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SUMMARY

The main focus of this paper is to suggest a domain decomposition method for �nite element approx-
imations of elliptic problems with anisotropic coe�cients in domains consisting of anisotropic shape
rectangles. The theorems on traces of functions from Sobolev spaces play an important role in study-
ing boundary value problems of partial di�erential equations. These theorems are commonly used for
a priori estimates of the stability with respect to boundary conditions, and also play very important
role in constructing and investigating e�ective domain decomposition methods. The trace theorem for
anisotropic rectangles with anisotropic grids is the main tool in this paper to construct domain decom-
position preconditioners. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The mathematical modelling of transient and di�usion of matter, energy or other substance
is usually done by partial di�erential equations with appropriate initial and boundary condi-
tions. Such problems arise in �ow of �uids and gases, for example, for transport and dif-
fusion pollutants in the air or ground water aquifers, etc. These problems are characterized
in some practical problems by elliptic boundary value problems with anisotropic coe�cients
in anisotropic shape subdomains. It is of great practical importance to accurately compute
the solution, especially in the layers and around the singular points. The numerical methods
for such problems require techniques which are applicable for all scales of the parameters
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involved in the problem. In general, an e�cient and accurate method will require new types
of preconditioning for the resulting linear system and the use of e�cient solution meth-
ods and algorithms based on domain decomposition, multilevel decomposition methods. The
implementation of these methods with high aspect ratio in the coe�cients is a widely open
problem. In this paper a preconditioning technique based on the domain decomposition method
with non-overlapping subdomains is suggested. Elliptic problems in the domains consisting
of rectangles with anisotropic coe�cients are considered. The trace theorem for anisotropic
rectangles with anisotropic grids is the main tool in this paper to construct domain decompo-
sition preconditioners. Some results were announced in References [1–4]. For the construction
of preconditioners we use the so-called nested Chebyshev iterations. The general idea of this
trick was suggested by Dyakonov [5] and in domain decomposition=multigrid methods this
approach was used in References [6–8, 2]. Also the technique for low rank perturbed systems
of linear algebraic equations is used [9]. The domain decomposition method for anisotropic
elliptic problems was considered in Reference [10]. Each subproblem can be solved by multi-
grid method [11–13]. For anisotropic problems, one needs line smoothing. For convergence
analysis of multigrid methods for anisotropic problems, we refer to References [14–16]. The
remainder of this paper is organized as follows. First, we de�ne an anisotropic problem to-
gether with some notations.
Let us consider the boundary value problem

−
2∑

i; j=1

@
@xi

aij(x)
@u
@xj

=f(x) in �

u(x) = 0 on �= @�

(1)

Assume that the matrix {aij(x)} is positive de�nite and the domain � is a union of n non-
overlapping subdomains which are rectangles, i.e., ��=

⋃n
i=1
��(i); �(i) ∩�( j) = ∅; if i �= j. Let

�=
⋃k

i=1 @�
(i)\�. Let a(u; v) be the bilinear form corresponding to problem (1). Assume that

there exist constants �0 and �1 and

p(x) = p(i) =

(
p(i)1 0
0 p(i)2

)
; x∈�(i)

piecewise positive constant matrix such that

�0a(v; v)6
∫
�
(p(x)∇v · ∇v) d�6�1a(v; v); ∀v∈H 1

0 (�)

The coe�cient matrix p(x) can be anisotropic in each subdomain, that is, p(i)1 �p(i)2 or
p(i)1 �p(i)2 . Each subdomain where the problem is anisotropic can be transformed into a thin
domain so that the problem becomes isotropic. For example, if �(i) = (0; L1)× (0; L2) and
p(i)1 �p(i)2 , then the linear map x : R

2→R2 given by x(x1; x2)= ((1=�)x1; x2); �=(p(i)1 =p(i)2 )
1=2,

transforms the domain �(i) onto �̃(i) = (0; L1=�)× (0; L2) and problem (1) is changed to an
isotropic problem in �̃i

−p(i)	u(x)= f̃(x)
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for some f̃(x) where p(i) = min{p(i)1 ; p(i)2 }. In Section 2, we construct a trace semi-norm
| · |H̃ 1=2(@�̃(k)) for each thin domain �̃

(k) which satis�es

|�|2H̃ 1=2(@�̃(k))� inf
u∈H 1(�̃(k)); u|@�̃(k)=�

|u|2H 1(�̃(k)); ∀�∈H 1=2(@�̃(k))

Here A�B means that there exist c and C such that cA6B6CA. Here c and C are generic
constants independent of p and the mesh size h to be speci�ed later. For �∈H 1=2(�), denote
by �(k) its restriction on @�(k) and by �̃(k) the corresponding function on @̃�(k). Then we
de�ne a trace semi-norm | · |H̃ 1=2(�) on the whole interface � by

|�|2
H̃ 1=2(�)

=
n∑

k=1
p(k)|�̃(k)|2H̃ 1=2(@�̃(k))

which satis�es

|�|2
H̃ 1=2(�)

� inf
u∈H 1

0 (�); u|�=�
a(u; u)

Let �h=
⋃n

i=1 �
(i)
h be a quasi-uniform triangulation of rectangular grid of � of mesh size h

and �h be the triangulation of � induced by �h. Denote by Hh(�h) the space of real-valued
continuous functions linear on each triangles of the triangulation �h and by W the subspace of
Hh(�h) satisfying the Dirichlet boundary condition. Using the standard �nite element method,
we have a linear algebraic system

Au = f

The main purpose of this paper is the construction of the preconditioner B such that

c(Bv; v)6(Av; v)6C(Bv; v); ∀v ∈ RN

where N is the dimension of W . Denote

Au=
[
A11 A12
A21 A22

] [
uI

u�

]

where uI and u� are the vectors corresponding to interior nodes of each subdomains and nodes
on �h, respectively. If we let S=A22−A21A−1

11 A12 be the Schur complement matrix of A then

(Su�; u�)= inf
u=uI+u�

(Au; u)

Here

(Au; u)= a(u; u)�
n∑

k=1

∫
�(k)
p(k)∇u · ∇u d�(k) =

n∑
k=1

∫
�̃(k)

p(k)|∇u|2 d�̃(k)

In Section 3, we construct a trace semi-norm | · |H̃ 1=2
h (@�̃(k)) for each thin domain �̃

(k) which
satis�es

|�|2
H̃ 1=2

h (@�̃(k))
� inf

u∈Hh(�̃(k)h ); u|@�̃(k)=�
h

|u|2H 1(�̃(k))
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Then we de�ne a discrete trace semi-norm | · |H̃ 1=2
h (�) on the whole interface � by

|�|2
H̃ 1=2

h (�)
=

n∑
k=1

p(k)|�̃(k)|2
H̃ 1=2

h (@�̃(k))

which satis�es

|�|2
H̃ 1=2

h (�)
� inf

u∈W;u|�h=�
a(u; u):

In Section 4, we construct a preconditioner B for A. Finally in Section 5, we provide numerical
results.

