane are

m̂1 = (0, 0), m̂2 = (1, 0), m̂3 = (1, 1), m̂4 = (0, 1)

For any convex quadrilateral K ∈ Kh with the vertices mi , i = 1, 2, 3, 4 (enumerated in the coun-
terclockwise direction), the injective bilinear transformation

x=FK (x̂) =m1 + m21 x̂ + m41 ŷ + m0 x̂ ŷ, x̂= (x̂, ŷ)

maps K̂ onto K (see Figure 5), where mi j =mi − m j and m0 =m12 + m34. Note that

mi =FK (m̂i ), i = 1, 2, 3, 4

Moreover, the Jacobian matrix JK of FK is

JK =

⎛
⎜⎜⎜⎝

�x
�x̂

�x
�ŷ

�y
�x̂

�y
�ŷ

⎞
⎟⎟⎟⎠ = (m21 + m0 ŷ,m41 + m0 x̂)

The Piola transformation PK is now defined by

v=PK v̂≡ 1

det(JK )
JK v̂ ◦ F−1

K

1 2

34

1
2

3
4

K KFK

Figure 5. The bilinear transformation FK .
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where det(JK ) is the determinant of JK . This transformation preserves the H(div) space on the
reference rectangle K̂ and has the properties [33]∫

K
v · ∇w dx=

∫
K̂
v̂ · ∇̂ŵ dx̂, div v= 1

det(JK )
ˆdiv v̂

where ŵ =w ◦ FK .

2.3.2. Trial and test function spaces. As an example, we consider the Raviart–Thomas mixed
finite element space of lowest order [28]. The scalar space Wh is simply the space of piecewise
constants

Wh ={w ∈W : w|K is constant, K ∈ Kh}
On the reference rectangle K̂ , Vh is

Vh(K̂ ) ={v̂ : v̂= (a + bx̂, c + d ŷ), a, b, c, d ∈ R}
The space Vh over the quadrilateral grid Kh is defined through PK :

Vh ={v∈V : v|K =PK v̂, v̂∈Vh(K̂ )}
If m is the outward unit normal to an edge e of K , for v̂∈Vh(K̂ ) we see that

|e|v · m= v̂ · m̂
where |e| is the length of e and m̂ is the outward unit normal to the edge ê corresponding to e.
Consequently, every v∈Vh has constant normal components on all edges in Kh , which can be
used as degrees of freedom. Note that v is not a polynomial on K unless K is a parallelogram,
and its divergence equals

div v|K = 1

det(JK )

∫
K
div v dx

which does not belong to Wh .
The nodal basis functions of Vh(K̂ ) are

ûx̂,0 =
(
1 − x̂

0

)
, ûx̂,1 =

(
x̂

0

)
, û0,ŷ =

(
0

1 − ŷ

)
, û1,ŷ =

(
0

ŷ

)

Then the basis of Vh is

ui+1/2, j =

⎧⎪⎪⎨
⎪⎪⎩
PKi, j ûx̂,1 in Ki, j

PKi+1, j ûx̂,0 in Ki+1, j

0 elsewhere

(14)
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and

ui, j+1/2 =

⎧⎪⎪⎨
⎪⎪⎩
PKi, j û1,ŷ in Ki, j

PKi, j+1û0,ŷ in Ki, j+1

0 elsewhere

(15)

Note that ui+1/2, j has a unit flux on the edge ei+1/2, j and zero fluxes on other edges; ui, j+1/2
has a similar meaning.

We are in a position to define the mapping ch : Vh → Yh , following Reference [31]. On the
reference rectangle K̂ , ĉ : Vh(K̂ ) → Yh(K̂ ) is defined by

�̂v̂1 =
{

v̂1(0, ŷ) on [0, 1/2] × [0, 1]
v̂1(1, ŷ) on [1/2, 1] × [0, 1]

and

�̂v̂2 =
{

v̂2(x̂, 0) on [0, 1] × [0, 1/2]
v̂2(x̂, 1) on [0, 1] × [1/2, 1]

where ĉv̂= (�̂v̂1, �̂v̂2)T and v̂= (v̂1, v̂2)
T (the transpose). Now, for the basis of Vh , it follows from

the definition (14) that

chui+1/2, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
PKi, j (1, 0)

