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Abstract. We introduce a low order finite element method for three dimensional
elasticity problems. We extend Kouhia-Stenberg element [12] by using two noncon-
forming components and one conforming component, adding stabilizing terms on
the associated bilinear form to ensure the discrete Korn’s inequality. Using the sec-
ond Strang’s lemma, we show that our scheme has optimal convergence rates in L2

and piecewise H1-norms even when Poisson ratio ν approaches 1/2. Even though
some efforts have been made to design a low order method for three dimensional
problems in [11, 16], their method uses some higher degree basis functions. Our
scheme is the first true low order method. We provide three numerical examples
which support our analysis. We compute two examples having analytic solutions.
We observe the optimal L2 and H1 errors for many different choice of Poisson ra-
tios including the nearly incompressible cases. In the last example, we simulate the
driven cavity problem. Our scheme shows non-locking phenomena for the driven
cavity problems also.
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Key words: Elasticity equation, low order finite element, Kouhia-Stenberg element, locking
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1. Introduction

We consider the following type of elasticity equation in a convex polyhedral domain
Ω in R3:

− divσ(u) = f in Ω, (1.1a)

u = 0 in ∂Ω, (1.1b)

where u = (u1, u2, u3) is the displacement variable and f ∈ [L2(Ω)]3 is an external
force. We may also consider the pure traction problems, but we choose the Dirichlet

∗Corresponding author. Email addresses: gwanghyun@kunsan.ac.kr (G. Jo), kdy@kaist.ac.kr
(D. Y. Kwak)

http://www.global-sci.org/nmtma 281 c©2020 Global-Science Press



282 G. Jo and D. Y. Kwak

boundary conditions just for simplicity of presentation. Here, the strain tensor ε(u)
and the stress tensor σ(u) are as usual,

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, σ(u) = 2µε(u) + λtr(ε(u))I,

where I is 3 × 3 by identity matrix. The Lamé constants µ and λ are given in terms of
modulus of elasticity E > 0 and Poisson’s ratio 0 < ν < 1/2,

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
.

We note that as ν → 1/2, the parameter λ goes to infinity, as in incompressible case.
It is well known that conforming low order finite elements for solving elastic-

ity problem usually yields a locking phenomena as the Poisson ratio approaches to
1/2 [15]. For nonconforming elements, the associated bilinear form fails to satisfy the
discrete Korn’s inequality [9]. Hence the coerciveness does not hold. The analyses re-
garding the locking phenomena in [9,15] are developed in two dimensional problems.
However, by restricting to R2, we can see that low order methods are also locking
in R3. Thus, to obtain optimal convergence rates using Lagrangian type of finite el-
ement methods, one must use polynomial of order ≥ 4, when the material is nearly
incompressible [15]. However, some nonconforming elements of degree ≥ 2 converges
uniformly as the Poisson ratio approaches 1/2 [9].

Some efforts have been made to avoid locking phenomena using lower order non-
conforming methods. One often uses reduced integration or macro element tech-
nique [4, 9]. Some people apply the mixed methods [5] to elasticity equations
(see [14]). Other approaches are to design the finite element (FE) space or to modify
the bilinear form to satisfy the discrete Korn’s inequality. Kouhia-Stenberg (KS) [12]
used conforming-nonconforming pair for two dimensional problems, while Hansbo, et
al. [10] used nonconforming pair with stability terms to enforce coerciveness. How-
ever, it was shown [11, 16] that a straightforward extension of KS element to three
dimensional case is impossible. For example, the pair (P 1

n , P
1
n , P

1
c ) would not satisfy

the Korn’s inequality if we restrict it to the first two components. The authors in [16]
used Q2-conforming space in one of the components while the authors in [11] used
bubble functions of degree 3 in one of the components.