2. CONSTRUCTION OF A TRACE NORM ON �

Let � be any open domain in R2 and �= @�. From trace theory in Sobolev spaces [17], we
have the following two lemmas.

Lemma 2.1
There exist c and C such that for any u∈H 1(�), and �∈H 1=2(�) with u(x)=�(x) on �

‖�‖H 1=2(�)6c‖u‖H 1(�) (2)

holds, and for any given �∈H 1=2(�), there exists u∈H 1(�) with u(x)=�(x) on � such
that

‖u‖H 1(�)6C‖�‖H 1=2(�) (3)

holds.

Moreover, we have similar results for semi-norm.

Lemma 2.2
There exist c and C such that for any u∈H 1(�), and �∈H 1=2(�) with u(x)=�(x) on �

|�|H 1=2(�)6c|u|H 1(�) (4)

holds, and for any given �∈H 1=2(�), there exists u∈H 1(�) with u(x)=�(x) on � such that

|u|H 1(�)6C|�|H 1=2(�) (5)

holds.

2.1. Trace theorem for domains with small diameter

We will consider several trace theorems for small domains. Let 0¡�¡1 be arbitrary real
number. If we use the change of variables by x= �s, and y= �t, we can transform �,
and � into ��, and ��, respectively. Let u�(x; y)= u(x=�; y=�) and �� be de�ned similarly.
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We note

|�|2H 1=2(�) =
∫
�

∫
�

(�(x)− �(y))2

|x − y|2 dx dy

Lemma 2.3
For any u∈H 1(�), and �∈H 1=2(�), we have

|��|H 1=2(��) = |�|H 1=2(�) (6)

|u�|H 1(��) = |u|H 1(�) (7)

Lemma 2.3 implies that the semi-norms | · |H 1=2(��) and | · |H 1(��) do not depend on � but only
on the shape of �. From Lemmas 2.2 and 2.3, we have the following result.

Lemma 2.4
For any u� ∈H 1(��), and �� ∈H 1=2(��) with u�(x)=��(x) on ��,

|��|H 1=2(��)6c|u�|H 1(��) (8)

holds, and for any given �� ∈H 1=2(��), there exists u� ∈H 1(��) with u�(x)=��(x) on �� such
that

|u�|H 1(��)6C|��|H 1=2(��) (9)

holds.

It is clear that the above constants c and C are independent of �. To obtain a trace theory
for the full norm on �� which is independent of � we �rst need to de�ne the corresponding
trace norm on ��.

De�nition 1
For any �� ∈H 1=2(��), de�ne the norm of �� by

‖��‖2H 1=2; �(��) = �‖��‖2L2(��) + |��|2H 1=2(��)

Remark 2.1
Note that ‖��‖H 1=2; �(��) and the standard norm ‖��‖H 1=2(��) are not equivalent with constant
independent of �.

Lemma 2.5
There exist c and C which are independent of � such that for any u� ∈H 1(��), and �� ∈
H 1=2; �(��) with u�(x)=��(x) on ��

‖��‖H 1=2; �(��)6c‖u�‖H 1(��) (10)

holds, and for any given �� ∈H 1=2(��), there exists u� ∈H 1(��) with u�(x)=��(x) on �� such
that

‖u�‖H 1(��)6C‖��‖H 1=2; �(��) (11)

holds.
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Proof
Let �� ∈H 1=2(��) be arbitrary. Let u� ∈H 1(��) with u�(x)=��(x) on ��. Then

�‖��‖2L2(��) = �
∫
��
��(x)2 d��

= �2
∫
�
�(s)2 d�

6 c�2‖u‖2H 1(�)

by Lemma 2.1. Since 0¡�¡1, we have

�2‖u‖2H 1(�) = ‖u�‖2L2(��) + �2|u�|2H 1(��)

6 ‖u�‖2H 1(��)

Hence by Lemma 2.4, we have (10). To prove (11), let u� ∈H 1(��) be the extension of ��

given by Lemma 2.4. The corresponding function u satis�es

‖u‖2L2(�)6c(‖�‖2L2(�) + |u|2H 1(�))

by Friedrich’s inequality. Therefore

‖u�‖2L2(��) = �2‖u‖2L2(�)
6 c�2(‖�‖2L2(�) + |u|2H 1(�))

6 c(�‖��‖2L2(��) + |u|2H 1(��))

Hence

‖u�‖H 1(��)6C‖��‖H 1=2; �(��)

The following lemma is due to Sobolev [17].

Lemma 2.6
Let �∈H 1=2(0; 1) and let A be any subinterval of (0; 1). Then there exists a constant C
depending only on the measure of A such that for any �∈H 1=2(0; 1),

‖�‖2H 1=2(0;1)6C

(
|�|2H 1=2(0;1) +

(∫
A
� dx

)2)

From this lemma, we obtain the following corollary.

Corollary 2.1
Let �∈H 1=2(0; �) and let A� be any subinterval of (0; �) whose measure is of order �. Assume

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:129–157
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that
∫
A�
� dx=0. Then there exists a constant C independent of � such that for any � ∈

H 1=2(0; �),

1
�
‖�‖2L2(0; �)6C|�|2H 1=2(0; �)

Lemma 2.7
Let �∈H 1=2(0; 1) be arbitrary. De�ne  (x) in the interval (0; 3) such that

 (x)=




�(x); if x∈ (0; 1]
(2− x)�(2− x); if x∈ (1; 2]
0; if x∈ (2; 3)

Then there exists a constant c independent of � and  such that

‖ ‖H 1=2(0;3)6c‖�‖H 1=2(0;1)

Moreover, if
∫ 1
0 �(x) dx=0, then there exists a constant C independent of � and  such that

‖ ‖2L2(0;3) + | |2H 1=2(0;3)6C|�|2H 1=2(0;1)

Remark 2.2
The �rst inequality in the statement of Lemma 2.7 can be proved by interpolation theory
between L2 and H 1 in order to de�ne the H 1=2 norms. And by Lemma 2.6, we have the
following:

∫ 1

0
�2 dx6c


|�|2H 1=2(0;1) +

(∫ 1

0
�(x) dx

)2
Using this, the second inequality can be proved.

The following is obtained just by scaling.

