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Abstract. We introduce and analyze a V -cycle multigrid algorithm for cell-centered finite
difference methods applied to second-order elliptic boundary value problems. Unlike conventional
cell-centered multigrid algorithms that use the natural injection operator for prolongation, we use a
new prolongation operator whose energy norm we prove is bounded by 1 in the constant coefficient
case and 1+Ch in the nonconstant case. We are thus able to use general finite element multigrid the-
ory to conclude that the V -cycle either converges well or serves as a reasonably good preconditioner,
respectively. While our theory does not establish optimal performance, our numerical experiments
do show that the resulting algorithm converges much faster than the conventional schemes. In fact,
these results show that the energy norm convergence factor is small and remains bounded uniformly
in the finest mesh size, while that of the conventional algorithm grows.
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1. Introduction. Cell-centered finite differences (CCFD) is one of the most pop-
ular methods for numerical solution of second-order elliptic boundary value problems
[8], [13], [14], [15]. On the other hand, multigrid has become one of the most effective
methods for solving large sparse algebraic systems resulting from discretizing elliptic
boundary value problems. Multigrid algorithms for finite element methods are well
developed [1], [2], [5], [6] and, in many cases, are known to converge with a reduction
rate independent of the finest mesh size. However, existing multigrid algorithms for
CCFD (e.g., [15], [10], [4]) do not perform as fast as their finite element counterparts
and supporting analytical results are comparatively less available. There are two rea-
sons for this scarcity of theory. First, the trial functions associated with CCFD are
piecewise constants, which makes the analysis more difficult. Second, the bilinear
form associated with the weak form is not inherited between two grids. Neverthe-
less, some analysis for CCFD is still possible. For example, the multigrid analysis for
the finite elements in [6] can be applied to show that the W -cycle converges and a
variable V -cycle is a good preconditioner. Such an application for CCFD using the
natural injection operator for prolongation is carried out in [4]. But the numerical
experiments in [4], [10] show that the condition number for the V -cycle grows with
the number of levels. The reason for this behavior lies in the nonconforming nature of
the space. In fact, the energy norm of this prolongation operator is greater than one,
and so no conclusion can be drawn for the V -cycle using standard multigrid theory.

In this paper, we introduce a weighted prolongation operator for the multigrid
algorithm applied to CCFD. We show that its energy norm is bounded by 1 in the
constant coefficient case and by 1 + Ch in the nonconstant case. Thus the frame-
work of [6] applies to show that the V -cycle with a fixed number of smoothing steps
is convergent in the constant coefficient case and is a fairly good preconditioner in
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the nonconstant case. While our theory does not establish optimal performance of
this scheme, our numerical results do show that it converges either directly or as a
preconditioner for conjugate gradients with factors that are bounded uniformly in the
mesh size. The results also show the superiority of our weighted interpolation scheme
over the conventional approach based on injection.

The rest of the paper is organized as follows: In section 2, we define the CCFD
method for solving a model elliptic problem. We then define its corresponding multi-
grid algorithm using a weighted prolongation operator. We estimate the energy norm
of this operator and show the regularity and approximation property necessary to
derive the convergence theory. In section 3, we report on some numerical experiments
supporting our theoretical results.

2. Multigrid algorithm for the cell-centered method. In this section, we
briefly describe the CCFD method and a corresponding V -cycle multigrid algorithm
for a model problem. A weighted prolongation operator is then introduced and its
energy norm is estimated. As a consequence, optimal V -cycle convergence is estab-
lished.

