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We develop a class of mixed virtual volume methods for elliptic problems on polygonal/polyhedral grids. Unlike 
the mixed virtual element methods introduced in [22,13], our methods are reduced to symmetric, positive 
definite problems for the primary variable without using Lagrangian multipliers. We start from the usual way 
of changing the given equation into a mixed system using the Darcy’s law, 𝐮 = −∇𝑝. By integrating the system 
of equations with some judiciously chosen test spaces on each element, we define new mixed virtual volume 
methods of all orders. We show that these new schemes are equivalent to the nonconforming virtual element 
methods for the primal variable 𝑝.

Once the primary variable is computed solving the symmetric, positive definite system, all the degrees of freedom 
for the Darcy velocity are locally computed. Also, the 𝐿2-projection onto the polynomial space is easy to compute. 
Hence our work opens an easy way to compute Darcy velocity on the polygonal/polyhedral grids. For the 
lowest order case, we give a formula to compute a Raviart-Thomas space like representation which satisfies the 
conservation law.

An optimal error analysis is carried out and numerical results are presented which support the theory.
1. Introduction

The virtual element method (VEM), introduced by Beirão da Veiga, 
et al. [7], is a generalization of the conventional finite element method 
to general polygonal (or polyhedral) meshes, where thorough error 
analysis and numerical tests for more general cases for elliptic prob-

lems were developed in [7,1,9,10,33,25]. VEM is similar to the mimetic 
finite difference method (MFD) [20,17,21,23,6] in the sense of flexibil-

ity of mesh handling and using degrees of freedom only to construct 
the bilinear form. However, MFD does not use basis functions while 
VEM assumes basis functions as solutions of local partial differential 
equations. The word virtual comes from the fact that no explicit knowl-

edge of the shape function is necessary. By designing suitable elliptic 
projection operators on the local approximation space, VEM can be im-

plemented using only the degrees of the freedom and the polynomial 
part of the approximation space, while the integration of source-term 
multiplied by virtual element test function on the right hand sides is 
carefully handled using certain 𝐿2-projection (see [1]).

The detailed guidelines for the implementation of VEM for ellip-

tic problems including the construction of the projection operators can 
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be found in [9,40]. Also, nonconforming versions of VEM were stud-

ied in [33,25]. Recently, 𝑝- and ℎ𝑝-versions of VEM were analyzed 
in [11,38,14,26]. The developments and theories of VEM for elastic-

ity problems and Stokes problems can be found in [8,34,16,4,5,41] and 
[3,24], respectively. Meanwhile, couplings of VEM with boundary ele-

ment methods were studied in [35,31,32].

On the other hand, the idea of VEM was extended to the 𝐻(div) 
- conforming space on general polygons/polyhedral, called the mixed 
virtual element method (MVEM) in [22,12,13], where the approxima-

tion spaces for the vector variables have degrees of freedom similar 
to those of Brezzi–Douglas–Marini (BDM) [19] or Raviart-Thomas (RT) 
space [39].

The inner product term in the MVEM is defined through an 𝐿2-

projection, thus the computations of the local integral are possible from 
the knowledge of degrees of freedom of elements, plus a stabilizing term 
which makes it compatible with ordinary inner product. The MVEM 
leads to a saddle point problem similar to that of the mixed finite ele-

ment methods, which is a disadvantage of the mixed FEM. Thus, it is 
necessary to devise a fast solution method for the algebraic equations 
arising from the mixed formulation of VEM. For example, an Uzawa 
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type of solver may be used, or a hybridization technique as in [2,19,30]

can be employed. Still, the resulting system involving the Lagrange mul-

tipliers is nontrivial to solve; one has to invert the local matrix to find 
the Schur complement.

In this paper, we develop new mixed VEM formulations for two 
and three dimensional problems along the line of mixed finite volume 
method (MFVM) introduced in [28,36], where for the momentum equa-

tion, the gradient of test functions of a nonconforming space and some 
subspace of polynomials are applied on each element, while the mass 
equation is tested by a space of polynomials. One of the advantages of 
the MFVM proposed in [28,36] is that the formulation can be converted 
to the nonconforming finite element method for the primary variable 
with modified forcing term. Once the primary variable is obtained from 
solving the symmetric positive definite system, the velocity variable can 
be recovered locally. Another advantage of this scheme is that the con-

servation of the momentum as well as the mass hold.

We develop a similar mixed volume formulation using virtual ele-

ments on general polygonal/polyhedral meshes, by modifying the weak 
formulation introduced in [36]. The 𝐻(div)-conforming VEM space in 
[12] or [13] is used for the vector variable, and the nonconforming VEM 
(NCVEM) space developed in [33] is used for the primary variable.

Our method is more naturally related to the NCVEM than MFEM is 
to nonconforming FEM, in the sense that the treatment of the forcing 
term is exactly the same as NCVEM (i.e., one uses the 𝐿2 projection on 
the right hand side.)

As is usual in VEMs, the variation form involves elliptic projection 
operators and stability terms for the primary variables, see (3.5), (4.2a). 
By eliminating the velocity field from the first equation, we obtain an 
equation for the NCVEM in the primary variable. Once the primary 
variable is obtained by solving the symmetric, positive definite (SPD) 
system, all the moments of the velocity variable can be recovered lo-

cally. Also, one can compute the 𝐿2-projection of velocity variable 
easily. Thus, the whole process can be implemented efficiently, avoid-

ing the saddle point problems. We name our method a mixed virtual 
volume method (MVVM).

The proposed method is the first success in MVEM to compute the 
𝐻(div) - conforming velocity variables by solving SPD problems in the 
primary variable. Optimal error estimates for the proposed schemes are 
provided for 2D case. Numerical results supporting our analysis are 
presented. One may raise questions regarding the relationship of the 
proposed scheme with the reconstruction of velocity variable as in [37]. 
The possibility is discussed in Section 4.2. In the lowest order case, we 
propose a way to reconstruct Raviart - Thomas type velocity similar to 
[37] in general polygonal/polyhedral mesh.

The rest of our paper is organized as follows. The governing equa-

tion and brief review of MVEM are given in Section 2. In Section 3, 
we review the nonconforming virtual element methods for the variable 
coefficient. In Section 4, we introduce an MVVM and show that it is 
equivalent to the NCVEM. The error analysis is given in Section 5. The 
numerical tests supporting our analysis are given in Section 6. The con-

clusion follows in Section 7.

2. Preliminaries

Let Ω be a bounded polygonal/polyhedral domain in ℝ𝑑 , 𝑑 = 2, 3
with the boundary 𝜕Ω. We consider the second-order elliptic bound-

ary value problem{
−div∇𝑝 = 𝑔 in Ω,

𝑝 = 0 on 𝜕Ω,
(2.1)

where  is a smooth, bounded, symmetric and uniformly positive defi-

nite tensor.

