
1 / 6 
 

 

Abstract— In this paper, a generalized OFDM (G-OFDM) 
which protects the out of band (OOB) leakage and satisfies the 
orthogonality between subcarriers is proposed for next 
generation wireless communications. This scheme maps many 
data symbols to many subchannels through filter matrix, unlike 
the conventional OFDM that maps a data symbol to a 
subchannel in a one-to-one fashion. In G-OFDM, the filter 
matrix is used in order to limit the OOB leakage of the 
spectrums of input data, which is generated through processes 
such as jump-removing, filtering, and orthogonalizing a 
specially chosen initial matrix. G-OFDM is compared with 
OFDM in view of OOB leakage, crest factor, complementary 
cumulative distribution function, and bit error rate (BER) 
performance.   
 
Index Terms—Matrix filter; pilot vector; jump-removing 
matrix; G-OFDM; frequency; multiplexing; OFDM; BER; 
crest factor; CCDF. 
 

I. Introduction 
OFDM plays a significant role in modern telecommunications 

due to its wide ranging applications from its use in home 
communication technologies to wireless local area network 
(WLAN) [1] and mobile communication systems. This is 
because OFDM uses spectral resources effectively through 
overlapping the subcarriers while maintaining orthogonality, 
and it can estimate the communication channel easily using 
pilot symbols [2]. Furthermore, OFDM can be used to increase 
the channel capacity significantly using multiple input multiple 
output (MIMO) technology through which several users can 
communicate simultaneously through multiple channels on the 
same bandwidth using space diversity [3]. Nowadays, OFDM 
has been utilized in almost all areas such as mobiles, local area 
networks, broadcasting, and satellite communications; it will 
continue to be a major technology in the future. However, the 
spectral environment for communication will become 
increasingly worse because numerous systems will be 
connected to internet through fixed and mobile wireless 
communication networks. Therefore, it will be a significant 
problem to solve the interference between communication 
systems. Recently, many efforts have been focused on studies 
of new transmission schemes to enhance the spectral 
characteristics of OFDM for next generation mobile 
communications [4-7]. Filter bank multi-carrier (FBMC), 
universal filtered multi-carrier (UFMC), and generalized 
frequency division multiplexing (GFDM) are prominent 
outcomes in reducing the spectral leakage of OFDM. FBMC 
has the merit of being able to satisfactorily reduce the spectral 
leakage to neighbor channels through filtering in the frequency 

domain, but it uses samples two or four times per symbol, 
which may be a drawback in high-speed transmission because 
the frame lengths increase in doing so. UFMC is a scheme that 
mitigates the spectral leakage through filtering using 
Dolph-Chebyshev filters. However, many IFFT processors and 
filters are required for a symbol transmission, and the use of the 
FFT processor with twice the length of the IFFT used in the 
transmitter in a receiver is a factor that increases the complexity 
of implementation. In addition, since the response of the filter 
of the transmitter becomes long, the interval between the 
symbols may be very close to each other, so there may be a 
possibility of overlapping between symbols in a multipath 
environment. GFDM is also an effective scheme to reduce the 
spectral leakage. However, since the frequency bands of 
subcarrier are designed to overlap, it causes self-interference, 
which may increase the complexity of the receiver because it 
must implement the means to remove it [8]. In this paper, we 
introduce G-OFDM that can effectively reduce the spectral 
spread that occurs in OFDM without changing the structure of 
OFDM. Because G-OFDM performs filtering through filter 
matrices in the frequency domain with minimal operational 
complexity and it does not increase the length of the OFDM 
symbol, it is not only a spectral and power efficient modulation 
scheme, but also it can be operated at high speed and is 
compatible with the existing systems using OFDM. 

In section II, we introduce the concept of G-OFDM and the 
generation of filter matrix that constitutes G-OFDM. Unlike 
OFDM that one subcarrier is created using one frequency, one 
subcarrier in G-OFDM is created by synthesizing several 
frequencies. By performing the filtering operation in the 
frequency domain, G-OFDM does not increase the length of the 
OFDM symbol in the time domain. In section III, we introduce 
a method for inserting pilot vectors into the filter matrix to 
estimate the communication channel. In section IV, we analyze 
the characteristic of G-OFDM that can reduce the OOB leakage. 
In section V, we evaluate the upper bound of the crest factor 
and complementary CDF for G-OFDM. In section VI, we 
obtain the BER performance of G-OFDM over AWGN 
(Additive White Gaussian Noise) channel. In section VII, we 
summarize the features of G-OFDM described in all previous 
sections. 
 