In this paper, we present a simple extension of KS element to three dimensional
elasticity problems using the pair (P 1

n , P
1
n , P

1
c ). Instead we add stability terms on the

first two component, which yields the smaller number of degrees of freedom than the
spaces introduced in [11, 16]. The concept of adding stabilizing term on the bilinear
form is motivated by [10, 13]. With the aid of the stabilizing term, we were able to
prove that our scheme is stable, i.e., the bilinear form is coercive with respect to broken
H1-norm. In this way, we obtain a new extension of KS method to 3D element using
only piecewise linear functions, while the number of unknowns is about 69 percent
of (P 1

n , P
1
n , P

1
n) elements (see Example 4.2). We provide optimal error estimates in
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the energy norm and L2-norm. We show that our scheme converges uniformly as ν
approaches 1/2, hence it is non-locking.

We provide numerical results which supports our analysis. The numerical results
show that our scheme is optimal in convergence both in L2 and H1-norms regardless
of the Poisson ratio. In [10], the P1-nonconforming methods with a stabilizing terms
was developed for two dimensional elasticity problems while the 3D extension of their
work using (P 1

n , P
1
n , P

1
n) was discussed without numerical tests. We also report the per-

formance of (P 1
n , P

1
n , P

1
c ) element compared to that of [10](both with stability terms).

We introduce some notations. Let D be any open domain. We let Hm(D) be the
Sobolev space with (semi)-norms denoted by | · |m,D and || · ||m,D. We define H1

0 (Ω) to
be the set of functions in H1(Ω) with vanishing traces. The following theorem is well
known [6].

Theorem 1.1. There exists an unique u ∈ [H1
0 (Ω)]3, satisfying (1.1a)-(1.1b).

To the author’s knowledge, the regularity of the solution u in three dimensional
elasticity problems is in general not known. Thus, we assume the following result for
our analysis.

(A.1) For all f ∈ L2(Ω), there exists a solution u ∈ [H1
0 (Ω)]3 ∩ [H2(Ω)]3 and a constant

C > 0 independent of λ such that

||u||H2(Ω) + λ||divu||H1(Ω) ≤ C||f ||L2(Ω).

We note that the above assumption is an extension of the L2-stability theorem for two
dimensional elasticity problem [1].

2. Three dimensional generalization of KS element

Let Th be any regular partitioning of Ω by tetrahedra described in [7]. In other
words, there exists a constant η > 0 such that hT /ρT ≤ η for all T ∈ Th, where
hT = diam(T ) and ρT is the radius of maximum sphere contained in T . We let h =
maxT∈ThhT . We denote the set of interior faces of Th by Eh.

We define local spaces on each element T ∈ Th. Let Sh(T ) be the space of the linear
functions of the form a + bx + cy + dz on T with vertex degrees of freedom (dof) and
Nh(T ) be the space of the similar linear functions defined by face average dof. With
the local space given by Uh(T ) := Nh(T )×Nh(T )× Sh(T ), the global space is defined
by

Uh(Ω) =



φh = (φh,1, φh,2, φh,3) ∈ Uh(T ) for any T ∈ Th,∫
F

φh,1|T1
=

∫
F

φh,1|T2
, where F is comman face of T1 and T2,∫

F

φh,2|T1 =

∫
F

φh,2|T2 , where F is comman face of T1 and T2,

φh,3 is continuous on each vertex of T ∈ Th,∫
F

φh,1 =

∫
F

φh,2 = φh,3|F = 0, where F is part of ∂Ω.


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For each face F ∈ Eh, we associate the unit normal vector nF at F . We define a jump
[u]F for u ∈ Hh(Ω) := Uh(Ω) + [H1

0 (Ω)]3 as

[u]F (x) := lim
δ→0+

(u(x− δnF )− u(x+ δnF )).

Let ah(·, ·) be the bilinear form on Hh(Ω) defined by

ah(u,v) :=
∑
T∈Th

∫
T

2µε(u) : ε(v) +
∑
T∈Th

∫
T
λdivudivv

+
∑
F∈Eh

2µτ

|F |
1
2

∫
F

[Pu]F · [Pv]F , (2.1)

where τ is a positive constant. Here, P : [L2(Ω)]3 → [L2(Ω)]2 is a projection operator
defined by, P(u) = (u1, u2) for u = (u1, u2, u3). By dividing (2.1) by 2µ and replacing
λ/2µ by λ, we may assume 2µ = 1 from now on. Our methods reads: Find uh ∈ Uh(Ω)
such that,

