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Abstract

We consider a multigrid algorithm for the cell centered di�erence scheme on trian-

gular meshes using a new prolongation operator. The energy norm of this prolongation

is shown to be less than
���
2
p

. Thus the W-cycle is guaranteed to converge. Numerical

experiments show that our operator is better than the trivial injection. Ó 1999 Elsevier

Science Inc. All rights reserved.
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1. Introduction

Multigrid convergence theory for elliptic problems is mainly based on two
fundamental properties of ®nite element spaces. One is ``regularity and
approximation''. The other is the boundedness of the prolongation operator
[1±4]. For conforming ®nite elements, an injection operator is used as the
prolongation and its energy norm is one. But for nonconforming elements, the
situation is more complicated. Either there does not exist a natural injection or
the norm is greater than one [5,6].
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The cell centered ®nite di�erence is a nonconforming example. This method
can be characterized as a ®nite volume method having piecewise constant basis
functions. There are some analyses on the multigrid methods for the cell
centered ®nite di�erence on rectangular meshes [5,7,8], where the trivial in-
jection was chosen as the prolongation.

Recently, Kwak [9] proposed a new prolongation operator whose energy
norm is one in the case of rectangular meshes. We investigate a similar pro-
longation operator on triangular meshes. It turns out that the energy norm of
this new prolongation is the same as that of the trivial injection. However, the
convergence speed is much faster.

2. Multigrid algorithm for the cell centered method

In this section, we consider a multigrid algorithm of the cell centered dif-
ference for a model problem:

ÿ Du � f in X; �1�

u � 0 on C: �2�
Let X be taken as a parallelogram with unit side length, C � oX. For
k � 1; 2; . . . ; J , X is divided by Nk :� 22k�1 regular triangles. Such triangula-
tions are denoted by fTkg. Given a coarse triangulation fTkg, we connect
midpoints of edges of triangles in fTkg to obtain fTk�1g. Each triangle T in
fTkg is called a cell. The grid point of each cell is the circumcenter of the
triangle. For k � 1; 2; . . . ; J , we let Vk denote the space of functions which are
piecewise constant on each cell.

The cell centered discretization is obtained as follows: Integrate Eq. (1)
against test functions in Vk and then use divergence theorem to get

ÿ
Z
oTj

ou
on

ds �
Z
Tj

f dx; �3�

for j � 1; 2; . . . ;Nk.
We approximate Eq. (3) using functions in Vk by central di�erence method.

Let u in Vk and ui denote its value on i-th cell. For two adjacent triangles Ti and
Tj, we let xi and xj be the circumcenters of Ti and Tj, respectively. We denote h
by the length of the edge of a triangle and h0 by jxi ÿ xjj. Let h � h=h0. Then we
take h�uj ÿ ui� as an approximation to ou=onij where nij is the unit normal
vector from the center of Ti to that of Tj. Note that there are only three di-
rections of nij. When one of the edge coincides with the boundary of X, we
assume a ®ctitious value by re¯ection [10].
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Collecting these, we have a system of algebraic equations

Aku � �f ; �4�
where Ak is symmetric positive de®nite, and u and �f are vectors whose entries
are uj and the integral of f over Tj, respectively. De®ne a discrete L2-inner
product on Vk by

�v;w�k �
XNk

i�1

h2
kviwi; 8v;w 2 Vk;

where hk denotes the length of edge of a triangle in fTkg. If we identify Ak with
a quadratic form on Vk � Vk de®ned by

Ak�v;w� � �Akv;w�k;
then the problem (4) is equivalent to: Find u 2 Vk satisfying

Ak�u;/� � �f ;/�; 8/ 2 Vk: �5�
The error estimate for the triangular cell centered ®nite di�erence is well known
in Ref. [10]. Let Qk be the L2�X� projection onto Vk. If u is the solution of
Eq. (5), then

