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Abstract

We present two kinds of lowest-order virtual element methods for planar linear elasticity problems. For the first one we use
he nonconforming virtual element method with a stabilizing term. It can be interpreted as a modification of the nonconforming
rouzeix–Raviart finite element method as suggested in Hansbo and Larson (2003) to the virtual element method. For the

econd one we use the conforming virtual element for one component of the displacement vector and the nonconforming
irtual element for the other. This approach can be seen as an extension of the idea of Kouhia and Stenberg suggested in
ouhia and Stenberg (1995) to the virtual element method. We show that our proposed methods satisfy the discrete Korn’s

nequality. We also prove that the methods are convergent uniformly for the nearly incompressible case and the convergence
ates are optimal.

2021 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the following planar linear elasticity problem in a convex polygonal domain Ω ⊂ R2: Given external
orce f , find the displacement field u such that⎧⎨⎩ −div (2µε(u) + λ(div u)δ) = f in Ω ,

(2µε(u) + λ(div u)δ) n = 0 on ΓN ⊂ ∂Ω ,

u = 0 on ΓD = ∂Ω − ΓN .

(1)

ere n denotes the exterior unit vector normal to ∂Ω , µ and λ are the Lamé constants, δ is the 2 × 2 identity
atrix and

ε(u) =
1
2

(∇u + (∇u)⊺) , div u =
∂u1

∂x1
+

∂u2

∂x2
.

t is known that µ has positive lower and upper bounds and 0 < λ < ∞. When the parameter λ approaches to
nfinity, the problem (1) describes the behavior of nearly incompressible materials.
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A challenging issue with developing numerical methods for this problem is the so-called locking phenomena,
hich may appear in the case of λ → ∞ (i.e., the case of nearly incompressible materials). For instance, the
iecewise linear conforming finite element method (FEM) may not converge as λ → ∞. In order to obtain optimal

convergence rates uniform with respect to λ using the conforming FEM, the order of the finite element must be
larger than 3 [1]. On the other hand, it was shown in [1] that the nonconforming FEM with order ≥ 2 has optimal
convergence rates uniform with respect to λ. However, one cannot use the linear nonconforming element since the
discrete Korn’s inequality fails for this space, which means that the discrete bilinear form may not be coercive in
general.

Some researchers have developed some low-order FEMs while avoiding the difficulties mentioned above. For
example, Hansbo and Larson [2] used the linear nonconforming finite element with a stabilizing term to enforce the
coerciveness. On the other hand, Kouhia and Stenberg [3] proposed an element consisting of the linear conforming
finite element for one component and the linear nonconforming finite element for the other. Some extensions of
their ideas can be found in [4–8] and references therein.

Meanwhile, the virtual element method (VEM) was recently introduced in [9] as a generalization of the finite
element method (FEM) to general polygonal or polyhedral meshes. In the VEM, the local discrete space on each
mesh element consists of polynomials up to a given degree and some additional non-polynomial functions. In
order to discretize continuous problems, the VEM only requires the knowledge of the degrees of freedom of the
shape functions, such as values at mesh vertices, the moments on mesh edges/faces, or the moments on mesh
polygons/polyhedrons, instead of knowing the shape functions explicitly. Moreover, the discrete space can be
extended to high order in a straightforward way. Due to such advantages, The VEM has been successfully applied
to various problems. For example, VEMs for general second-order elliptic problems were presented in [10]. Some
VEMs for the Stokes problem were introduced in [11–14]. In [15,16], some VEMs for the magnetostatic problems
were developed. For more thorough survey, we refer to [17–22] and references therein.

The VEM was also successfully applied to the linear elasticity problem. In [23], conforming virtual elements
of order ≥ 2 for the problem (1) were developed and it was shown that the convergence rates are optimal and
uniform with respect to λ. In [24], the nonconforming VEMs with order ≥ 2 were developed and it was shown that
the convergence rates are optimal and uniform with respect to λ, but the lowest-order nonconforming VEM was
developed only for the pure displacement problem, since the discrete Korn’s inequality may fail for the lowest-order
case.