First consider the following model problem:

−∇ · p∇ũ = f in Ω,(2.1)

ũ = 0 on ∂Ω,(2.2)

where Ω is the unit square. For k = 1, 2, . . . , J , divide Ω uniformly into n × n axi-
parallel subsquares, where n = 2k. Such subdivisions are denoted by {Ek}, and each
subsquare in Ek is called a cell and denoted by Ekij , i, j = 1, . . . , 2k. Note that the cell

Ekij is centered at the point (xi, yj) ≡ ((i−1/2)2−k, (j−1/2)2−k). For k = 1, 2, . . . , J ,
let Vk denote the space of functions that are piecewise constant on each cell. CCFD
is obtained by first integrating (2.1) formally against test functions φij in Vk, where
φij = 1 on Ekij and φij = 0 elsewhere. Integrating by parts, we obtain

−
∫
∂Ek

ij

p
∂ũ

∂n
ds =

∫
Ek
ij

fdx(2.3)

for i, j = 1, . . . , n. Of course, for general u ∈ Vk, (2.3) does not make sense. Instead,
we approximate (2.3) by replacing p∂ũ/∂n on the common edge of Eki,j and Eki,j+1 by

pi,j+1/2
ui,j+1 − ui,j

h
,(2.4)

where h = hk = 1/2k, pi,j+1/2 = p(xi, yj+1/2), and ui,j = u(xi, yj) (and similarly for
other subscripted u). Similarly, we use

pi+1/2,j
ui+1,j − ui,j

h
(2.5)

to approximate p∂ũ/∂n on the common edge of Eki,j and Eki+1,j . When one of the
edges coincides with the boundary of Ω, we assign a fictitious value by reflection. For
example, u0,j is taken as −u1,j , and so ∂ũ/∂n at x = 0 is approximated by −2u1,j/h.
Similar rules apply to the other parts of the boundary. After dividing the resulting
equation by h2

k, we obtain a system of linear equation of the form

Ākū = f̄ ,(2.6)
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where Āk is a typical sparse, n×n, symmetric, positive definite matrix similar to those
arising in the vertex finite difference method, ū is the vector whose entries are ui,j ,
and f̄ is the vector whose entries are f(xi, yj). Here and throughout the paper, we use
u, v, . . . to denote functions in Vk while ū, v̄, . . . denote their vector representations.
We define a quadratic form Ak on Vk × Vk by

Ak(u, v) = h2
k

n∑
i,j

(Ākū)i,jvi,j ∀u, v ∈ Vk.(2.7)

Then (2.6) is equivalent to the following problem: Find u ∈ Vk satisfying

Ak(u, φ) = (f, φ) ∀φ ∈ Vk,(2.8)

where (·, ·) is an L2-inner product. The error analysis of CCFD is well known (cf. [8],
[9]). Let Qk : L2(Ω) → Vk denote the usual L2(Ω) projection. If u is the solution of
(2.8), then

Ak(u−Qkũ, u−Qkũ) ≤ Ch2
k‖f‖2,(2.9)

where ‖ · ‖ is the usual L2 norm.
To describe the multigrid algorithm for this problem, we need certain grid oper-

ators. Assuming we are given a certain prolongation operator Ikk−1 : Vk−1 → Vk, we

define the restriction operator Ik−1
k : Vk → Vk−1 as its adjoint with respect to (·, ·):

(Ik−1
k u, v) = (u, Ikk−1v) ∀u ∈ Vk, v ∈ Vk−1.(2.10)

Since the space Vk can be viewed as the space of vectors having entries ui,j , we also
use Ikk−1 and Ik−1

k to denote their matrix representations.

Let R̄k denote an approximate matrix inverse of Āk so that x̄k ← x̄k + R̄k(f̄ −
Ākx̄

k) represents one smoothing step. Let R̄tk denote the transpose of R̄k. Then one
symmetric V (1, 1)-cycle for solving (2.6) starting an initial guess xk ∈ Vk is defined
in the following algorithm.

ALGORITHM V (1, 1). If k = 1, set x̄k = Ā−1
1 f̄ . Otherwise:

1. Relax once:

x̄k ← x̄k + R̄k(f̄ − Ākx̄k).

2. Beginning with initial guess x̄k−1 = 0 in Vk−1, apply one V (1, 1) cycle to the
coarse grid problem

Āk−1x̄
k−1 = Ik−1

k (f̄ − Ākx̄k).

