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We develop a numerical scheme for Poisson-Boltzmann-Nernst-Planck (PBNP) model. We 
adopt Gummel’s method to treat the nonlinearity of PBNP where Poisson-Boltzmann equa-
tion and Nernst-Planck equation are iteratively solved, and then the idea of discontinuous 
bubble (DB) to solve the Poisson-Boltzmann equation is exploited [6]. First, we regularize 
the solution of Poisson-Boltzmann equation to remove the singularity. Next, we introduce 
the DB function as in [6] to treat the nonhomogeneous jump conditions of the regu-
larized solution. Then, we discretize the discontinuous bubble and the bilinear form of 
Poisson-Boltzmann equation and solve the discretized linear problem by the immersed fi-
nite element method. Once Poisson-Boltzmann equation is solved, we apply the control 
volume method to solve Nernst-Planck equation via an upwinding concept. This process is 
repeated by updating the previous approximation until the total residual of the system de-
creases below some tolerance. We provide our numerical experiments. We observe optimal 
convergence rates for the concentration variable in all examples having analytic solutions. 
We observe that our scheme reflects well without oscillations the effect on the distribution 
of electrons caused by locating the singular charge close to the interface.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Predicting behaviours of ion interaction and electrostatic potential plays important roles in many fields such as biological 
systems, nanofluidic systems and semiconductor devices (see [45,1,15,19,29,13] and references therein). The Poisson-Nernst-
Planck (PNP) model is a well established theory for predicting ion transport phenomenon for chemical physical and 
biological systems [12,19,5]. In a PNP system, one considers all the ion species in a system to describe electrostatic in-
teractions precisely, which results in a large number of equations. Thus, in the presence of multiple ion species, simulating 
PNP model can be computationally demanding. To reduce the number of equations, Zheng and Wei [49] proposed a new 
model by combining PNP model and Poisson Boltzmann (PB) model, naming their model PBNP. For the ions of interest, the 
Nernst-Planck equation is used and for the rest ions, Boltzmann distributions of the total potential are used.
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Let us describe some of the difficulties arising when solving PBNP equation numerically. First, the coefficients of partial 
differential equations (PDEs) change abruptly across some interfaces. For example, the dielectric parameter for the potential 
variable is discontinuous across the solute-solvent interface, and the diffusion coefficient for the ion concentration varies 
between the channel region and the bulk region. Second, the right side of the PB equation describing the potential variable 
is represented by the distribution of the Dirac-delta functions. To avoid non-physical solutions, one must carefully regularize 
the equation. One of the strategies is to subtract the Green’s function in solute region from the PB equation to remove the 
singular terms [9,8,34]. However, nonhomogeneous jump conditions appear due to this subtraction and some approaches 
to deal with the jump conditions are introduced in [9,8,34]. Third, the electrostatic potential and ion concentration are 
nonlinear related. Thus, one needs to linearize the system using Newton-Krylov iterations [48] or Gummel’s iteration [23,
49,7].

When solving problems with interfaces, a natural approach is to use numerical methods based on fitted grids to over-
come the discontinuity of the parameters in a PDE. However, some new approaches which use structured girds for the 
interface problems were developed recently in FEM community. Extended finite element method (XFEM) [47,4,37,46,10] is 
one of the efficient methods to solve for interface/crack problems based on uniform grids. The additional basis functions 
constructed by truncating the shape function along the interfaces are added to the trial/test spaces. Thus, the number of 
degrees of freedom increase near the interface.

Immersed finite element methods (IFEMs), introduced by Z. Li et al. [39,38], is another type of uniform grids based 
methods for the interface problems. In IFEM type methods, basis functions are modified to satisfy the local flux continuity 
condition across the interfaces, so that no extra degrees of freedom are needed near the interface. Since the data structure 
of the discretized system is simple, efficient solvers can be applied for IFEM, like multigrid methods [16,27]. The error 
estimates for IFEMs were developed in [39,38,11,33,28] for the elliptic interface problems and in [30,24,25] for the elasticity 
problems. Also, IFEMs have been applied to various problems, including Robin type elliptic problems [32], multiphase flows 
in porous media [26], and elasticity problem with spring type nonhomogeneous jump condition [36], and PB equation [34]. 
Among them, discontinuous bubble-IFEM (DB-IFEM) is effective to solve PDEs with nonhomogeneous jump conditions [6]. 
In this method, a piecewise discontinuous linear function, called discontinuous bubble (DB) is constructed so as to satisfy 
the nonhomogeneous jump conditions. By substituting the DB, one obtains homogeneous systems which can be effectively 
solved by plain IFEM schemes. DB-IFEM and their variants were successfully applied to solve the elasticity problem with 
spring type jump condition [36] and the nonhomogeneous problem arising from regularization process of PB equation [34].

In this work, we develop DB-IFEM based numerical methods for PBNP model whose process we ketch below. To lin-
earize the systems, we adopt the idea of Gummel’s map as in [23,49,7], i.e., the potential variable and the concentration 
variable are solved sequentially until the total residual of the system decreases below a certain tolerance. To solve for the 
potential variable, the PB equation is regularized by the subtraction of some Green’s functions. After the Green’s functions 
are subtracted, the regularized PDE with nonhomogeneous jump conditions across the solvent-solute region is obtained. 
The discontinuous bubble satisfying the nonhomogeneous jump conditions is subtracted followed by the IFEM scheme for 
the homogeneous part of the regularized potential. Thus, potential variable is obtained by the sum of Green’s functions, 
discontinuous bubbles and the IFEM solution of the regularized potential. Next, concentration variable is solved in solute 
region. To avoid the non-physical solution such as blow up near the channel and bulk interface due to the convection dom-
inated terms, we use the control volume methods together with the upwinding concept as in [3,17,14,2]. Above process 
is repeated until the some tolerance criteria are reached. We test our schemes to some sample examples having analytic 
solutions where we observe the optimal convergence rates.