∀vh ∈ Uh(Ω), ah(uh,vh) = (f ,vh). (2.2)

3. Error analysis

We define piecewise Sobolev (semi)-norms || · ||1,h and energy like norms || · ||Eh(Ω)

for u ∈ Hh(Ω),

||u||21,h =
∑
T∈Th

||u||21,T , |u|21,h =
∑
T∈Th

|u|21,T ,

||u||2Eh
:=

∑
T∈Th

||ε(u)||20,T + ||
√
λdivu||20,T +

∑
F∈∂T∩Eh

1

|F |
1
2

||[Pu]F ||20,F

 .

It is easy to see that
√
ah(·, ·) and || · ||Eh

are equivalent, i.e., there exists some C > 0
such that

1

C
||u||2Eh

≤ ah(u,u) ≤ C||u||2Eh
, (3.1)

for all u ∈ Hh(Ω). We define interpolation operator Ih : u ∈ [H2(T )]3 → Uh(T ) by∫
Fi

(Ihu)1 =

∫
Fi

u1,

∫
Fi

(Ihu)2 =

∫
Fi

u2, (Ihu)3(Ai) = u3(Ai),

where Fi, (i = 1, 2, 3, 4) and Ai, (i = 1, 2, 3, 4) are faces and nodes of T respectively.
We extend the definition of Ih for u ∈ [H2(Ω)]3 by (Ihu)|T = Ih(u|T ) for each T ∈ Th.
The following interpolation property are obvious

||u− Ihu||L2(Ω) + h||u− Ihu||1,h ≤ Ch2||u||H2(Ω). (3.2)

Also, we will prove the following interpolation property with respect to || · ||Eh
.
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Proposition 3.1. There exists C > 0 independent of λ such that

||u− Ihu||Eh
≤ Ch

(
||u||H2(Ω) + λ||divu||H1(Ω)

)
(3.3)

for all u ∈ [H2(Ω)]3.

For the proof, we follow the lines of Lemma 4.3 in [13]. We simplify the notation
as X(T ) = [H2(T )]3 for T ∈ Th. For any u = (u1, u2, u3) ∈ X(T ), we define norms:

||u||2X(T ) := ||u||21,T + |u|22,T + ||
√
λdivu||21,T ,

|||u|||22,T := |u|22,T + |
√
λdivu|21,T +

4∑
i=1

|u1|Fi |2 +
4∑
i=1

|u2|Fi |2 +
4∑
i=1

|u3(Ai)|2,

where Fi’s (i = 1, 2, 3, 4) and Ai’s (i = 1, 2, 3, 4) are faces and nodes of T , and uj |Fi are
the average of uj ’s (j = 1, · · · , 4) over Fi, (i = 1, · · · , 4). First, we need the following
Lemma.

Lemma 3.1. |||u|||22,T is a norm on the space X(T ) and is equivalent to || · ||X(T ).

Proof. To show that ||| · |||2,T is a norm, assume that |||u|||2,T = 0. Then, by |u|2,T = 0,
u is linear on T . However, since

4∑
i=1

|u1|Fi |2 +
4∑
i=1

|u2|Fi |2 +
4∑
i=1

|u3(Ai)|2 = 0,

we see that u = 0 on T .
Now we show that ||| · |||2,T and || · ||X(T ) are equivalent. By Sobolev embedding

theorem, X(T ) is embedded in C0(T ) and there exists some constant C(T ) > 0 such
that for all u ∈ X(T ), we have

4∑
i=1

|u1|Fi |+
4∑
i=1

|u2|Fi |+
4∑
i=1

|u3(Ai)| ≤ 12||u||L∞(T ) ≤ 12C(T )||u||X(T ). (3.4)

Thus, we see that

|||u|||2,T ≤ 12C(T )||u||X(T ). (3.5)