In this paper, we develop two kinds of lowest-order VEMs for the linear elasticity problem (1). For the first one
we use the lowest-order nonconforming virtual element with a stabilizing term. It can be interpreted as an extension
of the method proposed by Hansbo and Larson [2] to the virtual element method. For the second one we use the
conforming virtual element for one component of the displacement field and the nonconforming virtual element for
the other. This is similar to the element suggested by Kouhia and Stenberg [3]. We then show that the proposed
elements satisfy the discrete Korn’s inequality. We also prove that the methods are convergent uniformly for the
nearly incompressible case and the convergence rates are optimal under the regularity assumption of the solution.
Here we only consider the case ΓN = ∅ for convenience, but our proposed methods and their analysis can be easily
extended to the general case ΓN ̸= ∅.

The rest of our paper is organized as follows. In Section 2, we present model problem in a weak form, notations
including mesh regularity, etc. In Section 3, we present the lowest-order nonconforming VEM with stabilizing term
and prove optimal convergence. In Section 4, we present the Kouhia–Stenberg type VEM, and prove its convergence.
In Section 5, we offer some numerical experiments to verify the performance of the proposed methods. Finally,
conclusions are given in Section 6.

2. Preliminaries

Throughout this paper, we will use the usual Sobolev spaces H s(D), where s ≥ 0 is an integer and D is a
bounded domain in R or R2. By convention, we note H 0(D) = L2(D). We denote by ∥ · ∥s,D and | · |s,D the usual
Sobolev norm and seminorm on H s(D), (H s(D))2, or (H s(D))2×2, respectively. We also denote (·, ·)0,D the usual
L2-inner product on L2(D), (L2(D))2, or (L2(D))2×2. We also define

L2
0(D) :=

{
q ∈ L2(D) :

∫
D

qdx = 0
}

.

For s ≥ 0, we denote by P the space of polynomials of degree ≤ s.
s

2



D.Y. Kwak and H. Park Computer Methods in Applied Mechanics and Engineering 390 (2022) 114448

w

N

D
λ

T

s

2

a
a
l

A

F

r
fi
t

v

2.1. Model problem

The linear elasticity problem (1) with ΓN = ∅ has the following weak formulation: Given f ∈ (L2(Ω ))2, find
u ∈ (H 1

0 (Ω ))2 such that

a(u, v) = ( f , v)0,Ω ∀v ∈ (H 1
0 (Ω ))2, (2)

here

a(u, v) := 2µ

∫
Ω

ε(u) : ε(v)dx + λ

∫
Ω

div udiv vdx.

ote that the bilinear form a(·, ·) is bounded: there exists a positive constant C independent of λ such that

|a(u, v)| ≤ C(1 + λ)|u|1,Ω |v|1,Ω ∀u, v ∈ (H 1
0 (Ω ))2.

ue to Korn’s inequality [25], we obtain the ellipticity of a(·, ·): there exists a positive constant C independent of
such that

C |v|
2
1,Ω ≤ a(v, v) ∀v ∈ (H 1

0 (Ω ))2.

he boundedness and ellipticity of a(·, ·) shows that the problem (2) has a unique solution. Moreover, the solution
u of (2) satisfies the following regularity estimate [26]: there exists a positive constant CΩ depending only on Ω
uch that

∥u∥2,Ω + λ∥div u∥1,Ω ≤ CΩ∥ f ∥0,Ω . (3)

.2. Mesh regularity

Let {Ph}h be a sequence of decompositions of Ω into polygonal elements K with maximum diameter h. Let E i
h

nd Eb
h denote the set of all interior and boundary edges in Ph , respectively. Similarly, let V i

h and Vb
h be the set of

ll interior and boundary vertices in Ph , respectively. We set Eh = E i
h ∪ Eb

h and Vh = V i
h ∪ Vb

h . For each K ∈ Ph ,
et NK denote the number of vertices of K .

We assume that {Ph}h satisfies the following regularity assumptions [9,22,27].

ssumption 1. There exists ρ > 0 independent of h such that

(i) the decomposition Ph consists of a finite number of nonoverlapping polygonal elements;
(ii) for any K ∈ Ph , the diameter of any edge of K is larger than ρhK , where hK denotes the diameter K ;

(iii) every element K of Ph is star-shaped with respect to a ball with center xK and radius ρhK ;
(iv) each element K ∈ Ph contains at least one interior vertex in Ph .