The rest of the paper is organized as follows. The governing equation of PBNP is described in Section 2. In Section 3, we 
introduce Gummel’s scheme based formulation for PBNP model. In Section 4, we develop DB-IFEM for PBNP equation. The 
numerical experiments are given in Section 5. The conclusion follows in Section 6.

2. Poisson-Boltzmann-Nernst-Planck model

In this section, we explain PBNP model which was introduced to solve PNP equation with a large number of ion species 
[42,49]. The difficulty lies in the fact that every charged ion species need to be treated as a non-equilibrium diffusive 
species in the electric field. However, when a charged particle (for example a molecule) undergoes a diffusion-reaction 
process governed by Nernst-Planck equation in the background electrolyte, the ions of electrolyte can be considered as a 
quasi-equilibrium state. For example, it can be used for diffusion-controlled enzyme reaction rate calculations [42].

We consider an open domain � ⊂ R2, � = �m ∪ �s , where �m represents the solute region (or the ion exclusion 
region) and �s represents the solvent region (or the ion inclusion region) (see Fig. 1). � represents the interface such that 
� = �m ∩ �s . We assume � is a C1-curve. We assume that the total number of ion species in the system is Nc . We choose 
certain ion species from the whole system and call them ion target species. Although we are not interested in the rest of the 
ion species, we have to reflect the impact of them on the system. We denote nα(α = 1, 2, ..., NN P ) to be the concentration 
of the target ion species, nβ(β = NN P + 1, ..., Nc) to be the concentration of the remaining ion species in the system. Then 
we obtain the following equation for electrostatic potential �:

−∇ · (ε∇�) = 4πρ f + 4π

NN P∑
qαnα + 4π

Nc∑
qβnβ, (2.1)
α=1 β=NN P +1

2
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Fig. 1. Domain � with interface �.

where static charge sources and quasi-equilibrium charge sources are represented respectively by

ρ f =
Nα∑
j=1

q jδ(r − r j),

nβ = n0β exp
[− (

qβ� − μβ

)
/kB T

]
.

Here, K B and T are Boltzmann constant and the absolute temperature. We denote n0β to be the bulk concentration of the 
βth ion species, qα and qβ to be the valence of the αth and βth ion species respectively. δ(x) is Dirac delta function with q j

being the charge of the biomolecule at position r j( j = 1, 2, ..., Na). Na indicates the total number of charged atoms in the 
solute and μβ is the total chemical potential of βth ion species. The dielectric function ε is defined as a piecewise constant 
function

ε(r) :=
{

εm, r ∈ �m

εs, r ∈ �s.

Here εm and εs represents the dielectric constants in the molecular and solvent regions, respectively. On the other hand, 
the concentration nα is governed by the following Nernst-Planck equation:

∂nα

∂t
= ∇ ·

[
Dα

(
∇nα + qαnα

kB T
∇�

)]
, α = 1,2, ..., NN P , (2.2)

where Dα(r) is the spatially dependent diffusion coefficient of ion species α. Equations (2.1) and (2.2) are coupled to 
each other and form a closed equation system. We called the closed equation system the Poisson-Boltzmann-Nernst-Planck 
equations. The steady state of the equation system (2.1) and (2.2) can be obtained as follows:

− ∇ · (ε∇�) = 4πρ f + 4π

NN P∑
α=1

qαnα + 4π

Nc∑
β=NN P +1

qβn0β exp[−(qβ� − μβ)/(kB T )], (2.3)

∇ ·
[

Dα

(
∇nα + qαnα

κB T
∇�

)]
= 0, α = 1, 2, ..., NN P . (2.4)

In PBNP system, we describe the ion of interest by the Nernst-Planck model and the others by Boltzmann distribution. 
Since in the original PNP model we have to solve one Nernst-Planck equation for each ion species, PBNP model can reduce 
the computational cost when there are multiple ion species in a bimolecular system. Note that Nernst-Planck model is 
defined only in the solvent domain �s . Zero flux condition is imposed on the interface � and each side of the domain. 
Since (2.1) and (2.2) are coupled each other, the variables � and nα need to be solved iteratively. For the simplicity, we 
assume that NN P = NB = 1, and define ψ = �/(kB T ), γ = 4π/(kB T ), and Uα = μα/(kB T ). Then the coupled equations (2.3)
and (2.4) are converted into following simpler forms:

−∇ · (ε∇ψ) = γ [ρ f + q1n1 + q2n02e−(q2ψ−U2)], (2.5)

−∇ · [D1(∇n1 + q1n1∇ψ)] = 0. (2.6)

3. Formulation

In this section, we describe the formulation of PBNP based on Gummel’s scheme where PB and NP equations are solved 
sequentially. First, PB equation is regularized by subtracting some Green’s functions, resulting in a PDE with nonhomoge-
neous jump conditions. Then, by constructing the discontinuous bubble functions, regularized PB equation can be described 
by weak forms in a continuous space. Finally, linearized NP equation is solved.

The domain of the ion channeling is described in Fig. 2.
3
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Fig. 2. An illustration of a domain for an ion channeling simulation. Solvent region �s and solute region �m are separated by � (left). In particular, a solute 
region consists of protein walls and solvent region consists of bulk region I, bulk region II, and channel (right).