We introduce some notations here: For any domain 𝐷, let 𝐻𝑘(𝐷) (or 
𝐇𝑘(𝐷)) be the scalar and vector Sobolev spaces of order 𝑘 ≥ 0. We use 
the standard notations | ⋅ |𝑘,𝐷 , ‖ ⋅ ‖𝑘,𝐷 for the (semi)-norms on 𝐻𝑘(𝐷), 
346
‖ ⋅ ‖𝜕𝐷 for the 𝐿2(𝜕𝐷), and (⋅, ⋅)𝐷 for the 𝐿2 inner product. When 𝐷 =Ω, 
we drop the subscript Ω and write | ⋅ |𝑘, ‖ ⋅‖𝑘 instead. In two dimensions, 
we let

rot 𝐯 =
(
𝜕𝑣2
𝜕𝑥

−
𝜕𝑣1
𝜕𝑦

)
and 𝐫𝐨𝐭 𝑞 =

(
𝜕𝑞

𝜕𝑦
,− 𝜕𝑞

𝜕𝑥

)
,

for smooth enough vector and scalar functions 𝐯 and 𝑞. Let

𝐇(div;𝐷) = {𝐮 ∈ (𝐿2(𝐷))𝑑 , (𝑑 = 2,3) with div𝐮 ∈𝐿2(𝐷)},

𝐇(rot ;𝐷) = {𝐮 ∈ (𝐿2(𝐷))2, with rot 𝐮 ∈𝐿2(𝐷)},

𝐇(𝐜𝐮𝐫𝐥 ;𝐷) = {𝐮 ∈ (𝐿2(𝐷))3, with 𝐜𝐮𝐫𝐥𝐮 ∈ (𝐿2(𝐷))3}.

Let us introduce the vector variable 𝐮 = −∇𝑝 and rewrite problem

(2.1) in the mixed form

⎧⎪⎪⎨⎪⎪⎩
𝐮 = −∇𝑝 in Ω,

div𝐮 = 𝑔 in Ω,

𝑝 = 0 on 𝜕Ω.

(2.2)

Throughout this paper, we assume the following regularity hold: The 
solution (𝐮, 𝑝) of (2.2) satisfies 𝐮 ∈𝐇𝑘+1(Ω), 𝑝 ∈𝐻𝑘+2(Ω), and there ex-

ists some constant 𝐶 > 0 such that

‖𝐮‖𝑘+1 + ‖𝑝‖𝑘+2 ≤ 𝐶‖𝑔‖𝑘. (2.3)

Its weak form is: Find 𝐮 ∈𝐇(div; 𝐷) and 𝑝 ∈𝐿2(Ω) such that

(−1𝐮,𝐯) − (𝑝,div 𝐯) = 0, 𝐯 ∈𝐇(div;Ω), (2.4)

(div 𝐮, 𝑞) = (𝑔, 𝑞), 𝑞 ∈𝐿2(Ω). (2.5)

2.1. Mixed virtual element methods

We briefly review the mixed virtual element methods (MVEM) in-

troduced in [22,12,13]. Let ℎ be a decomposition of Ω into regular 
polygons/polyhedra, and let 𝑜

ℎ
be the set of all interior edges (faces), 

𝜕
ℎ

be the set of boundary edges (faces), and ℎ = 𝑜
ℎ
∪ 𝜕

ℎ
. Following 

[13,33], we mean by “regular” that, there exists some 𝜌 > 0 such that

• ℎ𝑓 ≥ 𝜌ℎ holds for every element  ∈ ℎ and for every edge (face) 
𝑓 ⊂ 𝜕 ,

• every element  is star-shaped with respect to all points of a sphere 
of radius ≥ 𝜌ℎ ,

• when 𝑑 = 3, every face 𝑓 ∈ ℎ is star-shaped with respect to all 
points of a sphere of radius ≥ 𝜌ℎ𝑓 ,

where ℎ𝑓 (resp. ℎ ) is the diameter of edge (face) 𝑓 (resp. ). We 
denote the maximum diameter of elements  ∈ ℎ by ℎ. Throughout 
the paper, the constants 𝐶 , 𝐶∗ and 𝐶∗ will be independent of mesh size 
ℎ, not necessarily the same for each occurrence.

For any integer 𝑘 ≥ 0, we denote by 𝑃𝑘(𝐷) the set of all polynomials 
of total degree less than or equal to 𝑘, and set 𝑃−1(𝐷) = {0}. Also, we let 
the scaled polynomials:

𝑀𝑘(𝐷) =
{(𝐱 − 𝐱𝐷

ℎ𝐷

)𝜶

, |𝜶| ≤ 𝑘

}
, (2.6)

where 𝜶 = (𝛼1, ⋯ , 𝛼𝑑 ) (𝑑 = 2, 3) is the multi-index and 𝐱𝐷 is the center 
of mass.

Let

𝑘() ∶= ∇𝑃𝑘+1(),

𝑘()⟂ ∶= orthogonal complement of 𝑘() in (𝑃𝑘())𝑑 ,

𝑘() ∶= 𝐜𝐮𝐫𝐥 (𝑃𝑘+1())3 if 𝑑 = 3 and rot (𝑃𝑘+1())2 if 𝑑 = 2.

If we let 𝜋𝑘,𝑑 be the dimension of 𝑃𝑘(ℝ𝑑 ), then we see
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dim𝑘() = 𝜋𝑘+1,𝑑 − 1, dim𝑘()⟂ = 𝑑𝜋𝑘,𝑑 − 𝜋𝑘+1,𝑑 + 1. (2.7)

Given  ∈ ℎ, the local 𝐇(div)-conforming virtual element space is 
defined as follows:

𝐕𝑘
ℎ
() ∶= {𝐯 ∈𝐇(div ;) ∩𝐇(𝐜𝐮𝐫𝐥 ;) ∶ 𝐯 ⋅ 𝐧|𝑓 ∈ 𝑃𝑘(𝑓 ), ∀ edges (faces)

𝑓 ⊂ 𝜕 , div 𝐯 ∈ 𝑃𝑘(), 𝐜𝐮𝐫𝐥 𝐯 ∈𝑘−1()}, (2.8)

where in two dimensional case, the ′𝐜𝐮𝐫𝐥 ′ operator is replaced by the 
′rot ′ operator and the space 𝑘−1() is replaced by 𝑃𝑘−1().

The global space of order 𝑘 is the space 𝐕𝑘
ℎ

defined as

𝐕𝑘
ℎ
= {𝐯 ∈𝐇(div ;Ω) ∶ 𝐯| ∈𝐕𝑘

ℎ
(),∀ ∈ ℎ}. (2.9)

The degrees of freedom for 𝐕𝑘
ℎ

are

1|𝑓 | ∫
𝑓

𝐯 ⋅ 𝐧𝜉𝑘 𝑑𝑠, ∀𝜉𝑘 ∈𝑀𝑘(𝑓 ), ∀𝑓 ∈ ℎ, (2.10)

1|| ∫ 𝐯 ⋅ 𝐠𝑘−1 𝑑𝑥, ∀𝐠𝑘−1 ∈ 𝑘−1(), ∀ ∈ ℎ, (2.11)

1|| ∫ 𝐯 ⋅ 𝐠⟂
𝑘
𝑑𝑥, ∀𝐠⟂

𝑘
∈ 𝑘()⟂, ∀ ∈ ℎ. (2.12)

Here, | ⋅ | for any geometrical object means its Lebesgue measure 
and 𝑔𝑘, 𝐠𝑘−1, 𝐠⟂𝑘 are taken from the scaled monomials. Let 𝚿ℎ() =
𝑘−1() ⊕⟂

𝑘
(). The conditions (2.11), (2.12) can be replaced by a sin-

gle condition.

1|| ∫ 𝐯 ⋅ 𝐠𝑑𝑥, ∀𝐠 ∈𝚿ℎ(), ∀ ∈ ℎ.

The pressure space is

𝑊 𝑘
ℎ
∶= {𝑞 ∈𝐿2(Ω), 𝑞| ∈ 𝑃𝑘()}.