Note that these assumptions imply the following properties [22]:

• Every element K ∈ Ph has at most N edges and vertices, where N is independent of h.
• For each element K ∈ Ph , there is a triangular decomposition T K obtained by connecting the vertices of K

to xK (see, for example, Fig. 1), and the minimum angle of the triangular decomposition T K is controlled by
ρ.

or each h, we let

Th =

⋃
K∈Ph

T K .

For each K ∈ Ph , let nK and t K denote its exterior unit normal vector and counterclockwise tangential vector,
espectively. For e ∈ E i

h , we define respectively ne and te by a unit normal and tangential vector of e with orientation
xed once and for all. For e ∈ Eb

h , we define respectively ne and te by a unit normal and tangential vector on e in
he outward and counterclockwise direction with respect to Ω .

Let e ∈ E i
h and let K − and K + be the polygons in Ph having e as a common edge. For v : Ω → R satisfying

|K + ∈ H 1(K +) and v|K − ∈ H 1(K −), we define the jump of v on e by

+ + − −
[v]e = v|K (ne · nK ) + v|K (ne · nK ).

3
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Fig. 1. Subdivision of a polygon into triangles.

f e ∈ Eb
h , we define [v]e = v|e. Analogously, we define [v]e = ([v1]e, [v2]e) for v : Ω → R2 with v = (v1, v2)

atisfying v|K + ∈ (H 1(K +))2 and v|K − ∈ (H 1(K −))2.
We let C denote a generic positive constant independent of the Lamé constant λ and the mesh parameter h, not

ecessarily the same in each occurrence.
Given a decomposition P of Ω into a finite number of non-overlapping polygonal elements, we define the broken

obolev space

H 1(Ω;P) =
{
v ∈ L2(Ω ) : v|K ∈ H 1(K ) ∀K ∈ P

}
.

e also define the broken H 1-seminorm on the space H 1(Ω;P) or (H 1(Ω;P))2 as follows:

| · |
2
H1(Ω;P) =

∑
K∈P

| · |
2
1,K .

n particular, if P = Ph then we simply write | · |1,h = | · |H1(Ω;Ph ).
For v ∈ (H 1(Ω; Th))2, we define ∇hv by (∇hv)|T = ∇(v|T ) for each T ∈ Th . Analogous definitions hold for εh ,

oth , and div h . Here the operator rot is defined by rot v =
∂v2
∂x1

−
∂v1
∂x2

for a field v = (v1, v2).
For convenience, we define the local bilinear form aK

: (H 1(K ))2
× (H 1(K ))2

→ R on each element K ∈ Ph

y aK
= aK

µ + aK
λ where

aK
µ (u, v) = 2µ

∫
K

ε(u) : ε(v)dx, aK
λ (u, v) = λ

∫
K

div udiv vdx.

. Lowest-order nonconforming VEM with stabilizing term

In this section, we present the lowest-order nonconforming VEM for the problem (2).

.1. Lowest-order nonconforming virtual element space

Let K be a polygon satisfying the regularity assumptions (ii) and (iii) in Assumption 1. We first define an
uxiliary local space Ṽ (K ) = (Ṽ (K ))2, where

Ṽ (K ) =
{
v ∈ H 1(K ) : ∆v = 0, (nK · ∇v)|e ∈ P1(e) ∀e ⊂ ∂K

}
.

e also define a projection operator Π K
h : Ṽ (K ) → (P1(K ))2 as the solution of⎧⎪⎨⎪⎩

∫
K ε(Π K

h v) : ε(q)dx =
∫

K ε(v) : ε(q)dx ∀q ∈ (P1(K ))2,∫
K rotΠ K

h vdx =
∫

K rot vdx,∫
∂K Π K

h vds =
∫
∂K vds,

(4)

or v ∈ Ṽ (K ). Note that∫
K

ε(v) : ε(q)dx =

∫
∂K

(ε(q)nK ) · vds ∀q ∈ (P1(K ))2,∫
rot vdx =

∫
v · t K ds,
K ∂K

4
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for any v ∈ Ṽ (K ). Thus Π K
h v is computable from the degrees of freedom

the moments
1
|e|

∫
e
vds, ∀e ⊂ ∂K . (5)

oreover, Π K
h q = q for any q ∈ (P1(K ))2. We then define the local virtual element space