3.1. Gummel’s scheme

Since (2.5)-(2.6) are nonlinear equations of variables ψ and n1, we need a linearized iterative procedure. We provide the 
scheme introduced by Gummel [20,49]: Starting from a proper initial guess ψ(0) and n(0)

1 , n(1)
1 can be obtained by solving

−∇ · [D1(∇n(1)
1 + q1n(1)

1 ∇ψ(0))] = 0. (3.1)

Next, ψ(1) is obtained by

−∇ · (ε∇ψ(1)) = γ [ρ f + q1n(1)
1 + q2n02e−(q2ψ(0)−U (1)

2 )].
Here, the superscript of ψ and n1 denotes the iteration step. ψ are updated at the jth iteration step as follows:

−∇ · (ε∇ψ( j)) + caddψ
( j) = γ [ρ f + q1n( j)

1 + q2n02e−(q2ψ( j−1)−U ( j)
2 )] + caddψ

( j−1), (3.2)

where

cadd = γ [q1n( j)
1 + q2n02e−(q2ψ( j−1)−U ( j)

2 )].
In Gummel’s iteration, equations (3.1) and (3.2) are solved iteratively until the stopping criteria is satisfied. During the 
iteration, U2 can be obtained by following the [49] way:

U ( j)
1 = ln(n( j)

1 /n01) + q1ψ
( j−1),

U ( j)
2 = aU ( j)

1 + E12,

where a, E12 are constants taking account of the chemical property of different ions.

3.2. Regularization of PB equation

Before we regularize the solution of PB equation (3.2), we need to describe some function spaces and their norms. From 
now on, we represent the solvent region as �+ , and the solute region as �− for convenience. For any bounded subdomain 
D ⊂ �, we denote D+ = D ∩ �+ , D− = D ∩ �− . We define Hm(D), H1

0(D) to be the standard Sobolev spaces of order m
with the norm ‖ · ‖m,D and the semi-norm | · |m,D . For m = 1, 2, the space H̃m(D) is defined as

H̃m(D) := Hm(D+) ∩ Hm(D−),

with norms

‖ψ‖2
H̃m(D)

:= ‖ψ‖2
Hm(D+)

+ ‖ψ‖2
Hm(D−)

.

The subspace H̃1
0(D) is defined as

H̃1
0(D) := {ψ ∈ H̃1(D) |ψ = 0 on ∂ D}

Since PB equation has a Dirac delta type singularity, its solution has a logarithmic singularity. It is well known [8] that 
the solution of PB equation does not belong to H1(�). So we shall decompose the original solution ψ into a regular solution 
ψr and a singular part ψ s which takes care of singularities [9].
4
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ψ = ψr + ψ s. (3.3)

Then, we obtain another equation for the regular solution ur from the original equation. There are many choices of ψ s . 
Among them, we choose the following function:

ψ s = G|�− in �−,

ψ s = 0 in �+,

where G is defined by G = − 
∑Na

i=1
γ qi

2πε− log|x − xi| in R2 so that −ε−	G = γρ f . Using this choice of ψ s and (3.3), we 
obtain the following equation for the regular potential ψr from the original equation.

−∇ · (ε∇ψr) = γ [q1n1 + q2n02e−(q2ψr−U2)] in �, (3.4a)

[ψr]� = J1 on �, (3.4b)[
ε

∂ψr

∂n�

]
�

= J2 on �, (3.4c)

ψr = 0 on ∂�, (3.4d)

where J1 = −ψ s and J2 = −ε− ∂ψ s

∂n�
. We note that the similar technique of subtracting Green functions to regularize the 

equation is introduced in [43]. The difference is that Green function in [43] has support on the whole domain while we 
restrict the support only on �− . The good thing about Green function with smaller support is that, we can reduce the 
nonlinearity in the Gummel’s iteration. We may assume that the equation has homogeneous Dirichlet boundary condition 
for the convenience. Since the solution of (3.4) satisfies jump conditions, we have to define an affine space where jump 
conditions are imposed. We introduce U J1, J2 (�) as follows:

U J1, J2(�) := {ψ ∈ H̃2(�) | [ψ]� = J1 and

[
ε

∂ψ

∂n�

]
�

= J2 on�}.

There are a few numerical methods for PB equation using different regularization schemes. For example, jump condition 
capturing scheme (JCCS) was introduced in [18,9]. JCCS requires an additional harmonic function to remove the jump con-
dition. However, we provide the regularization scheme introduced in [34]. It does not need an additional auxiliary function 
to treat the jump conditions. Instead, we treat the jump in the solution and flux jumps at once using the DB-IFEM. It is 
accurate and simple to implement compared with other schemes.

3.3. Weak formulation with DB for nonhomogeneous jumps

We will apply DB scheme introduced in [6] to treat the nonhomogeneous jumps. We apply the regularization scheme to 
(3.2) and multiply v ∈ H1

0(�) on each side of the equation. Applying Green’s theorem to each subdomain �+ and �− , we 
obtain

−
∫

∂�i

ε
∂ψr

∂n
vds +

∫
�i

ε∇ψr · ∇vdx +
∫
�i

caddψ
r vdx

=
∫
�i

(γ [q1n( j)
1 + q2n02e−(q2ψr,( j−1)−U ( j)

2 )] + caddψ
r,( j−1))vdx, ∀v ∈ H1

0(�),

where n is the unit outward normal vector to �i (i = + or−). Adding two equations for i = + , − and using (3.4c), we 
obtain the following:

∑
i=+,−

⎛⎜⎝∫
�i

ε∇ψr · ∇vdx +
∫
�i

caddψ
r vdx

⎞⎟⎠
=

∫
�

J2 vds +
∑

i=+,−

∫
�i

(
γ [q1n( j)

1 + q2n02e−(q2ψr,( j−1)−U ( j)
2 )] + caddψ

r,( j−1)
)

vdx, ∀v ∈ H1
0(�). (3.5)

Hence we obtain the weak form of (3.4) as follows: Find ψr ∈ H̃2(�) ∩ H1
0(�) satisfying (3.5) and (3.4b). However, the 

solution of the equation belongs to the affine space U J1, J2 (�). We need to treat the nonhomogeneous jumps of the solution 
to work on a linear space. In order to remove the jumps, we subtract a function defined on a thin strip, called S� , containing 
� (see Fig. 3). We define a bubble f unction ψ∗ in H̃2(S�) ∩ H̃1(S�) satisfying
0

5
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Fig. 3. The shape of S� .