Remark 2.1. Let 𝑘 ≥ 1. Replacing the condition div 𝐯 ∈ 𝑃𝑘() by div 𝐯 ∈
𝑃𝑘−1() in (2.8) and replacing 𝑘 − 1 by 𝑘 − 2 in (2.11), we obtain a 
BDM like virtual element space defined in [12]. However, we get (ℎ𝑘)
instead of (ℎ𝑘+1) in 𝐻(𝑑𝑖𝑣)-norm. See Remark 4.1 in Section 4.

2.2. Interpolations and 𝐿2-projections

The 𝐿2-projection operators Π0
𝑘
∶𝐿2() → 𝑃𝑘() and 𝚷0

𝑘
∶ (𝐿2())𝑑 →

(𝑃𝑘())𝑑 are defined as follows: On each  , we define{∫ (𝑞 −Π0
𝑘
𝑞)𝜉𝑘 𝑑𝑥 = 0, ∀𝜉𝑘 ∈ 𝑃𝑘(),

∫ (𝐯−𝚷0
𝑘
𝐯)𝐪𝑘 𝑑𝑥 = 0, ∀𝐪𝑘 ∈ (𝑃𝑘())𝑑 .

(2.13)

When no confusion arises, we use the same notations Π0
𝑘

and 𝚷0
𝑘

to 
denote the 𝐿2-projections from some virtual element spaces of 𝐿2(Ω) or 
(𝐿2(Ω))𝑑 , although the computations are sometimes nontrivial (see the 
definition of nonconforming virtual spaces in the next section).

As is shown in [12], we can compute the 𝐿2-projection 𝚷0
𝑘
𝐯 for 𝐯 ∈

𝐕𝑘
ℎ

from the degrees of freedom of 𝐯 and the following properties hold:

‖𝑞 −Π0
𝑘
𝑞‖0 ≤ 𝐶ℎ𝑘+1|𝑞|𝑘+1, ‖𝐯−𝚷0

𝑘
𝐯‖0 ≤ 𝐶ℎ𝑘+1|𝐯|𝑘+1.

The local interpolation operator 𝚷𝐹
𝑘
∶ (𝐻1())𝑑 → 𝐕𝑘

ℎ
() is defined 

by

∫
𝑓

(𝐯−𝚷𝐹
𝑘
𝐯) ⋅ 𝐧𝜉𝑘 𝑑𝜎 = 0, ∀𝜉𝑘 ∈𝑀𝑘(𝑓 ), (2.14)

∫


(𝐯−𝚷𝐹
𝑘
𝐯) ⋅ 𝐠𝑑𝑥 = 0, ∀𝐠 ∈𝚿ℎ(). (2.15)

Define bilinear forms (for vector variables)

𝐚 (𝐮,𝐯) ∶= (𝚷0𝐮,𝚷0𝐯) + 𝐒 (𝐮−𝚷0𝐮,𝐯−𝚷0𝐯) (2.16)

a

𝐚

w

(

𝐚

(d

T

T

u

‖
3

𝐻

w

‖
F

[𝑞

[𝑞

[𝑞

w

𝑘

𝐻

In

s

r

𝑁

w

𝑊

a

d

[

𝑁

ℎ 𝑘 𝑘 𝑘 𝑘
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nd

ℎ(𝐮,𝐯) =
∑


𝐚
ℎ
(𝐮,𝐯), (2.17)

here 𝐒 (𝐮, 𝐯) is any bilinear form that scales with the inner product 
⋅, ⋅) .

For 𝑘 ≥ 0, the MVEM is: Find (𝐮̃ℎ, ̃𝑝ℎ) ∈𝐕𝑘
ℎ
×𝑊 𝑘

ℎ
such that

ℎ(𝐮̃ℎ,𝐯ℎ) − (𝑝̃ℎ,div 𝐯ℎ) = 0, ∀𝐯ℎ ∈𝐕𝑘
ℎ
, (2.18a)

iv 𝐮̃ℎ, 𝑞ℎ) = (𝑔, 𝑞ℎ), ∀𝑞ℎ ∈𝑊 𝑘
ℎ
. (2.18b)

he following error estimates are given in [13].

heorem 2.1. Under the assumptions above, the problem (2.18a,b) has a 
nique solution (𝐮̃ℎ, ̃𝑝ℎ) and the following error estimates hold.

‖𝑝− 𝑝̃ℎ‖0 ≤ 𝐶ℎ𝑘+1(‖𝐮‖𝑘+1 + ‖𝑝‖𝑘+1),‖𝐮− 𝐮̃ℎ‖0 ≤ 𝐶ℎ𝑘+1‖𝐮‖𝑘+1,‖𝐮−𝚷𝐹
𝑘
𝐮‖0 ≤ 𝐶ℎ𝑘+1‖𝐮‖𝑘+1,

div (𝐮− 𝐮̃ℎ)‖0 ≤ 𝐶ℎ𝑘+1|𝑔|𝑘+1.
. Nonconforming virtual element methods

We briefly describe NCVEM introduced in [33], [25].

We need a broken Sobolev space

1(ℎ) = {
𝑞 ∈𝐿2(Ω) ∶ 𝑞| ∈𝐻1(), ∀ ∈ ℎ} ,

ith a broken norm

𝑞‖21,ℎ = ∑
∈ℎ

‖𝑞‖21, .
or each 𝑓 ∈ ℎ, we associate a unit vector 𝐧𝑓 at 𝑓 . We define the jump 
]𝑓 for 𝑞 ∈𝐻1(ℎ) as follows:

]𝑓 (𝐱) ∶= lim
𝛿→0+

(𝑞(𝐱 − 𝛿𝐧𝑓 ) − 𝑞(𝑥+ 𝛿𝐧𝑓 )), if 𝑓 ∈ 0
ℎ
,

]𝑓 (𝐱) ∶= lim
𝛿→0+

(𝑞(𝐱 − 𝛿𝐧𝜕Ω)), if 𝑓 ∈ 𝜕
ℎ
,

here 𝐧𝜕Ω is an outward unit vector on 𝜕Ω. For positive integers 𝑟 =
 + 1, (𝑘 ≥ 0), we let

1,𝑛𝑐 (ℎ; 𝑟) =
⎧⎪⎨⎪⎩𝑞 ∈𝐻1(ℎ) ∶ ∫

𝑓

[𝑞]𝑓𝑚𝑑𝜎 = 0, 𝑚 ∈ 𝑃𝑟−1(𝑓 ), ∀𝑓 ∈ 𝑜
ℎ

⎫⎪⎬⎪⎭ .

(3.1)

 order to utilize the nonconforming virtual element space in the next 
ection, we need to use an extended version of VEM as in [25]. The 
eason is to compute 𝐿2-projection onto the space 𝑃𝑟.

The local space for NCVEM on each  ∈ ℎ is defined as

𝑟
ℎ
() =

{
𝑞 ∈𝑊 𝑟

ℎ
() ∶ (𝑞 −Π∗

𝑟
𝑞,𝑚) = 0, ∀𝑚 ∈ 𝑃𝑟−1() ∪ 𝑃𝑟()

}
, (3.2)

here 𝑊 𝑟
ℎ
() is an auxiliary space defined by

𝑟
ℎ
() =

{
𝑞 ∈𝐻1() ∶ 𝜕𝑞

𝜕𝐧
∈ 𝑃𝑟−1(𝑓 ),∀𝑓 ⊂ 𝜕 ,Δ𝑞 ∈ 𝑃𝑟()

}
,

nd Π∗
𝑟

is a certain projection onto 𝑃𝑟 that can be computed from the 
egrees of freedom. For example, one can use the elliptic projection Π∇

𝑟

7,25].