T on K̄i, j ∩ K̄i+1/2, j

PKi+1, j (1, 0)
T on K̄i+1/2, j ∩ K̄i+1, j

0 elsewhere

Similarly, chui, j+1/2 can be defined using (15). If v∈Vh is represented by

v=∑
i, j

(vi+1/2, jui+1/2, j + vi, j+1/2ui, j+1/2)

then we define

chv=∑
i, j

(vi+1/2, jchui+1/2, j + vi, j+1/2chui, j+1/2)

Finally, Yh is defined as the range space of ch , and the bilinear form b(·, ·) is defined as follows:

b(chv, w)=∑
i, j

(vi+1/2, j [wi+1, j − wi, j ] + vi, j+1/2[wi, j+1 − wi, j ]), v∈Vh, w ∈Wh

where wi, j = w|Ki, j .
With the definition of ch and b(·, ·), hypothesis (H1) holds. Moreover, for sufficiently small

h>0, if assumption (4b) is satisfied, so is hypothesis (H2) [31]. Furthermore, the mapping ch has
the properties

‖chv‖L2(�) �C‖v‖L2(�), v∈Vh (16)
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and

|(a−1w, v − chv)| �Ch‖w‖H1(�)‖v‖L2(�), w∈ (H1(�))2, v∈Vh, t>0 (17)

where the C’s are generic positive constants, independent of h.
The following error estimates will be proven in Section 5.

Theorem 2.3
Under assumptions (4) and (12), if (u, p) and (uh, ph) are the solutions to (6) and (9), respectively,
then, for h sufficiently small,

max
1� n � N

‖pn − pnh‖2L2(�)
+

N∑
n=1

‖un − unh‖2L2(�)
�tn

�C

⎛
⎝h

⎡
⎣‖p‖L∞(J ;H1(�)) + ‖u‖L2(J ;H1(�)) +

∥∥∥∥�p
�t

∥∥∥∥
L2(J ;H1(�))

+
∥∥∥∥�p

�s

∥∥∥∥
L2(J ;H1(�))

+ ‖p0‖H1(�)

⎤
⎦+ �t

∥∥∥∥∥�2 p
�s2

∥∥∥∥∥
L2(�T )

⎞
⎠

where we recall that s is the characteristic direction corresponding to the hyperbolic part of (2),
�t = maxi=1,2,...,N �tn , and t N = T .

3. MMOCAA-MIXED COVOLUME METHODS

Problem (2) with the periodic boundary condition is considered in this section. Furthermore, to
introduce the methods, we assume in this section that

∇ · b= 0 in �, t>0 (18)

That is, b is divergence free. This is physically reasonable since b is typically a velocity field and
(18) corresponds to the incompressibility condition. Note that, by (18), the periodicity assumption,
and the divergence theorem, Equation (2) with R = 0 and f = 0 yields the conservation law∫

�
c(x)p(x, t) dx=

∫
�
c(x)p0(x) dx, t>0 (19)

In real applications, it is desirable to maintain at least a discrete form of this law in any numerical
approximation of (2). However, in general, (9) does not satisfy this property, and it creates an
imbalance in mass. The imbalance stems from the advection (transport) process since the diffusion
process in (9) has been shown to conserve mass locally [10]. To see this, set a= 0, R = f = 0,
and w = 1 in (9) to have∫

�
c(x)pnh(x) dx=

∫
�
c(x) p̌n−1

h (x) dx �=
∫

�
c(x)pn−1

h (x) dx (20)
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Note that in the case where c is constant, preserving (19) requires that the Jacobian of the map
(7) identically equal one. However, in general, if ∇ · (b/c) �= 0, the Jacobian is 1 + O(�t);
it is 1 + O((�t)2) if (18) holds and c is constant Reference [1]. To preserve (19) numerically,
we follow Reference [22] to use the modified method of characteristics with adjusted advection
(MMOCAA).

Let Wh and p0h be defined as in the previous section. For 1� n � N , given pn−1
h ∈Wh , set

Qn−1
h =

∫
�
c(x)pn−1

h (x) dx, Q̌n−1
h =

∫
�
c(x) p̌n−1

h (x) dx

As mentioned above, Qn−1
h �= Q̌n−1

h in general. Define

p̃n−1
h (x)=

⎧⎨
⎩
max{pn−1

h (x̃−), pn−1
h (x̃+)} if Q̌n−1

h <Qn−1
h

min{pn−1
h (x̃−), pn−1

h (x̃+)} if Q̌n−1
h >Qn−1

h

and

Q̃n−1
h =

∫
�
c(x) p̃n−1

h (x) dx

where x̌ is defined as in (7),

x̃− = x̌ − �1
b(x, tn)
c(x)