Use the result x̄k−1 to correct the fine grid approximation:

x̄k ← x̄k + Ikk−1x̄
k−1.

3. Relax once:

x̄k ← x̄k + R̄tk(f̄ − Ākx̄k).

We now consider the prolongation operator. Since our spaces V1, . . . , VJ are
nested, a usual choice for the prolongation operator is the natural injection operator



V -CYCLE MULTIGRID FOR CELL-CENTERED FINITE DIFFERENCES 555

(i, j)

(I, J)(I1, J)

(I, J1)(I1, J1)

(i, j1)

(I, J1)(I1, J
1)

(i1, j)

(I1, J)

(I1, J1)

(i1, j)

(I2, J)

(I2, J1)

(i, j1)

(I, J2)(I1, J2)

Fig. 1. Element Eki,j and its subdivision (I1 = I − 1, j1 = j + 1, . . .).

Ikk−1 : Vk−1 → Vk, but as shown in [4], the energy norm of Ink is
√

2, which violates the
condition noted in [11] and, hence, we are forced to use either the variable V -cycle or
W -cycle [7]. Indeed, the numerical experiments in [10], [4] show that the convergent
factor for the V -cycle grows and may eventually lead to a divergent algorithm. On
the other hand, Wesseling [15] and Wesseling and Khalil [12] considered the same
prolongation operator together with a restriction operator based on the triangulation
of the domain. These pair of operators are chosen to satisfy the following heuristic
condition for the optimal multigrid convergence: mp + mr > 2, where mp and mr

are one plus the orders of the prolongation and the restriction operators [7], respec-
tively. However, such choices of prolongation and restriction do not fit well with the
theory developed by Bramble, Pasciak, and Xu [6]; the symmetry of the algorithm
plays a crucial role there and thus requires the restriction to be the transpose of the
prolongation operator.

This motivates our use of a weighted prolongation operator similar to the trans-
pose of the restriction used by Wesseling, but we instead choose the weight based on
the rectangular partition. The restriction operator is chosen as its transpose to retain
the symmetry of the algorithm. One could choose a prolongation operator based on
linear or bilinear interpolation to obtain a similar algorithm, but our weighted oper-
ator seems to be the simplest for satisfying the conditions of the above framework.

Fix a square cell (i, j) at level k−1 and divide it into four subcells, labeling them
counterclockwise as (I, J), (I − 1, J), (I − 1, J − 1), (I, J − 1) (see Figure 1). For
v ∈ Vk−1, define the weighted prolongation operator Ikk−1 as follows:

(Ikk−1v)I,J =
1

4
(2vi,j + vi,j+1 + vi+1,j),(2.11)

(Ikk−1v)I−1,J =
1

4
(2vi,j + vi,j+1 + vi−1,j),(2.12)

(Ikk−1v)I,J−1 =
1

4
(2vi,j + vi+1,j + vi,j−1),(2.13)
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(Ikk−1v)I−1,J−1 =
1

4
(2vi,j + vi−1,j + vi,j−1).(2.14)

This operator is motivated by a geometric insight: the subcell (I − 1, J) shares two
edges with subcells contained in the cell (i, j) and one each with cells in (i, j+ 1) and
(i− 1, j).

Remark 2.1. Note that Ikk−1 preserves piecewise constant functions, so it pos-
sesses an important approximation property that will be used later.

We prove the following crucial energy norm estimate.
Proposition 2.1. For all v ∈ Vk−1, we have

Ak(Ikk−1v, Ikk−1v) ≤ C(p)Ak−1(v, v),(2.15)

where C(p) = 1 if the coefficient p is constant and C(p) = 1 +O(hk) if p is a general
Lipschitz continuous function.