Corollary 2.2
Let �∈H 1=2(0; 3�) be arbitrary. De�ne  (x) in the interval (0; 3�) such that

 (x)=




�(x); if x∈ (0; �]
(2�− x)�(2�− x); if x∈ (�; 2�]
0; if x∈ (2�; 3�)

Then there exists a constant c independent of �;  , and � such that

‖ ‖H 1=2; �(0;3�)6c‖�‖H 1=2; �(0; �) (12)

Moreover, if
∫ �
0 �(x) dx=0, then there exists a constant C independent of �;  , and � such

that

1
�
‖ ‖2L2(0;3�) + | |2H 1=2(0;3�)6C|�|2H 1=2(0; �)
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2.2. Trace theorem for thin domain problem for continuous case

Let � be a rectangular domain �= (0; H)× (0; L) with a boundary �. Assume that this domain
is thin, that is, H�L. De�ne [x] as the largest integer which is less than or equal to x. Denote
k=[L=H ] and H̃ =L=k. Let �0 = �0 = (0; H)×{0}; �k+1 = �k+1 = (0; H)×{L}, and for each
i=1; : : : ; k, let

�i= {0}× ((i − 1)H̃ ; iH̃) and �i= {H}× ((i − 1)H̃ ; iH̃)

For each i=0; 1; : : : ; k, let li and �i be the connected open subset of � such that

�li= ��i ∪ ��i+1 and �ri= ��i ∪ ��i+1
De�nition 2
Let A and B be any subset of �. For any �∈H 1=2(�), de�ne

IA;B(�)=
∫
A

∫
B

(�(x)− �(y))2

|x − y|2 dx dy

De�nition 3
For any �∈H 1=2(�), de�ne

‖�‖2L̃2(�) =
k∑

i=0
H (‖�‖2L2(li) + ‖�‖2L2(ri))

|�|2H̃ 1=2(�) =
k∑

i=0
(Ili ; li(�) + Iri ;ri(�) + Ili ; ri(�))

‖�‖2H̃ 1=2(�) = ‖�‖2L̃2(�) + |�|2
H̃ 1=2(�)

Theorem 2.1
There exist constants c and C independent of H such that for any u∈H 1(�), with u(x)=�(x),
on �,

‖�‖2H̃ 1=2(�)6c‖u‖2H 1(�)

and for all �∈H 1=2(�), there exists u∈H 1(�) with u(x)=�(x), on � such that

‖u‖2H 1(�)6C‖�‖2H̃ 1=2(�)

Proof
Let �̃i=(0; H)× ((i − 1)H̃ ; iH̃); i=1; 2; : : : ; k, and �0 = �̃1;�k =�̃k , and �i be the overlap-
ping subdomains of � such that

��i=
�̃�i ∪ �̃�i+1; i=1; 2; : : : ; k − 1

For any given u∈H 1(�), we have

‖u‖2H 1(�)¿
1
2

k∑
i=0

‖u‖2H 1(�i)
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Figure 1. Subdivision of thin domains.

By Lemma 2.5, we have

‖u‖2H 1(�i)¿c(H‖�‖2L2(@�i) + I@�i ; @�i(�))

Hence

‖u‖2H 1(�i)¿
1
2

k∑
i=0

‖u‖2H 1(�i)

¿ c
k∑

i=0
(H‖�‖2L2(@�i) + I@�i ; @�i(�))

¿ c‖�‖2H̃ 1=2(�)

This completes the �rst part. For i=0; 1; : : : ; k+1, let �̃i be the open interval contained in �i

satisfying that the length of �̃i is of order H and the distance to the end points of �i is also of
order H . Similarly de�ne �̃i (see Figure 1). For example, we set �̃0 = �̃0 = (13H; 23H)×{0}; �̃k+1

= �̃k+1 = (13H; 23H)×{L}, and for each i=1; : : : ; k,

�̃i= {0}× ((i − 2
3 )H̃ ; (i − 1

3 )H̃) and �̃i= {H}× ((i − 2
3 )H̃ ; (i − 1

3 )H̃)

Given �∈H 1=2(�), let us de�ne a piecewise linear function �H ∈H 1=2(�) which has a constant
value on �̃i; �̃i; i = 0; 1; : : : ; k + 1

�H |�̃i = �i=
3
H̃

∫
�̃i

�(s) ds

�H |�̃i =�i=
3
H̃

∫
�̃i
�(s) ds

Between �̃i and �̃i+1 (�̃i and �̃i+1) we extend the function �H as a linear function. To de�ne
function �H on @�̃i, we de�ne a linear extension between points (0; iH̃) and (H; iH̃). So we

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:129–157
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have a function �H on @�̃i ; i=1; : : : ; k. By Corollary 2.2, it can be shown that

k∑
i=1
(H‖�H‖2L2(@�̃i)

+ I@�̃i ; @�̃i
(�H ))6c‖�‖2H̃ 1=2(�) (13)

By Lemma 2.5, we can extend �H to uH on each �̃i ; i=1; : : : ; k, such that

uH (x)=�H (x); x∈ @�̃i

and

‖uH‖2H 1(�̃i)
6c(H‖�H‖2L2(@�̃i)

+ I@�̃i ; @�̃i
(�H ))

Summing these,

‖uH‖2H 1(�)6c‖�‖2H̃ 1=2(�)

Let  (x)=�(x)− �H (x). Then for i=0; 1; : : : ; k − 1,∫
�̃i

 (s) ds=
∫
�̃i
 (s) ds=0

By Corollary 2.2, we can represent the function  (x) in the following form:

 (x) =
k∑

i=1
 i; l(x) +  i; r(x)

 i; l(x) = 0; x =∈ li

 i; r(x) = 0; x =∈ ri; i=1; 2; : : : ; k

and the following estimate is valid

k∑
i=1

‖ i; l‖2H̃ 1=2(�) + ‖ i; r‖2H̃ 1=2(�)6C‖ ‖2H̃ 1=2(�)

By Lemma 2.5, we can extend the functions  i; l;  i; r inside �, i.e. there exist ui; l; ui; r ∈H 1(�)
such that

ui; l(x) =  i; l(x); x∈�

ui; l(x) = 0; x =∈�i

and

‖ui; l‖2H 1(�i)6C‖ i; l‖2H̃ 1=2(�)
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The same inequality holds for ui; r with

ui; r(x) =  i; l(x); x∈�
ui; r(x) = 0; x =∈�i

Setting

u= uH +
k∑

i=1
ui; l + ui; r

and summing the estimates obtained, we prove the second part of theorem.

With the same technique, we have the following theorem.