[ψ∗] = J1,[
ε

∂ψ∗

∂n�

]
�

= J2.

We let ψ̄ = ψr − ψ∗ . Then we easily see that ψ̄ ∈ H1
0(�). Also, we obtain the equation for ψ̄ :

−∇ · (ε∇ψ̄) + caddψ̄ = ∇ · (ε∇ψ∗)

+ γ [q1n( j)
1 + q2n02e−(q2(ψ̄( j−1)+ψ∗)−U ( j)

2 )] + caddψ̄
( j−1) in� \ �, (3.6a)

[ψ̄]� = 0 on�, (3.6b)[
ε

∂ψ̄

∂n�

]
�

= 0 on�, (3.6c)

ψ̄ = 0 on ∂�. (3.6d)

Hence, the weak form for ψ̄ is as follows: Find ψ̄ ∈ H1
0(�) satisfying

∑
i=+,−

⎛⎜⎝∫
�i

ε∇ψ̄ · ∇vdx +
∫
�i

caddψ̄vdx

⎞⎟⎠ =
∑

i=+,−

∫
�i

−ε∇ψ∗ · ∇vdx +
∫
�

J2 vds

+
∑

i=+,−

∫
�i

(
γ [q1n( j)

1 + q2n02e−(q2(ψ̄( j−1)+ψ∗)−U ( j)
2 )] + caddψ̄

( j−1)
)

vdx, (3.7)

for all v in H1
0(�).

3.4. Reconstruction of concentration variable

In the previous subsections, in the j-th iteration step electrostatic potential variables are obtained via the method de-
scribed above. The resulting potential variable at j-th step is obtained as the sum of 1) the solution ψ̄ of (3.7), 2) bubble 
function ψ∗ , and 3) Green’s function, i.e.,

ψ( j) = ψ̄ + ψ∗ +
Na∑

i=1

(
− γ qi

2πε
log|x − xi|

)
.

In this subsection, we show how the concentration of the ion is updated. We solve the following linearized Nernst-Planck
equation:
6
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Fig. 4. A typical interface element.

∇ ·
[

D1(∇n( j+1)
1 + q1n( j+1)

1 ∇ψ( j))
]

= 0, on �+, (3.8)

n( j+1)
1 = g, on Dir(∂�+), (3.9)

D1(∇n( j+1)
1 + q1n( j+1)

1 ∇ψ( j)) · n� = 0, on ∂�+ − Dir(∂�+). (3.10)

Here, Dir(∂�+) represents the part of ∂�+ where Dirichlet boundary condition is imposed for n1. Let us remark on the 
Dirichlet boundary condition (3.9) and Neumann boundary condition (3.10). It is assumed that there is little change in 
concentration in regions far enough away from the channel. Therefore, one may choose suitable regions on ∂�+ for the 
Dir(∂�+) so that the function g has little change on Dir(∂�+). On the other hand, zero Neumann boundary condition is 
applied on the solute-solvent interface region �, since it is natural to assume that there is no charge transfer between the 
protein wall and solute region. The diffusion coefficient D1 is given by

D1 =
⎧⎨⎩

DbulkI , on Bulk region I
Dchannel, on Channel
DbulkI I , on Bulk region II.

4. Numerical method

In this section, we develop a numerical method for PBNP system based on the formulation described in the previous 
section. For the PB equation, DB-IFEM is used to control the nonhomogeneous jumps arising from the regularization process. 
For the NP equation which can be convection dominated, we use a control volume method together with an upwinding 
concept.

4.1. DB-IFEM with consistency terms for PB equation

We provide a modified version of IFEM based on P1-conforming FEM introduced in [40,31].
Let Th be uniform triangulations of � which do not necessarily have to align with the interface. For example, we divide 

� by axi-parallel lines and then subdivide the subrectangles by diagonals. We denote T ∗
h as the set of all triangle elements 

divided by the interface. We may assume that the interface intersects with the boundary of an element at most twice (see 
Fig. 4), which holds when the mesh size is sufficiently small. We denote Sh

� as the union of elements in T ∗
h . As noted earlier, 

we can choose ψ∗ so that the support of ψ∗ is Sh
� . Let T be any elements in T ∗

h . Sh(T ) denotes the space of standard linear 
functions on T which has degrees of freedom on each node of T . Suppose T is cut through edges e1 and e2 at points E1
and E2 by �. Let T + and T − be two subregions of T separated by E1 E2.

We modify φ ∈ Sh(T ) so that the new function φ̂ is a piecewise linear on T having the same values at nodes and satisfy 
jump conditions. Let L j( j = 1, 2, 3) be the linear Lagrange nodal basis functions associated with the vertices A j( j = 1, 2, 3), 
i.e., L j(Ai) = δi j . Then the form of φ̂ with nodal basis value V i = φ(Ai)(i = 1, 2, 3) is following:

φ̂(x, y) =
{

φ̂+ = c1L1 + V 2L2 + V 3L3 if (x, y) ∈ T +
φ̂− = V 1L1 + c2L2 + c3L3 if (x, y) ∈ T −,

where the coefficients are determined by the following two jump conditions,

φ̂+(Ei) = φ̂−(Ei), i = 1,2 (4.1a)

ε+∇φ̂+ · nE1 E2
= ε−∇φ̂− · nE1 E2

. (4.1b)

It is well known that the coefficients of φ̂ are determined uniquely by (4.1a)-(4.1b) [39]. The space of these functions φ̂ is 
7
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denoted by Ŝh(T ). Now we define P1-conforming based IFEM space Ŝh(�) as follows:

Ŝh(�) :=

⎧⎪⎪⎨⎪⎪⎩
φ̂|T ∈ Sh(T ), if T is a noninterface element,
φ̂|T ∈ Ŝh(T ), if T is an interface element,

φ̂|T1(X) = φ̂|T2(X), where X is a common node of T1 and T2

φ̂|T (X) = 0, where X is a node on ∂�.