Now suppose that the converse

‖u‖X(T ) ≤ C|||u|||2,T , ∀u ∈ X(T ),

fails for any C > 0. Then there exists a sequence {uk} in X(T ) with

‖uk‖X(T ) = 1, |||uk|||2,T ≤
1

k
, k = 1, 2, · · · . (3.6)
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By Rellich compactness theorem, there exists a subsequence of {uk}which converges in
[H1(T )]3. Without loss of generality, we can assume that the sequence itself converges.
Then {uk} is Cauchy sequence in [H1(T )]3. We claim that {uk} is Cauchy sequence in
X(T ). By the definition of the norm |||·|||2,T , we have |uk|2,T +|

√
λdivuk|1,T ≤ |||uk|||2,T ≤

1/k. Combining the fact that uk is Cauchy in [H1(T )]3 we see that,

||uk − ul||2X(T ) =||uk − ul||21,T + |uk − ul|22,T + ||
√
λdiv(uk − ul)||21,T

≤||uk − ul||21,T + ||
√
λdiv(uk − ul)||20,T

+ |uk|22,T + |ul|22,T + |
√
λdivuk|21,T + |

√
λdivul|21,T

≤(1 + λ)||uk − ul||21,T + 1/k2 + 1/l2 → 0,

as k, l→∞. Since X(T ) is complete space, uk converges to some element u∗ ∈ X(T ).
By (3.5) and (3.6), we have

|||u∗|||2,T ≤ |||u∗ − uk|||2,T + |||uk|||2,T ≤ 12C(T )||u∗ − uk||X(T ) +
1

k
→ 0,

which implies that u∗ = 0. This is a contradiction, since as a limit of the sequence
satisfying ‖uk‖X(T ) = 1, we must have ‖u∗‖X(T ) = 1. 2

Now we show the interpolation error estimate with respect to energy like norm.
To show it we need a reference element. Let T̂ be a reference element and F (x̂) =
Bx̂+b : T̂ → T be the usual affine mapping. We let X(T̂ ) be the space of all functions
defined by û := u ◦ F (x̂), u ∈ X(T ). We need a lemma from [7].

Lemma 3.2. There exists some C > 0 independent of v ∈ Hm(T ), such that

|v̂|m,T̂ ≤ C‖B‖
m|detB|−1/2|v|m,T , ∀v ∈ Hm(T ), (3.7)

and
|v|m,T ≤ C‖B−1‖m|detB|1/2|v̂|m,T̂ , ∀v̂ ∈ Hm(T̂ ). (3.8)

Lemma 3.3. There exists some C > 0 independent of λ, h and u ∈ X(T ) such that

||u− Ihu||1,T + ||
√
λdiv(u− Ihu)||0,T ≤ Ch(||u||2,T + λ||divu||1,T )

for all T ∈ Th and u ∈ X(T ).

Proof. By the definition of || · ||X(T ) (T̂ in place of T ), we have

||û− Ihû||1,T̂ + ||
√
λdiv(û− Ihû)||0,T̂ ≤ ||û− Ihû||X(T̂ ). (3.9)

Also, by definition of Ih and ||| · |||2,T , we see that

|||û− Ihû|||2,T̂ = |û|2,T̂ + |
√
λdivû |1,T̂ . (3.10)
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The desired inequality follows by the equivalence of the norms || · ||X(T̂ ) and ||| · |||2,T̂
(Lemma 3.1 applied to T̂ ) and the standard scaling argument as follows:

||u− Ihu||1,T + ||
√
λdiv(u− Ihu)||0,T

≤||û− Ihû||1,T̂ + ||
√
λdiv(û− Ihû)||0,T̂ (by (3.8))

≤C̃1h
1/2||û− Ihû||X(T̂ ) (by (3.9))

=C̃1C(T̂ )h1/2(|û|2,T̂ + |
√
λdivû |1,T̂ ) (by Lemma 3.1 and (3.10))

≤C̃1C(T̂ )h1/2 · C̃2h
1/2(||u||2,T + λ||divu||1,T ), (by (3.7))

where C̃1 and C̃2 are constants arising from the scaling between the T and T̂ . We see
that the constants are independent of λ, h and u ∈ X(T ). 2

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. By Lemma 3.3, we see that∑
T∈Th

(
||ε(u− Ihu)||0,T + ||

√
λdiv(u− Ihu)||0,T

)
≤Ch(||u||H2(Ω) + λ||divu||H1(Ω)).