Theorem 2.2
There exist c and C independent of H such that for all �∈H 1=2(�),

c(S�;�)6|�|2H̃ 1=2(�)6C(S�;�)

where

(S�;�)= inf
u∈H 1(�); u|�=�

|u|2H 1(�)

3. CONSTRUCTION OF A TRACE NORM ON �h

3.1. Trace theorem for anisotropic grid in FEM case

Assume that � is any rectangle. Let �= @�. Let I1; I2; I3, and I4 be the bottom, the right,
the top, and the left side of �, respectively. Let �h be the triangulation of � with grid sizes
h1 and h2 in x and y directions, respectively. From here, the generic constants c and C
are independent of h1 and h2. Let H 1; h be the �nite element space consisting of continuous
piecewise linear functions and H 1=2; h be the trace space of H 1; h. For any subset T of �, de�ne

H 1; h
T = {u∈H 1; h | u=0 on T}

H 1=2; h
T = {�∈H 1=2; h |�=0 on T}

Let n1 and n2 be the number of nodes in x and y direction, respectively. In this subsection,
we denote by A the generic matrix corresponding to the Laplacian with various boundary
condition. Let us de�ne a norm and a seminorm on trace.

De�nition 4
For each �∈H 1=2; h, de�ne

|�|2H 1; h(�) = h1(|�|2H 1(I2) + |�|2H 1(I4)) + h2(|�|2H 1(I1) + |�|2H 1(I3))

‖�‖2H 1=2; h(�) = ‖�‖2H 1=2(�) + |�|2H 1; h(�)

|�|2H 1=2; h(�) = |�|2H 1=2(�) + |�|2H 1; h(�)
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Remark 3.1
Note that ‖�‖H 1=2; h(�) and the standard norm ‖�‖H 1=2(�) are not equivalent with constant inde-
pendent of h1 and h2.

De�nition 5
De�ne S by

(S�;�)= inf
u∈H 1; h ; u|�=�

‖u‖2H 1(�)

Lemma 3.1
If �=0 on I2 ∪ I3 ∪ I4, then there exist c and C such that

c(S�;�)6‖�‖2H 1=2(�) + h2|�|2H 1(I1)6C(S�;�)

Proof
Let T = I2 ∪ I3 ∪ I4. For any u∈H 1; h

T , we have

|u|2H 1(�) = (Au; u)

Let �=(h2=h1)2, and

A0 =




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2




Then

A=�−1=2




�A0 + 2I −I
−I �A0 + 2I −I

. . . . . . . . .
−I �A0 + 2I −I

−I 1
2�A0 + I




A can be also expressed as

Au=�−1=2
[
A11 A12
A21 A22

] [
u1
u2

]

where u2 is the vector corresponding to the nodes on I1. Let 
=�−1=2(A22 − A21A−1
11 A12). It

is clear that A0 is symmetric and positive de�nite. Let � be an arbitrary eigenvalue of A0 and
� is the corresponding eigenvector. If there exist yi’s such that

A11




y1
...

ym−1
ym


=



0
...
0
�
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then

A21A−1
11




0

...

0

�



=−ym

Assume that yi= �i�, for i=1; 2; : : : ; m. Then we obtain

A11




�1�

...

�m−1�

�m�



=




0

...

0

�




that is, 


(��+ 2)I −I

−I (��+ 2)I −I

. . .

−I (��+ 2)I −I

−I (��+ 2)I







�1�

�2�

...

�m−1�

�m�



=




0

0

...

0

�




or 


��+ 2 −1
−I ��+ 2 −1

. . .

−I ��+ 2 −1
−1 ��+ 2







�1

�2
...

�m−1

�m



=




0

0

...

0

1




Let �=1 + 1
2��. Since A21A−1

11 A12�=ym= �m�;
�=�−1=2(� − �m)�. Now de�ne a sequence
di; i=0; 1; : : : ; m by

d0 = 1

d1 = 2�

...

dj=2�dj−1 − dj−2; j=2; 3; : : : ; m
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then we see that �i=di−1=dm, for i=1; 2; : : : ; m. It turns out dj=Uj(�), where Uj is the
Chebyshev polynomial of the second kind of degree j. If we let 	(
) be the eigenvalue of

 corresponding to the eigenvector �, then

	(
)=�−1=2
(
� − dm−1

dm

)
=�−1=2

(
� − Um−1(�)

Um(�)

)

Let us note the formula �Um(�)−Um−1(�)=Tm+1(�), where Ti; i=1; 2; : : : is the Chebyshev
polynomial of the �rst kind of degree i. Then

	(
)=�−1=2 Tm+1(�)
Um(�)

=�−1=2√�2 − 1× (�+
√

�2 − 1)m+1 + (�+
√

�2 − 1)−m−1

(�+
√

�2 − 1)m+1 − (�+
√

�2 − 1)−m−1

It is easy to show that

16
(�+

√
�2 − 1)m+1 + (�+

√
�2 − 1)−m−1

(�+
√

�2 − 1)m+1 − (�+
√

�2 − 1)−m−16C

Since

1
2

(√
��+

��
2

)
6

√
��+

�2�2

4
6
√
��+

��
2

we have

c(
√
�+

√
��)6	(
)6C(

√
�+

√
��)

Since this holds for any eigenvalue of A0, we obtain

c
((

A1=20 +
h2
h1

A0

)
�;�

)
6(
�;�)6C

((
A1=20 +

h2
h1

A0

)
�;�

)
; ∀�∈Rni−2

Since (h1I�; �)�‖�‖2L2(I1) = ‖�‖2L2(�) and ((1=h1)A0�;�)� |�|2H 1(I1)
= |�|2H 1(�), by interpolation

we have (A1=20 �;�)� |�|2H 1=2(�).
Observe that |�|2H 1=2(�)� |�|2H 1=2(�) when �=0 on T . Hence

c(‖�‖2H 1=2(�) + h2|�|2H 1(I1))6(
�;�)6C(‖�‖2H 1=2(�) + h2|�|2H 1(I1))

Observe that for any w∈H 1; h
T ; ‖w‖H 1(�)� |w|H 1(�). Hence we have the following estimation

c(S�;�)6‖�‖2H 1=2(�) + h2|�|2H 1(I1)6C(S�;�)

Lemma 3.2
Let u be the discrete harmonic function satisfying @u=@n=0 on I2 ∪ I4 and u=0 on I4 and
u=� on I1. Then

c(S�;�)6‖�‖2H 1=2(�) + h2|�|2H 1(I1)6C(S�;�)
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Proof
Let �=(h2=h1)2 and

A0 =




1 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 1




J =




1
2 0
0 1 0

. . . . . . . . .

0 1 0

0 1
2




Then

A=�−1=2




�A0 + 2J −J
−J �A0 + 2J −J

. . . . . . . . .

−J �A0 + 2J −J

−J 1
2�A0 + J




To estimate the Schur complement matrix of A, let us de�ne a matrix B which is equivalent
to A.

B=�−1=2




�A0 + 2I −I
−I �A0 + 2I −I

. . . . . . . . .