We consider a bilinear form ̃ah(·, ·) on Hh(�) := H1
0(�) + Ŝh(�). In the early version of IFEM, there were cases when the 

order of accuracy deteriorates caused by inconsistency of the bilinear form [41].

ah(ψ̄, v) :=
∑
T ∈Th

⎛⎝∫
T

ε∇ψ̄ · ∇vdx +
∫
T

caddψ̄vdx

⎞⎠ .

Hence we add the following additional consistency terms:

b(ψ̄, v) :=
∑
e∈Eh

⎛⎝−
∫
e

{ε∇ψ̄ · ne}e[v]eds −
∫
e

{ε∇v · ne}e[ψ̄]eds

⎞⎠ ,

j(ψ̄, v) :=
∑
e∈Eh

∫
e

σ

h
[ψ̄]e[v]e ds,

where Eh is a set of all edges of Th and ne is a fixed directional unit normal vector to each edge. Here, {v}e and [v]e are 
the average and jump of v ∈ Hh(�) on an edge e ∈ Eh respectively. This technique resembles that of discontinuous Galerkin 
method. Then we define a new bilinear form:

ãh(ψ̄, v) := ah(ψ̄, v) + b(ψ̄, v) + j(ψ̄, v). (4.2)

In the same spirit, we have to consider the consistency terms arising from ψ∗ in (3.7). Thus, we obtain the following: Find 
ψ̄ ∈ Hh(�) satisfying

ãh(ψ̄, v) =< J2, v >� −(ε∇ψ∗,∇v) − b(ψ∗, v) − j(ψ∗, v)

+
(
γ [q1n( j)

1 + q2n02e−(q2(ψ̄( j−1)+ψ∗)−U ( j)
2 )] + caddψ̄

( j−1), v
)

, ∀v ∈ Hh(�), (4.3)

where (·, ·) denotes the L2(�) inner product and < ·, · >� denotes the L2(�) inner product. We briefly explain how to 
discretize the discontinuous bubble function ψ∗ introduced in [6]. First, we let ψ∗

h be an approximation to ψ∗ . It is desirable 
that ψ∗

h vanishes at each vertex of T so that ψ∗
h does not affect the value of ψ̄ at vertices. Hence, ψ∗

h is piecewise linear on 
T + and T − and is defined by:

ψ∗
h (Ai) = 0, i = 1,2,3, (4.4a)[

ψ∗
h (Ei)

]
E1 E2

= J1(Ei), i = 1,2, (4.4b)

ε− ∂ψ∗
h

∂nE1 E2

− ε+ ∂ψ∗
h

∂nE1 E2

= 1

|E1 E2|
∫

E1 E2

J2. (4.4c)

We note that the right hand side of (4.4c) can be computed pointwise. However, the average over E1 E2 is more general 
when the function J2 is defined only in weak sense.

Having constructed ψ∗
h (see Fig. 5), we discretize the variational form (4.3). We shall use the new bilinear form (4.2). 

Then, we define DB-IFEM with consistency terms: Find ψ̄h ∈ Ŝh(�) such that

ãh(ψ̄h, vh) =< J2, vh >� −(ε∇ψ∗
h ,∇vh) − b(ψ∗

h , vh) − j(ψ∗, vh)

+
(
γ [q1n( j)

1 + q2n02e−(q2(ψ̄h
( j−1)+ψ∗

h )−U ( j)
2 )] + caddψ̄h

( j−1)
, vh

)
, ∀vh ∈ Ŝh(�). (4.5)

Finally, the algorithm to obtain the numerical solution ψ( j) of PB equation is the following:
h

8
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Fig. 5. The shape of Sh
� and the graph of the discretized bubble function.

1) Set ψ̄
( j,0)

h = ψ̄
( j−1)

h

2) For n = 1,2, ...

Solve (4.5) with ψ̄( j−1) replaced by ψ̄
( j,n−1)

h for ψ̄h

Set ψ̄
( j,n)

h = ψ̄h

If ‖ψ̄( j,n)

h − ψ̄
( j,n−1)

h ‖ < tol stop

End

3) ψ̄h
( j) = ψ̄

( j,n)

h

4) ψ
( j)
h = ψ̄h

( j) + ψ∗
h + ψ s.

Note that the numerical scheme for PB equation is given on structured grids. An advantage of structured grids is the 
applicability of fast solver such as multigrid method. For example, the multigrid solver for the PB equation developed by 
one of the authors in [35] can be applied to this case. We leave the development of the multigrid solver for the PBNP as a 
future work.

4.2. Control volume scheme for NP equation via upwinding concept

Once ψ̄( j)
h is determined by the (4.5), the concentration variable is reconstructed by solving NP equation (3.8)-(3.10)

using a control volume scheme [3,17,14,2]. We use usual P1-conforming space for NP variable. Thus, the uniform grid 
Th should be slightly refined near the solute-solvent interface. The refined mesh from Th will be noted by Fh , and the 
modification process is described below. First, noninterface elements in Th do not need refinement, so naturally they belong 
to Fh . Suppose that T is an interface element in Th and that E1 and E2 are the points where the interface passes through 
the edge of T . By connecting E1 and E2, element T is divided into a triangle and a quadrilateral (see Fig. 6 (left)). Next, by 
cutting the quadrilateral into two triangles in such a way that the maximum angles of the resulting triangles decrease, T
is finally divided into three sub-triangles (say T s

1, T s
2, and T s

3). Then the refined triangles, T s
1, T s

2 and T s
3, belong to Fh . By 

refining all the interface elements into small triangles in a similar way, Fh is obtained (Fig. 6 (middle)). Since the domain 
of concentration variable is �+ , we define a subset of Fh (Fig. 6 (right)),

F+
h = {T ∈ Fh | T ⊂ �+}.