II. G-OFDM 
 

In G-OFDM as shown in Fig. 1, a data vector d is divided into 
J shorter vectors d0, d1, …, dJ-1, each of which is multiplied by 
the filter matrix G, which are denoted as v0, v1, …, vJ-1. The k-th 
data symbol in the l-th data vector is carried on the k-th column 
of the filter matrix G. The condition for orthogonality to 
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recover the data symbols without interference between symbols 
is G G IH

. In G-OFDM as shown in Fig. 1, a data vector d 
is divided into J shorter vectors d0, d1, …, dJ-1, each of which is 
multiplied by the filter matrix G, which are denoted as v0, v1, …, 
vJ-1. The k-th data symbol in the l-th data vector is carried on the 
k-th column of the filter matrix G.  
 
 

 
 

Fig. 1. G-OFDM 
 
It is not simple to make a filter matrix G with good spectral and 
orthogonal characteristics at once, so we generate the filter 
matrix from an initial matrix  0G  through the procedure 
depicted in the signal flow diagrams in Figs. 2. We can obtain a 
filter matrix  

  01 ,Tf G W F ΨΦ F WG                  (1) 

where 

   
1
2Hf


K K K K .                          (2) 

The two matrices Φ  and Ψ  remove the jump components and 
filter all the columns of the incoming data matrix, respectively 
so that their spectrums are forced to be zeros at the beginning 
and end of the frequency band.  
 
 

  
Fig. 2. Signal flow diagram for filter matrix generation 

 
A. Initial Matrix 
 

An initial matrix is constructed so that all the columns have 
two minimum nonzero entries, are unit vectors, and are 
orthogonal to each other. For an odd N,  we define an initial 
matrix 

 0

1 1

1 1
1 1

.0 0 0
1 1

1 1

1 1

 
 
 
 
 
 
 
 

 
  
 
  

G                      (3) 

B. Zero Padding and Cyclic Shifting 
 

We have an enlarged matrix 
 0 ,A WG                                     (4) 

where W  is the zero-padding and cyclically shifting matrix 
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C. Inverse DiscreteFourier Transform 
 

Converting A from the frequency domain to the time domain, 
we can obtain the following matrix: 

 01 1 ,  P F A F WG                        (6) 

and F  is the DFT matrix 
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(7) 

 
where 2 / .L    

D. Jump Removing 
In order to raise a pulse from a small value at the beginning 

point and to lower the pulse to a small value at end, the first row 
should be a zero vector through multiplying the jump-removing 
matrix Γ  in the time domain [10,11] as 

 01 ,  Q ΓP ΓF WG   
                    

    

(8) 

where  
0 0 0
1 1

.1 0 1
0

1 0 0 1

 
  
  
 
 
  

Γ

                         

    

(9) 

 
The resultant jump-removed matrix Q+

 

becomes a matrix of 
size  1 L N  as 
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2 1

1

.

L



 
  
 
 

 

0
p p

Q

p p                                 

    

(10) 

 
Since all the entries of the first row of this matrix Q are zero, 
the row can be discarded in order to shorten the column length. 
Thus, we have a    1 1  L L  reduced matrix 

   0 01 1 ,t t
    Q WQ ΦF WG WΓF WG

          

    

(11) 

where the matrix tW

 

is a    1 1  L L  matrix that discards 
the first row as given by: 
 

0 1 0 0
1

0
0 0 1

t

 
 
 
 
 
 

W .

                        

    

(12) 

 
From (11), we have 

.tΦ WΓ                                    (13) 

E. Internal Filtering Matrix 
The internally filtered matrix R  using a filtering operator Ψ  

can be represented as 

 01 , R ΨQ ΨΦF WG                   (14) 

where Ψ  is the  1 L L  filtering matrix. For example, 
the filtering matrix with 2-tap moving average (MA) can be 
expressed as  
 

1
1 1

1 1
1 .
2

1 1
1 1

1

 
 
 
 
 

  
 
 
 
 
 

Ψ                     (15) 

 
The matrix Ψ  operates in all the columns of the matrix Q  as 
a filter, and it filters each column of the input matrix.  Note that 
the length of the filtered subcarriers in the time domain should 
be equal or less than the IFFT size  L, which means that the 
length of the symbol should be not increased by filtering. In an 
extended form, the z-transform of the MA filter with a 
parameter   may be written as 

            11 1 .
2




  z z

   
                     (16) 

Since the response of the subcarrier in the frequency domain is 
multiplied by this function, it becomes zero at both ends of the 
frequency band of the subcarrier.  