Proof. Fix v ∈ Vk−1. It is not hard to see that Ak−1(v, v) is the square sum
of differences of the function values across neighboring cells in Ek−1. Collecting the
terms corresponding to the normal derivatives along the left walls and the top walls
of each cell Ek−1

ij , we see that (see Figure 2 for indices)

Ak−1(v, v) =

n∑
i,j

vi,j

[
pij− 1

2
(vi,j − vi,j−1) + pi− 1

2 j
(vi,j − vi−1,j)

+ pi+ 1
2 j

(vi,j − vi+1,j) + pij+ 1
2
(vi,j − vi,j+1)

]
=

n,n∑
i=2,j=1

pi− 1
2 j

(vi,j − vi−1,j)
2 +

n,n−1∑
i=1,j=1

pij+ 1
2
(vi,j+1 − vi,j)2

+ 2
n∑
l=1

pl, 12 v
2
l,1 + 2

n∑
l=1

pl,n+ 1
2
v2
l,n

+ 2
n∑

m=1

p 1
2 ,m

v2
1,m + 2

n∑
m=1

pn+ 1
2 ,m

v2
n,m,(2.16)

where n = 2k−1.
Now we show that Ak(Ikk−1v, Ikk−1v) can be bounded by (2.16). Set u = Ikk−1v.

If we denote I − 1
2 and I + 3

2 by I 1
2

and I
3
2 (similarly for other terms), we have

Ak(u, u) =
2n∑
I,J

uI,J

[
pI,J 1

2

(uI,J − uI,J1
) + pI 1

2
,J(uI,J − uI1,J)

+ p
I

1
2 ,J

(uI,J − uI1,J) + p
I,J

1
2

(uI,J − uI,J1)
]

=
2n∑
I,J

[
pI 3

2
,J1

(uI1,J1
− uI2,J1

)2 + pI 3
2
,J(uI1,J − uI2,J)2

+ pI 1
2
,J1(uI,J1 − uI1,J1)2 + pI 1

2
,J(uI,J − uI1,J)2

+ pI1,J 1
2

(uI1,J − uI1,J1
)2 + pI,J 1

2

(uI,J − uI,J1
)2

+ p
I1,J

1
2

(uI1,J1 − uI1,J)2 + p
I,J

1
2

(uI,J1 − uI,J)2
]

+ boundary terms.(2.17)
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In the above equation, the first two terms come from the normal derivatives along
the two left edges of EI1,J1

and EI1,J , while the second two come from the normal
derivatives along two left edges of EI,J1

and EI,J . (We drop the superscript k here
for simplicity.) Similarly, the next four come from the normal derivatives along the
top edges of the same elements. Substituting (2.11) through (2.14) into (2.17), then,
except for boundary terms, we have

Ak(u, u) =
1

16

∑
i,j

Si,j ,

where

Si,j = pI 3
2
,J1

(vi,j − vi−1,j + vi,j−1 − vi−1,j−1)2

+ pI 3
2
,J(vi,j − vi−1,j + vi,j+1 − vi−1,j+1)2

+ pI 1
2
,J1

(vi+1,j − vi,j + vi,j − vi−1,j)
2

+ pI 1
2
,J(vi+1,j − vi,j + vi,j − vi−1,j)

2

+ pI1,J 1
2

(vi,j+1 − vi,j + vi,j − vi,j−1)2

+ pI,J 1
2

(vi,j+1 − vi,j + vi,j − vi,j−1)2

+ p
I1,J

1
2

(vi,j+1 − vi,j + vi−1,j+1 − vi−1,j)
2

+ p
I,J

1
2

(vi,j+1 − vi,j + vi+1,j+1 − vi+1,j)
2.