The global nonconforming virtual element space 𝑁𝑟
ℎ

is defined as

𝑟
ℎ
=

{
𝑞 ∈𝐻1,𝑛𝑐(ℎ; 𝑟) ∶ 𝑞| ∈𝑁𝑟

ℎ
(),∀ ,

∫ 𝑞𝑚𝑑𝜎 = 0, ∀𝑚 ∈ 𝑃𝑟−1(𝑓 ),∀𝑓 ⊂ 𝜕
ℎ

}
.

(3.3)
𝑓
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The global d.o.f.s are given by the followings:

𝜇𝑓,𝜶(𝑞) =
1|𝑓 | ∫

𝑓

𝑞𝑚𝜶 𝑑𝜎,∀𝑚𝜶 ∈𝑀𝑟−1(𝑓 ), 𝑓 ∈ 𝑜
ℎ
,

𝜇 ,𝜶(𝑞) =
1|| ∫ 𝑞𝑚𝜶 𝑑𝑥,∀𝑚𝜶 ∈𝑀𝑟−2(),  ∈ ℎ.

(3.4)

We define the usual elliptic bilinear forms (for scalar variables) 𝑎 ∶
𝐻1() ×𝐻1() →ℝ and 𝑎 ∶𝐻1(Ω) ×𝐻1(Ω) →ℝ as:

𝑎 (𝑝, 𝑞) = ∫


∇𝑝 ⋅∇𝑞𝑑𝑥, ∀𝑝, 𝑞 ∈𝐻1(),

𝑎(𝑝, 𝑞) =
∑
∈ℎ

𝑎 (𝑝, 𝑞), ∀𝑝, 𝑞 ∈𝐻1(Ω).

Now we define a discrete bilinear form 𝑎
ℎ
(⋅, ⋅) ∶𝑁𝑟

ℎ
×𝑁𝑟

ℎ
→ℝ:

𝑎
ℎ
(𝑝ℎ, 𝑞ℎ) = (𝚷0

𝑟−1∇𝑝ℎ,𝚷0
𝑟−1∇𝑞ℎ) +𝑆 ((𝐼 −Π0

𝑟
)𝑝ℎ), (𝐼 −Π0

𝑟
)𝑞ℎ), (3.5)

where 𝑆 is any stabilizing term satisfying

𝐶∗𝑎

ℎ
(𝑞ℎ, 𝑞ℎ) ≤ 𝑆 (𝑞ℎ, 𝑞ℎ) ≤ 𝐶∗𝑎

ℎ
(𝑞ℎ, 𝑞ℎ),∀𝑞ℎ ∈ 𝑘𝑒𝑟(Π0

𝑟
).

We let

𝑎ℎ(𝑝ℎ, 𝑞ℎ) =
∑


𝑎
ℎ
(𝑝ℎ, 𝑞ℎ),∀𝑝ℎ, 𝑞ℎ ∈𝑁𝑟

ℎ
.

Now the NCVEM of order 𝑟 ≥ 1 is defined as in [25]: Find 𝑝ℎ ∈𝑁𝑟
ℎ

such 
that

𝑎ℎ(𝑝ℎ, 𝑞ℎ) = (Π0
𝑟−1𝑔, 𝑞ℎ), (3.6)

The following optimal error estimate for (3.6) is given in Theorems 6.2 
and 6.3 [25].

Theorem 3.1. Let 𝑝 and 𝑝ℎ be the solutions of (2.1) and (3.6). Assume 
𝑝 ∈𝐻𝑟+1(Ω), 𝑔 ∈𝐻𝑟−1(Ω). Then, there exists a constant 𝐶 > 0 independent 
of ℎ such that

‖𝑝− 𝑝ℎ‖0 + ℎ|𝑝− 𝑝ℎ|1,ℎ ≤ 𝐶ℎ𝑟+1‖𝑝‖𝑟+1.
Remark 3.1.

1. If we use Π0
max(𝑟−2,0)𝑔 on the right hand side of (3.6), we can still 

get 𝐻1 error estimate like

|𝑝− 𝑝ℎ|1,ℎ ≤ 𝐶ℎ𝑟(‖𝑝‖𝑟+1 + ‖𝑔‖𝑟−1),
but we do not get optimal 𝐿2-error estimate.

2. As is well known in VEM community, there are two choices of bi-

linear forms. We used the more general form (3.5) which works 
for variable coefficient. For constant coefficient , the form using 
elliptic projection

(∇Π∇𝑝ℎ,∇Π∇𝑞ℎ) + 𝑆 ((𝐼 −Π∇)𝑝ℎ), (𝐼 −Π∇)𝑞ℎ)

defined in [7,33] can be used.

4. Mixed virtual volume methods

Let 𝑘 ≥ 0. Assume that we have some 𝐻(𝑑𝑖𝑣) virtual element space 
𝐕𝑘

ℎ
and NCVEM space 𝑁𝑘+1

ℎ
(to be associated with 𝐕𝑘

ℎ
).

We denote the number of edges (faces) of each element  by 𝑛 . We 
note the following type of Euler’s formula:∑
∈ℎ

𝑛 =
∑
∈ℎ

∑
𝑓⊂𝜕

1 = 2
∑
𝑓∈𝑜

1 +
∑
𝑓∈𝜕

1 = 2#𝑜
ℎ
+ #𝜕

ℎ
. (4.1)
ℎ ℎ
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Now we introduce our mixed virtual volume method (MVVM) for all 
order 𝑘 ≥ 0: Find (𝐮ℎ, 𝑝ℎ) ∈ 𝐕𝑘

ℎ
×𝑁𝑘+1

ℎ
which satisfies on every element 

 ∈ ℎ,

∫


𝐮ℎ ⋅∇𝜒 + 𝑎
ℎ
(𝑝ℎ,𝜒) = 0, ∀𝜒 ∈𝑁𝑘+1

ℎ
(), (4.2a)

∫


(𝐮ℎ +𝚷0
𝑘
∇𝑝ℎ) ⋅ 𝐯𝑑𝑥 = 0, ∀𝐯 ∈ 𝑘()⟂, (𝑘 ≥ 1) (4.2b)

∫


div𝐮ℎ𝜙𝑑𝑥 = ∫


Π0
𝑘
𝑔𝜙𝑑𝑥, ∀𝜙 ∈ 𝑃𝑘(). (4.2c)

From (4.2c) we have

div 𝐮ℎ =Π0
𝑘
𝑔. (4.3)

We see from (2.10), (2.11), (2.12) (using (2.7)), that the dimension of 
𝐕𝑘

ℎ
×𝑁𝑘+1

ℎ
is

𝜋𝑘,𝑑−1#ℎ +(𝜋𝑘,𝑑 −1+𝑑𝜋𝑘,𝑑 −𝜋𝑘+1,𝑑 +1)#ℎ +𝜋𝑘,𝑑−1#𝑜
ℎ
+𝜋𝑘−1,𝑑#ℎ (4.4)

while the number of equations in (4.2) is

∑
∈ℎ (𝑑𝑖𝑚𝑁ℎ() − 1 + 𝑑𝑖𝑚⟂

𝑘
() + 𝑑𝑖𝑚𝑃𝑘())

=
∑

∈ℎ [𝜋𝑘,𝑑−1𝑛 + 𝜋𝑘−1,𝑑 − 1 + 𝑑𝜋𝑘,𝑑 − 𝜋𝑘+1,𝑑 + 1 + 𝜋𝑘,𝑑 ]. (4.5)

Using Euler’ formula (4.1), we see

#ℎ + #𝑜
ℎ
=

∑
∈ℎ

𝑛 .

