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Abstract. In this paper, we analyze nonconforming virtual element methods
on polytopal meshes with small faces for the second-order elliptic problem.

We propose new stability forms for 2D and 3D nonconforming virtual element
methods. For the 2D case, the stability form is defined by the sum of an inner
product of approximate tangential derivatives and a weighed L2-inner product

of certain projections on the mesh element boundaries. For the 3D case, the
stability form is defined by a weighted L2-inner product on the mesh element
boundaries. We prove the optimal convergence of the nonconforming virtual
element methods equipped with such stability forms. Finally, several numerical

experiments are presented to verify our analysis and compare the performance
of the proposed stability forms with the standard stability form [5].

1. Introduction

Recently, several numerical schemes for solving partial differential equations
on polytopal meshes have been proposed, for example, mimetic finite difference
(MFD) methods [16, 17, 30], hybrid high-order (HHO) methods [37, 43, 44], weak
Galerkin (WG) methods [55, 60, 63], hybridizable discontinuous Galerkin (HDG)
methods [38,39], and so on. Among them, the virtual element method (VEM)
was introduced in [7] as a generalization of the finite element method (FEM) to
general polytopal meshes. The shape functions in the VEM are defined implicitly
as the solution of a specific local boundary value problem. Although its explicit
evaluation cannot be obtained in general, the virtual element function can be char-
acterized by the degrees of freedom, and the VEM can be implemented by using
the degrees of freedom only. This is the reason why the word “virtual” is used.
The VEM has been successfully applied to a wide range of problems: elasticity
problems [10, 54, 66], Stokes problems [19, 31, 56], Maxwell problems [8, 9, 14], etc.
We also refer to [2,11–13,20,52] and the references therein for more comprehensive
survey.

The nonconforming FEM has been studied and developed by many researchers
since its first introduction by Crouzeix and Raviart [41]. See, for instance, [6, 25,
35, 40, 48, 49, 53] and the references therein. There are several advantages of the
nonconforming FEM. First, the low-order elements can be used to construct stable
elements for the Stokes problem [41] and locking-free elements for the elasticity
problem [27,48,51]. Second, one can implement efficient parallel algorithms [45,46],
since the basis functions of the nonconforming elements are supported on at most
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two mesh elements. Third, a mixed formulation of the second-order elliptic problem
can be cast into the nonconforming FEM [3,4,35,53]. These advantages carry over
to the nonconforming VEM (see, e.g., [5, 31, 52, 54, 66]). Moreover, for the three-
dimensional problem, the nonconforming VEM is easier than the conforming VEM,
since the conforming element requires a recursive construction from the mesh faces
to the mesh elements while the nonconforming element does not.

In the VEM literature, the underlying mesh is usually required to satisfy the
following conditions: (i) each mesh element is star-shaped with respect to a ball
whose radius is comparable to the diameter of the element, and (ii) all the edges or
faces are not too small. However, several meshes may violate some of these condi-
tions, such as anisotropic meshes, interface-fitted meshes, crack-fitted meshes, and
Voronoi meshes. Although it has been observed that the VEMs perform robustly
on such meshes in many numerical experiments (see, e.g., [15, 21, 22, 34, 57]), it is
also important to analyze the performance of the VEM on such meshes rigorously.

For the case that the underlying mesh violates both conditions, we refer to [32,
33], where the authors considered the lowest-order conforming and nonconforming
VEMs on anisotropic meshes. In this paper, we focus on the case that the mesh
satisfies (i) but possibly violates (ii). In [18,28], the convergence of the conforming
VEM on such meshes was analyzed. The authors of [18] observed that designing
a suitable stability bilinear form plays an important role in the analysis, which
is typically regarded as a minor issue under the usual mesh assumption. For the
2D case, the authors of [18, 28] considered a tangential derivative-type stability
form, which was first proposed in [65]. They proved an optimal error estimate
for the 2D conforming virtual element solution equipped with this stability form.
They also proved the optimal convergence of the 2D conforming VEM with the
standard stability form, but the convergence depends on the maximum number of
edges of the mesh elements and the ratio of the longest and shortest edges. The
authors of [28] proposed a weighted L2-inner product-type stability form for the
3D conforming VEM and proved that the 3D conforming VEM with this stability
form yields an optimal error estimate, where the constant in the estimate depends
on the maximum number of faces of the mesh elements and the ratio of the longest
and shortest edges.

Unfortunately, the stability forms in [18,28] cannot be used for the nonconform-
ing VEMs, because the forms require the function values on the mesh edges, but
such values of the nonconforming virtual element functions are not known. To rem-
edy this, the authors of [24] used the duality technique [23] to design stability forms
for the 2D nonconforming VEMs. They first constructed several bilinear forms on
the so-called dual space, and then the stability forms are defined by the reflexive
generalized inverse of the constructed bilinear forms. However, the presented sta-
bility forms require that the maximum number of edges of the mesh elements be
uniformly bounded, while the tangential derivative-type stability form for the 2D
conforming VEM introduced in [18, 28] does not. On the other hand, to the best
of our knowledge, there are no results considering the 3D nonconforming VEM of
arbitrary order on the meshes with small faces yet.

In this paper, we propose new stability forms for the nonconforming VEM in
both 2D and 3D cases on polytopal meshes with small faces. In the 2D case, our
proposed stability form is defined by the sum of an inner product of approximate
tangential derivatives and a weighed L2-inner product of certain projections on



NCVEMS ON POLYTOPAL MESHES WITH SMALL FACES 3

the mesh element boundaries. We then prove an optimal error estimate for the
2D nonconforming VEM with this stability form, without the assumption that the
maximum number of edges of the mesh elements is uniformly bounded. In the
3D case, our proposed stability form is defined by a weighted L2-inner product
on the mesh element boundaries. We prove the optimal convergence of the 3D
nonconforming VEM with this stability form, where the convergence depends on
the maximum number of faces of the mesh elements, but not on the ratio of the
longest and shortest edges.

The rest of the paper is organized as follows. In Section 2, we summarize some
basic notions and the model problem. In Section 3, we describe the nonconforming
VEM, and present a modified stability condition that the stability form must satisfy.
In Section 4, we provide an error analysis for the nonconforming VEM equipped
with the stability form satisfying the modified condition. In Section 5, we present
new stability forms in both 2D and 3D cases, and prove that they indeed satisfy
the modified stability condition under the mesh assumption weaker than the usual
one. In Section 6, we offer several numerical tests verifying our theoretical results
and comparing the performance of our proposed stability forms with the standard
one. Finally, the conclusion is given in Section 7.

2. Preliminaries

We first summarize basic definitions and notations. Let ω be a bounded open set
in Rn with n = 1, 2, 3. We denote by hω its diameter and by |ω| its n-dimensional
Lebesgue measure.