(2.18)

The Cauchy–Schwarz inequality implies that

Si,j ≤ 2[φ1(vi,j − vi−1,j)
2 + φ2(vi,j−1 − vi−1,j−1)2

+ φ3(vi,j+1 − vi−1,j+1)2 + φ4(vi+1,j − vi,j)2

+ φ5(vi,j − vi,j−1)2 + φ6(vi,j+1 − vi,j)2

+ φ7(vi−1,j+1 − vi−1,j)
2 + φ8(vi+1,j+1 − vi+1,j)

2],

where

φ1 = pI 3
2
,J1

+ pI 3
2
,J + pI 1

2
,J1

+ pI 1
2
,J ,

φ2 = pI 3
2
,J1
, φ3 = pI 3

2
,J ,

φ4 = pI 1
2
,J1 + pI 1

2
,J , φ5 = pI1,J 1

2

+ pI,J 1
2

,

φ6 = pI1,J 1
2

+ pI,J 1
2

+ p
I1,J

1
2

+ p
I,J

1
2
,

φ7 = p
I1,J

1
2
, φ8 = p

I,J
1
2
.

We consider only terms of the form (vi,j − vi−1,j)
2 and (vi,j+1 − vi,j)

2. First, Sij
has 2φ1(vi,j − vi−1,j)

2 and 2φ6(vi,j+1 − vi,j)
2. Also, there are some contributions

from neighboring cells: 2φ5(vi,j+1 − vi,j)2 and 2φ2(vi,j − vi−1,j)
2 come from Si,j+1,

2φ3(vi,j − vi−1,j)
2 from Si,j−1, 2φ4(vi,j − vi−1,j)

2, 2φ8(vi,j+1− vi,j)2 from Si−1,j , and
finally 2φ7(vi,j+1 − vi,j)2 from Si+1,j . Summing over all i, j, we see that

1

16

n∑
i,j

Sij ≤ 1

16

n∑
i,j

(2φ1 + 2φ2 + 2φ3 + 2φ4)(vi,j − vi−1,j)
2

+ (2φ6 + 2φ5 + 2φ7 + 2φ8)(vi,j+1 − vi,j)2.

(2.19)
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(I1, J)

(I1, J1)

(I, J)

(I, J1)

(i, j)

J1

J ◦

◦

◦

◦

×(i, j
1
2 )

×(i
1
2 , j)

I 3
2

I 1
2

I
1
2

Fig. 2. Edges of Ei,j and EI,J .

If p is constant, (2.19) is obviously bounded by the first two sums of (2.16). If not, it
is easy to see that

1

16
(2φ1 + 2φ2 + 2φ3 + 2φ4) =

1

4
(pI 3

2
,J1

+ pI 3
2
,J + pI 1

2
,J1

+ pI 1
2
,J) = pi− 1

2 ,j
+O(h)

and

1

16
(2φ5 + 2φ6 + 2φ7 + 2φ8) = pi,j+ 1

2
+O(h).

Hence, the bounding constant is 1 +O(h) in this case. Now we investigate boundary
terms. Here we assume p = 1 for simplicity. For general p, the same argument as
above applies. It suffices to look at the terms uI,1. For I odd, we have

uI,1 =
2vi,1 + vi−1,1 − vi,1

4
=
vi,1 + vi−1,1

4
,

and for I even, we have

uI,1 =
2vi,1 + vi+1,1 − vi,1

4
=
vi,1 + vi+1,1

4
.

Thus,

2

2n∑
l=1

u2
l,1 =

1

8

n∑
i=1

(vi,1 + vi−1,1)2 + (vi,1 + vi+1,1)2

≤ 1

8

n∑
i=1

2(2v2
i,1 + v2

i−1,1 + v2
i+1,1)(2.20)

so the coefficient of a typical term v2
i,1 in the above sum is (4 + 2 + 2)/8 = 1. We

now account for the contributions from Si,1. Note that when j = 1, the first term in
(2.18) vanishes, so

Si,1 ≤ 2[3(vi,1 − vi−1,1)2

+ (vi,2 − vi−1,2)2 + 2(vi+1,1 − vi,1)2

+ 2(vi,1 − vi,0)2 + 4(vi,2 − vi,1)2

+ (vi−1,2 − vi−1,1)2 + (vi+1,2 − vi+1,1)2].

