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Abstract: In recent years, the immersed finite element methods (IFEM)
introduced in [20], [21] to solve elliptic problems having an interface in the
domain due to the discontinuity of coefficients are getting more attentions of
researchers because of their simplicity and efficiency. Unlike the conventional
finite element methods, the IFEM allows the interface to cut through the inte-
rior of the element, yet after the basis functions are altered so that they satisfy
the flux jump conditions, it seems to show a reasonable order of convergence.

In this paper, we propose an improved version of the P1 based IFEM by
adding the line integral of flux terms on each element. This technique resembles
the discontinuous Galerkin (DG) method, however, our method has much less
degrees of freedom than the DG methods since we use the same number of
unknowns as the conventional P1 finite element method.

We prove H1 and L2 error estimates which are optimal both in order and
regularity. Numerical experiments were carried out for several examples, which
show the robustness of our scheme.
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1. Introduction

In recent years, there have been some developments of immersed finite element
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methods for elliptic problems having an interface. These methods use meshes
which do not necessarily align with the discontinuities of the coefficients [20],
[21], thus violate a basic principle of triangulations in the conventional finite
element methods [4], [11]. However, when the basis functions are modified so
that they satisfy the interface conditions, they seem to work well [10], [20], [21].
These methods were extended to the case of Crouzeix-Raviart P1 nonconforming
finite element method [12] by Kwak et al. [18], and to the problems with nonzero
jumps in [7]. Some related works on interface problems can be found in [5], [16],
[17], [19], [22], [23],[26].

On the other hand, the discontinuous Galerkin methods (DG) where one
uses completely discontinuous basis functions were developed and have been
studied extensively, see [1], [2], [13], [24] and references therein. The DG meth-
ods work quite well for problems with discontinuous coefficient in the sense
that they capture the sharp changes of the solutions well, yet they require large
number of unknowns and the meshes have to be aligned with the discontinuity.

The purpose of this paper is to combine the advantages of the two meth-
ods. We use a DG type idea of adding the consistency terms to the IFEM,
thus proposing a modified version of IFEM based on the P1 - Lagrange basis
functions on triangular grids. In spirit, it resembles [15] in the sense that the
standard linear basis functions are used for noninterface elements and line inte-
grals are added, but in our method the line integrals along the edges, not along
the interface, are added. Furthermore, our method incorporate the flux jump
conditions to the basis functions hence requires no extra unknowns along the
interface as in [15].

We prove error estimates in the mesh dependent H1 - norm and L2 - norm
which are optimal both in the order and the regularity. We carry out various
numerical tests to confirm our theory and compare the performance with the
unmodified scheme.

2. Preliminaries

Let Ω be a connected, convex polygonal domain in R
2 which is divided into

two subdomains Ω+ and Ω− by a C2 interface Γ = ∂Ω+ ∩ ∂Ω−, see Figure 1.
We assume that β(x) is a positive function bounded below and above by two
positive constants. Although our theory applies to the case of nonconstant β(x),
we assume β(x) is piecewise constant for the simplicity of presentation: there
are two positive constants β+, β− such that β(x) = β+ on Ω+ and β(x) = β−
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Ω−

Ω+

Γ

Figure 1: A domain Ω with interface

on Ω−. Consider the following elliptic interface problem

−∇ · (β(x)∇u) = f in Ωs (s = +,−) (2.1)

u = 0 on ∂Ω (2.2)

with the jump conditions along the interface

[u]Γ = 0,

[
β(x)

∂u

∂n

]

Γ

= 0, (2.3)

where f ∈ L2(Ω) and u ∈ H1
0 (Ω) and the bracket [·]Γ means the jump across

the interface:
[u]Γ := u|Ω+ − u|Ω− .

Let p ≥ 1 and m ≥ 0 be an integer. For any domain D, we let Wm
p (D)

be the usual Sobolev space with (semi)-norms and denoted by | · |m,p,D and
‖ · ‖m,p,D.

For m ≥ 1, let

W̃m
p (D) := {u ∈ Wm−1

p (D) : u|D∩Ωs ∈ Wm
p (D ∩ Ωs), s = +,−},

with norms;

|u|p
W̃m

p (D)
:= |u|p

m,p,T∩Ω+ + |u|p
m,p,D∩Ω−

,

‖u‖p
W̃m

p (D)
:= ‖u‖pm−1,p,D + |u|p

W̃m
p (D)

.