To define the control volume methods for the concentration equation, new finite spaces are introduced. Firstly, Vh(�+)

denotes the P1-conforming space on F+
h . Now we need to define a test function space. Given a vertex P in F+

h , consider 
the elements sharing P as a node {Tk}N p

k=1. Connecting the barycenters and edge midpoints, one obtains a dual volume T ∗
P

(see Fig. 7). Denoting the collection of such dual volume by Dh , we define the test function space Wh(�+) as

Wh(�
+) = {w ∈ L2(�+)|ψ is piecewise constant on each dual volume T ∗

P ∈ Dh}.
9
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Fig. 6. Illustration of the triangulation of domain �+ through refining of a uniform grid. Left figure shows a refinement process of a typical interface 
element T into three sub-triangles. Middle figure shows the resulting triangulation Fh and right figure shows its subset F+

h .

Fig. 7. Illustration of a dual volume associated with a node P (gray region). Connecting barycenters and edge midpoints of T1, T2, ..., T6, dual volume T ∗
P is 

obtained.

Given a vertex Pi in F+
h , let wi ∈ Wh(�+) be the function such that wi = 1 on T ∗

Pi
and wi = 0 otherwise. It is easy to see 

that {wi} are basis functions of Wh(�+). To obtain n( j+1)

1,h , we multiply a test function wi ∈ Wh(�+) to (3.8) and integrate 
over T ∗

Pi
as below∫

T ∗
Pi

∇ ·
[

D1(∇n( j+1)

1,h + q1n( j+1)

1,h ∇(ψ̄
( j)
h + ψ∗

h ))
]

dx = 0. (4.6)

By integration by parts, (4.6) becomes∫
∂T ∗

Pi

[
D1(∇n( j+1)

1,h + q1n( j+1)

1,h ∇(ψ̄
( j)
h + ψ∗

h ))
]
· nds = 0,

which is equivalent to

N P∑
k=1

∫
∂T ∗

Pi
∩Tk

[
D1(∇n( j+1)

1,h + q1n( j+1)

1,h ∇(ψ̄
( j)
h + ψ∗

h ))
]
· nds = 0. (4.7)

Suppose P� is an adjacent node of Pi belonging to the element Tk with barycenter Ck . We denote by Mi� the mid point of 
Pi and P� . Let us denote by γ k

i� the segment Mi�Ck , whose outward normal vector is nk
i� . Then, (4.7) becomes

N P∑
k=1

∑
�=�k

1,�k
2

∫
γ k

i�

[
D1(∇n( j+1)

1,h + q1n( j+1)

1,h ∇(ψ̄
( j)
h + ψ∗

h ))
]
· nk

i�ds = 0, (4.8)

where P
�k

1
and P

�k
2

are two adjacent nodes of Pi , belonging to the element Tk (see Fig. 8). Since NP equation can be 
convection dominated, one needs to be careful to treat the convection term of (4.8) to avoid non-physical oscillations near 
the interface or boundary. Based on the usual upwinding concept, we replace the second term of (4.8) by

N P∑
k=1

∑
�=�k

1,�k
2

∫
γ k

i�

[
D1q1n∗

1,h∇(ψ̄
( j)
h + ψ∗

h ))
]

· nk
i�ds = 0,
10
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Fig. 8. Illustration of γ k
i� in Tk for � = �k

1.

where

n∗
1,h =

{
n( j+1)

1,h (Pi), if (∇(ψ̄
( j)
h + ψ∗

h ) · nk
i� ≥ 0

n( j+1)

1,h (P�), if (∇(ψ̄
( j)
h + ψ∗

h )) · nk
i� < 0.

The final scheme for the NP equation is: Find n( j+1)

1,h ∈ Vh(�+) such that:

N P∑
k=1

∑
�=�k

1,�k
2

∫
γ k

i�

[D1(∇n( j+1)

1,h + q1n∗
1,h∇(ψ̄

( j)
h + ψ∗

h ))] · nk
i�ds = 0,

for all nodes Pi of F+
h . Since we use an upwinding type scheme in P1-conforming space, an expected optimal convergence 

rate for the concentration variable is O(h) for both L2 and H1-norms.

5. Numerical experiment

In this section, we provide some numerical experiments. In Section 5.1, we consider examples with analytic solutions 
and in Section 5.2, we consider an actual ion channel simulation. We report L2 and H1-errors and graphs of the numerical 
solutions. We observe optimal convergence for the concentration variable for all examples with analytic solutions. In Section 
5.2, we show that our scheme reflects the effect on the distribution of electrons caused by locating the singular charge 
close to the interface. In all examples, the electrostatic potential variable is presented in kB T /ec scale and the concentration 
variable is presented in molar scale. Also, we assume q1 = q2 = 1, T = 25◦C and n02 = 1 M.

5.1. Examples with analytic solutions

The experiments are conducted for problems with various pairs of dielectric coefficients in Example 5.1-5.3. Dirichlet 
boundary is imposed for both the electrostatic potential and concentration variables. We provide the numerical results in 
terms of L2-error and piecewise H1-error where the piecewise H1-norm is defined as:

‖ψ‖2
1,h :=

∑
T ∈Th

‖ψ‖2
H̃1(T )

.

We let the domain � = [0, 4]2 and we consider a uniform triangulation Th consisting of right triangles whose size h =
2−k, k = 4, ..., 8. The solvent-solute interface is given by following:

� =
{

x2 + (y − 2)2 = 1.22, x < 2
(x − 4)2 + (y − 2)2 = 1.22, x > 2.

Also, in the solvent domain, channel and bulk region I is separated by the line y = 3 and channel and bulk region II is 
separated by the line y = 1. The diffusion coefficient is determined by DbulkI = 1.96 × 10−5, DbulkI I = 2.03 × 10−5 and 
Dchannel = 9.33 × 10−7.