(2.21)
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Hence, the contribution from Si,1 is

4(vi,1 − vi,0)2 = 16v2
i,1

since vi,0 = −vi,1. Thus, the sum of the coefficients is 1 + 16/16 = 2, so the terms
in (2.20) and (2.21) are bounded by the third sum of (2.16). Similarly, the other
boundary terms can be bounded by the rest of the terms of (2.16). This completes
the proof.

The next ingredient for establishing multigrid convergence theory is the so-called
regularity and approximation property: there exist constants α ∈ (0, 1] and Cα such
that ∀k = 1, . . . , J ,

Ak((I − Ikk−1Pk−1)u, u) ≤ C2
α

(‖Aku‖2
λk

)α
Ak(u, u)1−α ∀u ∈ Vk.(2.22)

Here, Aku denotes the function whose value at the cell (i, j) is (Ākū)i,j , λk is the
largest eigenvalue of Ak, and Pk−1 is the elliptic projection defined by

Ak−1(Pk−1u, v) = Ak(u, Ikk−1v) ∀u ∈ Vk, v ∈ Vk−1.(2.23)

We also need the following operator P̃k−1 : Vk → Vk−1 defined by

Ak−1(P̃k−1u, v) = Ak(u, v) ∀u ∈ Vk, v ∈ Vk−1.(2.24)

Lemma 2.2. Property (2.22) holds for α = 1
2 .

Proof. The proof is similar to the case of natural injection in [4]. Fix u ∈ Vk and
let w be the solution of the following boundary value problem:

−∇ · p∇w = Aku in Ω,
w = 0 on ∂Ω.

(2.25)

Note that u is the cell-centered approximation of w, so we have [8]

|Ak(u−Qkw, u−Qkw)| ≤ Ch2
k‖Aku‖2.(2.26)

By definition of Ikk−1, the left-hand side of (2.22) can be rewritten as

Ak((I − Ikk−1Pk−1)u, u) = Ak(u, u)−Ak−1(Pk−1u, Pk−1u)

= Ak(u−Qkw, u)

+ Ak−1(Qk−1w − Pk−1u, Pk−1u)

+ Ak(Qkw, u)−Ak−1(Qk−1w,Pk−1u).(2.27)

Applying the Cauchy–Schwarz inequality to the first term, by (2.26) we have

|Ak(u−Qkw, u)| ≤ Ak(u−Qkw, u−Qkw)1/2Ak(u, u)1/2

≤ Chk‖Aku‖Ak(u, u)1/2.(2.28)

The second term can be estimated similarly by noting that P̃k−1u is the cell-centered
approximation of w in Vk−1. By (2.23) and (2.24), we have

Ak−1(Qk−1w − Pk−1u, Pk−1u) = Ak−1(Qk−1w − P̃k−1u, Pk−1u)

+ Ak−1(P̃k−1u− Pk−1u, Pk−1u)

= Ak−1(Qk−1w − P̃k−1u, Pk−1u)

− Ak(u, (I − Ikk−1)Pk−1u).(2.29)



560 DO Y. KWAK

By similar arguments as above, we see that

|Ak−1(Qk−1w − P̃k−1u, Pk−1u)| ≤ Chk‖Aku‖Ak−1(Pk−1u, Pk−1u)1/2.(2.30)

Since Ikk−1 preserves piecewise constant functions, we have

|Ak(u, (I − Ikk−1)Pk−1u)| ≤ ‖Aku‖ · ‖(I − Ikk−1)Pk−1u‖
≤ ChkAk−1(Pk−1u, Pk−1u)1/2‖Aku‖.(2.31)

Note that

Ak−1(Pk−1u, Pk−1u) ≤ 1

2− C(p)
Ak(u, u)(2.32)

if and only if (2.15) holds. Substituting (2.30) and (2.31) into (2.29), we see from
(2.32) that the second term in (2.27) satisfies

|Ak−1(Qk−1w − Pk−1u, Pk−1u)| ≤ Chk‖Aku‖Ak−1(Pk−1u, Pk−1u)1/2

≤ Chk‖Aku‖Ak(u, u)1/2.(2.33)