When p = 2, we write H̃m(D) and denote the (semi)-norms by |u|
H̃m(D)

and

‖u‖
H̃m(D)

. H1
0 (Ω) is the subspace of H1(Ω) with zero trace on the boundary.
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Also, when some finite element triangulation {Th} is involved, the norms are
understood as piecewise norms (

∑
T∈Th

|u|p
W̃m

p (T )
)1/p and (

∑
T∈Th

‖u‖p
W̃m

p (T )
)1/p,

etc. If p = 2, we denote them by |u|m,h and ‖u‖m,h. We also need some

subspaces of H̃2(T ) and H̃2(Ω) satisfying the jump conditions:

H̃2
Γ(T ) := {u ∈ H1(T ) : u|T∩Ωs ∈ H2(T ∩ Ωs),

s = +,−,

[
β
∂u

∂n

]

Γ

= 0 on Γ ∩ T }

H̃2
Γ(Ω) := {u ∈ H1

0 (Ω) : u|T ∈ H̃2
Γ(T ), ∀T ∈ Th}.

Throughout the paper, the constants C,C0, C1, etc., are generic constants
independent of the mesh size h and functions u, v but may depend on the
problem data β, f and Ω, and are not necessarily the same on each occurrence.

The usual weak formulation for the problem (2.1) - (2.3) is: Find u ∈ H1
0 (Ω)

such that ∫

Ω
β(x)∇u · ∇vdx =

∫

Ω
fvdx, ∀v ∈ H1

0 (Ω). (2.4)

We have the following existence and regularity theorem for this problem;
see [5], [8], [25].

Theorem 2.1. Assume that f ∈ L2(Ω). Then the variational problem
(2.4) has a unique solution u ∈ H̃2(Ω) which satisfies

‖u‖H̃2(Ω) ≤ C‖f‖L2(Ω). (2.5)

3. P1-Immersed Finite Element Methods

We briefly review the immersed finite element space based on the P1 - Lagrange
basis functions ([20], [21]). Let {Th} be the usual quasi-uniform triangulations of
the domain Ω by the triangles of maximum diameter h which may not be aligned
with the interface Γ. We call an element T ∈ Th an interface element if the
interface Γ passes through the interior of T , otherwise we call it a noninterface
element. Let T I

h be the collection of all interface elements. We assume that the
interface meets the edges of an interface element at no more than two points.

We construct the local basis functions on each element T of the partition
Th. For a noninterface element T ∈ Th, we simply use the standard linear shape
functions on T whose degrees of freedom are functional values on the vertices
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of T , and use Sh(T ) to denote the linear spaces spanned by the three nodal
basis functions on T :

Sh(T ) = span{φi : φi is the standard linear shape function }

We let Sh(Ω) denote the space of usual continuous, piecewise linear polynomials
with vanishing boundary values.

Now we consider a typical interface element T ∈ T I
h whose geometric config-

uration is given as in Fig. 2. Here the curve between the two points D and E is
a part of the interface and DE is the line segment connecting the intersections
of the interface and the edges.

A3

A1 A2e3e−3 e+3

e1e2

E

T−

T+

D

Γ

Figure 2: A typical interface triangle

We construct piecewise linear basis functions φ̂i, i = 1, 2, 3 of the form

φ̂i(X) =

{
a+ + b+x+ c+y, X = (x, y) ∈ T+,
a− + b−x+ c−y, X = (x, y) ∈ T−,

(3.1)

satisfying

φ̂i(Aj) = δij , j = 1, 2, 3, (3.2)

[φ̂i(D)] = [φ̂i(E)] = 0, (3.3)[
β
∂φ̂i

∂n

]

DE

= 0. (3.4)

These are continuous, piecewise linear functions on T satisfying the flux jump
condition along DE, whose uniqueness and existence are known [10], [20].

Remark 3.1. Since φ̂i is continuous, piecewise linear, it is clear that the
tangential derivative along DE is continuous, i.e.,

∂φ̂+
i

∂tDE

=
∂φ̂−

i

∂tDE

,
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where tDE is the tangential vector to DE.

We denote by Ŝh(T ) the space of functions generated by φ̂i, i = 1, 2, 3
constructed above. Next we define the global immersed finite element space
Ŝh(Ω) to be the set of all functions φ ∈ L2(Ω) such that





φ ∈ Ŝh(T ) if T ∈ T I
h , and φ ∈ Sh(T ) if T 6∈ T I

h ,
having continuity at all vertices of the triangulation
and vanishes on the boundary vertices.





We note that a function in Ŝh(Ω), in general, is not continuous across an edge
common to two interface elements. Let Hh(Ω) := H1

0 (Ω) + Ŝh(Ω) and equip
it with the piecewise norms |u|1,h := |u|H̃1(Ω), ‖u‖1,h := ‖u‖H̃1(Ω). Next, we

define the interpolation operator. For any u ∈ H̃2
Γ(T ), we let Îhu ∈ Ŝh(T ) be

such that

Îhu(Ai) = u(Ai), i = 1, 2, 3,

where Ai, i = 1, 2, 3 are the vertices of T and we call Îhu the local interpolant
of u in Ŝh(T ). We naturally extend it to H̃2

Γ(Ω) by (Îhu)|T = Îh(u|T ) for each
T . Then we have the following approximation property [18], [21].