Hence we see (4.4) and (4.5) are equal, and hence (4.2) is a square 
system. Integration by parts gives

−∫


𝐮ℎ ⋅∇𝜒 𝑑𝑥 = −∫
𝜕

𝐮ℎ ⋅ 𝐧𝜒 𝑑𝑠+ ∫


div 𝐮ℎ𝜒 𝑑𝑥. (4.6)

Summing over all  , we have, by (4.2a) and (4.3)

𝑎ℎ(𝑝ℎ,𝜒) = −
∑
𝑃

∫


𝐮ℎ ⋅∇𝜒 𝑑𝑥

= −
∑
𝑃

∫
𝜕

𝐮ℎ ⋅ 𝐧𝜒 𝑑𝑠+
∑
𝑃

∫


Π0
𝑘
𝑔𝜒 𝑑𝑥. (4.7)

Now assume 𝜒 ∈𝑁𝑘+1
ℎ

. Since 𝜒 has continuous moments up to degree 
𝑘 across internal edges (faces) and has vanishing moments on 𝜕Ω, we 
obtain

𝑎ℎ(𝑝ℎ,𝜒) = (Π0
𝑘
𝑔,𝜒), 𝜒 ∈𝑁𝑘+1

ℎ
. (4.8)

This is exactly NCVEM of order 𝑘 + 1. Thus we have shown that our 
mixed virtual volume scheme is equivalent to the NCVEM.

Remark 4.1.

1. For 𝑘 ≥ 1, we can replace the test space in (4.2c) by 𝑃𝑘−1() to 
obtain a scheme that corresponds to BDM like MVEM [12], for 
which we lose one order in 𝐻(𝑑𝑖𝑣)-norm.

2. We can allow each polygon to have different number of edges 
(faces). Similarly, the first term of the right hand side of (4.5) has to 
be changed exactly the same way. Thus the system is still a square 
system.
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4.1. Recovery of 𝐮ℎ and 𝐿2-projection

We see from (4.6), (4.3) and (4.2a) that for any 𝜒 ∈𝑁𝑘+1
ℎ

()

∫
𝜕

𝐮ℎ ⋅ 𝐧𝜒 𝑑𝑠 = (Π0
𝑘
𝑔,𝜒) − 𝑎

ℎ
(𝑝ℎ,𝜒). (4.9)

Hence the moments of 𝐮ℎ ⋅ 𝐧 ∈ 𝑃𝑘(𝑓 ) can be obtained by choosing the 
basis functions 𝜒 ∈𝑁𝑘+1

ℎ
corresponding to the degrees of freedom.

The interior moments can be obtained similarly. Indeed, for 𝐯 ∈
𝑘−1() = ∇𝑃𝑘(), we have 𝐯 = ∇𝑞, for some 𝑞 ∈ 𝑃𝑘(). Hence from 
(4.2c), we have

∫


𝐮ℎ ⋅∇𝑞 𝑑𝑥 = ∫
𝜕

𝐮ℎ ⋅ 𝐧𝑞 𝑑𝜎 − ∫


Π0
𝑘
𝑔𝑞 𝑑𝑥, (4.10)

which is computable from the moments of 𝐮ℎ ⋅ 𝐧. Meanwhile for 𝐯 ∈
𝑘()⟂, we see from (4.2b)

∫


𝐮ℎ ⋅ 𝐯𝑑𝑥 = −∫


𝚷0
𝑘
∇𝑝ℎ ⋅ 𝐯𝑑𝑥

= −∫


∇𝑝ℎ ⋅𝚷0
𝑘
(𝐯)𝑑𝑥

= −∫
𝜕

𝑝ℎ𝚷0
𝑘
(𝐯) ⋅ 𝐧𝑑𝜎 + ∫


𝑝ℎ div (𝚷0

𝑘
(𝐯))𝑑𝑥 (4.11)

which is computable from the d.o.f.s of 𝑝ℎ. Hence all the degrees of 
freedom of 𝐮ℎ can be computed.

Furthermore, we can find the 𝐿2-projection of 𝐮ℎ, at the same time. 
Since

(𝑃𝑘())𝑑 = 𝑘()⊕ 𝑘()⟂,

and 𝑘 =∇𝑃𝑘+1() ⊂∇𝑁𝑘+1(), the same integration by parts as (4.10), 
(4.11) give enough information to compute the projection of 𝐮ℎ onto 
(𝑃𝑘())𝑑 . Indeed,

∫


𝚷0
𝑘
𝐮ℎ ⋅ 𝐯 = ∫


𝐮ℎ ⋅ 𝐯

= −∫


𝚷0
𝑘
∇𝑝ℎ ⋅ 𝐯 (4.12)

holds for all 𝐯 in (𝑃𝑘())𝑑 . Hence one can easily find the projection of 
𝐮ℎ onto (𝑃𝑘())𝑑 .

4.2. Construction of Raviart-Thomas type approximation for 𝑘 = 0

It is clear that when 𝑘 = 0, MVVM and MFEM are equivalent on 
triangular/tetrahedral grids. In the case of MFEM, it is known [37] that, 
if  is piecewise constant, then

𝐮ℎ = −∇𝑝ℎ +
𝑔̄

𝑑
(𝐱 − 𝐱 ), 𝑑,= 2,3, (4.13)

where 𝑔̄ is the average of 𝑔 on each element  . The same formula holds 
for MVVM.

On general grids, we have a similar representation (even when  is 
nonconstant). We see from (4.2c), that div (𝐮ℎ −

𝑔̄

𝑑
(𝐱 − 𝐱 )) = 0, 𝑑 = 2, 3. 

Hence

𝐮ℎ =
𝑔̄

𝑑
(𝐱 − 𝐱 ) + 𝐜𝐮𝐫𝐥 𝜉(𝐫𝐨𝐭 𝜉 if 𝑑 = 2), for some 𝜉 ∈𝐻1().

Substituting this into (4.2a), and letting 𝜒 = 𝑥, 𝑦, 𝑧, we have

𝚷0
0(𝐜𝐮𝐫𝐥 𝜉) = −𝚷0

0(𝚷0
0(∇𝑝ℎ)) = −̄𝚷0

0(∇𝑝ℎ).