Ak�uÿ Qk �u; uÿ Qk �u�6Ch2
kkf k2;

where �u is the solution of Eq. (1).
In order to describe the multigrid algorithm, we need certain intergrid

transfer operators between Vkÿ1 and Vk. Let a certain coarse-to-®ne operator
Ik : Vkÿ1 ! Vk be given. The ®ne-to-coarse operator P 0

kÿ1 : Vk ! Vkÿ1 is de®ned
to be the transpose of Ik, i.e.,

�P 0
kÿ1u; v�kÿ1 � �u; Ikv�k; 8u 2 Vk; v 2 Vkÿ1:

The multigrid algorithm which we shall consider also requires linear smoothing
operators Rk : Vk ! Vk for 1 < k6 J . Let Rt

k denote the adjoint of Rk with re-
spect to the ��; ��k inner product and de®ne

R�l�k �
Rk if l is odd;

Rt
k if l is even:

�
The multigrid operator Bk : Vk ! Vk is now de®ned by induction.

Multigrid Algorithm
Set B1 � Aÿ1

1 . For 1 < k6 J , assume that Bkÿ1 has been de®ned and de®ne
Bkg for g 2 Vk as follows:
1. Set x0 � 0 and q0 � 0.
2. De®ne xl for l � 1; . . . ;m by

xl � xlÿ1 � R�l�m�
k �g ÿ Akxlÿ1�:
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3. De®ne ym � xm � Ikqp, where qi for i � 1; . . . ; p is de®ned by

qi � qiÿ1 � Bkÿ1 P 0
kÿ1�g ÿ Akxm�� �

:

4. De®ne yl for l � m� 1; . . . ; 2m by

yl � ylÿ1 � R�l�m�
k �g ÿ Akylÿ1�:

5. Set Bkg � y2m.

In this algorithm, m is a ®xed positive integer which denotes the number of
smoothings and p is a positive integer. The cases p � 1 and p � 2 correspond
respectively to the symmetric V and W-cycles of the multigrid algorithm.

3. A weighted prolongation operator

In this section, we discuss prolongation operators. Since the trial function
space Vk's are nested, a usual choice for the prolongation is the trivial injection
operator I t

k. To see whether the multigrid algorithm converges or not, we need
to estimate the energy norm of the prolongation operator. To do so, we in-
vestigate the structure of Akÿ1��; ��. It is easy to see from [3,5]

Akÿ1�v; v� � h
X
i6�j

�vi ÿ vj�2; �6�

where the sum is taken for all pairs of adjacent triangles i and j. Let u � I t
kv.

Then

Ak�u; u� � h
X
I 6�J

�uI ÿ uJ �2; �7�

where the sum is taken for all pair of indices I ; J as Eq. (6). It can be easily
shown that

Ak�I t
kv; I t

kv� � 2h
X
i6�j

�vi ÿ vj�2:

In other words, the energy norm of the trivial injection operator is
���
2
p

. From
this, we can proceed as in Ref. [5] to conclude the W-cycle with one smoothing is
convergent. However, no conclusion can be deduced for theV-cycle. Indeed, the
numerical experiment in Section 4 shows that the V-cycle does not converge.

Now we introduce a weighted operator Iw
k . Let v 2 Vkÿ1 and u � Iw

k v. Re-
ferring to Fig. 1, we shall use i; i� 2 to denote the nodes and the triangles in
fTkÿ1g while we use 0; 1; 2; . . . to denote the nodes of triangles in fTkg. Fix a
triangle i in fTkÿ1g. For a subtriangle j in i, there are two cases (see Fig. 2):

Case I. The subtriangle j is the interior subtriangle of i.
Case II. The subtriangle j is sharing edges with two triangles in fTkÿ1g, i.e.,

iÿ 1, iÿ 2. De®ne Iw
k v as follows:
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�Iw
k v�j �

vi if j is Case I;

��wÿ 2�vi � viÿ1 � viÿ2�=w if j is Case II:

�
We shall estimate Ak�u; u� when u � Iw

k v. The sum (7) can be divided into two
cases. The ®rst case is that two subtriangles belong to the same triangle i in
fTkÿ1g. In this case, we denote it by S1

i . The other case is that the terms come
from adjacent triangles i, j of Tkÿ1. It is denoted by S2

i;j. For example, we have as
in Fig. 1,

S1
i � h

X3

j�1

�u0 ÿ uj�2; S2
i;i�2 � h �u1 ÿ u4�2 � �u2 ÿ u5�2

h i
:

Referring to Fig. 2, we can represent the above two sums as follows:

S1
i �

h
w2
�ÿ2vi � vi�2 � viÿ2�2 � �ÿ2vi � vi�2 � viÿ1�2
h

��ÿ2vi � viÿ2 � viÿ1�2
i
; �8�

S2
i;i�2 �

h
w2
�wÿ 2��vi ÿ vi�2� � viÿ2 ÿ vi � vi�2 ÿ vi�1� �2

� h
w2
�wÿ 2��vi ÿ vi�2� � viÿ1 ÿ vi � vi�2 ÿ vi�3� �2: �9�

We shall count the terms to �vi ÿ vi�2�2. In Eq. (8), the contribution from
�w2=h�S1

i for the interior subtriangle of i is

2 �vi ÿ vi�2�2 � �vi ÿ vi�2��vi ÿ viÿ2� � �vi ÿ vi�2��vi ÿ viÿ1�
h i

: �10�

Fig. 2. Numbering of elements.

Fig. 1. Triangle i and i� 2 with subdivisions.
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The contribution from �w2=h�S1
i�2 for the interior subtriangle of i� 2 is

2 �vi ÿ vi�2�2 � �vi�2 ÿ vi��vi�2 ÿ vi�1� � �vi�2 ÿ vi��vi�2 ÿ vi�3�
h i

: �11�
In Eq. (9), the contribution from �w2=h�S2

i;i�2 is

2 �wÿ 2�2�vi ÿ vi�2�2 � �wÿ 2��vi ÿ vi�2���viÿ2 ÿ vi� � �vi�2 ÿ vi�1��
h
��wÿ 2��vi ÿ vi�2���viÿ1 ÿ vi� � �vi�2 ÿ vi�3��

i
: �12�

The contribution from �w2=h�S2
i;iÿ1 is

�vi ÿ vi�2�2 � 2�vi ÿ vi�2���wÿ 2��viÿ1 ÿ vi� � �viÿ3 ÿ viÿ1��: �13�
The contribution from �w2=h�S2

i;iÿ2 is

�vi ÿ vi�2�2 � 2�vi ÿ vi�2���wÿ 2��viÿ2 ÿ vi� � �viÿ4 ÿ viÿ2��: �14�
The contribution from �w2=h�S2

i�2;i�1 is

�vi ÿ vi�2�2 � 2�vi ÿ vi�2���wÿ 2��vi�2 ÿ vi�1� � �vi�1 ÿ vi�4��: �15�
The contribution from �w2=h�S2

i�2;i�3 is

�vi ÿ vi�2�2 � 2�vi ÿ vi�2���wÿ 2��vi�2 ÿ vi�3� � �vi�3 ÿ vi�5��: �16�
Adding the last two terms of Eqs. (10)±(12), some terms cancel out and we

get

2�wÿ 3��vi ÿ vi�2��viÿ2 ÿ vi� � 2�wÿ 3��vi ÿ vi�2��vi�2 ÿ vi�1�
� 2�wÿ 3��vi ÿ vi�2��viÿ1 ÿ vi� � 2�wÿ 3��vi ÿ vi�2��vi�2 ÿ vi�3�:

By arithmetic±geometric inequality, the above sum is less than

�wÿ 3��vi ÿ vi�2�2 � �wÿ 3��viÿ2 ÿ vi�2 � �wÿ 3��vi ÿ vi�2�2

� �wÿ 3���vi�2 ÿ vi�1�2 � �wÿ 3��vi ÿ vi�2�2 � �wÿ 3��viÿ1 ÿ vi�2

� �wÿ 3��vi ÿ vi�2�2 � �wÿ 3��vi�2 ÿ vi�3�2: �17�
Similarly, the sum of the second terms of Eqs. (13)±(16) is less than