Proposition 3.2. There exists a constant C > 0 such that

∑

T∈Th

(‖u− Îhu‖0,T + h|u− Îhu|1,T ) ≤ Ch2‖u‖
H̃2(Ω)

(3.5)

for all u ∈ H̃2
Γ(Ω).

With P1- Lagrange basis function introduced in [20], [21], the IFEM reads:
(P1-IFEM) Find uh ∈ Ŝh(Ω) such that

ah(uh, vh) = (f, vh), ∀ vh ∈ Ŝh(Ω), (3.6)

where

ah(u, v) =
∑

T∈Th

∫

T
β∇u · ∇v dx, ∀u, v ∈ Hh(Ω).

The error estimate for this scheme is shown in [10].
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4. Modified P1-IFEM

In this section, we modify the P1-IFEM above by adding the line integrals for
jumps of fluxes and functional values. The method resembles the discontinuous
Galerkin methods (see [2], [14], [24] and references therein) which use completely
discontinuous basis functions, but the degrees of freedom in our method are
much smaller than the DG methods since our method has the same number of
basis functions as the conventional P1-FEM.

In order to describe the new method, we need some additional notations.
Let the collection of all the edges of T ∈ Th be denoted by Eh and we split Eh
into two disjoint sets; Eh = Eo

h ∪ Eb
h, where Eo

h is the set of edges lying in the
interior of Ω, and Eb

h is the set of edges on the boundary of Ω. In particular,
we denote the set of edges cut by the interface Γ by EI

h. For every e ∈ Eo
h, there

are two element T1 and T2 sharing e as a common edge. Let nTi
, i = 1, 2 be

the unit outward normal vector to the boundary of Ti, but for the edge e, we
choose a direction of the normal vector, say ne = nT1

and fix it once and for
all. For functions v defined on T1 ∪T2, we let [·]e and {·}e denote the jump and
average across e respectively, i.e.

[v]e = v1 − v2, {v}e =
1

2
(v1 + v2).

We also need the mesh dependent norm ||| · ||| on the space Hh(Ω),

|||v|||2 :=
∑

T∈Th

(∥∥∥
√

βv
∥∥∥
2

0,T
+

∥∥∥
√

β∇v
∥∥∥
2

0,T

)

+
∑

e∈Eo
h

(
h
∥∥∥{

√
β∇v · ne}e

∥∥∥
2

0,e
+ h−1

∥∥∥[
√

βv]e

∥∥∥
2

0,e

)
.

Multiplying both sides of the equation (2.1) by v ∈ H1(T ), applying Green’s
formula and adding, we get

∑

T∈Th

(∫

T
β∇u · ∇vdx−

∫

∂T
β∇u · nT vds

)
=

∫

Ω
fvdx.

By using the preassigned normal vectors ne and adding the unharmful term
ǫ
∫
e{β∇v · ne}e[u]e for any ǫ, we see the above equation becomes

∑

T∈Th

∫

T

β∇u · ∇vdx−
∑

e∈Eo
h

∫

e
{β∇u · ne}e[v]eds
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+ ǫ
∑

e∈Eo
h

∫

e
{β∇v · ne}e[u]eds =

∫

Ω
fvdx (4.1)

which is valid for v ∈ L2(Ω) such that v ∈ H1(T ) for all T ∈ Th. We define the
following bilinear forms

bǫ(u, v) := −
∑

e∈Eo
h

∫

e
{β∇u · ne}e [v]eds+ ǫ

∑

e∈Eo
h

∫

e
{β∇v · ne}e [u]eds,

jσ(u, v) :=
∑

e∈Eo
h

∫

e

σ

h
[u]e[v]eds, for some σ > 0

aǫ(u, v) := ah(u, v) + bǫ(u, v) + jσ(u, v).

Now, for each ǫ = 0, ǫ = −1 and ǫ = 1, we define the modified P1-IFEM for
the problem (2.1)-(2.3):
(Modified P1-IFEM) Find umh ∈ Ŝh(Ω) such that

aǫ(u
m
h , vh) = (f, vh), ∀vh ∈ Ŝh(Ω). (4.2)

This is similar to a class of DG methods, corresponding to IP, SIPG, NIPG and
OBB ([1], [14], [13], [3]), if ǫ = 0, ǫ = −1, ǫ = 1, and ǫ = 0, σ = 0, respectively.

Remark 4.1. For the line integrals in bǫ(u, v), it suffices to consider the
integrals on the edges of the interface elements only since both [uh], [vh] vanish
for e ∈ Eo

h \ EI
h.

5. Error Analysis

In this section, we prove an optimal order of error estimates in H1 and L2-
norms of our schemes. For simplicity, we present the case with ǫ = −1 only.
All other cases are similar. Also, we assume the smooth interface is replaced
by piecewise line segment on each element.