By the trace inequality and (3.2), we have∑
T∈Th

∑
F∈∂T∩Eh

1

|F |
1
2

||[P(u− Ihu)]F ||20,F

≤Ch−2
∑
T∈Th

(||u− Ihu||0,T + h||u− Ihu||1,T )2

≤Ch2||u||2H2(Ω).

Thus, we complete the proof. 2

3.1. H1-error estimate

To show that ah(·, ·) is coercive we need the discrete Poincaré and the discrete Korn’s
inequality for the space Uh(Ω). Since Uh(Ω) is a subspace of P1-nonconforming space
(P 1

n , P
1
n , P

1
n), the standard discrete Poincaré inequality for nonconforming space holds

(see the inequality (1.5) of [2]):

Lemma 3.4. There exists a constant C > 0 such that for any vh ∈ Uh(Ω),

C||vh||2L2(Ω) ≤ |vh|
2
1,h.

Next, we need the discrete Korn’s inequality. Since Uh(Ω) is a piecewise H1-vector
fields, we can apply the inequality (1.18) of [3]:
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Lemma 3.5. There exists a constant C > 0 such that

|vh|21,h ≤ C
∑
T∈Th

(
||ε(vh)||20,T + ||Q(vh)||20,T

)
+
∑
F∈Eh

∫
F

1

diam(F)
[vh]2Fds,

for all vh ∈ Uh(Ω), where

Q(vh) := vh −
1

|T |

∫
T
vhdx.

Corollary 3.1. There exists a constant C > 0 independent of λ, such that when h > 0 is
sufficiently small

||vh||21,h ≤ C||vh||2Eh
(3.11)

holds for all vh ∈ Uh(Ω).

Proof. By Bramble-Hilbert lemma, there exists a constant C > 0 independent of
vh ∈ Uh(T ) such that the following holds:

||Q(vh)||20,T ≤ Ch2|vh|21,T .

Hence, by Lemma 3.5, we have

|vh|21,h ≤ C
∑
T∈Th

(
||ε(vh)||20,T + Ch2|vh|21,T

)
+
∑
F∈Eh

∫
F

1

diam (F)
[vh]2Fds.

However, by the regularity assumption on the partitioning Th, there exists some C > 0
such that∑

F∈Eh

∫
F

1

diam (F)
[vh]2Fds ≤ C

∑
F∈Eh

∫
F

1

|F |
1
2

[vh]2Fds = C
∑
F∈Eh

∫
F

1

|F |
1
2

[Pvh]2Fds.

Note that we used the projection P onto the first two component to stabilize the bilinear
form. By Lemma 3.4 and the definition of || · ||Eh

, we see (3.11) holds for all sufficiently
small h > 0. 2

Now we estimate the consistency error.

Theorem 3.1. Let u and uh be the solutions of (1.1) and (2.2), respectively. There exists
C > 0 such that

|ah(u− uh,vh)| ≤ Ch
(
||u||H2(Ω) + λ||divu||H1(Ω)

)
||vh||Eh

. (3.12)



A Stabilized Low Order Finite Element Method for 3D Elasticity Problems 289

Proof. By definition of the bilinear form in (2.1) and by uh is a solution of (2.2), we
have

|ah(u− uh,vh)| = |ah(u,vh)− (f ,vh)|

=

∣∣∣∣∣∣
∑
T∈Th

∫
T
ε(u) : ε(vh) +

∑
T∈Th

∫
T
λdivu · divvh

+
∑
F∈Eh

τ

|F |
1
2

∫
F

[Pu]F · [Pvh]F +
∑
T∈Th

∫
T

divσ(u) · vh

∣∣∣∣∣∣ .
However, by applying integration by parts to the last term and the fact that [Pu]F = 0
on each F ∈ Eh, we have

|ah(u− uh,vh)|

=

∣∣∣∣∣∣
∑
T∈Th

∫
T
ε(u) : ε(vh) +

∑
T∈Th

∫
T
λdivudivvh

−
∑
T∈Th

(∫
T
ε(u) : ε(vh) +

∫
T
λdivudivvh −

∫
∂T

(σ(u) · n) · vh
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
T∈Th

∑
F∈∂T

∫
F

(σ(u) · n) · [vh]F

∣∣∣∣∣∣ .
Since

∫
F [vh]F = 0, we see that∣∣∣∣∣∣

∑
T∈Th

∑
F∈∂T

∫
F

(σ(u) · n) · [vh]F

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
T∈Th

∑
F∈∂T

∫
F

(
σ(u) · n− σ(u) · n

)
· [vh]F

∣∣∣∣∣∣ ,
where σ(u) · n is average of σ(u) · n over F .