Throughout this paper, we follow the usual notation of Sobolev spaces (see,
e.g., [26, 36, 50]). For s ≥ 0, let Hs(ω) be the standard Sobolev space of order s,
and let | · |s,ω and ∥ · ∥s,ω be the corresponding seminorm and norm, respectively.
In particular, H0(ω) coincides with L2(ω). Let (·, ·)0,ω be the standard L2-inner
product on ω. Let ∥·∥L∞(ω) denote the standard L

∞-norm on ω. For any v ∈ L2(ω),

let (v)ω denote the average of v on ω, that is, (v)ω := 1
|ω|
´
ω
v.

Let H−1/2(ω) be the dual space of H1/2(ω), and let | · |−1/2,ω be a seminorm on

H−1/2(ω) defined as follows [24]:

|u|−1/2,ω := sup
v∈H1/2(ω)/R

⟨u, v⟩ω
|v|1/2,ω

,

where H1/2(ω)/R := {v ∈ H1/2(ω) : (v)ω = 0}, and ⟨·, ·⟩ω is the duality pairing.
For an integer k ≥ 0, Let Pk(ω) be the space of all polynomials of degree less

than or equal to k on ω, and let Mk(ω) be the set of all scaled monomials on ω.

Let Π0,ω
k be the L2-projection operator onto Pk(ω).

We next briefly describe the model problem. Let Ω be a bounded polytopal
domain in Rd (d = 2, 3). We consider the second-order elliptic problem: Given
f ∈ L2(Ω), find u ∈ H1

0 (Ω) such that

(2.1)

ˆ
Ω

∇u · ∇v dx =

ˆ
Ω

fv dx ∀v ∈ H1
0 (Ω).

It is well-known that (2.1) has a unique solution.

3. Nonconforming virtual element method

In this section, we describe the nonconforming VEM for (2.1).
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3.1. Mesh assumption. Let Ph be a decomposition of Ω into finitely many non-
overlapping polytopal elements, with h = maxK∈Ph

hK . Let Fh be the set of
all (d − 1)-dimensional mesh faces. Let F i

h and Fb
h be the set of all interior and

boundary faces, respectively. For each element K, let nK be the unit normal vector
on ∂K in the outward direction with respect to K. For each interior face F , nF is
defined by the unit normal vector on F whose direction is fixed once and for all.
For each boundary face F , nF is defined by the unit normal vector on F in the
outward direction with respect to Ω.

Let v be a scalar function defined on Ω. For each F ∈ F i
h, we define the jump

of v across F by
[[v]]F := (v|K+)nK+ + (v|K−)nK− ,

where K+ and K− is the elements in Ph such that F ⊂ ∂K+ ∩ ∂K−. For each
F ∈ Fb

h, we let [[v]]F := vnF .
Throughout this paper, we will assume that the following holds [18,24,28].

Assumption 3.1. There exists a positive constant ρ independent of h such that

• every mesh element K ∈ Ph is star-shaped with respect to a d-dimensional
ball BK with radius ρhK ;

• every mesh face F ∈ Fh is star-shaped with respect to a (d−1)-dimensional
ball BF with radius ρhF .

The assumption above is weaker than the mesh assumption usually required in
the VEM literature (see, e.g., [5, 7, 29]).

3.2. Nonconforming virtual element spaces. Let k ≥ 1 be an integer, and let
K ∈ Ph. We first introduce an auxiliary space

N ℓ
h(∂K) :=

{
g ∈ L2(∂K) : g|F ∈ Pℓ(F ) ∀F ⊂ ∂K

}
, ℓ ≥ 0.

Then the nonconforming virtual element space on the element K is defined as
follows:

V k
h (K) :=

{
v ∈ H1(K) : ∆v ∈ Pk−2(K), ∂v/∂n ∈ Nk−1

h (∂K)
}
,

with the convention that P−1 = {0}. Then the following degrees of freedom are
unisolvent for V k

h (K) (see [5]): given v ∈ V k
h (K),

• the moments of order up to k − 1 on each face F ⊂ ∂K:

(3.1)
1

|F |

ˆ
F

vq ds, q ∈ Mk−1(F );

• the moments of order up to k − 2 on K:

(3.2)
1

|K|

ˆ
K

vq dx, q ∈ Mk−2(K).

Next, the global nonconforming virtual element space V k
h (Ω) is given by

V k
h (Ω) :=

{
vh ∈ L2(Ω) : vh|K ∈ V k

h (K) ∀K ∈ Ph,

ˆ
F

[[vh]]F · nF q ds = 0 ∀q ∈ Pk−1(F ), ∀F ∈ Fh

}
.

Then the following moments can be taken as degrees of freedom for V k
h (Ω): The

moments (3.1) of order up to k− 1 on each interior mesh face F , and the moments
(3.2) of order up to k − 2 on each mesh element K.
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Let Hh(Ω) := H1
0 (Ω) + V k

h (Ω), and let | · |1,h be the broken H1-seminorm on
Hh(Ω) given by

|vh|21,h :=
∑

K∈Ph

|vh|21,K , ∀vh ∈ Hh(Ω).

For each K ∈ Ph, let I
K
h : H1(K) → V k

h (K) be the canonical local interpolation
operator based on the local degrees of freedom (3.1)-(3.2). Also, let Ih : Hh(Ω) →
V k
h (Ω) be the canonical global interpolation operator based on the global degrees

of freedom of V k
h (Ω).

3.3. Discrete problem. For each K ∈ Ph, the elliptic projection operator Π∇,K
k :

H1(K) → Pk(K) is defined as follows:ˆ
K

∇Π∇,K
k v · ∇q dx =

ˆ
K

∇v · ∇q dx ∀q ∈ Pk(K),

ˆ
∂K

Π∇,K
k v ds =

ˆ
∂K

v ds if k = 1,

ˆ
K

Π∇,K
k v ds =

ˆ
K

v ds if k > 1.

It is easy to verify that Π∇,K
k v is computable for any v ∈ V k

h (K) using only the
degrees of freedom (3.1)-(3.2). For vh ∈ Hh(Ω), we define Π∇

k vh by the piecewise

polynomial such that (Π∇
k v)|K = Π∇,K

k (vh|K) for any K ∈ Ph.
We next define the global discrete bilinear form ah(·, ·) on Hh(Ω) as

ah(uh, vh) :=
∑

K∈Ph

aKh (uh, vh),

and let |||·||| =
√
ah(·, ·) be the discrete energy norm on Hh(Ω). Here, for each

K ∈ Ph, ah(·, ·) is the local discrete bilinear form on H1(K) given by

aKh (u, v) :=
(
∇Π∇,K

k u,∇Π∇,K
k v

)
0,K

+ SK
h

(
(I −Π∇,K

k )u, (I −Π∇,K
k )v

)
,

where SK
h (·, ·) is a symmetric positive semidefinite bilinear form on H1(K), called

the stability bilinear form.
It is easy to check that aKh (·, ·) satisfies the property called consistency :

(3.3) aKh (p, v) = (∇p,∇v)0,K ∀p ∈ Pk(K), v ∈ H1(K).