V (K ) =

{
v ∈ Ṽ (K ) :

∫
e
v · qds =

∫
e
Π K

h v · qds ∀q ∈ (P∗

1(e))2
∀e ⊂ ∂K

}
, (6)

here P∗

1(e) denotes the subspace of P1(e) that is L2(e)-orthogonal to P0(e). It is not difficult to show that
P1(K ))2

⊂ V (K ) and the (local) degrees of freedom (5) are unisolvent for V (K ).
The global virtual element space V h is defined by

V h =

{
v ∈ (L2(Ω ))2

: v|K ∈ V (K ) ∀K ∈ Ph,

∫
e
[v]eds = 0 ∀e ∈ Eh

}
.

t is easy to see that the following degrees of freedom are unisolvent for V h :

the moments
1
|e|

∫
e
vds, ∀e ∈ E i

h .

Given v ∈ (H 1
0 (Ω ))2, we denote by Ihv the global interpolant of v, that is, Ihv is defined by the unique function

in V h such that χi (v − Ihv) = 0 for any i = 1, 2, . . . , dim V h , where χi is the operator that associates the i th
degree of freedom of V h . Then the following lemma holds (see (3.16) in [27]).

Lemma 1. Let Ih : (H 1
0 (Ω ))2

→ V h be the interpolation operator as defined above. There exists a positive
constant C independent of h such that for any v ∈ (H 1

0 (Ω ) ∩ H 2(Ω ))2 and any K ∈ Ph ,

∥v − Ihv∥0,K + hK |v − Ihv|1,K ≤ Ch2
K |v|2,K .

.2. Discrete problem

Let Π K
0 : L2(K ) → P0(K ) be the L2-projection operator. Let SK

: V (K ) × V (K ) → R be a bilinear form such
hat

SK (u, v) =

dim V (K )∑
i=1

χi (u)χi (v), (7)

here χi is the operator associated with the i th local degrees of freedom. We then define the local bilinear forms
K
µ,h , aK

λ,h , and aK
h on V (K ) by

aK
µ,h(u, v) = 2µ

∫
K

ε(Π K
h u) : ε(Π K

h v)dx + SK (u − Π K
h u, v − Π K

h v), (8)

aK
λ,h(u, v) = λ

∫
K

(Π K
0 div u)(Π K

0 div v)dx, (9)

aK
h (u, v) = aK

µ,h(u, v) + aK
λ,h(u, v), (10)

or u, v ∈ V (K ). Following the arguments in [9], it is easy to show that the bilinear form aK
h (·, ·) satisfies the

onsistency and the stability:

• (Consistency) aK
h ( p, v) = aK ( p, v) for any v ∈ V (K ) and p ∈ (P1(K ))2;

• (Stability) there exist two positive constants c∗ and c∗, independent of h and of K , such that c∗aK
µ (v, v) ≤

aK
µ,h(v, v) ≤ c∗aK

µ (v, v) for any v ∈ V (K ).

We next define the global discrete bilinear form ah : V h × V h → R. Note that, however, the bilinear form∑
aK

h (uh, vh), uh, vh ∈ V h,
K∈Ph

5
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is not elliptic with respect to | · |1,h since the functions in V h do not satisfy Korn’s inequality in general. To avoid
this, we will add a stabilizing term Jh(·, ·) as in [2]. We define Jh : V h × V h → R by

Jh(uh, vh) =
γ

h

∑
e∈E i

h

∫
e
π e[uh]e · π e[vh]eds,

here π e denotes the L2-projection from (L2(e))2 onto (P1(e))2 for each e ∈ E i
h and γ is a fixed positive constant.

ote that, due to (6), if e ∈ E i
h is a common edge of the elements K +, K −

∈ Ph , then∫
e
π e[vh]e · qds =

∫
e
((vh |K + ) · q)(nK + · ne)ds +

∫
e
((vh |K − ) · q)(nK − · ne)ds

=

∫
e
((Π K

h (vh |K + )) · q)(nK + · ne)ds +

∫
e
((Π K

h (vh |K − )) · q)(nK − · ne)ds

or any q ∈ (P∗

1(e))2 and vh ∈ V h . Thus Jh(uh, vh) is computable using only the degrees of freedom of uh, vh ∈ V h .
Now the global discrete bilinear form ah : V h × V h → R is defined by

ah(uh, vh) =

∑
K∈Ph

aK
h (uh, vh) + Jh(uh, vh), ∀uh, vh ∈ V h .