(�tn)2, x̃+ = x̌ + �1
b(x, tn)
c(x)

(�tn)2

and �1 is a fixed positive constant (normally chosen to be less than one [22]). If Q̌n−1
h = Q̃n−1

h ,
we must accept that mass cannot be conserved; otherwise, find �n−1 ∈ R such that

Qn−1
h =�n−1 Q̌n−1

h + (1 − �n−1)Q̃n−1
h (21)

Define

p̂n−1
h =�n−1 p̌n−1

h + (1 − �n−1) p̃n−1
h (22)

and

Q̂n−1
h =

∫
�
c(x) p̂n−1

h (x) dx

Clearly, Q̂n−1
h = Qn−1

h , so the conservation law is preserved. Now, continue in n with p̂n−1
h in

place of p̌n−1
h in the original procedure (9); i.e.(

c
pnh − p̂n−1

h

�tn
, w

)
+ (∇ · unh, w) + (Rn pnh , w) = ( f n, w), w ∈Wh

((an)−1unh, chv) − b(chv, p
n
h) = 0, v∈Vh

(23)

Note that �n−1 is bounded; 0��n−1 � 1 for small �tn−1 [22]. Theorems 2.1–2.3 remain valid
for the MMOCAA-mixed covolume methods. In addition, the discussion on the examples given
in Section 2.3 applies as well.
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4. EULERIAN–LAGRANGIAN MIXED COVOLUME METHODS

Periodic boundary conditions have been considered in the previous two sections. In this section,
we consider an Eulerian–Lagrangian method, which is based on a space-time variational form and
the divergence form of (2):

�(cp)

�t
+ ∇ · (bp − a∇p) + Rp = f, x ∈ �, t>0

(bp − a∇p) · m= g−, x ∈ �−, t>0

p = g+, x∈ �+, t>0

p(x, 0) = p0(x), x ∈ �

(24)

where �⊂ R2 is a polygonal domain, the accumulation coefficient c can depend on time, m is the
outward unit normal to �,

�− = {x∈ � : (b · m)(x)<0}, �+ = {x∈ � : (b · m)(x)� 0}
and g−(·, t) ∈ H−1/2(�−) and g+(·, t) ∈ H1/2(�+) (t ∈ J ) are given functions. The boundaries
�− and �+ are the inflow and outflow parts of �, respectively.

As in the previous two sections, for any x∈ � and two times 0� tn−1 < tn , the hyperbolic part
of problem (24), c�p/�t + b · ∇p, defines the characteristic x̌n(x, t) along the interstitial velocity
/=b/c:

�
�t
x̌n =/(x̌n, t), t ∈ Jn = [tn−1, tn)

x̌n(x, tn) = x

(25)

In general, the characteristics in (25) can be determined only approximately. There are many ways
to solve this first-order ordinary differential equation for approximate characteristics. We consider
only an Euler method, as in the previous two sections.

The Euler method to solve (25) for the approximate characteristics is given: For any x ∈ �,
we define

x̌n(x, t) = x − /(x, tn)(tn − t), t ∈ [ť(x), tn] (26)

where ť(x) = tn−1 if x̌n(x, t) does not backtrack to the boundary� for t ∈ [tn−1, tn]; ť(x) ∈ (tn−1, tn]
is the time instant when x̌n(x, t) intersects �, i.e. x̌n(x, ť(x))∈ �, otherwise. For (x, t) ∈ �+ × Jn ,
the approximate characteristic emanating backward from (x, t) is given by

x̌n(x, �) = x − /(x, t)(t − �), � ∈ [ť(x, t), t] (27)

where ť(x, t) = tn−1 if x̌n(x, �) does not backtrack to the boundary � for � ∈ [tn−1, t]; ť(x, t) ∈
(tn−1, t] is the time instant when x̌n(x, �) intersects � otherwise. We have exploited a single step
Euler method to determine the approximate characteristics from (25); a multi-step version can be
also employed.