We now estimate the third and fourth term in (2.27). Since Ikk−1Qk−1 preserves
piecewise constant functions, we have

|Ak(Qkw, u)−Ak−1(Qk−1w,Pk−1u)| = |Ak(Qkw, u)−Ak(Ikk−1Qk−1w, u)|
≤ ‖(I − Ikk−1Qk−1)w‖ ‖Aku‖
≤ Chk‖w‖1‖Aku‖,

where ‖·‖1 is the Sobolev norm of order one. It remains to bound ‖w‖1 by Ak(u, u)1/2,
which can be done exactly the same way as in [4]. Thus, we have

|Ak(Qkw, u)−Ak−1(Qk−1w,Pk−1u)| ≤ Chk‖Aku‖Ak(u, u)1/2.(2.34)

Combining estimates (2.28), (2.33), and (2.34), together with the obvious bound
λk ≤ Ch−2

k , we obtain (2.22).
Now we can apply Theorems 1 and 8 of [6] to obtain multigrid convergence es-

timates. We first note that our V (1, 1)-cycle algorithm has an error propagation
operator of the form Ek = I −BkAk.

Theorem 2.3. We have the following.
1. If p is constant, then V (1, 1) converges according to

0 ≤ Ak(Eku, u) ≤ δkAk(u, u) ∀u ∈ Vk,(2.35)

where δk = Ck
Ck+

√
m

.

2. If p is Lipschitz continuous, then

η0Ak(u, u) ≤ Ak(BkAku, u) ≤ η1Ak(u, u) ∀u ∈ Vk,(2.36)

where η1 is independent of k and η0 ≤ 1− δk.
Remark 2.2. If (2.36) holds, then the linear iteration

u`+1 ← u` +Bk(f −Aku`), ` = 1, 2, . . . ,
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yields a reduction factor given by

ρ ≡ ‖I −BkAk‖A ≤ max{η1 − 1, 1− η0},

where ‖ · ‖A denotes the discrete energy norm induced by Ak(·, ·). For example, if
η1 − 1 = 1− η0, then ρ = (K − 1)/(K + 1), where K = η1/η0. If we use the V (1, 1)
cycle as a preconditioner for conjugate gradients, it is well known (see [5], [3]) that the
resulting PCG method would converge with an asymptotic reduction factor bounded by

√
K − 1√
K + 1

.

This is better than for the linear iteration because

√
K − 1√
K + 1

≤ K − 1

K + 1
.

If (2.35) holds, then η1 = 1 and η0 = 1 − δk and the above discussion would im-
ply that the preconditioned conjugate gradient method has the reduction factor (1 −√

1− δk)/(1 +
√

1 + δk) ≈ δk/4.
Remark 2.3. The same results hold for rectangular domains with nonuniform

meshes, as long as the mesh lines are axi-parallel. Also, the results hold when the
domain is nonrectangular but consists of rectangular pieces.

3. Numerical experiment. Consider the following problem on the unit square:

−∇ · p∇ũ = f in Ω = (0, 1)2,
ũ = 0 on ∂Ω.

(3.1)

We study the performance of the V (1, 1)-cycle with Gauss–Seidel relaxation (in lex-
icographic order before the coarse grid correction and in reverse order afterwards,
corresponding to the use of R̄k and R̄tk). We compare our weighted interpolation
version with the natural injection scheme. We report on the eigenvalues, condition
numbers, and reduction factors of both multigrid algorithms. The power method
(with origin shift for minimum eigenvalues) is used to estimate the eigenvalues of
BkAk and the iteration is stopped when the eigenvalues become stationary up to four
decimal points. The reduction factor is computed as a geometric mean of reduction
factor over 50 iterations, starting from a random initial guess applied to the homoge-
neous discrete problem. We also report on the reduction factors when the multigrid
algorithms are used as preconditioners for conjugate gradients.