e will later show that ah(·, ·) is elliptic with respect to | · |1,h .
We next construct the discrete loading term. We define f h on each element K ∈ Ph as the (L2(K ))2-projection

f f on the space of piecewise constant, that is,

f h |K =
1

|K |

∫
K

f dx, ∀K ∈ Ph,

where |K | denotes the area of K . We then define the discrete loading term
⟨

f h, ·
⟩

as follows:⟨
f h, vh

⟩
=

∑
K∈Ph

∫
K

f h · v̂hdx, ∀vh ∈ V h

where v̂h is defined by

v̂h |K =
1

NK

∑
e∈Eh
e⊂∂K

1
|e|

∫
e
vhds, ∀K ∈ Ph .

Then the following lemma for the approximation of the loading term ( f , ·)0,Ω can be found in [9,27].

Lemma 2. Suppose that f ∈ (L2(Ω ))2. Then there exists a positive constant C independent of h such that⏐⏐⟨ f h, vh
⟩
− ( f , vh)0,Ω

⏐⏐ ≤ Ch∥ f ∥0,Ω |vh |1,h ∀vh ∈ V h .

With the above preparations, we state the following virtual element discretization of the problem (2): Find
uh ∈ V h such that

ah(uh, vh) =
⟨

f h, vh
⟩

∀vh ∈ V h . (11)

3.3. Error analysis

It is well-known that the following approximation property holds [28].

Lemma 3. Let K ∈ Ph . For any v ∈ (H 2(K ))2, there exists vπ ∈ (P1)2 such that

∥v − vπ∥0,K + hK |v − vπ |1,K ≤ Ch2
K |v|2,K ,

where C is a positive constant depending only on ρ.
6
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We first check the existence and uniqueness of the solution of the discrete problem (11). According to the result
n [25], there exists a positive constant C independent of h such that

|vh |
2
1,h ≤ C

⎛⎜⎝∥εh(vh)∥2
0,Ω +

⏐⏐⏐⏐⏐⏐
∑

K∈Ph

∫
K

rot vhdx

⏐⏐⏐⏐⏐⏐+
∑
e∈E i

h

1
|e|

∥π e[vh]e∥
2
0,e

⎞⎟⎠ .

Since
∫

e[vh]eds = 0 for any vh ∈ V h and e ∈ Eh ,∑
K∈Ph

∫
K

rot vhdx =

∑
K∈Ph

∫
∂K

vh · t K ds =

∑
e∈Eh

∫
e
[vh]e · teds = 0.

Therefore we deduce that there exists a positive constant C independent of h such that

|vh |
2
1,h ≤ C

⎛⎜⎝∥εh(vh)∥2
0,Ω +

∑
e∈E i

h

1
|e|

∥π e[vh]e∥
2
0,e

⎞⎟⎠ ≤ Cah(vh, vh) ∀vh ∈ V h . (12)

his inequality shows that the discrete bilinear form ah(·, ·) is elliptic on V h , and hence the discrete problem (11)
has a unique solution.

We next prove the following convergence theorem.

Theorem 1. Suppose that f ∈ (L2(Ω ))2 and u ∈ (H 2(Ω ) ∩ H 1
0 (Ω ))2 is the solution of (2). Let uh ∈ V h be the

nique solution of the discrete problem (11). Then

|u − uh |1,h ≤ Ch∥ f ∥0,Ω ,

here C is a positive constant independent of h and the Lamé constant λ.