Hence

𝐮ℎ =
𝑔̄ (𝐱 − 𝐱 ) − ̄𝚷0(∇𝑝ℎ) + 𝐜𝐮𝐫𝐥 𝜉 −𝚷0(𝐜𝐮𝐫𝐥 𝜉). (4.14)

𝑑 0 0
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The projection 𝚷0
0(∇𝑝ℎ) can be computed by letting 𝜒 = 𝑥 (or 𝜒 = 𝑦, 𝑧) 

as follows:

∫


𝚷0
0(∇𝑝ℎ) ⋅∇𝜒 𝑑𝑥 = ∫


∇𝑝ℎ ⋅ (1,0,0)𝑇 𝑑𝑥 = ∫

𝜕
𝑝ℎ𝑛𝑥 𝑑𝜎

=
∑
𝑓⊂𝜕

𝑛𝑓
𝑥
|𝑓 | 1|𝑓 | ∫

𝑓

𝑝ℎ 𝑑𝜎 =
∑
𝑓⊂𝜕

𝑛𝑓
𝑥
|𝑓 |𝜇𝑓,0(𝑝ℎ),

where 𝜇𝑓,0(𝑝ℎ) is the degree of freedom of 𝑝ℎ on 𝑓 , 𝐧 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) is the 
unit outer normal to 𝜕 , and 𝐧𝑓 = (𝑛𝑓𝑥 , 𝑛

𝑓
𝑦 , 𝑛

𝑓
𝑧 ) is its restriction to each 

𝑓 . Hence

𝚷0
0(∇𝑝ℎ)

= 1|| (∑
𝑓 𝑛

𝑓
𝑥 |𝑓 |𝜇𝑓,0(𝑝ℎ),

∑
𝑓 𝑛

𝑓
𝑦 |𝑓 |𝜇𝑓,0(𝑝ℎ),

∑
𝑓 𝑛

𝑓
𝑧 |𝑓 |𝜇𝑓,0(𝑝ℎ)

)𝑇

.

We can write (4.14) in the form (when 𝐮ℎ is smooth)

𝐮ℎ = 𝐮̃ℎ + 𝐜𝐮𝐫𝐥 𝜉 −Π0
0(𝐜𝐮𝐫𝐥 𝜉) = 𝐮̃ℎ +𝑂(ℎ),

where

𝐮̃ℎ = −̄𝚷0
0(∇𝑝ℎ) +

𝑔̄

𝑑
(𝐱 − 𝐱 ) ∈𝐕ℎ. (4.15)

Thus we have obtained a lowest order Raviart - Thomas approximation 
to 𝐮ℎ on polygonal/polyhedral grids. We believe it is a better approxi-

mation than the 𝐿2-projection ̄𝚷0
0(𝐮ℎ), because it satisfies div 𝐮̃ℎ = 𝑔̄, 

while div (̄𝚷0
0(𝐮ℎ)) = 0. Indeed, the numerical tests support this asser-

tion (see Table 2).

5. Error estimates

Although our scheme is developed for problems on 2D (polygonal 
domain) and 3D (polyhedral domain), we focus on 2D case for the error 
estimates to avoid technicalities. From now on, the symbol  (resp. 𝑓 ) 
denotes a polygon (resp. edge). We need some lemmas which can be 
found in the literature.

Lemma 5.1. (Inverse inequality for VEM [18,27]) There exists a constant 
𝐶 > 0 such that

‖∇𝑞‖0 ≤ 𝐶ℎ−1‖𝑞‖0,∀𝑞 ∈𝑁𝑘+1
ℎ

. (5.1)

Lemma 5.2. (Norm equivalence for VEM [18,25,27]) For any 𝑞 ∈𝑁𝑘+1
ℎ

, 
there exists a constant 𝐶 > 0 such that

1
𝐶
ℎ‖𝚵(𝑞)‖𝓁2 ≤ ‖𝑞‖0, ≤ 𝐶ℎ‖𝚵(𝑞)‖𝓁2 , (5.2)

where 𝚵(𝑞) is the vector representing the degrees of freedom of 𝑞.

We need the following lemma which are standard for FEM [2], but 
not for VEM since there is no reference element.

Lemma 5.3. Let 𝜙 ∈ 𝐿2(), 𝝓 ∈ (𝐿2())2 and 𝜇 ∈ 𝐿2(𝜕). Then the func-

tion 𝜒 ∈𝑁𝑘+1
ℎ

() determined by

∫
𝑓

𝜒𝑞 𝑑𝜎 = ∫
𝑓

𝜇𝑞 𝑑𝜎, ∀𝑞 ∈𝑀𝑘(𝑓 ), for all edge 𝑓 of  (5.3a)

∫


𝜒𝑚𝑑𝑥 = ∫


𝜙𝑚𝑑𝑥, ∀𝑚 ∈𝑀𝑘−1() (5.3b)

satisfies

‖𝜒‖0, ≤ 𝐶(‖𝜙‖0, + ℎ1∕2‖𝜇‖𝜕 ). (5.4)

Similarly, the function 𝐯 ∈𝐕𝑘() determined by the degrees of freedom

ℎ
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∫
𝑓

𝐯 ⋅ 𝐧𝜉 𝑑𝑠 = ∫
𝑓

𝜇𝜉 𝑑𝑠, ∀𝜉 ∈𝑀𝑘(𝑓 ), for all edge 𝑓 of  , (5.5a)

∫


𝐯 ⋅ 𝐠𝑑𝑥 = ∫


𝝓 ⋅ 𝐠𝑑𝑥, ∀𝐠 ∈𝚿ℎ() (5.5b)

satisfies

‖𝐯‖0, ≤ 𝐶(‖𝝓‖0, + ℎ1∕2‖𝜇‖𝜕 ). (5.6)

Proof. We only prove (5.6), since the proof of (5.4) is similar. It is well 
known that the square of 𝐿2-norm of a function 𝐯 ∈𝐕𝑘

ℎ
() scales like

|| 𝑛𝑘∑
𝑖=1

|𝚵𝑖(𝐯)|2,
where 𝚵𝑖(𝐯) is the 𝑖-th d.o.f. of 𝐯 and 𝑛𝑘 is the dim 𝐕𝑘

ℎ
(). In other words, 

if {𝝓𝑗}
𝑛𝑘
𝑗=1 is the canonical basis functions such that 𝚵𝑖(𝝓𝑗 ) = 𝛿𝑖𝑗 , then

𝐯 =
𝑛𝑘∑
𝑖=1

𝚵𝑖(𝐯)𝝓𝑗 .

It can be easily verified that the scaled monomials 𝜉 ∈ 𝑀𝑘(𝑓 ) and 𝐠 ∈
(𝑀𝑘())2 satisfy

‖𝜉‖2
𝑓
=𝑂(|𝑓 |), ‖𝐠‖20, =𝑂(||). (5.7)

Hence for any 𝐯 ∈𝐕𝑘
ℎ
, we have

‖𝐯‖20, ≤ 𝐶|| 𝑛𝑘∑
𝑖=1

|𝚵𝑖(𝐯)|2
= 𝐶||[∑(edge d.o.f.s)2 +

∑
(interior d.o.f.s)2]

≤ 𝐶|| ⎡⎢⎢⎢⎣
∑
𝑓⊂𝜕

∑
𝜉

⎛⎜⎜⎝ 1|𝑓 | ∫
𝑓

𝐯 ⋅ 𝐧𝜉 𝑑𝜎

⎞⎟⎟⎠
2

+
∑
𝐠

⎛⎜⎜⎝ 1|| ∫ 𝐯 ⋅ 𝐠 𝑑𝑥

⎞⎟⎟⎠
2⎤⎥⎥⎥⎦

≤ 𝐶
|||𝑓 |2 ∑

𝑓⊂𝜕
∑
𝜉

‖𝜇‖2
𝑓
‖𝜉‖2

𝑓
+𝐶||−1∑

𝐠
‖𝝓‖20,‖𝐠‖20, (by (5.5))

≤ 𝐶
|||𝑓 | ∑

𝑓⊂𝜕
‖𝜇‖2

𝑓
+𝐶

∑
𝐠

‖𝝓‖20, (by (5.7))

≤ 𝐶(ℎ‖𝜇‖2
𝜕 + ‖𝝓‖20, ). □

Theorem 5.4. Let (𝐮ℎ, 𝑝ℎ) be the solution of the system (4.2). Then there 
exists a constant 𝐶 independent of ℎ such that

‖𝐮− 𝐮ℎ‖0 ≤ 𝐶ℎ𝑘+1(‖𝐮‖𝑘+1 + ‖𝑔‖𝑘), (5.8a)

‖div(𝐮− 𝐮ℎ)‖0 ≤ 𝐶ℎ𝑘+1|𝑔|𝑘+1, (5.8b)

provided that 𝐮 ∈𝐇𝑘+1(Ω) and 𝑔 ∈𝐻𝑘+1(Ω).