−I �A0 + 2I −I

−I 1
2�A0 + I




The proof of the equivalence of A and B is simple and omitted. Note that if A and B are
equivalent then the corresponding Schur complement matrices are also equivalent. The rest of
the proof is quite similar to that of Lemma 3.1 except that A0 is only positive semi-de�nite,
that is, it has 0 eigenvalue. If � is non-zero eigenvalue of A0 and � be the corresponding
eigenvector then by using the same technique, we have

(
B�; �)�
(
A0 +

h2
h1

�; �
)
� |�|2H 1=2(�) + h2|�|2H 1(I1) (14)

Let �=0. It is obvious that the corresponding eigenvector � is just a constant vector. If
we let 	(
B) be the eigenvalue corresponding to � then it is easy to obtain that 	(
B)=
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h1=(h2 + 1)� h1, so

(
B�; �)� (h1I�; �)�‖�‖2L2(�) (15)

Combining (14) and (15), we have

c(S�;�)6‖�‖2H 1=2(�) + h2|�|2H 1(I1)6C(S�;�)

Theorem 3.1
There exist c and C such that

c(S�;�)6‖�‖2H 1=2; h(�)6C(S�;�); ∀�∈H 1=2; h(�)

Proof
Let �i=�|Ii for i=1; 2; 3; 4. Let u1 and u2 be the discrete harmonic functions satisfying
@u1=@n= @u2=@n=0 on I2 ∪ I4 and u1 = 0 on I3 and u1 =�1 on I1 and u2 =�3 on I3 and
u2 = 0 on I1. By Lemma 3.2, we have

‖u1‖2H 1(�)�‖�1‖2H 1=2(�) + h2|�|2H 1(I1)

‖u2‖2H 1(�)�‖�3‖2H 1=2(�) + h2|�|2H 1(I3)

For j=2; 4, let  j=�j−u1|Ij−u2|Ij . Let u3 be the discrete harmonic function satisfying u3 =  2
on I2 and vanishing elsewhere and u4 be the discrete harmonic function satisfying u4 =  4 on
I4 and vanishing elsewhere. Then by Lemma 3.1,

‖u3‖2H 1(�) � ‖ 2‖2H 1=2(�) + h1| 2|2H 1(I2)

6 c(‖�2‖2H 1=2(�) + ‖u1|I2‖2H 1=2(�) + ‖u2|I2‖2H 1=2(�))

+ c(h1|�2|2H 1(I2) + h1|u1|I2 |2H 1(I2) + h1|u2|I2 |2H 1(I2))

By Lemma 3.2, ui for i=1; 2; satis�es

‖ui|Ij‖2H 1=2(�)6c‖ui‖2H 1(�); for j=2; 4

And it is easy to show that

h1|ui|Ij |2H 1(Ij)6c‖ui‖2H 1(�)

Hence by Lemma 3.2

‖u3‖2H 1(�)6 c(‖�2‖2H 1=2(�) + ‖�1‖2H 1=2(�) + ‖�2‖2H 1=2(�))

+ c(h1|�2|2H 1(I2) + h2|�1|2H 1(I1) + h2|�3|2H 1(I3))

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:129–157



DOMAIN DECOMPOSITION FOR ANISOTROPIC PROBLEM 145

Similar estimation holds for u4. Now let u=
∑4

i=1 ui, then u|� =�. It is clear that

‖u‖2H 1(�)6
4∑

i=1
‖ui‖2H 1(�)

6C‖�‖2H 1=2; h(�)

Now consider the opposite inequality. Let u be any function in Hh(�) satisfying u|� =�. By
trace theorem,

‖�‖H 1=2(�)6C‖u‖H 1(�)

Let zi; i=0; 1; : : : ; m be the nodes on I2. Then

h1|�|2H 1(I2)6C
m−1∑
i=0

h1
h2
(�(zi+1)− �(zi))2

= C
m−1∑
i=0

h1h2

(
u(zi+1)− u(zi)

h2

)2

6C‖u‖H 1(�)

Similar inequalities hold for I1; I3 and I4. From above inequalities, we have

‖�‖H 1=2; h(�)6C inf
w∈Hh(�); w|� =�

‖w‖H 1(�)

This completes the proof.

De�nition 6
De�ne S̃ by

(S̃�; �)= inf
u∈H 1(�); u|� =�

|u|2H 1(�)

Theorem 3.2
There exist c and C such that

c(S̃�; �)6|�|2H 1=2; h(�)6C(S̃�; �)

Proof
Consider the second inequality. Let u be such that u|� =�. Decompose u= u0 + u1, where u0
is constant and u1 satis�es ∫

�
u1 d�=0
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Let �0 = u0|� and �1 = u1|�. Then �=�0 + �1 and

|u|2H 1(�) = |u1|2H 1(�)¿ c‖u1‖2H 1(�)

¿ c‖�1‖2H 1=2; h(�)¿c|�1|2H 1=2; h(�) = c|�|2H 1=2; h(�)

By taking the in�mum, we obtain the second inequality. Now consider the �rst inequality.
Decompose �=�0 + �1, where �0 is constant and �1 satis�es∫

�
�1 d�=0

Let u0 be the trivial extension of �0. By Theorem 3.1 we can choose u1 such that

1
2
‖u1‖2H 1(�)6(S�1; �1)6c‖�1‖2H 1=2; h(�) (16)

Let u= u0 + u1. Then by the de�nition of S̃, (16) and Poincar�e inequality, we see

(S̃�; �)6C|u|2H 1(�) =C|u1|2H 1(�)

6C‖u1‖2H 1(�)6C‖�1‖2H 1=2; h(�)6C|�1|2H 1=2; h(�) =C|�|2H 1=2; h(�)

This completes the �rst inequality.

3.2. Trace theorem for domains with small diameter in FEM case

We will consider trace theory for a small domain in �nite element case. Let 0¡�¡1 be
arbitrary real number. By the change of variables, x= �s, and y= �t, we can transform �;�h;�,
and Ii into ��;�h(�);��, and Ii; �, for 16i64, respectively. Denote by H 1; h(�) the space of �nite
element functions on �h(�), and denote by H 1=2; h(�) the space of �nite element functions on
�h(�). For u∈H 1; h and �∈H 1=2; h, let u�(x; y)= u(s; t) and ��(x; y)=�(s; t).

De�nition 7
For each �� ∈H 1=2; h(�), de�ne

|��|2H 1; h(�)(��) = �h1(|��|2H 1(I2; �) + |��|2H 1(I4; �)) + �h2(|��|2H 1(I1; �) + |��|2H 1(I3; �))

|��|2H 1=2; h(�)(��) = |��|2H 1=2(��) + |��|2H 1; h(�)(��)

‖��‖2H 1=2; h(�)(��) = �‖��‖2L2(��) + |��|2H 1=2; h(�)(��)

From the de�nition, we immediately obtain the following:
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Lemma 3.3
For any �∈H 1=2; h, we have

|��|2H 1=2; h(�)(��) = |�|2H 1=2; h(�)

The following two lemmas are direct consequence of Theorems 3.1, 3.2, De�nition 7, and
Lemma 3.3.