We need the well-known inverse inequality and trace theorem ([1], [11]):

Lemma 5.1. There exist positive constants C0, C1 independent of the
function vh such that for all vh ∈ Pk(T ) ∪ Ŝh(T ),

‖vh‖
2
1,T ≤ C0h

−2‖vh‖
2
0,T , ‖vh‖

2
0,∂T ≤ C1h

−1‖vh‖
2
0,T . (5.1)

There exists a positive constant C2 independent of the function v such that for
all v ∈ H1(T )

‖v‖20,e ≤ C2(h
−1‖v‖20,T + h|v|21,T ). (5.2)
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Now we show the following interpolation error estimate for the mesh de-
pendent norm ||| · |||.

Proposition 5.2. There exist positive constants C, CI independent of
the function u such that for all u ∈ H1(Ω) ∩ H̃2

Γ(Ω),

∑

e∈Eo
h

h
∥∥∥{∇(u− Îhu) · ne}e

∥∥∥
2

0,e
+

∑

e∈Eo
h

h−1
∥∥∥[u− Îhu]e

∥∥∥
2

0,e
≤ Ch2‖u‖2

H̃2(Ω)
. (5.3)

Consequently, we have

|||u− Îhu||| ≤ CIh‖u‖H̃2(Ω)
. (5.4)

Proof. We first consider ∇(u− Îhu). Since ∇(u− Îhu) is not in H1(T ), we
cannot apply (5.2) directly. Instead, we decompose it as

∇(u− Îhu) = (∇(u− Îhu) · nΓ)nΓ + (∇(u− Îhu) · tΓ)tΓ := w + z,

where nΓ and tΓ are the unit normal and tangent vector to the interface Γ,
respectively. We have

∥∥∥∇(u− Îhu) · ne

∥∥∥
2

0,e
≤ ‖w · ne‖

2
0,e + ‖z · ne‖

2
0,e

≤
1

β2
min

‖βw · ne‖
2
0,e + ‖z · ne‖

2
0,e.

We can easily check that βw is in H1(T ). For the smoothness of z we proceed
as follows: Since u ∈ H1(T ), we have (∇u · tΓ)|T+∩Γ = (∇u · tΓ)|T−∩Γ. Hence
(∇u · tΓ)|T has well defined trace on Γ, which implies ∇u · tΓ is in H̃1(T ) also.
Therefore, we can apply (5.2) to βw · ne and z · ne. Hence

h
∥∥∥∇(u− Îhu) · ne

∥∥∥
2

0,e

≤
C2

β2
min

(
‖βw · ne‖

2
0,T + h2|βw · ne|

2
1,T

)
+ C2

(
‖z · ne‖

2
0,T + h2|z · ne|

2
1,T

)

≤ C2

(
β2
max

β2
min

(
‖w‖20,T + h2|w|2

H̃1(T )

)
+ ‖z‖20,T + h2|z|2

H̃1(T )

)

≤ C2 α2

(∥∥∥∇(u− Îhu)
∥∥∥
2

0,T
+ h2

∣∣∣∇(u− Îhu)
∣∣∣
2

H̃1(T )

)

≤ Ch2 ‖u‖2
H̃2(T )

,
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where βmin = min(β+, β−) , βmax = max(β+, β−) and we have set α = βmax

βmin
.

Here Proposition 3.2 was used to derive the last estimate.
The estimate of the second term follows easily from (5.2) and Proposition

3.2:

h−1
∥∥∥u− Îhu

∥∥∥
2

0,∂T
≤ C2

(
h−2

∥∥∥u− Îhu
∥∥∥
2

0,T
+
∣∣∣u− Îhu

∣∣∣
2

H̃1(T )

)

≤ Ch2‖u‖2
H̃2(T )

.

Thus, the estimate (5.4) follows.

The following discrete Poincaré inequality holds for Ŝh(Ω), (see [10]).

Lemma 5.3. There exists a constant Cp > 0 such that

Cp‖vh‖
2
0,Ω ≤ |vh|

2
1,h, ∀vh ∈ Ŝh(Ω). (5.5)

Now we show some basic properties of aǫ(·, ·). Clearly, aǫ(·, ·) is bounded
on Hh(Ω) with respect to ||| · |||:

|aǫ(u, v)| ≤ Cb|||u||||||v|||, ∀u, v ∈ Hh(Ω).

Next, we prove the coercivity of the form aǫ(·, ·) on the space Ŝh(Ω). We
need a lemma.

Lemma 5.4. For all v ∈ Ŝh(Ω), there exists a positive constant C inde-
pendent of h such that

∑

e∈Eo
h

h
∥∥∥
{√

β∇v · n
}∥∥∥

2

0,e
≤ C1α

∑

T∈Th

∥∥∥
√

β∇v
∥∥∥
2

0,T
(5.6)

where α = βmax

βmin
is the same as before.

Proof. We decompose ∇vh as

∇vh = (∇vh · nΓ)nΓ + (∇vh · tΓ)tΓ := w + z. (5.7)

The rest of the proof is almost the same as that of (5.3).