Proof. We shall prove (5.8b) first. We see from (4.3) that

‖div(𝐮− 𝐮ℎ)‖0 ≤ ‖𝑔 −Π0
𝑘
𝑔‖0 ≤ 𝐶ℎ𝑘+1|𝑔|𝑘+1.

Next we prove (5.8a). By the triangle inequality

‖𝐮− 𝐮ℎ‖0 ≤ ‖𝐮−𝚷𝐹
𝑘
𝐮‖0 + ‖𝚷𝐹

𝑘
𝐮− 𝐮ℎ‖0,

and the approximation property of 𝚷𝐹
𝑘

(Theorem 2.1), it suffices to es-

timate

‖𝚷𝐹
𝑘
𝐮− 𝐮ℎ‖0.

For the sake of simplicity we assume  = 1. (Similar estimate holds 
as long as  is sufficiently smooth.) Let 𝑝𝜋 be an arbitrary function in 
𝑃𝑘+1(). Then, clearly we have 𝑎

ℎ
(𝑝𝜋, 𝜒) = 𝑎 (𝑝𝜋, 𝜒) for all 𝜒 ∈𝑁𝑘+1

ℎ
(). 

From (4.2a), we see
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∫


(𝐮− 𝐮ℎ) ⋅∇𝜒 𝑑𝑥 = −𝑎 (𝑝,𝜒) + 𝑎
ℎ
(𝑝ℎ,𝜒)

= −𝑎 (𝑝− 𝑝𝜋,𝜒) + 𝑎
ℎ
(𝑝ℎ − 𝑝𝜋,𝜒). (5.9)

Let 𝜒 ∈𝐻1() be the solution of

Δ𝜒 = 0 in  ,

𝜒 = (𝚷𝐹
𝑘
𝐮− 𝐮ℎ) ⋅ 𝐧 on 𝜕 .

Since 𝜒 is completely determined by the moments ∫
𝑓
𝜒𝑞𝑘 𝑑𝜎 = ∫

𝑓
(𝚷𝐹

𝑘
𝐮 −

𝐮ℎ) ⋅ 𝐧𝑞𝑘 𝑑𝜎, ∀𝑞𝑘 ∈ 𝑃𝑘(𝑓 ), ∀𝑓 ⊂ 𝜕 , we see 𝜒 ∈𝑁𝑘+1
ℎ

(). Hence by (5.4)

we have

‖𝜒‖0, ≤ 𝐶ℎ1∕2‖(𝚷𝐹
𝑘
𝐮− 𝐮ℎ) ⋅ 𝐧‖𝜕 . (5.10)

Now by the definition of 𝚷𝐹
𝑘

, (5.9), and (4.2)

∫
𝜕

𝜒2 𝑑𝜎 = ∫
𝜕

𝜒(𝚷𝐹
𝑘
𝐮− 𝐮ℎ) ⋅ 𝐧𝑑𝜎

= ∫
𝜕

𝜒(𝐮− 𝐮ℎ) ⋅ 𝐧𝑑𝜎

= ∫


(𝐮− 𝐮ℎ) ⋅∇𝜒 𝑑𝑥+ ∫


div (𝐮− 𝐮ℎ)𝜒 𝑑𝑥

= −𝑎 (𝑝− 𝑝𝜋,𝜒) + 𝑎
ℎ
(𝑝ℎ − 𝑝𝜋,𝜒) + ((𝐼 −Π0

𝑘
)𝑔,𝜒) .

Now by the approximation property of 𝑝𝜋 and 𝑝ℎ, the inverse inequality, 
and (5.10),

‖(𝚷𝐹
𝑘
𝐮− 𝐮ℎ) ⋅ 𝐧‖2𝜕 ≤ 𝐶(‖𝑝− 𝑝𝜋‖1, + ‖𝑝ℎ − 𝑝𝜋‖1, )‖𝜒‖1,

+𝐶ℎ𝑘‖𝑔‖𝑘,‖𝜒‖0,
≤ 𝐶(2‖𝑝− 𝑝𝜋‖1, + ‖𝑝ℎ − 𝑝‖1, )‖𝜒‖1,

+𝐶ℎ𝑘‖𝑔‖𝑘,‖𝜒‖0,
≤ 𝐶ℎ𝑘+1‖𝑝‖𝑘+2,‖𝜒‖1, +𝐶ℎ𝑘‖𝑔‖𝑘,‖𝜒‖0,
≤ 𝐶ℎ𝑘(‖𝑝‖𝑘+2, + ‖𝑔‖𝑘, )‖𝜒‖0, ,
(by the inverse inequality)

≤ 𝐶ℎ𝑘‖𝑔‖𝑘,‖𝜒‖0, , (by the regularity assumption)

≤ 𝐶ℎ𝑘+1∕2‖𝑔‖𝑘,‖(𝚷𝐹
𝑘
𝐮− 𝐮ℎ) ⋅ 𝐧‖𝜕 .

Hence

‖(𝚷𝐹
𝑘
𝐮− 𝐮ℎ) ⋅ 𝐧‖𝜕 ≤ 𝐶ℎ𝑘+1∕2‖𝑔‖𝑘, . (5.11)

On the other hand, from equations (2.2), (4.2a,b) we see

∫


(𝐮+∇𝑝) ⋅ 𝐯𝑑𝑥 = 0, ∀𝐯 ∈ (𝐿2())2,

∫


(𝐮ℎ +𝚷0
𝑘
∇𝑝ℎ) ⋅ 𝐯𝑑𝑥 = 0, ∀𝐯 ∈𝚿ℎ().

Subtracting, we have (since  is constant)

∫


(𝐮− 𝐮ℎ) ⋅ 𝐯𝑑𝑥 = −∫


(∇𝑝−𝚷0
𝑘
∇𝑝ℎ) ⋅ 𝐯𝑑𝑥, ∀𝐯 ∈𝚿ℎ()

= −∫


(∇𝑝−∇𝑝ℎ) ⋅ 𝐯𝑑𝑥, ∀𝐯 ∈𝚿ℎ().

Let 𝜇 = (𝚷𝐹
𝑘
𝐮 − 𝐮ℎ) ⋅ 𝐧 and 𝝓 =∇𝑝 −∇𝑝ℎ. Then 𝝈 =𝚷𝐹

𝑘
𝐮 − 𝐮ℎ ∈𝐕𝑘

ℎ
()

is the solution of
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Fig. 1. Polygonal mesh ℎ with 16 (left), 64 (middle), and 256 (right) elements.

Fig. 2. Uniform rectangle mesh ℎ with 16 (left), 64 (middle), and 256 (right) elements.