In the classical VEMs [5,29], the stability form SK
h (·, ·) is constructed so that it can

be computed using the degrees of freedom only and satisfies the stability condition:
there exist positive constants c∗ and c∗ independent of h such that, for any K ∈ Ph,

(3.4) c∗∥∇v∥20,K ≤ aKh (v, v) ≤ c∗∥∇v∥20,K ∀v ∈ V k
h (K).

We will replace (3.4) with the following properties: there exists positive constants
C1 and C2 such that

|vh|1,h ≤ C1|||vh||| ∀vh ∈ V k
h (Ω),(3.5) ∣∣∣∣∣∣u−Π∇

k u
∣∣∣∣∣∣ ≤ C2h

ℓ|u|ℓ+1,Ω ∀u ∈ Hℓ+1(Ω), 1 ≤ ℓ ≤ k.(3.6)

In addition, we also assume that SK
h (·, ·) satisfies the following property:

(3.7) SK
h (v, w) = SK

h (IKh v, w) ∀v, w ∈ H1(K),

which also holds for the classical stability form in the nonconforming VEM [5]. In
Section 5 we will present suitable stability bilinear forms SK

h (·, ·) satisfying (3.5),
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(3.6) and (3.7), where C1 and C2 depend only on ρ and k in two dimensions and also
N in three dimensions. Note that (3.4) together with the projection error estimates
(4.3) implies (3.5)-(3.6), but the converse may not hold in general. Nevertheless,
we can still obtain optimal error estimates, as shown in the next section.

Let ⟨f, ·⟩h be the discrete loading term onHh(Ω) given by ⟨f, vh⟩h :=
(
f,Πhvh

)
0,Ω

,

where Πhvh is the projection such that, for any K ∈ Ph,

(Πhvh)|K = Π∇,K
k (vh|K) if k ≤ 2, (Πhvh)|K = Π0,K

k−2vh if k > 2.

With the above preparations, we state the nonconforming VEM for (2.1) as
follows: Find uh ∈ V k

h (Ω) such that

(3.8) ah(uh, vh) = ⟨f, vh⟩h ∀vh ∈ V k
h (Ω).

4. Error analysis

In this section, we prove the optimal convergence of the nonconforming VEMs
(3.8) with any stability form SK

h (·, ·) satisfying (3.5), (3.6) and (3.7).
We first recall some standard estimates. Assume that D = K for some K ∈

Ph or D = F for some F ∈ Fh. Then we have the trace inequality (see, e.g.,
[1, Theorem 3.2] and (2.18) of [28])

(4.1) ∥v∥20,∂D ≤ C
(
h−1
D ∥v∥20,D + hD|v|21,D

)
∀v ∈ H1(D),

and the Poincaré-Friedrichs inequality (cf. [28, 64])

(4.2) ∥v − v∥20,D ≤ Ch2D|v|21,D ∀v ∈ H1(D),

where v = (v)∂D or v = (v)D. Here C in (4.1) and (4.2) denotes a positive constant
depending only on ρ.

We present the error estimates for the projection operators Π∇,K
k and Π0,K

k for
each K ∈ Ph (cf. [26, 28]).

Lemma 4.1 (projection error estimates). Let K ∈ Ph. Then there exists a constant
C > 0 depending only on ρ and k such that, for any v ∈ Hℓ+1(K) with 1 ≤ ℓ ≤ k
and any integer 0 ≤ m ≤ 2,

(4.3)
∣∣v −Π∇,K

k v
∣∣
m,K

+
∣∣v −Π0,K

k v
∣∣
m,K

≤ Chℓ+1−m
K |v|ℓ+1,K .

We also present the interpolation error estimates. Note that their proofs can be
done by following the arguments in [59, Proposition 3.1] and [58, Section 6.2].

Lemma 4.2 (interpolation error estimates). Let K ∈ Ph. Then there exists a
constant C > 0 depending only on ρ and k such that

(4.4)
∥∥v − IKh v

∥∥
0,K

+ hK
∣∣v − IKh v

∣∣
1,K

≤ Chk+1
K |v|k+1,K ∀v ∈ Hk+1(K).

In order to derive error estimates in | · |1,h and |||·|||, we first compute the consis-
tency error as follows.
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Lemma 4.3 (consistency error). Let u ∈ H1
0 (Ω) ∩ H3/2+ε(Ω) be the solution of

(2.1), for any positive, arbitrary small ε > 0. Then, for any vh ∈ Hh(Ω),

ah(u, vh)− ⟨f, vh⟩h

=
∑

K∈Ph

SK
h

(
u−Π∇

k u, vh −Π∇
k vh

)
+

ˆ
Ω

f(vh −Πhvh) dx

+

ˆ
Ω

∇
(
Π∇

k u− u
)
· ∇vh dx+

∑
F∈Fh

ˆ
F

∇u · [[vh]]F ds.(4.5)

Proof. Let vh ∈ Hh(Ω). Note that

ah(u, vh)− ⟨f, vh⟩h

=
∑

K∈Ph

SK
h

(
u−Π∇

k u, vh −Π∇
k vh

)
+

ˆ
Ω

∇Π∇
k u · ∇Π∇

k vh dx− ⟨f, vh⟩h

=
∑

K∈Ph

SK
h

(
u−Π∇

k u, vh −Π∇
k vh

)
+

ˆ
Ω

∇
(
Π∇

k u− u
)
· ∇vh dx

+

ˆ
Ω

∇u · ∇vh dx−
ˆ
Ω

fΠhvh dx.(4.6)

Since u ∈ H2(Ω) and u is the solution of (2.1), integrating by parts yields

ˆ
Ω

∇u · ∇vh dx =

ˆ
Ω

fvh dx+
∑

K∈Ph

ˆ
∂K

∂u

∂n
vh ds

=

ˆ
Ω

fvh dx+
∑

F∈Fh

ˆ
F

∇u · [[vh]]F ds.(4.7)

Now inserting (4.7) into (4.6), we get (4.5). �

The following lemma establishes the estimate of the second term on the right-
hand side of (4.5). We skip the proof since it is essentially the same as the proof
of [5, Lemma 3.4].

Lemma 4.4. There exists a constant C > 0 depending only on ρ and k such that

(4.8)

∣∣∣∣ˆ
Ω

f(vh −Πhvh) dx

∣∣∣∣ ≤ Chk|f |k−1,Ω|vh|1,h ∀vh ∈ Hh(Ω).