Lemma 3.4
For any u� ∈H 1; h(�), and �� ∈H 1=2; h(�) with u�(x)=��(x) on ��

|��|H 1=2; h(�)(��)6c|u�|H 1(��) (17)

holds, and for any given �� ∈H 1=2; h(�), there exists u� ∈H 1; h(�) with u�(x)=��(x) on �� such
that

|u�|H 1(��)
6C|��|H 1=2; h(�)(��) (18)

holds.

Lemma 3.5
There exist c and C which are independent of � such that for any u� ∈H 1; h(�), and �� ∈H 1=2; h(�)

with u�(x)=��(x) on ��

‖��‖H 1=2; h(�)(��)6c‖u�‖H 1(��)

holds, and for any given �� ∈H 1=2; h(�), there exists u� ∈H 1; h(�) with u�(x)=��(x) on �� such
that

‖u�‖H 1(��)6C‖��‖H 1=2; h(�)(��)

holds.

Lemma 3.6
Let Ih and Jh be the uniform triangulation of (0; 1) and (0; 3), respectively, with mesh size h.
For i=0; : : : ; 3=h, let xi= ih. Let HI and HJ be the spaces of continuous and piecewise linear
functions on Ih and Jh, respectively. Let �∈HI be arbitrary. De�ne  (x)∈HJ in the interval
(0; 3) such that

 (xi)=




�(xi); if xi ∈ (0; 1]
(2− xi)�(2− xi); if xi ∈ (1; 2]
0; if xi ∈ (2; 3)

Then there exists a constant c independent of � and  such that

‖ ‖2H 1=2(0;3) + h| |2H 1(0;3)6c(‖�‖2H 1=2(0;1) + h|�|2H 1(0;1))

Moreover, if
∫ 1
0 �(x) dx=0, then there exists a constant C independent of � and  such that

 |H 1=2(0;3) + h| |2H 1(0;3)6C(|�|H 1=2(0;1) + h|�|2H 1(0;1))
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Proof
De�ne the following discrete norms:

‖�‖2L̃h
2 (Ih)

= h
∑
i
�2(xi)

‖�‖2H̃ 1=2; h(Ih)
= h2

∑
i

∑
j

(�(xi)− �(xj))2

|xi − xj|2

‖�‖2H̃ 1; h(Ih)
=
1
h
∑
i
(�(xi+1)− �(xi))2

Then it can be shown that these discrete norms are equivalent to their corresponding continu-
ous norms. Then the following inequalities can be shown by direct computation, from which
the proof of the lemma is derived.

‖ ‖2L̃h
2 (Jh)

6 c‖�‖2L̃h
2 (Ih)

| |2H̃ 1=2; h(Jh)
6 c(|�|2H̃ 1=2; h(Ih)

+ ‖�‖2L̃h
2 (Ih)
)

h| |2H̃ 1; h(Jh)
6 h|�|2H̃ 1; h(Ih)

We can directly obtain the following just by scaling.

Corollary 3.1
Denote by H�

I and H�
J be the scaled �nite element spaces with respect to HI and HJ , re-

spectively. Let x̃i= �xi, for i=0; : : : ; 3=h. Let �∈H�
I be arbitrary. De�ne  (x) in the interval

(0; 3�) such that

 (x̃i)=




�(x̃i); if x̃i ∈ (0; �]
(2�− x̃i)�(2�− x̃i); if x̃i ∈ (�; 2�]
0; if x̃i ∈ (2�; 3�)

Then there exists a constant c independent of �;  , and � such that

�‖ ‖2L2(0;3�) + | |2H 1=2(0;3�) + �h| |2H 1(0;3�) 6 c(�‖�‖2L2(0; �) + |�|2H 1=2(0; �) + �h|�|2H 1(0; �)) (19)

Moreover, if
∫ �
0 �(x) dx=0, then there exists a constant C independent of �;  , and � such

that

1
�
‖ ‖2L2(0;3�) + | |2H 1=2(0;3�) + �h| |2H 1(0;3�) 6 C(|�|2H 1=2(0; �) + �h|�|2H 1(0; �))

3.3. Trace theorem for anisotropic grid on thin domain in FEM case

This section is closely related to Section 2.1, but we deal with �nite element case. Let
�= (0; H)× (0; L) and let �= @�. Assume that H�L. Let k=[L=H ] and H̃ =L=k. Let �h
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be a triangulation on � with uniform grid size h1 and h2 in x and y direction, respec-
tively. Let n1 =H=h1 and n2 =L=h2. Assume that h2 is su�ciently small so that there exists
an integer m¿3 so that m · h26H¡(m+ 1) · h2. We can choose a sequence {si}ki=0 of inte-
gers such that 0= s0¡s1¡ · · ·¡sk = n2 and mi= si − si−1¿3 of order m, and m1 =mk =m.
Decompose the interval [0; L]=

⋃k
i=1
�I i where Ii=(si−1 · h2; si · h2). Let �0 = �0 = (0; H)×{0},

�k = �k =(0; H)×{L}, and �i= {0}× Ii; �i= {H}× Ii. De�ne li=�i ∪�i+1 and ri= �i ∪ �i+1.

De�nition 8
For any �∈H 1=2; h, de�ne

|�|2H 1; h(�) = h1(|�h|2H 1(�L) + |�h|2H 1(�R)) + h2(|�h|2H 1(�B) + |�h|2H 1(�T ))

‖�‖2L2(�) =
k∑

i=0
H (‖�‖2L2(li) + ‖�‖2L2(ri))

|�|2H̃ 1=2; h(�) =
k∑

i=0
(Ili ; li(�) + Iri ; ri(�) + Ili ; ri(�)) + |�|2H 1; h(�)

‖�‖2H̃ 1=2; h(�) = ‖�‖2L̃2(�) + |�|2H̃ 1=2; h(�)

Theorem 3.3
There exist c and C independent of H; h1, and h2 such that for all �∈H 1=2; h,

c(S�;�)6‖�‖2H̃ 1=2; h(�)6C(S�;�)

where

(S�;�)= inf
u∈H 1; h ; u|� =�

‖u‖2H 1(�)

Proof
De�ne �̃i and �̃i similarly as in the proof of Theorem 2.1. Then we can de�ne �i and �i to
construct �H ;  0;  k+1, and  i, for i=1; : : : ; k in the same way as in the proof of Theorem 2.1.
To complete the proof, it is su�cient to show that

k∑
i=1

|�H |2H 1; h(@�̃i)
6c‖�‖2H̃ 1=2; h(�) (20)

and

| −1|2H 1; h(@�0) + | k |2H 1; h(@�k ) +
k−1∑
i=0
(| i; l|2H 1; h(@�i) + | i; r|2H 1; h(@�i))6 c‖�‖2

H̃ 1=2; h(�)
(21)

By direct calculation,

k∑
i=1

|�H |2H 1; h(@�̃i)
6 c

k∑
i=0
((�i+1 − �i)2 + (�i+1 − �i)2)

+ c
k∑

i=0
((�i+1 − �i)2 + (�i+1 − �i)2) + c

k+1∑
i=0
(�i − �i)2 (22)

6 c‖�‖H̃ 1=2; h(�) (23)
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where the last inequality is obtained as the proof of Theorem 2.1. This completes (20).
Equation (21) follows from Corollary 3.1.