Proposition 5.5. There exists a positive constant Cc independent of vh
such that for all vh ∈ Ŝh(Ω) the following holds:

aǫ(vh, vh) ≥ Cc|||vh|||
2.
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Proof. First of all, we consider bǫ(vh, vh), the second part of aǫ(vh, vh). By
Lemma 5.4, Cauchy-Schwarz and arithmetic-geometric inequality, we have

∑

e∈Eo
h

∫

e
{β∇vh · n} [vh]ds

≤


∑

e∈Eo
h

h ‖{β∇vh · n}‖
2
0,e




1/2 
∑

e∈Eo
h

h−1 ‖[vh]‖
2
0,e




1/2

≤


C1α

∑

T∈Th

∥∥∥
√

β∇vh

∥∥∥
2

0,T




1/2 
∑

e∈Eo
h

h−1
∥∥∥[
√

βvh]
∥∥∥
2

0,e




1/2

≤
γ

2


∑

T∈Th

∥∥∥
√

β∇vh

∥∥∥
2

0,T


+

C1α

2γ


∑

e∈Eo
h

h−1
∥∥∥[
√

βvh]
∥∥∥
2

0,e




for every γ > 0. Hence by Lemma 5.3, we have

aǫ(vh, vh) = ah(vh, vh) + bǫ(vh, vh) + jσ(vh, vh)

=
∑

T∈Th

∫

T
β∇vh · ∇vh dx− 2

∑

e∈Eo
h

∫

e
{β∇vh · n} [vh]ds+

∑

e∈Eo
h

∫

e

σ

h
[vh]

2ds

≥
Cp

2

∥∥∥
√

βvh

∥∥∥
2

0,Ω
+ (

1

2
− γ)

∣∣∣
√

βvh

∣∣∣
2

1,h
+

(
σ0 −

C1α

γ

) ∑

e∈Eo
h

1

h

∥∥∥[
√

βvh]
∥∥∥
2

0,e

≥
Cp

2

∥∥∥
√

βvh

∥∥∥
2

0,Ω
+ (

1

4
− γ)

∣∣∣
√

βvh

∣∣∣
2

1,h
+

1

4C1α

∑

e∈Eo
h

h
∥∥∥
{√

β∇vh · n
}∥∥∥

2

0,e

+

(
σ0 −

C1α

γ

) ∑

e∈Eo
h

1

h

∥∥∥[
√

βvh]
∥∥∥
2

0,e
,

where we have set σ0 = σ/β. If we choose γ = 1
8 and σ0 large enough so that

(σ0 − 8C1α) ≥
1
8 . Then with Cc := min

(
Cp

2 , 1
8 ,

1
4C1α

)
, we have

aǫ(v, v) ≥ Cc|||v|||
2.

Remark 5.6. We can take any positive σ when ǫ = 1, because bǫ(v, v)
becomes zero. If ǫ = 0 or −1, it seems that σ > 0 must be large enough to show
the coercivity. However, small positive σ or even σ = 0 works for all the cases
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we have tested. This is in contrast to the usual DG schemes, where sufficiently
large σ is necessary. The reason seems to be that, unlike the usual DG, the
term bǫ(v, v) is small enough to be dominated by ah(v, v), since the jump [v]
vanishes at the vertices of each T ∈ Th. In fact, using the technique in [9] and
in the proof of Proposition 5.2 we can show |bǫ(v, v)| ≤ C(h| log h|)1/2‖v‖1,h,
but the details are complicated. This will be shown in the subsequent paper.

5.1. H
1-Error Analysis

First we check that the modified P1-IFEM is consistent.

Lemma 5.7. Let u be the solution of (2.1)-(2.3) and let umh be the solution

of (4.2). For any vh ∈ Ŝh(Ω), we have

aǫ(u, vh) = (f, vh). (5.8)

In other words,

aǫ(u− umh , vh) = 0.

Proof. By (4.1), the definition of the aǫ form and the homogeneous jump
condition of u, we have

aǫ(u, vh)− aǫ(u
m
h , vh) = aǫ(u, vh)− (f, vh) =

∑

e∈Eo
h

∫

e

σ

h
[u]e[vh]eds = 0.

Now we can prove the H1-error estimate which is optimal both in order and
the regularity.

Theorem 5.1. Let u be the solution of (2.1)-(2.3) and let umh be the
solution of (4.2). Then there exists a positive constant C independent of u and
h such that

|||u− umh ||| ≤ Ch‖u‖
H̃2(Ω)

.

Proof. By Proposition 5.5, (5.8) and boundedness of aǫ(·, ·) with respect to
||| · |||, we have

|||umh − Îhu|||
2 ≤ C−1

c aǫ(u
m
h − Îhu, u

m
h − Îhu)

= C−1
c aǫ(u− Îhu, u

m
h − Îhu)
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≤ C−1
c Cb|||u− Îhu||||||u

m
h − Îhu|||.