Example 5.1. We take ε− = 1 and ε+ = 10. The exact regular solution ψr is

ψr =
{

(x − 2)2 + (y − 2)2, on �−,

0.64exp(−x2 − y2), on �+,

n1 = (x − 2)2 + (y − 2)2 + 3, on �+.
11



Table 1
The L2 and H1-errors of Example 5.1.

k ‖ψ − ψh‖L2(�) order ‖ψ − ψh‖1,h order ‖n1 − n1,h‖L2(�) order ‖n1 − n1,h‖1,h order

4 3.774 × 10−2 4.553 × 10−1 1.206 × 10−1 7.215 × 10−1

5 9.661 × 10−3 1.965 2.317 × 10−1 0.974 5.793 × 10−2 1.058 3.584 × 10−1 1.009
6 3.279 × 10−3 1.558 1.159 × 10−1 0.999 2.926 × 10−2 0.985 1.771 × 10−1 1.016
7 1.530 × 10−3 1.099 5.806 × 10−2 0.997 1.461 × 10−2 1.001 8.860 × 10−2 0.999
8 7.928 × 10−4 0.948 2.903 × 10−2 0.999 7.326 × 10−3 0.996 4.427 × 10−2 1.001
9 4.076 × 10−4 0.959 1.452 × 10−2 0.999 3.671 × 10−3 0.996 2.213 × 10−2 1.000

Table 2
The L2 and H1-errors for the perturbed interface case in Example 5.1.

k ‖ψ − ψh‖L2(�) order ‖ψ − ψh‖1,h order ‖n1 − n1,h‖L2(�) order ‖n1 − n1,h‖1,h order

4 1.077 × 100 1.393 × 100 1.135 × 10−1 7.191 × 10−1

5 6.570 × 10−1 0.714 7.982 × 10−1 0.803 5.419 × 10−2 1.067 3.567 × 10−1 1.011
6 3.026 × 10−1 1.118 3.484 × 10−1 1.196 2.853 × 10−2 0.926 1.777 × 10−1 1.005
7 1.156 × 10−1 1.388 1.429 × 10−1 1.285 1.450 × 10−2 0.976 8.869 × 10−2 1.003
8 2.828 × 10−2 2.032 4.953 × 10−2 1.529 7.291 × 10−3 0.992 4.431 × 10−2 1.001
9 8.140 × 10−3 1.797 1.808 × 10−2 1.454 3.657 × 10−3 0.995 2.213 × 10−2 1.002

Fig. 9. The graph of numerical solution of ψ (left) and n1 (right), k = 6 (Example 5.1).

We report the L2 and H1-errors of Example 5.1 in Table 1. We observe that the convergence rates of concentration are 
optimal in L2 and H1-norms. However, we observe that the convergence rate of electrostatic potential converges to 1, which 
is optimal in this case. It is caused by the existence of concentration term in Poisson-Boltzmann distribution. The graphs 
are given in Fig. 9.

We consider a similar problem in the domain where the solvent-solute interface is perturbed by a sine function type 
high frequency graph. The L2 and H1-errors for this case is reported in Table 2 and the graphs are given in Fig. 10.

Example 5.2. We take ε− = 1 and ε+ = 100. The exact regular solution ψr is

ψr =
{

sin(x + y − 4), on �−,

exp( x
4 + y

4 ), on �+,

n1 = xy

4
+ 5, on �+.

We report the L2 and H1-errors of Example 5.2 in Table 3. The graphs of numerical solutions are given in Fig. 11. The 
convergence rate of concentration is optimal in L2 and H1-norms. The convergence rate of electrostatic potential is O(h)

for both L2 and H1-norms.

It seems the L2 error of the electrostatic potential is suboptimal. This is caused by the concentration variable, not by 
the scheme. To see the optimality of our scheme, we fix the concentration variables and test the DB-IFEM scheme for the 
electrostatic potential alone in Table 4. We see that convergence rates for the potential are optimal.
I. Kwon, D.Y. Kwak and G. Jo Journal of Computational Physics 438 (2021) 110370
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Fig. 10. The graph of ψ (left) and n1 (right), for the perturbed interface case (Example 5.1).

Fig. 11. The graph of numerical solution of ψ (left) and n1 (right), k = 6 (Example 5.2).

Table 3
The L2 and H1-errors of Example 5.2.

k ‖ψ − ψh‖L2(�) order ‖ψ − ψh‖1,h order ‖n1 − n1,h‖L2(�) order ‖n1 − n1,h‖1,h order

4 1.005 × 10−2 2.050 × 10−1 1.151 × 10−1 2.418 × 10−1

5 2.558 × 10−3 1.973 9.947 × 10−2 1.043 5.650 × 10−2 1.026 1.220 × 10−1 0.986
6 4.223 × 10−4 2.599 4.800 × 10−2 1.051 2.781 × 10−2 1.022 5.807 × 10−2 1.071
7 1.453 × 10−4 1.538 2.390 × 10−2 1.006 1.383 × 10−2 1.007 2.854 × 10−2 1.024
8 6.677 × 10−5 1.122 1.188 × 10−2 1.007 6.891 × 10−3 1.004 1.410 × 10−2 1.017
9 3.479 × 10−5 0.940 5.932 × 10−3 1.002 3.440 × 10−3 1.002 7.027 × 10−3 1.004

Table 4
The L2 and H1-errors electrostatic potential with fixed 
(true) value of concentration in Example 5.2.

k ‖ψ − ψh‖L2(�) order ‖ψ − ψh‖1,h order

4 1.032 × 10−2 2.051 × 10−1

5 2.645 × 10−3 1.964 9.947 × 10−2 1.044
6 4.578 × 10−4 2.530 4.800 × 10−2 1.051
7 1.168 × 10−4 1.971 2.390 × 10−2 1.006
8 2.767 × 10−5 2.077 1.189 × 10−2 1.007
9 6.810 × 10−6 2.023 5.933 × 10−3 1.003
13