If �tn is sufficiently small (depending upon the smoothness of /), the approximate characteristics
do not cross each other, which is assumed. Then x̌n(·, t) is a one-to-one mapping of R2 to R2; we
indicate its inverse by x̂n(·, t).
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For any t ∈ (tn−1, tn], we define

/̃(x, t) =/(x̂n(x, t), tn), b̃= /̃c (28)

We assume that b̃ · m� 0 on �+.
Set

W = L2(�), V=H(div,�) = {v ∈ (L2(�))2 : ∇ · v∈ L2(�)}
The characteristic mixed variational form of (24) is [1]

(cn pn, vn) − (cn−1 pn−1, vn−1,+) + (�tn Rn pn, vn)

− ∑
K∈Kh

[(�tnun · mK , vn)�K\�− − (�tnun, ∇vn)K ]

= (�tn f n, vn) −
∫
Jn

{(g−, v)�− + (g+b̃ · m, v)�+} dt

+
∫
Jn

{(∇ · [(b̃ − b)p], v) − (p[b̃ − b] · m, v)�−} dt

(a−1u, v) + ∑
K∈Kh

[(p, v · mK )K\�− − (∇p, v)K ] = (g+, v · m)�+, v∈V, t>0

(29)

where the test function v(x, t) is assumed to be constant along the approximate characteristics
x̌, vn−1,+ = v(x, tn−1,+) = lim�→0+ v(x, tn−1 + �) to take account of the fact that v(x, t) may be
discontinuous at time levels, and �tn(x) = tn − ť(x).

Let Kh be a regular partition of � into convex quadrilaterals as in Section 2.3.1, and the spaces
Vh × Wh and the mapping ch : Vh → Yh be defined as in Section 2.3.2. For any w ∈Wh , we
define a test function v(x, t) to be a constant extension of w(x) into the space–time region �× Jn

along the approximate characteristics (refer to (26) and (27)):

v(x̌n(x, t), t) = w(x), t ∈ [ť(x), tn], x ∈ �

v(x̌n(x, �), �) = w(x), � ∈ [ť(x, t), t], (x, t) ∈ �+ × Jn
(30)

Now, based on (29), the Eulerian–Lagrangian mixed covolume methods are defined: For n = 1, 2,
. . . , find unh ∈Vh and pnh ∈Wh such that

(cn pnh , v
n) − (cn−1 pn−1

h , vn−1,+) + (�tn Rn pnh , v
n)

− ∑
K∈Kh

[(�tnunh · mK , vn)�K\�− − (�tnunh∇vn)K ]

= (�tn f n, vn) −
∫
Jn

{(g−, v)�− + (g+b̃ · m, v)�+} dt

(�tn(an)−1unh, chv) + ∑
K∈Kh

[(�tn pnh , v · mK )K\�− − (�tn∇pnh , v)K ]

=
∫
Jn

(gn+, v · m)�+ dt

(31)

for v∈Vh , w ∈Wh , and v the constant extension of w along the approximate characteristics.
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Note that the space Wh contains piecewise constants. If we take w = 1 on each element K ∈ Kh
in the first equation of (31), we see that mass is conserved locally up to the error in approximating
the integrals involved. As a matter of fact, this equation expresses local conservation of mass where
fluid is transported along the approximate characteristics.

Theorem 4.1
Under condition (4), system (31) has a unique solution.

The proof of this theorem can be completed in a similar fashion as for Theorem 2.1. We also
have the next stability and convergence theorems whose proof will be carried out in Section 5.

Theorem 4.2
Under assumptions (4) and (12), the solution of system (9) satisfies the stability result

‖ph‖L∞(J ;L2(�)) + ‖uh‖L2(�T )

�C(‖ f ‖L2(�T ) + ‖p0‖L2(�) + ‖g−‖L2(J ;H−1/2(�−)) + ‖g+‖L2(J ;H1/2(�+)))

Theorem 4.3
In addition to (4), assume that � is a convex polygonal domain and the coefficients a, b, c, f , and
R satisfy

a ∈ (W 1,∞(�T ))2×2, b ∈ (W 1,∞(�T ))2

∇ · b, c ∈ W 1,∞(�T ), f ∈ L1(�T ), R ∈ L∞(J ;W 1,∞(�))

If the solution p, u to (7) satisfies p, ∇ · u∈C1(J ; H1(�)) and u∈ (C1(J ; H1(�)))2, and h and
�t are sufficiently small, then

max
1� n � N

‖pn − pnh‖L2(�) +
(

N∑
n=1

‖un − unh‖2L2(�)
�tn

)1/2

�C(p,u)(h + �t)

where C(p,u)>0 is independent of h and �t :

C(p,u) =C

{
‖p‖L2(J ;H1(�)) +

∥∥∥∥dpds
∥∥∥∥
L2(�T )