We next consider the fourth term on the right-hand side of (4.5).

Lemma 4.5. Suppose that u ∈ H1
0 (Ω) ∩ Hk+1(Ω) is the solution of (2.1). Then

there exists a constant C > 0 depending only on ρ and k such that

(4.9)

∣∣∣∣∣ ∑
F∈Fh

ˆ
F

∇u · [[vh]]F ds

∣∣∣∣∣ ≤ Chk|u|k+1,Ω|vh|1,h ∀vh ∈ Hh(Ω).

Proof. The proof is slightly different from that of Lemma 4.1 in [5], due to the
presence of small edges/faces.
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For an integer ℓ ≥ 0, K ∈ Ph, and v ∈ L2(∂K), define Π0,∂K
ℓ v by (Π0,∂K

ℓ v)|F =

Π0,F
ℓ (v|F ) for any F ⊂ ∂K. Then we have∣∣∣∣∣ ∑

F∈Fh

ˆ
F

∇u · [[vh]]F ds

∣∣∣∣∣ =
∣∣∣∣∣ ∑
F∈Fh

ˆ
F

(
∇u−Π0,F

k−1(∇u)
)
· [[vh]]F ds

∣∣∣∣∣
=

∣∣∣∣∣ ∑
F∈Fh

ˆ
F

(
∇u−Π0,F

k−1(∇u)
)
·
(
[[vh]]F −Π0,F

0 ([[vh]]F )
)
ds

∣∣∣∣∣
≤
∑

F∈Fh

∥∥∇u−Π0,F
k−1(∇u)

∥∥
0,F

∥∥[[vh]]F −Π0,F
0 ([[vh]]F )

∥∥
0,F

≤

( ∑
F∈Fh

∥∥∇u−Π0,F
k−1(∇u)

∥∥2
0,F

) 1
2
( ∑

F∈Fh

∥∥[[vh]]F −Π0,F
0 ([[vh]]F )

∥∥2
0,F

) 1
2

≤ C

( ∑
K∈Ph

∥∥∇u−Π0,∂K
k−1 (∇u)

∥∥2
0,∂K

) 1
2
( ∑

K∈Ph

∥∥vh −Π0,∂K
0 vh

∥∥2
0,∂K

) 1
2

.

Let K ∈ Ph and uπ := Π∇,K
k u. Then, by (4.1) and (4.3),∥∥∇u−Π∂K

k−1(∇u)
∥∥2
0,∂K

≤ 2 ∥∇u−∇uπ∥20,∂K + 2
∥∥Π∂K

k−1(∇uπ −∇u)
∥∥2
0,∂K

≤ 4 ∥∇u−∇uπ∥20,∂K ≤ Ch−1
K |u− uπ|21,K + ChK |u− uπ|22,K ≤ Ch2k−1

K |u|2k+1,K .

Similarly, using (4.1) and (4.2), we obtain∥∥vh −Π∂K
0 vh

∥∥2
0,∂K

≤ 2 ∥vh − (vh)K∥20,∂K + 2
∥∥Π∂K

0 ((vh)K − vh)
∥∥2
0,∂K

≤ 4 ∥vh − (vh)K∥20,∂K ≤ Ch−1
K ∥vh − (vh)K∥20,K + ChK |vh|21,K ≤ ChK |vh|21,K .

Combining the above estimates, we finally obtain (4.9). �
Now we derive the error estimates in the discrete energy norm |||·||| and the broken

H1-seminorm | · |1,h.

Theorem 4.6. Suppose that u ∈ H1
0 (Ω) ∩ Hk+1(Ω) is the solution of (2.1) with

f ∈ Hk−1(Ω). Let uh ∈ V k
h (Ω) be the solution of (3.8). Then there is a constant

C > 0 depending only on ρ, k, C1 and C2 such that

(4.10) |u− uh|1,h + |||u− uh||| ≤ Chk
(
|u|k+1,Ω + |f |k−1,Ω

)
.

Proof. Using (4.4) and (3.5),

|u− uh|1,h ≤ |u− Ihu|1,h + |Ihu− uh|1,h ≤ Chk|u|k+1,Ω + |||Ihu− uh|||.
Note that |||Ihu− uh||| = |||u− uh||| by (3.7). Thus it is enough to estimate |||u− uh|||.
Let δh = u− uh. By (4.5),

|||u− uh|||2 = ah(u, δh)− ⟨f, δh⟩

=
∑

K∈Ph

SK
h

(
u−Π∇

k u, δh −Π∇
k δh

)
+

ˆ
Ω

f(δh −Πhδh) dx

+

ˆ
Ω

∇
(
Π∇

k u− u
)
· ∇δh dx+

∑
F∈Fh

ˆ
F

∇u · [[δh]]F ds

=: T1 + T2 + T3 + T4.(4.11)
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For T1 and T2, it follows from (3.6), (4.8) and (3.5) that

|T1|+ |T2| ≤ Chk
(
|u|k+1,Ω + |f |k−1,Ω

)
|||δh|||.

For T3 and T4, using (4.3), (4.9) and (3.5), we obtain

|T3|+ |T4| ≤ Chk|u|k+1,Ω|δh|1,h ≤ Chk|u|k+1,Ω|||δh|||.
The conclusion follows by plugging the estimates for T1, · · · , T4 into (4.11). �

Remark 4.7. Following the proof of Theorem 4.5 in [5], one can derive the optimal
error estimate in the L2-norm when Ω is convex: If u ∈ H1

0 (Ω) ∩ Hk+1(Ω) is the
solution of (2.1) with f ∈ Hk−1(Ω) and if uh ∈ V k

h (Ω) is the solution of (3.8), then
there exists a constant C > 0 depending only on Ω, ρ, k, C1 and C2 such that

∥u− uh∥0,Ω ≤ Chk+1
(
|u|k+1,Ω + |f |k−1,Ω

)
.

5. Stability analysis

In this section, we present stability forms satisfying (3.5), (3.6) and (3.7) for the
2D and 3D cases. Let K ∈ Ph.

5.1. Some technical results. Before beginning, we present some results that are
useful in the sequel. The following results hold in the presence of small edges/faces.

Lemma 5.1. If v ∈ V k
h (K), then there exists q ∈ Pk(K) such that

∆q = ∆v, |q|1,K ≤ C|v|1,K ,
where C is a positive constant depending only on ρ and k.

Proof. The conclusion immediately follows via a similar argument in the proofs of
Lemma 3.5 and Lemma 6.3 in [18]. �

By proceeding as in the proof of Lemma 6.2 in [18], together with the inverse
trace theorem (see Subsection 2.7 in [28]), one can prove the following lemma.