Table 5
The L2 and H1-errors of Example 5.3.

k ‖ψ − ψh‖L2(�) order ‖ψ − ψh‖1,h order ‖n1 − n1,h‖L2(�) order ‖n1 − n1,h‖1,h order

4 4.000 × 10−2 2.723 × 10−1 3.786 × 10−2 3.924 × 10−1

5 1.784 × 10−2 1.164 1.411 × 10−1 0.948 1.714 × 10−2 1.143 1.866 × 10−1 1.072
6 8.859 × 10−3 1.010 7.172 × 10−2 0.976 8.576 × 10−3 0.999 9.073 × 10−2 1.040
7 4.419 × 10−3 1.003 3.609 × 10−2 0.990 4.399 × 10−3 0.963 4.473 × 10−2 1.020
8 2.218 × 10−3 0.994 1.810 × 10−2 0.995 2.236 × 10−3 0.976 2.221 × 10−2 1.009
9 1.113 × 10−3 0.995 9.066 × 10−3 0.997 1.128 × 10−3 0.986 1.105 × 10−2 1.006

Fig. 12. The graph of numerical solution of ψ (left) and n1 (right), k = 6 (Example 5.3).

Example 5.3. We take ε− = 1, ε+ = 1. The exact regular solution ψr is

ψr =
{

cos(x − y), on �−,

exp(
x−y

4 ), on �+,

n1 = 0.1x(x − 4)y(y − 4) + 2, on �+.

We report the L2 and H1-errors of Example 5.3 in Table 5. The graphs of numerical solutions are given in Fig. 12. We 
observe similar convergence rates as in Example 5.1 and Example 5.2.

5.2. Actual simulation

In this example, we consider an actual simulation of PBNP. First two experiments with one singular charge (Fig. 13 and 
14) are given and then some experiments with multiple singular charges are given (Fig. 15). The purposes of different set-
tings are 1) to show that our methods are robust regardless of the locations or the number of the charges, 2) to demonstrate 
the effects of singular charge on the distribution of electrons in the ion channel.

We let the domain � = [0, 4 × 10−7]2 in cm-unit. The solvent-solute interface is given by following:

� =
{

x2 + (y − 2 · 10−7)2 = (1.2 · 10−7)2, x < 2 · 10−7

(x − 4 · 10−7)2 + (y − 2 · 10−7)2 = (1.2 · 10−7)2, x > 2 · 10−7.

Also, in the solvent domain, the channel and bulk region I is separated by the line y = 1 · 10−7 and the channel and bulk 
region II is separated by the line y = 3 · 10−7. Here, we take ε− = 1 and ε+ = 10. Also, we take DbulkI = 1.96 × 10−5 cm2/s, 
DbulkI I = 2.03 ×10−5 cm2/s and Dchannel = 9.33 ×10−7 cm2/s. Let us describe the boundary condition. The following Dirichlet 
boundary condition is imposed for electrostatic potential variable, ψ = 0 on y = 0 and ψ = 2 on y = 4 × 10−7 while zero 
Neumann boundary condition is imposed on x = 0 and x = 4 × 10−7. For the concentration variable, Dirichlet boundary 
condition n1 = 2 on y = 0 and n1 = 2 on y = 4 × 10−7 is imposed and zero Neumann boundary condition is imposed on 
x = 0 and x = 4 × 10−7.

Let us examine the effects of singular charges in the solute domain especially when the charges are close to the solvent-
solute interface. In this case, the electrostatic potential increases abruptly near the charge leading to a big gradient, which 
appears as the convection parameter in the concentration equation (see, eq. (3.8)-(3.10)). Hence the convection term domi-
nates when the charge gets closer to the interface or the number of ions increases. However, in our numerical experiments, 
I. Kwon, D.Y. Kwak and G. Jo Journal of Computational Physics 438 (2021) 110370
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Fig. 13. The graph of electrostatic potential (left) and concentration (right) where h = 4×10−7/64, the equation has the singularity at x = 10−7, y = 2 ×10−7.

Fig. 14. The graph of electrostatic potential (left) and concentration (right) where h = 4×10−7/64, the equation has the singularity at x = 1.13 × 10−7, y =
2 × 10−7.

Fig. 15. The graph of electrostatic potential (left) and concentration (right) in the presence of the multiple charges.
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the concentration and potential variables avoid any non-physical oscillations (see Fig. 14 for the close charge case and see 
Fig. 15 for the multiple charge case).

Also we can see our works reflect the effect of a singular charge has on the distribution of electrons, when the singular 
charge is close to the interface (Fig. 14). It is natural to expect that the concentration variable will change sharply near the 
interface as the singular charge gets closer to the interface, which coincides our numerical results. For example, when the 
singularity is close to the interface, the distribution of electrons near the interface goes down to 1.4 (Fig. 13), whereas that 
of electrons goes down to 1.7 when the singularity is far from the interface (Fig. 14).

6. Conclusion and future work

In this work, we introduced a new numerical method to solve the PBNP equation based on DB-IFEM. First, we regularized 
the solution of the PB equation. We introduced a DB to treat nonhomogeneous jumps and applied the linearization to the 
equation before discretization. Next, we defined a new variational form. Then, we discretized the DB and the bilinear form of 
the PB equation by adding consistency terms. Finally, we solved the discretized problem by IFEM. We repeated this process 
until the convergence of Gummel’s iteration. We believe that this kind of scheme for removing the singularity of the PB 
equation and handling nonhomogeneous jumps of regular component is unique. In the numerical experiments, we observed 
optimal convergence rates of the concentration variable for all the examples.

We believe our scheme can be extended to the three dimensional cases following the three dimensional IFEM introduced 
in [22,21,44]. However, we must be careful on the construction of the bubble functions since the points of intersection may 
vary depending on the location of interface. We leave it as a future work.
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