8�vi ÿ vi�2�2 � 4�wÿ 2��vi ÿ vi�2�2 � �viÿ3 ÿ viÿ1�2

� �wÿ 2��viÿ1 ÿ vi�2 � �viÿ4 ÿ viÿ2�2 � �wÿ 2��viÿ2 ÿ vi�2

� �vi�1 ÿ vi�4�2 � �wÿ 2��vi�2 ÿ vi�1�2 � �vi�3 ÿ vi�5�2

� �wÿ 2��vi�2 ÿ vi�3�2: �18�
In summary, the sum of the coe�cients of �vi ÿ vi�2�2 from Eqs. (13)±(18)

2� 2� 2�wÿ 2�2 � 4�wÿ 3� � 8� 4�wÿ 2� � 2w2:

Thus we have proved the following lemma.
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Lemma 3.1. For all w P 3, we have

Ak�Iw
k v; Iw

k v�6 2Akÿ1�v; v�; v 2 Vkÿ1: �19�
The next ingredient to prove multigrid convergence theory is so-called

``regularity and approximation'' condition.

Lemma 3.2. Let the operator Pkÿ1 be de®ned by

Akÿ1�Pkÿ1u; v� � Ak�u; Iw
k v�; 8u 2 Vk; v 2 Vkÿ1:

Then there is a constant C independent of v such that for all k � 1; . . . ; J

Ak��I ÿ Iw
k Pkÿ1�v; v�6C

kAkvk2

kk

 !1=2

Ak�v; v�1=2
; 8v 2 Vk: �20�

Proof. The proof is similar to the rectangular case (cf. Refs. [5] or [9]). We omit
the proof. �

We now apply the general framework of [3] to have the following result.

Theorem 3.1. Let p � 2 and m � 1 in the multigrid algorithm. If we let
Ek � I ÿ BkAk, then we have

Ak�Eku;Eku�6 d2
kAk�u; u�; 8u 2 Vk;

where dk < 1. In other words, the W-cycle converges with just one smoothing.

4. Numerical result

We consider the following problem on the unit parallelogram:

ÿ Du � f in X;

u � 0 on oX:

We solve this problem by two multigrid algorithms: First we use the trivial
injection operator. Next, we use the weighted prolongation operator with
w � 4. In both algorithms, we use one Gauss±Seidel pre-post relaxation.

We report eigenvalues, condition numbers of BkAk and reduction rate dk.
Tables 1 and 2 show the results of V-cycles with one smoothing. The algo-
rithm with weighted prolongation operator converges while that of trivial in-
jection does not. Tables 3±6 show that both algorithms converge with more
smoothings or W-cycle. In all of the cases, the new algorithm is better.
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Table 3

V -cycle result with the trivial injection, m � 2

hJ kmin kmax K d

1/32 0.791 1.256 1.59 0.060

1/64 0.779 1.298 1.67 0.080

1/128 0.760 1.333 1.75 0.098

Table 2

V -cycle result with the weighted prolongation, m � 1

hJ kmin kmax K d

1/32 0.491 1.089 2.218 0.217

1/64 0.477 1.114 2.335 0.222

1/128 0.466 1.140 3.466 0.227

Table 4

V -cycle result with the weighted prolongation, m � 2

hJ kmin kmax K d

1/32 0.763 1.020 1.34 0.050

1/64 0.756 1.029 1.36 0.053

1/128 0.749 1.037 1.38 0.055

Table 5

W -cycle result with the trivial injection, m � 1

hJ kmin kmax K d

1/32 0.492 1.372 2.79 0.214

1/64 0.483 1.375 2.85 0.222

1/128 0.479 1.375 2.87 0.228

Table 1

V -cycle result with the trivial injection, m � 1

hJ kmin kmax K d

1/32 0.443 2.013 4.541 >1

1/64 0.419 2.266 5.408 >1

1/128 0.408 2.523 6.184 >1

Table 6

W -cycle result with the weighted prolongation, m � 1

hJ kmin kmax K d

1/32 0.547 1.097 2.00 0.180

1/64 0.546 1.100 2.01 0.180

1/128 0.545 1.105 2.02 0.180
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