By the triangle inequality and Proposition 5.2, we get

|||u− umh ||| ≤ |||u− Îhu|||+ |||umh − Îhu|||

≤ (C−1
c Cb + 1)CIh‖u‖H̃2(Ω)

.

5.2. L
2-Error Analysis

Theorem 5.2. For the solution umh of (4.2), there exists a positive constant
C independent of u and h such that

‖u− umh ‖L2(Ω) ≤ Ch2‖u‖H̃2(Ω).

Proof. Consider the dual equation:

−∇(β∇Ψ) = w in Ωs (s = +,−)

[Ψ]Γ = 0,[
β(x)

∂Ψ

∂n

]

Γ

= 0,

Ψ = 0 on ∂Ω.

Then by Theorem 2.1 the solution satisfies

‖Ψ‖H̃2(Ω) ≤ C‖w‖L2(Ω). (5.9)

Let Ψh be the modified IFEM solution of this problem. Then with eh :=
u− umh , we have by Lemma 5.7

(eh, w) = aǫ(eh,Ψ) = aǫ(eh,Ψ −Ψh).

Then by boundedness of aǫ, Theorem 5.1 and (5.9)

|(eh, w)| ≤ C|||eh||||||Ψ −Ψh||| ≤ Ch‖Ψ‖H̃2(Ω)|||eh||| ≤ Ch‖w‖L2(Ω)|||eh|||.

Taking w = eh, we obtain

‖u− umh ‖L2(Ω) ≤ Ch|||u− umh ||| ≤ Ch2‖u‖H̃2(Ω).
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6. Numerical Experiments

For numerical tests, we solve the problem (2.1)-(2.3) on the rectangular domain
Ω = [−1, 1] × [−1, 1] partitioned into unform right triangles with hx = hy =
1/2n−1 for n = 4, · · · , 10. Three types of interface problems are considered with
various values of parameter β. We measured ‖u− uh‖0 and ‖u− uh‖1,h which
are very close to the theoretical orders of convergence, 2 and 1 respectively. Al-
though not reported, we also measured

∑
e ‖u−uh‖0,e and

∑
e ‖∂(u−uh)/∂n‖0,e,

the orders of which agree with the theoretical value 1.5 and 0.5 respectively.
Moreover, we observe the second order convergence in L∞ norm also.

Ω−

Ω+

y = 3x(x− 0.3)(x− 0.8) + 0.34

Ω+

Ω−
2θ

y2 = ((x− 0.6) tan θ)2(x+ 0.4)

Ω−

Ω+

x2/0.92 + y2/0.52 = 1

Figure 3: Interfaces of Examples 1,2 and 3

Example 6.1 (Cubic curve). The 0-set of function L(x, y) = y − 3x(x −
0.3)(x− 0.8)− 0.34 is used in this example as the interface. The exact solution
is u = L(x, y)/β, where β = β± on Ω±. We test the cases when β+/β− = 10
and 1000.

The comparison with error surfaces in Figure 5. shows that modified
method gives much more accurate results than the original P1-IFEM when
β+/β− = 10 and 1/hx = 128. The smaller the mesh, the more accurate results
the modified method shows.

Table 1 shows the comparison of errors between the two methods when
β+/β− = 10. We can see the original P1-IFEM has suboptimal convergence
as the grids are refined (1/hx = 256 and 512). However, the modified method
shows a robust order of convergence for all grids.

On the other hands, Table 2 shows both methods has an optimal conver-
gence in L2 and H1 norms when β+/β− = 1000.

Remark 6.1. Comparing Tables 1 and 2, we see the original P1-IFEM
behaves better when β+/β− = 1000 than β+/β− = 10. This is a common
phenomenon for all the examples we tested. This seems to contradict the usual



A MODIFIED P1 – IMMERSED FINITE ELEMENT METHOD 485

1/hx ‖u− uh‖0 order ‖u− uh‖1,h order ‖u− uh‖∞ order
8 1.344e-2 3.315e-1 2.761e-2
16 3.453e-3 1.961 1.709e-1 0.955 8.715e-3 1.663

P1-IFEM
32 8.9002-4 1.956 8.727e-3 0.970 3.069e-3 1.506
64 2.161e-4 2.043 4.507e-2 0.953 1.295e-3 1.245
128 5.541e-5 1.963 2.347e-2 0.941 5.786e-4 1.162
256 1.851e-5 1.582 1.288e-2 0.865 3.598e-4 0.686
512 8.193e-6 1.176 7.297e-3 0.820 1.776e-4 1.018

1/hx ‖u− um
h ‖0 order ‖u− um

h ‖1,h order ‖u− um
h ‖∞ order

8 1.233e-2 3.306e-1 2.345e-2
16 3.260e-3 1.919 1.694e-1 0.965 6.765e-3 1.793

Modified 32 8.269e-4 1.979 8.554e-2 0.986 1.775e-3 1.931
P1-IFEM 64 2.094e-4 1.982 4.300e-2 0.992 4.621e-4 1.941