Proof. Let uπ be the approximation in Lemma 3, uI = Ih u, and δh = uh − uI . Define a norm ||| · ||| on V h by
|||vh |||

2
:= ah(vh, vh). Using the consistency of ah(·, ·),

|||δh |||
2

= ah(δh, δh) = ah(uh, δh) − ah(uI , δh) =
⟨

f h, δh
⟩
−

∑
K∈Ph

aK
h (uI , δh) − Jh(uI , δh)

=
⟨

f h, δh
⟩
−

∑
K∈Ph

(
aK

h (uI − uπ , δh) + aK
h (uπ , δh)

)
− Jh(uI , δh)

=
⟨

f h, δh
⟩
−

∑
K∈Ph

(
aK

h (uI − uπ , δh) + aK (uπ , δh)
)
− Jh(uI , δh)

=
⟨

f h, δh
⟩
−

∑
K∈Ph

(
aK

h (uI − uπ , δh) + aK (uπ − u, δh)
)
−

∑
K∈Ph

aK (u, δh) − Jh(uI , δh)

=
⟨

f h, δh
⟩
− ( f , δh)0,Ω −

∑
K∈Ph

(
aK

h (uI − uπ , δh) + aK (uπ − u, δh)
)

−

∑
K∈Ph

aK (u, δh) + ( f , δh)0,Ω − Jh(uI , δh). (13)

et

T1 :=
⟨

f h, δh
⟩
− ( f , δh)0,Ω , T2 :=

∑
K∈Ph

(
aK

h (uI − uπ , δh) + aK (uπ − u, δh)
)
,

T3 :=

∑
K∈Ph

aK (u, δh) − ( f , δh)0,Ω , T4 := Jh(uI , δh).

Note that, by (12),
C |vh |1,h ≤ |||vh ||| ∀vh ∈ V h . (14)

7
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By Lemma 2 and (14),

|T1| ≤ Ch∥ f ∥0,Ω |||δh |||. (15)

Note that

aK
h (uI − uπ , δh) + aK (uπ − u, δh)

= aK
µ,h(uI − uπ , δh) + aK

µ (uπ − u, δh) + aK
λ,h(uI − uπ , δh) + aK

λ (uπ − u, δh).

Since uI has the same degrees of freedom with u,∫
K

qdiv uI dx =

∫
∂K

quI · nK dx =

∫
∂K

qu · nK dx =

∫
K

qdiv udx

or any q ∈ P0(K ) and any K ∈ Ph . Then we have

aK
λ,h(uI − uπ , δh) + aK

λ (uπ − u, δh)

= λ(Π K
0 div uI − Π K

0 div uπ ,Π K
0 div δh)0,K + λ(div uπ − div u, div δh)0,K

= λ(Π K
0 div uI ,Π

K
0 div δh)0,K − λ(div u, div δh)0,K

= λ(div uI ,Π
K

0 div δh)0,K − λ(div u, div δh)0,K

= λ(div u,Π K
0 div δh)0,K − λ(div u, div δh)0,K

= λ(Π K
0 div u, div δh)0,K − λ(div u, div δh)0,K

= λ(Π K
0 div u − div u, div δh)0,K

for any K ∈ Ph . Using Lemma 3, Lemma 1 and (14) we obtain

|T2| ≤ C
∑

K∈Ph

(
|uI − uπ |1,K + |u − uπ |1,K + λ|Π K

0 div u − div u|0,K

)
|δh |1,K

≤ C
∑

K∈Ph

hK
(
|u|2,K + λ|div u|1,K

)
|δh |1,K

≤ Ch
(
|u|2,Ω + λ|div u|1,Ω

)
|||δh |||. (16)

Integrating by parts we obtain

T3 =

∑
K∈Ph

∫
∂K

(σ (u)nK ) · δhds =

∑
e∈Eh

∫
e
σ (u)ne · [δh]eds.

For each e ∈ Eh , let P0
e : (L2(e))2

→ (P0(e))2 be the L2-orthogonal projection operator. Then, since∫
e
[vh]eds = 0 ∀e ∈ Eh, ∀vh ∈ V h, (17)

we obtain∫
e
σ (u)ne · [δh]eds =

∫
e

(
σ (u)ne − P0

eσ (u)ne
)
· [δh]eds

=

∫
e

(
σ (u)ne − P0

eσ (u)ne
)
· [δh − P0

eδh]eds

rom the classical argument in [29], if e ∈ E i
h and e is a common edge of two elements K + and K − in Ph , then

∥σ (u)ne − P0
eσ (u)ne∥0,e ≤ Ch1/2

e ∥σ (u)∥1,K +∪K − ,

∥[δh − P0
eδh]e∥0,e ≤ Ch1/2

e

(
|δh |

2
1,K + + |δh |

2
1,K −

)1/2
.

f e ∈ Eb
h , then (17) implies that [δh − P0

eδh]e = 0. Thus, using (14),

|T3| ≤ Ch
(
∥u∥2,Ω + λ∥div u∥1,Ω

)
|||δh ||| (18)

ince u ∈ (H 1
0 (Ω ) ∩ H 2(Ω ))2, [u]e = 0 for any e ∈ Eh and so
T4 = Jh(uI , δh) = Jh(uI − u, δh).