Lemma 5.2. Suppose that w ∈ [L2(K)]d satisfies divw = 0. Then there exists a
constant C > 0 depending only on ρ such that

|w · nK |−1/2,∂K ≤ C∥w∥0,K .

We also state some useful estimates for | · |1/2,∂K as follows (see (2.16) and (2.17)
of [28]).

Lemma 5.3. The following estimates hold:

|v|1/2,∂K ≤ Ch
1/2
K |v|1,∂K ∀v ∈ H1(∂K),(5.1)

|v|1/2,∂K ≤ C|v|1,K ∀v ∈ H1(K),(5.2)

where C is a positive constant depending only on ρ.

The following lemma is a modification of Lemma 4.6 in [24].

Lemma 5.4. Let g ∈ Nk−1
h (∂K) satisfy (g)∂K = 0. Then

h−1
K

∑
F⊂∂K

h2F ∥g∥20,F ≤ C|g|2−1/2,∂K ,

where C is a positive constant depending only on ρ and k.
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..
ρhF.

ρhF /2

.
UF

.

BF

Figure 1. The balls BF and UF .

Proof. For each F ⊂ ∂K, let UF is the ball concentric with BF and has radius
ρhF /2 (see Figure 1), and let ηF be a smooth (cut-off) function such that

(a) ηF = 1 on UF , ηF = 0 outside BF , and 0 ≤ ηF ≤ 1;
(b) ∥ηF ∥L∞(F ) ≤ C and ∥∇F ηF ∥L∞(F ) ≤ Ch−1

F , where ∇F denotes the (d−1)-
dimensional gradient operator on F .

Let pF := g|F for each F ⊂ ∂K, and define g̃ ∈ L2(∂K) by

g̃|F = h−1
K h2F pF ηF ∀F ⊂ ∂K.

Then g̃ ∈ C1(∂K), since pF is a polynomial and ηF is a smooth function supported
on BF , for each F ⊂ ∂K. Thenˆ

∂K

gg̃ ds = h−1
K

∑
F⊂∂K

h2F

ˆ
F

ηF |pF |2 ds ≥
∑

F⊂∂K

h−1
K h2F ∥pF ∥20,UF

≥ C
∑

F⊂∂K

h−1
K h2F ∥pF ∥20,F = C

∑
F⊂∂K

h−1
K h2F ∥g∥20,F .(5.3)

By (g)∂K = 0 and the definition of the norm | · |−1/2,∂K , we have

(5.4)

ˆ
∂K

gg̃ ds =

ˆ
∂K

g (g̃ − (g̃)∂K) ds ≤ |g|−1/2,∂K |g̃|1/2,∂K .

From the inverse estimates for polynomials, we obtain, for any F ⊂ ∂K,

|g̃|1,F ≤ h−1
K h2F ∥ηF∇F pF ∥0,F + h−1

K h2F ∥pF∇F ηF ∥0,F
≤ C(h−1

K h2F ∥∇F pF ∥0,F + h−1
K hF ∥pF ∥0,F ) ≤ Ch−1

K hF ∥pF ∥0,F .(5.5)

Combining (5.1) with (5.5), and by the definition of pF , we have

(5.6) |g̃|21/2,∂K ≤ ChK |g̃|21,∂K ≤ C
∑

F⊂∂K

h−1
K h2F ∥g∥20,F .

Now the assertion of the lemma follows from (5.3), (5.4), and (5.6). �

Lemma 5.5. Let v ∈ V k
h (K) satisfy Π∇,K

k v = 0, and let q ∈ Pk(K) be a polynomial
satisfying ∆q = ∆v. Then we have

(5.7)

ˆ
K

|∇v|2 dx =
∑

F⊂∂K

ˆ
F

(∇(v − q) · nK)
(
Π0,F

k−1v − (v)∂K
)
ds.
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Proof. Using integration by parts, we haveˆ
K

|∇v|2 dx =

ˆ
K

∇v · ∇(v − (v)∂K) dx

=

ˆ
K

(−∆q)(v − (v)∂K) dx+

ˆ
∂K

∂v

∂n
(v − (v)∂K) ds

=

ˆ
K

∇q · ∇v dx+

ˆ
∂K

(∇(v − q)) · nK(v − (v)∂K) ds

=

ˆ
K

∇q · ∇Π∇,K
k v dx+

ˆ
∂K

(∇(v − q)) · nK(v − (v)∂K) ds

=

ˆ
∂K

(∇(v − q) · nK)(v − (v)∂K) ds

=
∑

F⊂∂K

ˆ
F

(∇(v − q) · nK)
(
Π0,F

k−1v − (v)∂K
)
ds.

This completes the proof. �

5.2. Stabilization in two dimensions. In this subsection, we consider the two-
dimensional case (that is, d = 2).

Let B(∂K) be the boundary space defined by

B(∂K) :=
{
ϕ ∈ C0(∂K) : ϕ|F ∈ P2(F ) ∀F ⊂ ∂K

}
.

For v ∈ H1(K), let ϕv be the function in B(∂K) satisfying the following properties:

• v and ϕv have the same lowest-order face moments, that is,ˆ
F

v ds =

ˆ
F

ϕv ds ∀F ⊂ ∂K.

• If a is a common end point of two faces F+ and F− in ∂K, then

ϕv(a) =
hF−

hF+ + hF−

(v)F+ +
hF+

hF+ + hF−

(v)F− .

Let us consider the stability bilinear form SK
h (·, ·) given by

SK
h (u, v) = hK

ˆ
∂K

∂sϕu∂sϕv ds

+ hK
∑

F⊂∂K

h−2
F

ˆ
F

(
Π0,F

k−1u− (u)F
)(
Π0,F

k−1v − (v)F
)
ds,(5.8)

where ∂sϕ denotes the tangential derivative of ϕ along ∂K, for ϕ ∈ B(∂K).
Note that the stability form given by (5.8) satisfies (3.7), since the face moments

(3.1) of u and Ihu are identical.
We will prove that the stability form given by (5.8) satisfies (3.5).

Lemma 5.6. There exists a constant C > 0 depending only on ρ and k such that

|v|21,K ≤ CSK
h (v, v) ∀v ∈ V k

h (K) with Π∇,K
k v = 0.