128 5.286e-5 1.986 2.156e-2 0.996 1.185e-4 1.964
256 1.328e-5 1.993 1.078e-2 0.999 2.991e-5 1.986
512 3.308e-6 2.005 5.399e-3 0.998 7.557e-6 1.985

Table 1: Example 6.1 (Cubic curve): β− = 1, β+ = 10

1/hx ‖u− uh‖0 order ‖u− uh‖1,h order ‖u− uh‖∞ order
8 1.923e-2 3.530e-1 5.617e-2
16 4.002e-3 2.264 1.716e-1 1.040 1.470e-2 1.934

P1-IFEM
32 9.196e-4 2.122 8.453e-2 1.022 3.854e-3 1.932
64 2.291e-4 2.005 4.221e-2 1.002 1.288e-3 1.582
128 5.408e-5 2.083 2.105e-2 1.004 2.836e-4 2.183
256 1.337e-5 2.016 1.056e-2 0.995 1.159e-4 1.291
512 3.336e-6 2.002 5.304e-3 0.994 5.258e-5 1.141

1/hx ‖u− um
h ‖0 order ‖u− um

h ‖1,h order ‖u− um
h ‖∞ order

8 1.266e-2 3.216e-1 2.470e-2
16 3.205e-3 1.982 1.643e-1 0.969 6.836e-3 1.854

Modified 32 8.163e-4 1.973 8.293e-2 0.986 1.784e-3 1.938
P1-IFEM 64 2.068e-4 1.981 4.172e-2 0.991 4.642e-4 1.943

128 5.199e-5 1.992 2.093e-2 0.996 1.185e-4 1.970
256 1.302e-5 1.998 1.048e-2 0.998 3.009e-5 1.977
512 3.259e-6 1.998 5.243e-3 0.999 7.564e-6 1.992

Table 2: Example 6.1 (Cubic curve) : β− = 1, β+ = 1000
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Figure 4: Solution uh for Example 6.1 (β− = 1, β+ = 10, 1/hx = 32)

(a) P1-IFEM (b) Modified P1-IFEM

Figure 5: Error Surface for Example 6.1 (Cubic Curve)

(β− = 1, β+ = 10, 1/hx = 128)

behavior of standard FEM. We guess the reason is that the large ratio between
the coefficients masks the discontinuity of basis functions. Figure 6 shows the
behavior of P1-IFEM basis between β+/β− = 10 and β+/β− = 1000. When
β+/β− = 10, the gap between adjacent elements is conspicuous. However, when
β+/β− = 1000, the gap is almost invisible.

Example 6.2 (Sharp corner). In this example, we consider an interface
with a sharp corner having interior angle 2θ. Let Γ be the zero set of L(x, y) =
−y2 +((x− 0.6) tan θ)2(x+0.4) for x ≤ 0.6. We test the case with θ = 45◦ and
β+/β− = 10 and 1/10. The exact solution is u = L(x, y)/β.

This example is not covered by analysis of this work because the problem
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(a) β+/β− = 10 (b) β+/β− = 1000

Figure 6: Comparison of P1-IFEM basis with different β+/β−

1/hx ‖u− uh‖0 order ‖u− uh‖1,h order ‖u− uh‖∞ order
8 3.359e-3 7.958e-2 1.036e-2
16 9.014e-4 1.898 4.185e-3 0.927 4.118e-3 1.332

P1-IFEM
32 2.219e-4 2.022 2.161e-3 0.954 1.958e-3 1.073
64 5.686e-5 1.965 1.197e-3 0.852 9.568e-4 1.033
128 1.463e-5 1.958 6.573e-3 0.865 5.063e-4 0.918
256 6.070e-6 1.269 3.967e-3 0.728 2.462e-4 1.040
512 2.942e-6 1.045 2.439e-3 0.702 1.241e-4 0.988

1/hx ‖u− um
h ‖0 order ‖u− um

h ‖1,h order ‖u− um
h ‖∞ order

8 3.056e-3 7.817e-2 9.005e-3
16 7.441e-4 2.038 3.956e-2 0.983 2.316e-3 1.959

Modified 32 1.930e-4 1.947 1.990e-2 0.991 6.221e-4 1.896
P1-IFEM 64 4.716e-5 2.033 1.000e-2 0.993 1.608e-4 1.952

128 1.216e-5 1.956 5.015e-3 0.996 4.090e-5 1.975
256 3.010e-6 2.014 2.510e-3 0.999 1.031e-5 1.989
512 7.621e-7 1.982 1.256e-3 0.999 2.633e-6 1.968

Table 3: Example 6.2 (Sharp corner) : θ = 45◦, β− = 1, β+ = 10
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Figure 7: Solution uh for Example 6.2 (Sharp Corner)
(β− = 1, β+ = 10, θ = 45◦, 1/hx = 32)

has low regularity at the interface corner. However, we see that the modified
method works better; See the Table 3.