As a first example, we take p = 1. Table 1 shows the result with weighted
interpolation. Note that the condition number in this case is almost the same as that
of the conforming finite element methods. Table 2 shows that, with injection, the
condition number deteriorates as the number of levels grows. As a second example,
we take p = pj , a discontinuous function:

pj =

{
10j (j = 1, 2) when x > 1

2 , y >
1
2 ,

1 otherwise.

In assembling the stiffness matrix when the coefficient is discontinuous, it is usual
to take the harmonic averages of the coefficients on the interface [14]. However, to
see when the multigrid algorithms diverge but still serve as a preconditioner, we just



562 DO Y. KWAK

Table 1
Weighted interpolation, p = 1.

hJ λmin λmax K δ
1/32 0.673 0.999 1.484 0.099
1/64 0.667 0.999 1.498 0.099
1/128 0.664 0.999 1.505 0.099
1/256 0.663 0.999 1.507 0.099

Table 2
Injection, p = 1.

hJ λmin λmax K δ
1/32 0.784 1.444 1.842 0.218
1/64 0.783 1.534 1.960 0.309
1/128 0.784 1.618 2.060 0.403
1/256 0.784 1.684 2.148 0.495

Table 3
Weighted interpolation, p = p1.

hJ λmin λmax K δ
1/32 0.638 1.604 2.514 0.388
1/64 0.633 1.710 2.701 0.582
1/128 0.630 1.767 2.805 0.582
1/256 0.616 1.842 2.990 0.684

Table 4
Injection, p = p1.

hJ λmin λmax K δ
1/32 0.755 2.810 3.722 divergent
1/64 0.728 2.987 4.103 divergent
1/128 0.727 3.140 4.319 divergent
1/256 0.722 3.266 4.526 divergent

Table 5
Weighted interpolation, p = p2.

hJ λmin λmax K δ
1/32 0.488 8.92 18.28 divergent
1/64 0.448 9.77 21.81 divergent
1/128 0.423 10.44 24.68 divergent
1/256 0.395 11.03 27.92 divergent

Table 6
Injection, p = p2.

hJ λmin λmax K δ
1/32 0.767 18.45 24.05 divergent
1/64 0.767 19.43 25.33 divergent
1/128 0.716 21.14 29.53 divergent
1/256 0.689 21.63 31.39 divergent

take one-sided limits to evaluate the function p. This results in a system that is
more difficult to solve. Although our theory does not cover this case, Tables 3 and 4
show that when the jump is not severe, the weighted interpolation scheme converges
well while the injection scheme diverges. When the jump is severe, both algorithms
diverge as Tables 5 and 6 show. Table 7 shows that both algorithms perform well as
preconditioners for the conjugate gradient method.
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Table 7
Reduction factor with PCG, p = 1.

hJ Weighted interp. Injection
1/32 0.007 0.018
1/64 0.008 0.023
1/128 0.008 0.027
1/256 0.008 0.029

Table 8
Weighted interpolation with a V (1, 0) cycle, p = 1.

hJ λmin λmax K δ
1/32 0.555 1.270 2.309 0.199
1/64 0.538 1.330 2.472 0.205
1/128 0.530 1.331 2.511 0.207
1/256 0.525 1.332 2.537 0.209

Table 9
Injection with a V (1, 0) cycle, p = 1.

hJ λmin λmax K δ
1/32 0.558 2.405 4.301 divergent
1/64 0.568 2.965 5.211 divergent
1/128 0.565 3.627 6.419 divergent
1/256 0.557 4.421 7.937 divergent

Finally, we tested both algorithms using a simple V (1, 0)-cycle (with no post
smoothing). Tables 8 and 9 show that weighted interpolation still works well, while
injection does not.
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