Fig. 3. Trapezoidal meshes ℎ with 16 (left)
∫
𝑓

𝝈 ⋅ 𝐧𝑞 𝑑𝑠 = ∫
𝑓

𝜇𝑞 𝑑𝑠, ∀𝑞 ∈𝑀𝑘(𝑓 ), for all edges(faces) of  ,

∫


𝝈 ⋅ 𝐠𝑑𝑥 = ∫


𝝓() ⋅ 𝐠𝑑𝑥, ∀𝐠 ∈𝚿ℎ.

Then by (5.6), (5.11), and the approximation property of 𝑝ℎ, we have

‖Π𝐹
𝑘
𝐮− 𝐮ℎ‖0, ≤ ‖‖∞‖∇𝑝−∇𝑝ℎ‖0, +𝐶ℎ1∕2‖(𝚷𝐹

𝑘
𝐮− 𝐮ℎ) ⋅ 𝐧‖𝜕

≤ 𝐶ℎ𝑘+1(‖𝑝‖𝑘+2, + ‖𝑔‖𝑘, ).
By the triangle inequality and approximation property of Π𝐹

𝑘
𝐮, the proof 

is complete. □

6. Numerical experiments

In this section, we present some numerical results in two dimen-

sional case. The exact solutions on Ω = [0, 1]2 are chosen as

𝑝(𝑥, 𝑦) = 𝑥(1 − 𝑥)𝑦(1 − 𝑦),

𝐮(𝑥, 𝑦) = −((1 − 2𝑥)𝑦(1 − 𝑦), 𝑥(1 − 𝑥)(1 − 2𝑦)).

Example 6.1 (Numerical results of MVVM on polygonal meshes). The 
scheme is tested on the sequential polygonal meshes ℎ in Fig. 1. On 
each polygon, the maximum number of vertexes is set to six. We report 
the error between the exact solution and the 𝐿2-projection of 𝐮ℎ with 
 = 1 + 0.5 sin(𝑥), for 𝑘 = 0, 1, 2, 3 in Table 1. Here, the 𝐿2-projection of 
𝐮ℎ is obtained using equation (4.12). We observe results optimal for all 
cases.

Example 6.2 (Comparison between 𝐿2-projection and Raviart-Thomas type 
reconstruction). In the lowest order case, we compare the errors of 𝐿2-

projection of 𝐮ℎ and Raviart-Thomas type reconstruction (4.15). Here, 
we set  = 1. The result on polygonal mesh is reported in Table 2. We 
observe that the Raviart-Thomas type reconstruction is more accurate. 
We perform similar comparison on the uniform rectangle mesh (Fig. 2) 
and trapezoidal mesh (Fig. 3). Table 3 shows the errors on the uniform 
rectangle mesh and Table 4 shows those on the trapezoidal mesh. We 
see that the convergence rates are optimal for all cases. However, the 
Raviart-Thomas type reconstruction is marginally better.
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, 64 (middle), and 256 (right) elements.

Table 1

𝐿2-errors between exact solution and the 𝐿2-projection of 𝐮ℎ for orders 𝑘 =
0, 1, 2, 3. Table at left top, right top, left bottom and right bottom correspond to 
the case 𝑘 = 0, 𝑘 = 1, 𝑘 = 2 and 𝑘 = 3 respectively.

𝑁 of Elt. ‖𝑢−Π0
0𝑢ℎ‖0 order

22 × 22 6.494E-02

23 × 23 3.250E-02 0.998

24 × 24 1.578E-02 1.042

25 × 25 7.853E-03 1.007

26 × 26 3.895E-03 1.012

𝑁 of Elt. ‖𝑢−Π0
1𝑢ℎ‖0 order

22 × 22 2.964E-02

23 × 23 6.261E-03 1.981

24 × 24 1.162E-03 2.041

25 × 25 2.304E-04 2.001

26 × 26 5.040E-05 2.014

𝑁 of Elt. ‖𝑢−Π0
2𝑢ℎ‖0 order

22 × 22 4.158E-03

23 × 23 6.260E-04 2.732

24 × 24 6.369E-05 3.297

25 × 25 5.719E-06 3.477

26 × 26 6.326E-07 3.176

𝑁 of Elt. ‖𝑢−Π0
3𝑢ℎ‖0 order

22 × 22 7.678E-05

23 × 23 8.684E-06 3.144

24 × 24 5.552E-07 3.967

25 × 25 3.368E-08 4.043

26 × 26 2.109E-09 3.997

Table 2

𝐿2-errors of 𝚷0
0𝐮ℎ (left) and Raviart-Thomas type reconstruction 𝐮̃ℎ (right) on 

polygonal meshes.

𝑁 of Elt. ‖𝑢−Π0
0𝑢ℎ‖𝐿2 (Ω) order ‖𝑢− 𝑢̃ℎ‖𝐿2 (Ω) order

22 × 22 4.303E-02 3.171E-02

23 × 23 2.241E-02 0.941 1.628E-02 0.962

24 × 24 1.111E-02 1.012 7.930E-03 1.037

25 × 25 5.575E-03 0.995 4.011E-03 0.983

26 × 26 2.784E-03 1.002 1.988E-03 1.013

Table 3

𝐿2-errors of 𝚷0
0𝐮ℎ (left) and Raviart-Thomas type reconstruction 𝐮̃ℎ (right) on 

uniform rectangular meshes.

𝑁 of Elt. ‖𝑢−Π0
0𝑢ℎ‖𝐿2 (Ω) order ‖𝑢− 𝑢̃ℎ‖𝐿2 (Ω) order

22 × 22 4.129E-02 2.880E-02

23 × 23 2.077E-02 0.991 1.476E-02 0.965

24 × 24 1.033E-02 1.008 7.320E-03 1.011

25 × 25 5.154E-03 0.003 3.647E-03 1.005

26 × 26 2.576E-03 1.001 1.822E-03 1.002
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Table 4

𝐿2-errors of 𝚷0
0𝐮ℎ (left) and Raviart-Thomas type reconstruction 𝐮̃ℎ (right) on 

trapezoidal meshes.

𝑁 of Elt. ‖𝑢−Π0
0𝑢ℎ‖𝐿2 (Ω) order ‖𝑢− 𝑢̃ℎ‖𝐿2 (Ω) order

22 × 22 4.910E-02 3.999E-02

23 × 23 2.547E-02 0.947 2.366E-02 0.757

24 × 24 1.314E-02 0.955 1.269E-02 0.898

25 × 25 6.683E-03 0.975 6.541E-03 0.957

26 × 26 3.369E-03 0.988 3.314E-03 0.981

7. Conclusion

In this work, we develop mixed virtual volume methods (MVVM) of 
all orders on polygonal/polyhedral meshes. For the primary variable we 
use the nonconforming virtual element space, and for the velocity vari-

able we use the 𝐻(div ) conforming virtual element space. The proposed 
method is the first success to compute 𝐻(div)-conforming velocity vari-

ables through the NCVEM. We show that the MVVM is equivalent to the 
NCVEM for all orders. Once the primary variable is obtained from solv-

ing the (SPD) system arising from NCVEM, the velocity variable can be 
computed locally. Thus, the whole procedure can be implemented effi-

ciently, avoiding a saddle point problem. The optimal error estimates in 
2D are proved and some numerical results supporting our analysis are 
presented. The detailed analysis and numerical tests for 3D case will 
be given in a future article. The extension to the curvilinear case seems 
possible using the results on curved domains in [15,29]. However, some 
technical details have to be verified together with numerical works. It 
is left for a future investigation.
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