We can use a similar technique as in [8] (Lemma 3, page 41) to show that∣∣∣∣∣∣
∑
T∈Th

∑
F∈Eh

∫
F

(
σ(u) · n− σ(u) · n

)
· [vh]F

∣∣∣∣∣∣
≤Ch

∑
T∈Th

||σ(u)||1,T |vh|1,T

≤Ch
(
||u||H2(Ω) + λ||divu||H1(Ω)

)
|vh|1,h.
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We have the conclusion by Corollary 3.1. 2

Now we prove an optimal error estimate in energy like norm.

Theorem 3.2. Let u and uh be the solutions of (1.1) and (2.2) respectively. Then we
have

||u− uh||Eh
≤ Ch

(
||u||H2(Ω) + λ||divu||H1(Ω)

)
≤ Ch||f ||L2(Ω),

uniformly as λ→∞.

Proof. By the triangle inequality, we have

||u− uh||Eh
≤ ||uh − Ihu||Eh

+ ||u− Ihu||Eh
. (3.13)

By the norm equivalence (3.1) and by (3.12), we have

1

C
||uh − Ihu||2Eh

≤ ah(uh − Ihu,uh − Ihu)

=ah(u− Ihu,uh − Ihu) + ah(uh − u,uh − Ihu)

≤C||u− Ihu||Eh
||uh − Ihu||Eh

+ Ch
(
||u||H2(Ω) + λ||divu||H1(Ω)

)
||uh − Ihu||Eh

. (3.14)

By dividing the both sides by ||uh − Ihu||Eh
, we have

||uh − Ihu||Eh
≤ C||u− Ihu||Eh

+ Ch
(
||u||H2(Ω) + λ||divu||H1(Ω)

)
. (3.15)

By combining (3.13), (3.14) and (3.15), we have

||u− uh||Eh
≤ C||u− Ihu||Eh

+ Ch
(
||u||H2(Ω) + λ||divu||H1(Ω)

)
.

Finally, by the interpolation property (3.3), we have

||u− uh||Eh
≤ Ch

(
||u||H2(Ω) + λ||divu||H1(Ω)

)
.

The second inequality follows from (A.1). 2

We remark that we can also obtain the optimal L2-error estimate by the standard
duality argument.

4. Numerical results

In this section, we provide some numerical experiments. The domain Ω is
[−0.5, 0.5]3 in Example 4.1 and Example 4.2 and [−1, 1]3 in Example 4.3. Our Th is
obtained by dividing Ω using uniform cubes of size h = 2−k, k = 1, · · · , 5, and each
cube is then divided into 6 tetrahedra.

The analytic solutions are known in Example 4.1 and Example 4.2. We present the
numerical results with various Poisson ratio including the nearly incompressible case.
We set µ = 1 without loss of generality. In Example 4.2, we compare our schemes with
the P1-nonconforming methods with stabilizing terms introduced in [10]. In Example
4.3, we simulate the driven cavity problem.

In all examples, we see that the proposed scheme is locking free.
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Example 4.1. We choose the exact solution u = ((x2 + y2 + z2 − 1)(y − z), (x2 + y2 +
z2 − 1)(z − x), (x2 + y2 + z2 − 1)(x− y)). We tests four cases of increasing values of ν,
case 1: ν = 0.3, case 2: 0.49, case 3: 0.499, case 4: 0.4999.

The errors in L2 and piecewise H1-norms are given in Table 1 under the parameter
setting τ = 5. We observe O(h2) in L2 and O(h) in H1-norm for all cases as proved in
Section 3. Hence, our methods yield optimal convergence uniformly as ν → 1/2.