Remark 6.2. We have also computed other cases such as β+/β− =
1000, 0.001 with various angles. The results of our scheme are always optimal
while the unmodified P1 immersed method deteriorates for some cases.

Example 6.3 (Variable coefficient). Finally, we consider the case with
variable coefficient. The 0-set of function L(x, y) = x2/(0.9)2+y2/(0.5)2−1.0 is
used in this example as the interface. The exact solution is u = L(x, y)/β(x, y)
where

β(x, y) =

{
(x2 + y2 − 1)2 on Ω−,
1 on Ω+.

In this case, both methods show an optimal order of convergence in H1-norm.
But the modified method performs much better in L∞-norm; See Table 5.

7. Conclusion

We introduced a modified IFEM for solving elliptic interface problems. By
adding the line integral terms similar to the DG methods, we overcome the
suboptimal behavior of the original IFEM proposed in [20], [21]. (The compu-
tational result there seemed to show optimal order. However, more numerical
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(a) P1-IFEM (b) Modified P1-IFEM

Figure 8: Error Surfaces for Example 6.2 (sharp corner)
(β− = 1, β+ = 10, θ = 45◦, 1/hx = 128)

1/hx ‖u− uh‖0 order ‖u− uh‖1,h order ‖u− uh‖∞ order
8 1.238e-2 3.013e-1 1.613e-2
16 3.159e-3 1.971 1.513e-1 0.994 4.327e-3 1.899

P1-IFEM
32 7.949e-4 1.991 7.572e-2 0.998 1.174e-3 1.882
64 2.030e-4 1.969 3.821e-2 0.987 7.475e-4 0.651
128 5.366e-5 1.920 1.933e-2 0.983 4.704e-4 0.668
256 1.528e-5 1.812 9.919e-3 0.963 2.452e-4 0.940
512 4.898e-6 1.642 5.155e-3 0.944 1.199e-4 1.033

1/hx ‖u− um
h ‖0 order ‖u− um

h ‖1,h order ‖u− um
h ‖∞ order

8 1.238e-2 3.010e-1 1.610e-2
16 3.094e-3 2.000 1.507e-1 0.998 4.107e-3 1.971

Modified 32 7.787e-4 1.990 7.543e-2 0.999 1.037e-3 1.986
P1-IFEM 64 1.947e-4 2.000 3.773e-2 0.999 2.605e-4 1.993

128 4.876e-5 1.998 1.887e-2 1.000 6.528e-5 1.997
256 1.219e-5 2.000 9.435e-3 1.000 1.634e-5 1.998
512 3.051e-6 1.998 4.718e-3 1.000 4.087e-6 1.999

Table 4: Example 6.2 (Sharp corner) : θ = 45◦, β− = 10, β+ = 1



490 D.Y. Kwak, J. Lee

−1

0

1

−1−0.500.51
−2

−1

0

1

2

3

4

5

 

XY

 

−1

0

1

2

3

4

Figure 9: Solution uh for Example 6.3 (Variable coefficient)

experiments show the original P1-IFEM is not optimal for some problems. The
proof in [10] seems incorrect. However, our modified scheme is always robust
for all problems tested including unreported ones). The optimal convergence
rates in H1 and L2 norms are shown by a similar technique as in DG methods;
the modified IFEM is consistent, the coercivity and boundedness of the bilinear
form hold. Several numerical tests show the errors are O(h), O(h2) order in
respective norms. Although no proof is given, we also obtain O(h2) order in
L∞ norm.

Some of the limitation of our scheme might be these: for problems with
sharp interface, one has to arrange the grids so that the cusp point is located
at a vertex of an element, for problems with highly oscillating interface, further
refinement are necessary to apply the IFEM.

We now comment on the computational aspects: The matrix structure are
exactly the same as usual P1-FEM, i.e., 5-point stencil; the number of unknowns
are also the same. When ǫ = −1, the scheme becomes symmetric. The assembly
of stiffness matrix requires slightly more time than the unmodified P1-IFEM,
but the time for iterative solver such as conjugate gradient is almost the same.

An obvious advantage of (both) IFEM is that we can use fast solver such
as multigrid methods since we can use uniform meshes.

Future works related to this topic are:

1. Local refinement near singularity.

2. Problems with nonhomogenous jumps, tensor coefficients, etc.
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(a) P1-IFEM (b) Modified P1-IFEM

Figure 10: Error Surface for Example 6.3 (Variable coefficient)
(β− = (x2 + y2 − 1)2, β+ = 1, 1/hx = 128)

3. Q1-IFEM for rectangular elements.

4. 3-dimensional problems.

5. Problems with a moving interface.

6. Two phase Stokes/Navier-Stokes problems.

7. Development of fast solver such as multigrid methods.
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