For the semi norm, we have the following theorem.

Theorem 3.4
There exist c and C independent of H such that for all �∈H 1=2; h,

c(S̃�; �)6|�|2H̃ 1=2; h(�h)
6C(S̃�; �)

where

(S̃�; �)= inf
u∈H 1; h ; u|� =�

|u|2H 1(�)

The semi-norm, |�|H̃ 1=2; h(�) is complicated to implement, but we can replace it by an equiv-
alent norm |�|H̃ 1=2; h(�), which is simpler.

De�nition 9
For any �∈H 1=2; h, de�ne

|�|2H̃ 1=2; h(�) =
k∑

i=0
(Ili ; li(�) + Iri ; ri(�)) +

k∑
i=1

I�i ; �i(�) + |�|2H 1; h(�) (24)

Theorem 3.5
There exist c and C independent of H such that for all �∈H 1=2; h,

c(S̃�; �)6|�|2H̃ 1=2; h(�)6C(S̃�; �)

where

(S̃�; �)= inf
u∈H 1; h ; u|� =�

|u|2H 1(�)

4. CONSTRUCTION OF PRECONDITIONER B

Let us decompose W into two subspaces W0; W1, and construct a preconditioner for each
subspaces. The subspaces W0 and W1 are de�ned as follows. Let

W0 = {u∈W | u(x)=0; x∈�h}
Set W1=2 be the trace space of W on �h. Let t be the extension operator from W1=2 to W . In
fact,

t=
[
A−1
11 A12
I

]

and t maps a discrete function de�ned on Sh to the A-discrete harmonic function in �h. Let
t∗ be the adjoint map of t. In matrix form,

t∗=[A21A−1
11 I ]
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Set W1 = tW1=2 and

W ( j)
0 = {u∈W0 | u(x)=0; x �∈�( j)h }; j=1; 2; : : : ; n

Let B( j)0 :W ( j)
0 →W ( j)

0 such that there exist c and C satisfying

c(B( j)0 v; v)6
∫
�( j )
p( j)∇u · ∇u d�6C(B( j)0 v; v); ∀v∈W ( j)

0

For any linear operator T , denote by T+ the pseudo inverse of T . Set B0 =B(1)0 + B(2)0 +
· · · + B(n)0 and B+0 = (B

(1)
0 )

+ + (B(2)0 )
+ + · · · + (B(n)0 )+. For the preconditioner for W1, let

�( j) =�|@�̃( j ) ; �∈W1=2. Assume that we have 
( j) which induces a semi norm on @�̃( j) which
is equivalent to the norm de�ned in Theorem 3.5. Let p( j) = min{p( j)1 ; p( j)2 }, for j=1; : : : ; n.
Let

(
�;  )=
n∑

j=1
p( j)(
( j)�( j);  ( j))

Then (
�;�) is equivalent to the trace norm on W1=2. To give a preconditioner B1 for 
,
we de�ne 
( j). Fix a subdomain �( j). For convenience assume that �( j) = (0; L1)× (0; L2),
where L1 = n1h and L2 = n2h for some positive integers n1 and n2. Assume that p

( j)
i �p( j)2 . Let

�( j) =
√

p( j)1 =p( j)2 . Assume that h is su�ciently small so that there exists an integer m¿3 so
that mh¡L2=�( j)¡(m+1)h. By a change of variable (x1; x2)= (x1=�( j); x2);�( j) is transformed
onto �̃( j) = (0; L1=�( j))× (0; L2). Let H =L1=�( j); L=L2, H̃ =L2=�( j); h1 = h=�( j), and h2 = h.
Note that H�L and h1�h2. Each �̃( j) will be decomposed exactly as in Section 3.2, and we
use the same notations mi; �i; �i; li; ri,. By Theorem 3.5, we have that for all �∈H 1=2; h(�̃( j)),

(Si�; �)� |�|2H̃ 1=2; h(�̃( j ))

Let us construct 
( j) which is equivalent to |·|2
H̃ 1=2; h(�̃( j ))

. For given �∈H 1=2; h(�̃( j)), let �S be

the restriction of � on S, for any subset S of �̃( j). From now on, denote by A(n) the generic
matrix corresponding to the 1-dimensional laplacian with Neumann boundary condition where
the size is equal the number of grid points n:

A(n) =




1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1




In fact, (A(n)�;�)= h|�|2H 1(I) whenever � is a �nite element function on interval I which is
discretized by n points with uniform mesh size h. Then for i=1; : : : ; k − 1,

Ili ; li(�)� (A1=2
(mi+mi+1+1)�li ; �li)

Let 
li =A
1=2
(mi+mi+1+1) and Tli =A(mi+mi+1+1).
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For Il0 ; l0 (�), the situation is quite di�erent since l0 is composed of two di�erent meshes h1
and h2 (similarly for Ilk ; lk (�), Ir0 ; r0 (�), and Irk ; rk (�)). Let �0; h1 and �1; h2 be the triangulation
on �0 and �1 with grid sizes h1 and h2, respectively. Let l0; h=�0; h1 ∪�1; h2 . Let {yi}mi=0 and
{yi}m+n1

i=m be the grid points of �1 and �0, respectively. We will insert new nodes zi and
renumber the whole nodes on l0 as follows. Since h2�h1, there exists a positive integer
p such that ph16h2¡(p + 1)h1. Let zip+s=[(p − s)yi + syi+1]=p; (i=0; : : : ; m − 1 and
s=0; 1; : : : ; p− 1), and zmp+i=ym+i ; (i=0; : : : ; n1). Let ‘=m ·p+ n1. Observe that {zi}‘i=0 is
a quasi-uniform grid on l0 with grid size of order h1. Let l0; h1 be the triangulation induced
by {zi}‘i=0. Then we have two di�erent �nite element spaces on l0; H

1=2
l0; h
and H 1=2

l0; h1
, which are

�nite element spaces on l0; h and l0; h1 , respectively. Let Jl0 be the natural extension of the
function in H 1=2

l0; h
to the same function in H 1=2

l0; h1
. In fact, Jl0 [�(xi)]

T = [�(zj)]T. For any �∈H 1=2
l0; h
,

we have

(J Tl0A
1=2
(‘+1)Jl0�;�)= (A1=2

(‘+1)Jl0�; Jl0�)� |�|2H 1=2(l0) = Il0 ; l0 (�)

Let 
l0 = J Tl0A
1=2
(‘+1)Jl0 and Tl0 = J Tl0A(‘+1)Jl0 . Note that Tl0 is a tridiagonal matrix. In fact,

Tl0 =




1
p − 1

p

− 1
p 2 1p − 1

p

. . . . . . . . .