For the comparison’s sake, we set τ = 0.5 and report the computation results for
ν = 0.4999 in Table 2. We see that the errors are similar to the previous case when
τ = 5.

Example 4.2. We choose the exact solution u = (x(z−y) sin(x+y+z), y(x−z) sin(x+
y + z), z(y − x) sin(x + y + z)). We only consider the incompressible case ν = 0.4999.
We set τ = 5.

Table 1: L2 and piecewise H1-norm errors with respect to the different Poisson ratio for Example 4.1
(τ = 5).

ν = 0.3 ||u− uh||L2(Ω) order ||u− uh||1,h order
1/h
2 1.024× 10−1 8.079× 10−1

4 2.790× 10−2 1.875 4.573× 10−1 0.821
8 7.148× 10−3 1.965 2.358× 10−1 0.956
16 1.800× 10−3 1.989 1.190× 10−1 0.987
32 4.510× 10−4 1.997 5.968× 10−2 0.995

ν = 0.49 ||u− uh||L2(Ω) order ||u− uh||1,h order
1/h
2 1.031× 10−1 8.410× 10−1

4 2.979× 10−2 1.792 4.777× 10−1 0.816
8 7.709× 10−3 1.951 2.442× 10−1 0.968
16 1.948× 10−3 1.985 1.229× 10−1 0.991
32 4.882× 10−4 1.996 6.158× 10−2 0.996

ν = 0.499 ||u− uh||L2(Ω) order ||u− uh||1,h order
1/h
2 1.041× 10−1 8.546× 10−1

4 3.040× 10−2 1.776 4.819× 10−1 0.827
8 7.852× 10−3 1.953 2.454× 10−1 0.974
16 1.982× 10−3 1.986 1.233× 10−1 0.993
32 4.964× 10−4 1.997 6.178× 10−2 0.997

ν = 0.4999 ||u− uh||L2(Ω) order ||u− uh||1,h order
1/h
2 1.043× 10−1 8.569× 10−1

4 3.048× 10−2 1.775 4.824× 10−1 0.829
8 7.869× 10−3 1.953 2.455× 10−1 0.974
16 1.986× 10−3 1.986 1.234× 10−1 0.993
32 4.974× 10−4 1.997 6.181× 10−2 0.997
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Table 2: L2 and piecewise H1-norm errors with Poisson ratio 0.4999 for Example 4.1 (τ = 0.5).

ν = 0.4999 ||u− uh||L2(Ω) order ||u− uh||1,h order
1/h
2 9.964× 10−2 7.933× 10−1

4 2.826× 10−2 1.818 4.342× 10−1 0.870
8 7.508× 10−3 1.912 2.213× 10−1 0.972
16 1.915× 10−3 1.971 1.112× 10−1 0.993
32 4.813× 10−4 1.992 5.569× 10−2 0.998

For easiness of presentation, we denote the scheme (P 1
n , P

1
n , P

1
c ) by P 1

nnc and the
scheme (P 1

n , P
1
n , P

1
n) by P 1

nnn. First we compare the number of degrees of freedom. The
degrees of freedom used in P 1

nnn is 36 · 23k + 18 · 22k where meshsize is h = 2−k while
that of P 1

nnc is 25 · 23k + 15 · 22k + 3 · 2k + 1. For example, degrees of freedom of our
scheme is about 69% of P 1

nnn when h = 2−5.
As for the absolute errors, we report L2 and H1-errors for both schemes in Table 3.

We see that both the schemes are locking free for the incompressible case. The errors
of P 1

nnc and P 1
nnn are compared in a log2 scale in Fig. 1. We see that errors of P 1

nnc are
relatively higher than P 1

nnn.
Finally, we compare the computational complexity of the two schemes. The diag-

onally preconditioned conjugate gradient method (PCG) was used with the stopping
criteria,

||b−Ax||
||b||

< 10−12,

where Ax = b stands for the discretized systems arising from either scheme. We show
the PCG iteration numbers and CPU time to reach the stopping criteria for both the
discretization in Table 4. We see that the CPU time of the proposed method is about
47% of that of P 1

nnn when h = 2−5 while the L2 error of the P 1
nnn is about 57% of that

of the proposed method. Thus, we may believe that our method is comparable to P 1
nnn

since there is a reasonable trade-off between the accuracy and the computational costs.