F.  Discrete Fourier Transform and Truncation 
Applying DFT to each column of  R  in order to transform it 

from the time domain to the frequency domain, we have 

 01 , B FR FΨΦF WG                       (17) 

where B  is a  1L N   matrix. 

G. Downward Cyclic Shifting and Truncating 
This process is cyclic shifting downwards and eliminates the 

rows with zero entries in order to undo zero padding and cyclic 
shifting by the operator W. Reversely cyclically shifting and 
truncating the matrix B, we have 

 01 .T T  K W B W FΨΦF WG               (18) 

H. Nearest Orthogonal Matrix 

The matrix K is generated through jump removing and 
internal filtering using Φ  and Ψ  in the time domain, and Ω  
and S in the frequency domain. However, even if an initial 
matrix  0G  is orthogonal, the matrix K can be no longer 
guaranteed to be orthogonal.  Therefore, the matrix K should be 
transformed to be orthogonal while retaining its original 
properties. We can obtain a filter matrix G which is nearest to 
K and whose columns are orthogonal to each other through the 
following formula [9] 

   
1
2 .


 G K K K KHf

      
              (19) 

Since the magnitude of all the columns of the matrix G obtained 
through the function  f

 
is 1, G is a special filter matrix 

having a constant gain in the occupied frequency band. 

III. FILTER MATRIX WITH PILOT VECTOR 

We will show how to insert a pilot vector next to the 4th 
column of a 9×8 jump-removed matrix below.  
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1 1
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1 1
1 1
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1 1
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U

       

 

(20) 

First, we insert an empty column vector after the 4th column of 
the matrix U and let all the remaining columns from the 5th 
column be one entry away from the center row as  

1 1
1 1

1 1
1 1

2 0 .2 0 2 0 2 0
1 1

1 1

1 1
1 1

 
   
   
 

 
 
 

     
   
  
    
    
 

   

T

       
 

(21) 

Second, we insert 1 and -1 in the fifth column so that they do 
not overlap with the other rows on the horizontal line, as shown 
in (22). The vector in the bracket of the matrix Tp is the pilot 
vector. The size of the generated matrix is thus 11 × 9 and as 
can be seen, all the columns are orthogonal to each other, so the 
rank becomes 9. 

1 1
1 1

1
1 1

1 1
.2 0 2 0 0 2 0 2 0

1 1
1 1

1
1 1
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(22) 

IV. FREQUENCY RESPONSES OF G-OFDM 

Example 1: G(7, 5)-OFDM 

The filter matrix used in G(7, 5) -OFDM with = 2 has the 
size of 7×5. A jump-removed matrix including a pilot vector is 
illustrated as  

1 1
1

1 1
.0 2 0 2 0

1 1
1

1 1

  
  
  
  
  

    
     
  

     

U p

                       

(23) 

From (19), we obtain a real filter matrix  7 5G p  , which is given 
in Table I.  

TABLE I 
The first column can be a pilot vector since it is not affected by 
other columns, and the entries g2,1 and g6,1 of the matrix  7 5G p

 
can be used as the pilot symbols. 

 

 

It can be seen that all entries of this matrix except the second 
and sixth entries of the first column are zeros, but all entries in 
the second and sixth rows except the first column are zeros. 
Since the first column is not affected by remaining columns, it 
can be used as the pilot vector. 

Example 2: G(73, 72)-OFDM according to the Long Term 
Evolution (LTE) Specifications 

Fig. 3 illustrates the frequency responses of OFDM and 
G-OFDM with = 4 according to the LTE specifications with 
72 subcarriers and the frame length of  L = 128. The magnitudes 
of the frequency responses of G-OFDM decrease significantly 
and vanish entirely at the beginning and end. This indicates that 
G-OFDM is less likely to have a spectral influence on neighbor 
channels than OFDM. 
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   (b) 

Fig. 3.  Frequency response of G(73, 72)-OFDM. (a) OFDM, (b) 
G-OFDM 

V. Crest Factor and Complementary CDF 

A. Crest Factor (CF) 
The signal of G-OFDM is transmitted through the IFFT after 

the input data symbols are band-limited through the filter 
matrix. 