+
∥∥∥∥ d

ds
∇ · u

∥∥∥∥
L2(�T )

+
∥∥∥∥�u

�t

∥∥∥∥
L2(J ;H1(�))

+
∥∥∥∥∇ · �u

�t

∥∥∥∥
L2(J ;H1(�))

+ ‖u‖L∞(J ;H1(�)) + ‖∇ · u‖L∞(J ;H1(�)) + ‖p0‖H1(�)

}

5. PROOF OF STABILITY AND CONVERGENCE

In this section, as an example, we carry out the proof of Theorems 2.2 and 2.3 for the MMOC-mixed
covolume methods. The same results for the MMOCAA and Eulerian–Lagrangian mixed covolume
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methods can be shown by combining the present techniques and those in References [1, 6, 22] for
studying these individual methods.

5.1. The proof of stability

The next lemma can be proven in a similar fashion as for Lemma 3.1 in Reference [35]. However,
the assumption is weakened here. For the proof under the current assumption, see Lemma 3.4 in
Reference [36].
Lemma 5.1
With assumption (12), for each n we have

(cv̌, v̌) − (cv, v) �C�tn(cv, v) ∀v ∈ L2(�)

where v̌(x)= v(x − b(x, tn)�tn/c(x)).

Proof of Theorem 2.2
Take w = pnh and v=unh in the first and second equations of (9), respectively, add the resulting
two equations, multiply by �tn , use hypothesis (H1), and sum over n, 1� n � N , to see that

N∑
n=1

(c(pnh − p̌n−1
h ), pnh) +

N∑
n=1

[((an)−1unh, �hu
n
h) + (Rn pnh , p

n
h)]�tn =

N∑
n=1

( f n, pnh)�t
n (32)

Note that

(c(pnh − p̌n−1
h ), pnh) � 1

2 ((cp
n
h , p

n
h) − (c p̌n−1

h , p̌n−1
h ))

= 1
2 {((cpnh , pnh) − (cpn−1

h , pn−1
h )) + ((cpn−1

h , pn−1
h ) − (c p̌n−1

h , p̌n−1
h ))}

so that Theorem 2.2 follows from (32), hypothesis (H2), Lemma 5.1, (4), and the discrete Gronwall
inequality. �

5.2. The proof of convergence

5.2.1. Projection operators. In the derivation of error estimates for the standard mixed finite
element methods, certain projection operators play an important role. The mixed covolume methods
considered will also utilize similar projections.

On the reference rectangle K̂ =[0, 1]× [0, 1], the Raviart–Thomas projections P̂ : (H1(K̂ ))2 →
Vh(K̂ ) and P̂ : L2(K̂ ) → Wh(K̂ ) are defined as follows:

∫
ê
P̂v̂ · m̂ d� =

∫
ê
v̂ · m̂ d� ∀ê∈ �K̂

∫
K̂
P̂ŵdx̂=

∫
K̂

ŵdx̂
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For each quadrilateral K ∈ Kh , the projectionPK : (H1(K ))2 → Vh(K ) and the map PK :L2(K ) →
Wh(K ) are defined through the Piola transformation PK :

PK v=PK (P̂v̂), v∈ (H1(K ))2

PKw = (P̂ŵ) ◦ F−1
K , w ∈ L2(K )

where PK v̂= v and ŵ =w ◦ FK . Finally, we define

Phv|K =PK v, Phw|K = PKw

These two operators satisfy the orthogonal relations

(∇ · (v −Phv), v) = 0, v∈ (H1(�))2, v ∈Wh

(∇ · w, w − Phw) = 0, w∈Vh, w ∈W
(33)

Moreover, they have the approximation properties [31]
‖v −Phv‖L2(�) �Ch‖v‖H1(�), v∈ (H1(�))2

‖∇ · (v −Phv)‖L2(�) �Ch‖∇ · v‖H1(�), v∈H1(div, �)

‖w − Phw‖L2(�) �Ch‖w‖H1(�), w ∈ H1(�)

(34)

5.2.2. Proof of Theorem 2.3. To prove Theorem 2.3, we also need the next lemma [6].
Lemma 5.2
With assumption (12), for each n, if �tn is sufficiently small, we have

‖vn − v̌‖L2(�) �C(�tn)1/2
∥∥∥∥�v

�s

∥∥∥∥
L2(�×Jn)

∀v ∈ H1(�T )

where v̌(x)= v(x − b(x, tn)�tn/c(x)).