Example 4.3 (Driven cavity). We impose the boundary condition; u = (0, 0, 0) on
z = −1 or x = −1 or x = 1 or y = −1 or y = 1 and u = (1, 0, 0) on z = 1. We present
the velocity fields restricted to plane y = 0 for the case of ν = 0.49 and ν = 0.4999. For
all cases, we set τ = 1.

We show the numerical results by our scheme in Fig. 2 and the results by P1-
nonconforming methods with stabilizing term [10] in Fig. 3 and the results by a linear
element in Fig. 4. We see that both our scheme and P1-nonconforming methods with
stabilizing term [10] give the stable results for compressible (ν = 0.49) and incom-
pressible case (ν = 0.4999). On the other hand, the numerical solutions by linear ele-
ment show locking phenomena when ν = 0.4999, i.e., the shape of numerical solutions
become distorted when ν = 0.4999.
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Figure 1: Comparison of L2 and H1-errors of (P 1
n , P

1
n , P

1
c ) and (P 1

n , P
1
n , P

1
n) in a log2 scale for Example

4.2 (ν = 0.4999). The x-axis shows the number of degrees of freedom in a log2 scale.

Table 3: L2 and piecewise H1-norm errors for Example 4.2 (ν = 0.4999).

(P 1
n , P

1
n , P

1
c ) ||u− uh||L2(Ω) order ||u− uh||1,h order

1/h
2 3.026× 10−2 4.991× 10−1

4 8.951× 10−3 1.757 2.771× 10−1 0.849
8 2.408× 10−3 1.894 1.422× 10−1 0.962
16 6.213× 10−4 1.954 7.177× 10−2 0.987
32 1.571× 10−4 1.983 3.602× 10−2 0.995

(P 1
n , P

1
n , P

1
n) ||u− uh||L2(Ω) order ||u− uh||1,h order

1/h
2 2.120× 10−2 3.672× 10−1

4 5.468× 10−3 1.955 2.052× 10−1 0.840
8 1.361× 10−3 2.006 1.058× 10−1 0.955
16 3.503× 10−4 1.958 5.362× 10−2 0.981
32 9.024× 10−5 1.957 2.698× 10−2 0.991

Table 4: CPU time for solving the discretized systems arising from (P 1
n , P

1
n , P

1
c ) and (P 1

n , P
1
n , P

1
n) for

Example 4.2 (ν = 0.4999).

(P 1
n , P

1
n , P

1
c )

Iteration CPU time (sec)
1/h
2 255 0.03
4 1455 1.18
8 3690 31.21
16 8558 617.84
32 18161 10804.80

(P 1
n , P

1
n , P

1
n)

Iteration CPU time (sec)
1/h
2 238 0.05
4 1313 2.22
8 4444 71.49
16 10476 1447.45
32 21820 24803.51

5. Conclusions

We propose a true low order FEM for 3D elasticity problems. We extend KS scheme
for 3D by using two nonconforming components and one conforming component with
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Figure 2: Example 4.3: Solutions by the proposed scheme for the case of ν = 0.49 (left) and ν = 0.4999
(right).

-1 -0.5 0 0.5 1

X

-1

-0.5

0

0.5

1

Z

-1 -0.5 0 0.5 1

X

-1

-0.5

0

0.5

1

Z

Figure 3: Example 4.3: Solutions by P1-nonconforming methods with stabilizing term for the case of
ν = 0.49 (left) and ν = 0.4999 (right).
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Figure 4: Example 4.3: Solutions by linear element for the case of ν = 0.49 (left) and ν = 0.4999 (right).
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stabilizing terms in the bilinear form to satisfy the discrete Korn’s inequality. We prove
that our methods have optimal convergence rates in L2 and piecewise H1-norm even
for the nearly incompressible case. The numerical results show that our methods are
robust.
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