Proof. Let v ∈ V k
h (K) satisfy Π∇,K

k v = 0. By Lemma 5.1, there exists q ∈ Pk(K)
such that ∆q = ∆v and |q|1,K ≤ C|v|1,K . Let ṽ := v − q. Then we have

(5.9) |ṽ|1,K ≤ C|v|1,K .
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Using (5.7), we haveˆ
K

|∇v|2 dx =
∑

F⊂∂K

ˆ
F

∂ṽ

∂n

(
Π0,F

k−1v − (v)∂K
)
ds

=
∑

F⊂∂K

ˆ
F

∂ṽ

∂n
(ϕv − (v)∂K) ds+

∑
F⊂∂K

ˆ
F

∂ṽ

∂n

(
(v)F − ϕv

)
ds

+
∑

F⊂∂K

ˆ
F

∂ṽ

∂n

(
Π0,F

k−1v − (v)F
)
ds

=: T1 + T2 + T3.(5.10)

Since ∆ṽ = 0 on K, we have

(5.11) 0 =

ˆ
K

∇ṽ · ∇1 dx =

ˆ
∂K

∂ṽ

∂n
ds.

For T1, using the definition of | · |−1/2,∂K , (5.1), Lemma 5.2, and (5.9), we have

T1 =

ˆ
∂K

∂ṽ

∂n
(ϕv − (v)∂K) ds ≤ |∇ṽ · nK |−1/2,∂K |ϕv|1/2,∂K

≤ Ch
1/2
K |ṽ|1,K |ϕv|1,∂K ≤ C|v|1,K

(
SK
h (v, v)

)1/2
.

Next, for T2, since (ϕv)F = (v)F , it follows from (5.11), Lemma 5.4, Lemma 5.2,
(5.9) and (4.2) that

T2 ≤

( ∑
F⊂∂K

h−1
K h2F ∥∇ṽ · nK∥20,F

)1/2( ∑
F⊂∂K

hKh
−2
F

∥∥(v)F − ϕv
∥∥2
0,F

)1/2

≤ Ch
1/2
K |∇ṽ · nK |−1/2,∂K |ϕv|1,∂K ≤ Ch

1/2
K |ṽ|1,K |ϕv|1,∂K

≤ C|v|1,K
(
SK
h (v, v)

)1/2
.

For T3, using (5.11), Lemma 5.4, Lemma 5.2 and (5.9), we obtain

T3 ≤

( ∑
F⊂∂K

h−1
K h2F ∥∇ṽ · nK∥20,F

)1/2( ∑
F⊂∂K

hKh
−2
F

∥∥Π0,F
k−1v − (v)F

∥∥2
0,F

)1/2

≤ C|∇ṽ · nK |−1/2,∂K

(
SK
h (v, v)

)1/2 ≤ C|v|1,K
(
SK
h (v, v)

)1/2
.

Plugging the estimates for T1, T2 and T3 into (5.10), we conclude the proof. �
The coercivity of aKh (·, ·) where SK

h (·, ·) is given by (5.8) follows from the previous
lemma. Its proof can be done by proceeding as in Lemma 3.3 in [5].

Theorem 5.7. Suppose that the stability form SK
h (·, ·) is given by (5.8). There

exists a constant C > 0 depending only on ρ and k such that

|vh|1,h ≤ C|||vh||| ∀vh ∈ V k
h (Ω).

We will next prove that the stability form given by (5.8) satisfies (3.6).

Lemma 5.8. Let F ⊂ ∂K, and let a+ and a− be the end points of F . For s = +,−,
let Fs ⊂ ∂K be the face having as as a common end point with F . Then there exists
a constant C > 0 depending only on ρ such that

∥v − ϕv∥20,F ≤ Ch2F
(
|v|21,F + |v|21,F+

+ |v|21,F−

)
∀v ∈ H3/2 (K).
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Proof. Let v ∈ H3/2 (K). Then v|F ∈ H1(F ) for each face F in ∂K by the
trace theorem, and v is continuous on ∂K by the Sobolev embedding theorem (see,
e.g., [26, 36]). Let F ⊂ ∂K. Let ψ0, ψ+, ψ− ∈ P2(F ) be the polynomials such that

(a) ψ0(a+) = 0, ψ0(a−) = 0, and (ψ0)F = 1;
(b) ψ+(a+) = 1, ψ+(a−) = 0, and (ψ+)F = 0;
(c) ψ−(a+) = 0, ψ−(a−) = 1, and (ψ−)F = 0.

Then these polynomials form a basis of P2(F ). Moreover, we have

ψ− + ψ0 + ψ+ = 1,(5.12)

∥ψs∥L∞(F ) ≤ C ∀s = +, 0,−,(5.13)

ϕv = ϕv(a+)ψ+ + (v)Fψ0 + ϕv(a−)ψ−.(5.14)

Note that, from the fundamental theorem of calculus and Hölder’s inequality,

|v(x)− v(as)| ≤
ˆ
F

|∂sv| ds ≤ h
1/2
F |v|1,F ∀x ∈ F, s = +,−,

Then we have

(5.15) ∥v − v(as)∥20,F =

ˆ
F

|v(x)− v(as)|2 ds ≤ h2F |v|21,F , s = +,−.

Similarly, since as is also an end point of Fs, we also have

(5.16) ∥v − v(as)∥20,Fs
≤ h2Fs

|v|21,Fs
, s = +,−.

Let ψv = v(a+)ψ+ + (v)Fψ0 + v(a−)ψ−. Using (5.12), (5.14), (5.13), (5.15) and
(4.2), we have

∥v − ψv∥20,F =
∥∥(v − v(a+))ψ+ + (v − (v)F )ψ0 + (v − v(a−))ψ−

∥∥2
0,F

≤ C
(
∥v − v(a+)∥20,F + ∥v − (v)F ∥20,F + ∥v − v(a−)∥20,F

)
≤ Ch2F |v|21,F .(5.17)

Thus it suffices to estimate ∥ϕv − ψv∥20,F . By (5.13),

(5.18) ∥ϕv − ψv∥20,F ≤ ChF
(
|ϕv(a+)− v(a+)|2 + |ϕv(a−)− v(a−)|2

)
.

Combining (5.15)-(5.16) with (4.2), we have

|(v)F − v(as)|2 = h−1
F ∥(v)F − v(as)∥20,F ≤ ChF |v|21,F ,

|(v)Fs − v(as)|2 = h−1
Fs

∥(v)Fs − v(as)∥20,Fs
≤ ChFs |v|21,Fs

, s = +,−.

Using the above estimates, for s = +,−,

|ϕv(as)− v(as)|2 =

∣∣∣∣ hFs

hF + hFs

(
(v)F − v(as)

)
+

hF
hF + hFs

(
(v)Fs − v(as)

)∣∣∣∣2
≤

2h2Fs

(hF + hFs)
2
|(v)F − v(as)|2 +

2h2F
(hF + hFs)

2
|(v)Fs − v(as)|2

≤
2h2Fs

hF

(hF + hFs)
2
|v|21,F +

2h2FhFs

(hF + hFs)
2
|v|21,Fs
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Plugging the above inequality into (5.18), we finally obtain

∥ϕv − ψv∥20,F ≤ ChF
(
|ϕv(a+)− v(a+)|2 + |ϕv(a−)− v(a−)|2

)
≤ C

∑
s=+,−

(
h2Fs

h2F
(hF + hFs)

2
|v|21,F +

h3FhF+

(hF + hF+)
2
|v|21,F+

+
h3FhF−

(hF + hF−)
2
|v|21,F−

)
≤ Ch2F

(
|v|21,F + |v|21,F+

+ |v|21,F−

)
.