8
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Then

|Jh(uI − u, δh)| ≤
γ

h

∑
e∈E i

h

∥[u − uI ]e∥0,e∥[δh]e∥0,e

≤

⎛⎜⎝γ

h

∑
e∈E i

h

∥[u − uI ]e∥
2
0,e

⎞⎟⎠
1/2⎛⎜⎝γ

h

∑
e∈E i

h

∥[δh]e∥0,e

⎞⎟⎠
1/2

≤

⎛⎜⎝γ

h

∑
e∈E i

h

∥[u − uI ]e∥
2
0,e

⎞⎟⎠
1/2

|||δh |||.

et e ∈ E i
h and assume that e is a common edge of two elements K1 and K2 in Ph . From the trace theorem with

caling and Lemma 1, we obtain

∥[u − uI ]e∥
2
0,e ≤ C

2∑
i=1

(
h|u − uI |

2
1,Ki

+ h−1
∥u − uI ∥

2
0,Ki

)
≤ Ch3

(
|u|

2
2,K1

+ |u|
2
2,K2

)
.

Thus

|T4| = |Jh(uI − u, δh)| ≤ C

⎛⎝γ

h

∑
K∈Ph

h3
|u|

2
2,K

⎞⎠1/2

|||δh ||| ≤ Ch|u|2,Ω |||δh |||. (19)

ow combining the results (13), (15), (16), (18), and (19), we obtain

|||δh |||
2

≤ Ch
(
∥u∥2,Ω + λ∥div u∥1,Ω + ∥ f ∥0,Ω ∥

)
|||δh |||.

inally, using the regularity estimate (3) and (14),

|u − uh |1,h ≤ |u − uI |1,h + C |||δh ||| ≤ Ch|u|2,Ω + C |||δh ||| ≤ Ch∥ f ∥0,Ω .

This concludes the proof of the theorem. □

4. Kouhia-Stenberg type VEM

In this section, we present the Kouhia–Stenberg type VEM for the problem (2).

4.1. Kouhia-Stenberg type virtual element space

Let K be a polygon satisfying the regularity assumptions (ii) and (iii) in Assumption 1. We first introduce an
auxiliary space

B(∂K ) =
{
g ∈ C0(∂K ) : g|e ∈ P1(e) ∀e ⊂ ∂K

}
.

Then the local conforming and nonconforming virtual element spaces are defined as follows [9,27]:

Vc(K ) =
{
v ∈ H 1(K ) : ∆v = 0 in K and v|∂K ∈ B(∂K )

}
,

Vnc(K ) =
{
v ∈ H 1(K ) : ∆v = 0 in K and (nK · ∇v)|e ∈ P0(e) ∀e ⊂ ∂K

}
.

he conforming and nonconforming global virtual element spaces are defined by

Vh,c =
{
v ∈ H 1

0 (Ω ) : v|K ∈ Vc(K ) ∀K ∈ Ph
}
,

Vh,nc =

{
v ∈ L2(Ω ) : v|K ∈ Vnc(K ) ∀K ∈ Ph,

∫
e
[v]eds = 0 ∀e ∈ Eh

}
,

espectively. Now we define the local and global Kouhia–Stenberg type virtual element spaces as follows:
V (K ) = Vnc(K ) × Vc(K ), V h = Vh,nc × Vh,c.