− 1
p 1 + 1

p −1
−1 2 −1

−1 2 −1
. . . . . .

−1 1




Similarly we can de�ne 
r0 ;
lk ;
rk ; Tr0 ; Tlk , and Trk . Now consider the term I�i ; �i(�). For
i=1; : : : ; k, denote {x�i; j}mi

j=0 and {x�i; j}mi
j=0 be the mesh points on �i and �i, respectively.

Then

I�i ; �i(�) =
∫
�i

∫
�i

(�(x)− �(y))2

|x − y|2 dx dy

� 1
H 2

∫
�i

∫
�i
(�(x)− �(y))2 dx dy

� 1
(mi + 1)2

∑
j; k
(�(x�i; j)− �(x�i; k))

2

= (��i; �i�; �)
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where

��i; �i =
1

(mi + 1)2




−1 · · · −1

(mi + 1)I
... · · · ...

−1 · · · −1
−1 · · · −1
... · · · ... (mi + 1)I

−1 · · · −1




Denote by �L the restriction of � on �( j)L . Then

h1|�|2H 1(�( j )L )
� (�L�L; �L)

where �L=(h1=h2)A(n2+1). De�ne �R; �B and �T similarly. Now de�ne 
( j) by

(
( j)�;  ) =
k−1∑
i=1
((
li�li ;  li) + (
ri�ri ;  ri)) +

k∑
i=1
(��i; �i��i∪�i ;  �i∪�i)

+ (
l0�l0 ;  l0) + (
r0�r0 ;  r0) + (
lk�lk ;  lk ) + (
rk�rk ;  rk )

+ (�L�L;  L) + (�R�R;  R) + (�B�B;  B) + (�T�T ;  T )

and T ( j) by

(T ( j)�;�) =
k−1∑
i=1
((Tli�li ;  li) + (Tri�ri ;  ri)) +

k∑
i=1
(��i; �i��i ∪�i ;  �i ;∪�i)

+ (Tl0�l0 ;  l0) + (Tr0�r0 ;  r0) + (Tlk�lk ;  lk ) + (Trk�rk ;  rk )

+ (�L�L;  L) + (�R�R;  R) + (�B�B;  B) + (�T�T ;  T )

One can show that

c( j)(T ( j)�;�)6(
( j)�;�)6ĉ( j)(T ( j)�;�) (25)

where c( j) = 1
2 and ĉ( j) = 1= sin(
=2(‘ + 1)). Note that ‘ is of order 1=h. Denote by  (k) be

the restriction of  on @�̃(k) for all  ∈W1=2. De�ne bilinear forms 
 and T by

(
�;  )=
n∑

k=1
p(k)(
(k)�(k);  (k))

(T�;  )=
n∑

k=1
p(k)(T (k)�(k);  (k))
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From (25), we can see that

c(T�;�)6(
�;�)6ĉ(T ( j)�;�) (26)

where c= 1
2 and ĉ is the maximum of {ĉ( j)}nj=1. Observe that each 
( j) is a full matrix

and hard to construct, hence it is cost-expensive to invert 
. However the inversion of T is
reasonably simple. Note that each ��i; �i is of the form

��i; �i =
[
K11

i K12
i

K21
i K22

i

]

where K12
i and K21

i are matrices of rank 1. Hence we decompose T ( j) into

T ( j) = T̃ ( j) +
2k∑
i=1

Ki

where T̃ ( j) is a tridiagonal matrix and Ki’s are the matrices corresponding to the rank 1
matrices K12

i ’s and K21
i ’s. Hence T can be inverted by using rank reduction method [9]. The

cost to invert T is of order (1=h)maxni=1{�(i)}.
Now we are in position to solve the following complicated system.


�=  

Since 
 is a full matrix, we shall use Chebyshev iteration as a preconditioner. Consider the
following iteration:

�0 = 0
�i+1 − �i =−tiT−1(
�i −  )

where ti’s are Chebyshev set of iteration parameter [4]. Set

B−1
1=2 =

(
I −

n(�)∏
i=0

(I − tiT−1
)

)

−1

where

n(�)6
ln(2=�)
ln(1=q)

; q=
c1=2 − ĉ1=2

c1=2 + ĉ1=2

Then, �n(�) =B−1
1=2 and if we choose �= 1

2 , we see n(�)=O(h1=2) and

1
2 (B1=2�;�)6(
�;�)6 3

2 (B1=2�;�); ∀�∈W1=2

Set B+1 = tB−1
1=2t

∗ and B−1 =B+0 + B+1 . Then the following theorem holds.
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Theorem 4.1
There exist positive constants c and C independent of h and p such that

c(Bv; v)6(Av; v)6C(Bv; v) ∀v∈W

5. NUMERICAL EXPERIMENT

In this section, we present some numerical results to verify the performance of our domain
decomposition algorithm. The region � is the unit square (0; 1)× (0; 1) and divided into four
squares as in Figure 2. We consider the example

−∇·p(x)∇u(x)=0 in �

with Dirichlet boundary condition, where p(x) is a piecewise constant function whose value
is pi on each subdomain �i.
The initial guess is u(x; y)= x(1− x)y(1− y). We denote by N the number of iteration of

preconditioned conjugate gradient method. On the �rst experiment, we �x p(x) and vary h
from 1=23 to 1=28. Tables I and II show that N is stable with respect to h. Next, for each
h=1=23 · · · 1=28 we vary p(x); x∈�2 ∪�4 from 1 to 105. Table III shows that N is stable
with respect p(x).

Figure 2. Di�usion coe�cient p(x).

Table I. p1 =p4 = 1, p2 = 100 and p3 = 1000.

1=h N

23 5
24 6
25 7
26 7
27 9
28 8
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Table II. p1 = 1 and p2 =p3 =p4 = 1000.

1=h N

23 5
24 7
25 8
26 8
27 9
28 9

Table III. The number of iteration N :p1 =p4 = 1 and p2 =p3 =p∗.

h\p∗ 100 101 102 103 104 105

1=23 4 5 5 5 5 5
1=24 5 6 6 6 7 7
1=25 6 7 7 8 8 9
1=26 5 6 7 8 8 9
1=27 7 7 8 9 10 10
1=28 6 7 8 9 9 10
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