Now the conclusion follows from the estimate above and (5.17). �

Lemma 5.9. Let 1 ≤ ℓ ≤ k. Then there exists a constant C > 0 depending only
on ρ and k such that

SK
h

(
v −Π∇,K

k v, v −Π∇,K
k v

)
≤ Ch2ℓK |v|2ℓ+1,K ∀v ∈ Hℓ+1(K).

Proof. Let v ∈ Hℓ+1(K) and ξ = v −Π∇,K
k v. Then

SK
h (ξ, ξ) = hK |ϕξ|21,∂K + hK

∑
F⊂∂K

h−2
F

∥∥Π0,F
k−1ξ − (ξ)F

∥∥2
0,F
.

Using an inverse estimate for polynomials, Lemma 5.8 and (4.2), we have

hK |ϕξ|21,∂K = hK
∑

F⊂∂K

|ϕξ − (ξ)F |21,F ≤ ChK
∑

F⊂∂K

h−2
F ∥ϕξ − (ξ)F ∥20,F

≤ ChK
∑

F⊂∂K

h−2
F

(
∥ϕξ − ξ∥20,F + ∥ξ − (ξ)F ∥20,F

)
≤ ChK

∑
F⊂∂K

|ξ|21,F .

Using (4.2) again, we have

hK
∑

F⊂∂K

h−2
F

∥∥Π0,F
k−1ξ − (ξ)F

∥∥2
0,F

= hK
∑

F⊂∂K

h−2
F

∥∥Π0,F
k−1ξ −Π0,F

k−1(ξ)F
∥∥2
0,F

≤ hK
∑

F⊂∂K

h−2
F ∥ξ − (ξ)F ∥20,F ≤ ChK

∑
F⊂∂K

|ξ|21,F .

Thus, it follows from (4.1) (applied to ∇ξ) and the estimate (4.3) that

SK
h (ξ, ξ) ≤ ChK

∑
F⊂∂K

|ξ|21,F ≤ ChK∥∇ξ∥20,∂K ≤ C
(
|ξ|21,K + h2K |ξ|22,K

)
≤ Ch2ℓK |v|2ℓ+1,K .

This completes the proof of the lemma. �

Now we immediately obtain (3.6) from Lemma 5.9, as follows.

Theorem 5.10. Suppose that SK
h (·, ·) is given by (5.8). Let 1 ≤ ℓ ≤ k. Then there

exists a constant C > 0 depending only on ρ and k such that∣∣∣∣∣∣u−Π∇
k u
∣∣∣∣∣∣ ≤ Chℓ|u|ℓ+1,Ω ∀u ∈ Hℓ+1(Ω).

5.3. Stabilization in three dimensions. For the three-dimensional case, we con-
sider the stability bilinear form SK

h (·, ·) given by

(5.19) SK
h (u, v) = hK

∑
F⊂∂K

h−2
F

(
Π0,F

k−1u,Π
0,F
k−1v

)
0,F

.

We will show that the above bilinear form satisfies the properties (3.5), (3.6) and
(3.7).
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Note that the stability form given by (5.19) satisfies (3.7), since the face moments
(3.1) of u and Ihu are identical.

The following assumption will be used to prove (3.6).

Assumption 5.11. There exists a positive integer N independent of h such that
every element in Ph has at most N faces.

Lemma 5.12. There exists a constant C > 0 depending only on ρ and k such that

|v|21,K ≤ CSK
h (v, v) ∀v ∈ V k

h (K) with Π∇,K
k v = 0.

Proof. Let v ∈ V k
h (K) satisfy Π∇,K

k v = 0. By Lemma 5.1, there exists q ∈ Pk(K)
such that ∆q = ∆v and |q|1,K ≤ C|v|1,K . Using (5.7), we get

|v|21,K =
∑

F⊂∂K

ˆ
F

(∇(v − q) · nK)
(
Π0,F

k−1v − (v)∂K
)
ds

=
∑

F⊂∂K

ˆ
F

(∇(v − q) · nK)
(
Π0,F

k−1v
)
ds(5.20)

where the last equality follows from

(5.21) 0 =

ˆ
K

∇(v − q) · ∇1 dx =

ˆ
∂K

(∇(v − q) · nK) ds.

Combining (5.21), Lemma 5.4 and Lemma 5.2, together with the inequality |q|1,K ≤
C|v|1,K , we obtain∑

F⊂∂K

ˆ
F

(
∇(v − q) · nK

)(
Π0,F

k−1v
)
ds

≤

( ∑
F⊂∂K

h2F
hK

∥∇(v − q) · nK∥20,F

) 1
2
( ∑

F⊂∂K

hK
h2F

∥Π0,F
k−1v∥

2
0,F

) 1
2

≤ C|∇(v − q) · nK |−1/2,∂K

(
SK
h (v, v)

) 1
2 ≤ C|v|1,K

(
SK
h (v, v)

) 1
2 .(5.22)

Now the assertion of the lemma follows by plugging (5.22) into (5.20). �
Now the coercivity of aKh (·, ·) with (5.19) follows from the previous lemma. Its

proof can be done by proceeding as in Lemma 3.3 in [5].

Theorem 5.13. Suppose that the stability form SK
h (·, ·) is given by (5.19). There

exists a constant C > 0 depending only on ρ and k such that

|vh|1,h ≤ C|||vh||| ∀vh ∈ V k
h (Ω).

We next show that the stability form (5.19) satisfies (3.6).

Lemma 5.14. Suppose that Assumption 5.11 holds. Let 1 ≤ ℓ ≤ k. Then there
exists a constant C > 0 depending only on ρ, k, and N such that

SK
h

(
v −Π∇,K

k v, v −Π∇,K
k v

)
≤ Ch2ℓK |v|2ℓ+1,K ∀v ∈ Hℓ+1(K).

Proof. Let v ∈ Hℓ+1(K) and let ξ = v − Π∇,K
k v. It follows from the standard

Sobolev embedding theorem that ξ ∈ C0(K). By Assumption 5.11,

SK
h (ξ, ξ) = hK

∑
F⊂∂K

h−2
F ∥Π0,F

k−1ξ∥
2
0,F ≤ hK

∑
F⊂∂K

∥ξ∥2L∞(F )

≤ ChK∥ξ∥2L∞(∂K) ≤ ChK∥ξ∥2L∞(K).(5.23)
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Figure 2. The meshes M1-2d, M2-2d, M3-2d and M4-2d.