Proof of Theorem 2.3
Subtract (9) from (6) with t = tn and use (H1) to have the error equations(

�n �pn

�s
− c

pnh − p̌n−1
h

�tn
, w

)
+ (∇ · [un − unh], w) + (Rn[pn − pnh ], w) = 0, w ∈Wh,

((an)−1un, v − chv) + ((an)−1[un − unh], chv) − (∇ · v, pn − pnh) = 0, v∈Vh

(35)

Choose v=Ph(un −unh) and w = Ph(pn − pnh), add the resulting equations, and use the orthogonal
relations (33) to give(

�n �pn

�s
− c

pnh − p̌n−1
h

�tn
, Ph(p

n − pnh)

)
+ (Rn[pn − pnh ], Ph(pn − pnh))

+ ((an)−1un,Ph(un − unh) − chPh(un − unh))

+ ((an)−1[un − unh], chPh(un − unh))= 0 (36)
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We bound each term in (36). For this, set

gn1 =Phun − unh, gn2 =Phun − un, �n1 = Ph p
n − pnh , �n2 = Ph p

n − pn

so un − unh = gn1 − gn2 and pn − pnh = �n1 − �n2. With these notation, Equation (36) is rewritten as

(
�n �pn

�s
− c

pnh − p̌n−1
h

�tn
, �n1

)
+ ((an)−1gn1, chg

n
1) + (Rn�n1, �

n
1)

= ((an)−1gn2, chg
n
1) + (Rn�n2, �

n
1) − ((an)−1un, gn1 − chgn1) (37)

Below � is a positive constant independent of h, as small as we please. It follows from (4b)
and (16) that

|((an)−1gn2, chg
n
1)| �C‖gn2‖2L2(�)

+ �‖gn1‖2L2(�)
(38)

Next, it is obvious that

|(Rn�n2, �
n
1)| �C(‖�n2‖L2(�) + ‖�n1‖L2(�)) (39)

Also, using (17), we see that

|((an)−1un, gn1 − chgn1)|�Ch‖un‖2H1(�)
+ �‖gn1‖2L2(�)

(40)

Now, observe that

(
�n �pn

�s
− c

pnh − p̌n−1
h

�tn
, �n1

)

=
(
c
�n1 − �̌n−1

1

�tn
, �n1

)
+
(

�n �pn

�s
− c

pn − p̌n−1

�tn
, �n1

)
−
(
c
�n2 − �̌n−1

2

�tn
, �n1

)

By Lemma 5.1, we have

(
c
�n1 − �̌n−1

1

�tn
, �n1

)
� 1

2�tn
((c�n1, �

n
1) − (c�̌n−1

1 , �̌n−1
1 ))

� 1

2�tn
((c�n1, �

n
1) − (c�n−1

1 , �n−1
1 )) − C(c�n−1

1 , �n−1
1 ) (41)

Using a standard backward difference error analysis [10], we see that

∣∣∣∣
(

�n �pn

�s
− c

pn − p̌n−1

�tn
, �n1

)∣∣∣∣ �C

⎛
⎝ ∑

K∈Kh

∥∥∥∥∥�2 p
�s2

∥∥∥∥∥
2

L2(K × Jn)

�tn + ‖�n1‖2L2(�)

⎞
⎠ (42)
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We write (
c
�n2 − �̌n−1

2

�tn
, �n1

)
=
(
c
�n2 − �n−1

2

�tn
, �n1

)
+
(
c
�n−1
2 − �̌n−1

2

�tn
, �n1

)

consequently, by Lemma 5.2, we find that∣∣∣∣∣
(
c
�n2 − �n−1

2

�tn
, �n1

)∣∣∣∣∣�C

(
‖�n1‖2L2(�)

+ 1

�tn

∥∥∥∥��2
�t

∥∥∥∥
2

L2(�×Jn)

)
∣∣∣∣∣
(
c
�n−1
2 − �̌n−1

2

�tn
, �n1

)∣∣∣∣∣�C

(
‖�n1‖2L2(�)

+ 1

�tn

∥∥∥∥��2
�s

∥∥∥∥
2

L2(�×Jn−1)

) (43)

Finally, substitute (38)–(43) into (37), multiply by �tn , sum over n from 1 to N , and use (4),
(H2), (34), the triangle inequality, and the discrete Gronwall inequality to complete the proof of
Theorem 2.3. �
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