 The k-th column can be represented as  

 
 

 

1 /2

1,

1 2 22 cos 2 cos

for 1,2,3, , 1 / 2.

 

 

     

 


N

k
l l k

kn lnr n z y x
L L L

k N
 

 (24) 

For each column of BΦ , its IDFT can be expressed as 

  2 2sin .
k

j kns n
L L                     (25) 

The transmitted signal for G-OFDM can be represented as 

     
 1 /2

2 1 2
1

,





   
N

k k k k
k

w n d r n d s n         (26) 

where kd   is a data symbol, and  kr n  and  ks n  are real 
and imaginary subcarriers, respectively. We can obtain the 
average power  

     2    dW n C n D n

            

(27) 

where  22
d kE d   is the symbol power .  

Fig. 4 shows the average power of 16 subcarriers when N = 17, 
2 1 d  and L = 1024.  

CF can be written as 

 
 1 /2

1

21 .
1






     

N k

G OFDM k
k

C q
N               

(28) 

where we used that 
2

1 . dd P  

 

Fig.4. Signal power of G-OFDM with  = 2. (a) Real power C(n) 
(b) Imaginary power D(n) (c) Total power W(n). 

 
The gain for CF of G-OFDM compared with OFDM becomes  

 

 
 1 /2

1

1
 20log .

2 1







   

N k

k
k

N
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(29) 

Specifically, when N = 4p + 1 where p is a positive integer, the 
CFs of OFDM and G-OFDM become 

2 ,OFDMC p
                              

(30) 
2 . G OFDMC p

                            
(31) 

At this time, the CF gain for OFDM of G-OFDM is always as 
follows. 

2
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Fig. 5. CCDFs of OFDM and G-OFDM with  = 2.  

B. Complementary CDF (CCDF) 
Since  w n  is composed of a sum of many random signals, 

it can be approximated by a Gaussian distribution as 

    
 

2

2
exp ,

2 w n

w n
f w n



 
   

 
                 (32) 

where      2 *1 .
2

     W n

N E w n w n

 

 CCDF can be expressed 

as  

 
 

2

2
1

1 1 exp .
2

L

n w n

xP X x


  
          


     

      (33) 

Fig. 5 shows the CCDFs of OFDM and G-OFDM.  

VI. BER Performance 
The BER performance of G-OFDM with QPSK data 

symbols can be expressed as 

 
 

1 ,
2

H H

b
b H

o

trEp erfc
N tr

 
 
 
 

G G G G
G G

              

(34) 

where Eb  is the energy per bit and No /2 is the noise power 
spectral density.  

 

Fig. 6. BER performances of theoretical QPSK and G(73,72) 
-OFDM by simulation. 

VII. CONCLUSION 

We proposed a G-OFDM that could reduce the OOB leakage 
that was an intrinsic drawback of OFDM. G-OFDM includes 
filter matrices that have good spectral characteristics as well as 
orthogonality, which are generated through such processes as 
jump-removing, signal filtering, and orthogonalizing. A filter 
matrix consists of pilot column vectors in order to estimate 
multipath fading channels and remaining column vectors in 
order to carry data symbols. Through simulation, it was found 

that G-OFDM is an excellent scheme for reducing the OOB 
leakage effectively. Since G-OFDM filters the input symbols in 
the frequency domain, it is a method that can greatly reduce the 
amount of computation compared with any other scheme of 
performing convolution in the time domain. We investigated 
the crest factor and the complementary CDF of G-OFDM and 
found that the CF of G-OFDM has a gain of 3 [dB] without any 
PAPR reduction scheme compared with that of OFDM and the 
CCDF of G-OFDM has the same performance as OFDM. 
Through theoretical analysis and simulation, it was found that 
the BER performance of G-OFDM was close to the ideal BER 
performance, which means that the orthogonality of filter 
matrix does not suffer from channel noise.  

The proposed scheme can be compatible with such as 
existing LTE or Wi-Fi systems using OFDM because it can 
suppress the OOB leakage without changing the length of the 
OFDM symbol. 
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