Since ξ ∈ H2(K), it follows from the Sobolev inequality (see, e.g., [26,28]) and (4.3)
that

hK∥ξ∥2L∞(K) ≤ Ch−2
K ∥ξ∥20,K + |ξ|21,K + h2K |ξ|22,K ≤ Ch2ℓK |v|2ℓ+1,K .

Now the inequality above together with (5.23) concludes the proof. �

The above lemma directly implies (3.6), as follows.

Theorem 5.15. Suppose that Assumption 5.11 holds. Let 1 ≤ ℓ ≤ k. Consider
the stability form SK

h (·, ·) given by (5.19). Then there exists a constant C > 0
depending only on ρ, k and N such that∣∣∣∣∣∣u−Π∇

k u
∣∣∣∣∣∣ ≤ ChℓK |u|ℓ+1,Ω ∀u ∈ Hℓ+1(Ω).

6. Numerical experiments

In this section, we present some numerical experiments to confirm our theoretical
analysis and compare the performance of the stability forms: (i) the standard one
introduced in [5], and (ii) the new one given in (5.8) (2D case) or (5.19) (3D case).
Note that the standard stability form is defined by

(6.1) SK
h (vh, wh) := hd−2

K

NK∑
i=1

χi(vh)χi(wh), vh, wh ∈ V k
h (K),

whereNK is the number of local degrees of freedom of V k
h (K), and χi is the operator

associated with the i-th local degree of freedom of V k
h (K).

6.1. Test case 1: two-dimensional case. In this test, we solve the problem (2.1)
on Ω = (0, 1)2 where the exact solution is given by

u(x, y) = x5 + y5 + (x− y) exp(x+ y), (x, y) ∈ Ω.

We consider four different types of meshes Ph with h ≈ 1/22, 1/23, · · · , 1/26:
• M1-2d: uniform rectangular meshes;
• M2-2d: Jenga meshes (see [61]);
• M3-2d: centroidal Voronoi tessellation meshes obtained by PolyMesher [62];
• M4-2d: Voronoi tessellation meshes associated with randomly distributed
points inside Ω.
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Figure 3. Test case 1: error curves.

Some examples of the meshes are shown in Figure 2.
We compute the discrete solution ush and unh of the nonconforming VEM for

k = 1, 2, 3, where the stability form is chosen as (6.1) and (5.8), respectively. We
then measure and report in Figure 3 the errors in the broken H1-seminorm

(6.2) es,k =
∣∣u−Π∇

k u
s,k
h

∣∣
1,h
, en,k =

∣∣u−Π∇
k u

n,k
h

∣∣
1,h
,

labeled “std” and “new”, respectively. We observe that both the errors es,k and en,k
behave similarly and converge to zero with rate O(hk). In particular, the behavior
of the error curve en,k is consistent with our theoretical analysis given in Sections 4
to 5.

6.2. Test case 2: three-dimensional case. In this test, we solve the problem
(2.1) on Ω = (0, 1)3 where the exact solution is given by

u(x, y, z) = xyz sin(πx) sin(πy) sin(πz)− 10 log(1 + x+ y + z), (x, y, z) ∈ Ω.

We consider four different sequences of meshes Ph with h ≈ 1/4, 1/6, · · · , 1/12:
• M1-3d: uniform cubic meshes;
• M2-3d: uniform hexahedral meshes with small faces;
• M3-3d: centroidal Voronoi tessellation meshes generated by the Lloyd al-
gorithm [47];

• M4-3d: Voronoi tessellation meshes associated with randomly distributed
points inside Ω.

Some examples of the meshes are shown in Figure 4. In M2-3d, the ratio between
the maximum and minimum diameters of the faces is chosen as 1/h, which blows
up as h goes to zero.

We compute the discrete solution us,kh and un,kh of the nonconforming VEM for
k = 1, 2, 3, where the stability form is chosen as (6.1) and (5.19), respectively.
We then measure and report in Figure 5 the errors in the broken H1-seminorm
(6.2), labeled “std” and “new” respectively. We also report in Table 1 the conver-
gence rates for h = 1/12. We observe that the new stability form (5.19) exhibits the
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Figure 4. The meshes M1-3d, M2-3d, M3-3d and M4-3d.
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Figure 5. Test case 2: error curves.

optimal convergence rate for all the cases, while the standard stability form (5.19)
does not for the case when k = 3 and the mesh is M2-3d. Furthermore, as shown
in Figure 5 and Table 2, for k = 2, 3, the errors of the VEM with the new stability
form is smaller than those of the standard stability form, and the ratio en,k/es,k for
k = 3 is smaller than the one for k = 2. This result shows that the standard stability
form may not perform well for high-order schemes in the three-dimensional case,
as in the conforming VEM [15,42]. However, our new stability form seems robust
for all the cases. Further investigation is needed, but it is beyond the scope of this
paper. We leave it for a future work.
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Table 1. Test case 2: convergence rates.

new std

M1-3d M2-3d M3-3d M4-3d M1-3d M2-3d M3-3d M4-3d

k = 1 1.00 0.98 1.09 1.75 1.00 0.96 1.09 1.74

k = 2 2.10 1.95 1.97 3.15 1.94 1.90 2.26 3.39

k = 3 3.10 2.98 3.17 5.06 3.17 2.46 3.35 4.26

Table 2. Test case 2: the ratio en,k/es,k for k = 2, 3.

h
k = 2 k = 3

M1-3d M2-3d M3-3d M4-3d M1-3d M2-3d M3-3d M4-3d

1/4 0.52 0.80 0.65 0.79 0.18 0.38 0.31 0.38

1/6 0.42 0.72 0.63 0.70 0.13 0.33 0.26 0.32

1/8 0.38 0.69 0.61 0.74 0.12 0.29 0.27 0.34

1/10 0.35 0.68 0.65 0.78 0.12 0.26 0.30 0.36

1/12 0.34 0.67 0.69 0.80 0.12 0.24 0.31 0.33

7. Conclusion

We proposed new stability forms for 2D and 3D nonconforming VEMs where
the underlying mesh may have arbitrarily small edges or faces. For the 2D case,
the stability form is defined by the sum of an inner product of approximate tangen-
tial derivatives and a weighed L2-inner product of certain projections on the mesh
element boundaries. For the 3D case, the stability form is defined by a weighted
L2-inner product on the mesh element boundaries. We proved the optimal conver-
gence of the nonconforming VEMs equipped with such stability forms under the
mesh assumptions weaker than the usual one. We finally provided some numer-
ical experiments that confirm our analysis and compare the performance of the
proposed stability forms with the standard stability form. In the experiments, we
observed that our proposed stability form performs as expected in the theoretical
analysis.
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