9
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The degrees of freedom for V (K ) can be chosen as, for v ∈ V (K ) with v = (v1, v2),

• the moments
1
|e|

∫
e
v1ds for each edge e of K , (20)

• the values of v2 at each vertex of K , (21)

The degrees of freedom for V h can be chosen as, for v ∈ V h with v = (v1, v2),

• the moments
1
|e|

∫
e
v1ds for each interior edge e, (22)

• the values of v2 at each interior vertex. (23)

iven v ∈ (H 1
0 (Ω ) ∩ H 2(Ω ))2, we denote by Ihv the global interpolant of v, that is, Ihv is defined by the unique

unction in V h such that χi (v − Ihv) = 0 for any i = 1, 2, . . . , dim V h , where χi is the operator that associates the
th degree of freedom of V h . Then the following result holds [9,27].

emma 4. Let Ih be the interpolation operator as defined above. There exists a positive constant C independent
f h such that for any v ∈ (H 1

0 (Ω ) ∩ H 2(Ω ))2 and any K ∈ Ph ,

∥v − Ihv∥0,K + hK |v − Ihv|1,K ≤ Ch2
K |v|2,K .

.2. Discrete problem

We first define a local projection operator on each element in Ph . Let K ∈ Ph . We define Π K
h : V (K ) → (P1(K ))2

s the solution of (4) for v ∈ V (K ). Note that Π K
h v is computable for any v ∈ V (K ) from the local degrees of

reedom (20)–(21). Let Π K
0 : L2(K ) → P0(K ) be the L2-projection operator. Let SK

: V (K ) × V (K ) → R be
bilinear form defined by (7). We then define the local bilinear forms aK

µ,h , aK
λ,h , and aK

h on V (K ) by (8)–(10).
ollowing the arguments in [9], it is easy to see that the bilinear form aK

h (·, ·) satisfies the consistency and the
tability:

• (Consistency) aK
h ( p, v) = aK ( p, v) for any v ∈ V (K ) and p ∈ (P1(K ))2;

• (Stability) there exist two positive constant c∗ and c∗, independent of h and of K , such that c∗aK
µ (v, v) ≤

aK
µ,h(v, v) ≤ c∗aK

µ (v, v) for any v ∈ V (K ).

ow the global discrete bilinear form ah : V h × V h → R is defined by

ah(uh, vh) =

∑
K∈Ph

aK
h (uh, vh), ∀uh, vh ∈ V h .

We next construct the discrete loading term. We define f h on each element K ∈ Ph as the (L2(K ))2-projection
f f on the space of piecewise constant, that is,

f h |K =
1

|K |

∫
K

f dx, ∀K ∈ Ph,

where |K | denotes the area of K . We then define the discrete loading term
⟨

f h, ·
⟩

as follows:⟨
f h, vh

⟩
=

∑
K∈Ph

∫
K

f h · v̂hdx, ∀vh ∈ V h,

where v̂h is defined by

v̂h |K =

⎛⎜⎝ 1
NK

∑
e∈Eh
e⊂∂K

1
|e|

∫
e
vh,1ds,

1
NK

∑
x∈Vh
x∈K

vh,2(x)

⎞⎟⎠ , ∀K ∈ Ph

ith vh = (vh,1, vh,2). Then the following lemma for the approximation of the loading term ( f , ·)0,Ω can be found

in [9,27].

10
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Lemma 5. Suppose that f ∈ (L2(Ω ))2. Then there exists a positive constant C independent of h such that⏐⏐⟨ f h, vh
⟩
− ( f , vh)0,Ω

⏐⏐ ≤ Ch∥ f ∥0,Ω |vh |1,h ∀vh ∈ V h .

With the above preparations, we state the following virtual element discretization of the problem (2): Find
uh ∈ V h such that

ah(uh, vh) =
⟨

f h, vh
⟩

∀vh ∈ V h . (24)

4.3. Preliminary results

In order to study the error estimate for the proposed method (24), we first need to prove a discrete inf–sup
condition: there exists a positive constant β independent of h such that

inf
qh∈Qh

sup
vh∈V h

(div hvh, qh)0,Ω

∥qh∥0,Ω |vh |1,h
≥ β,

where Qh is defined by

Qh =
{
qh ∈ L2

0(Ω ) : qh |K ∈ P0(K ) ∀K ∈ Ph
}
.

To show this, we use the macroelement technique [30–32]. Here we follow the result in [32, Section 4], with
slight modification.

We first summarize some definitions and notations. A macroelement M is a connected collection of polygonal
elements satisfying the regularity assumptions (ii) and (iii) in Assumption 1. For a macroelement M , we denote by
E i

M and V i
M the set of all interior edges and vertices in M , respectively.

A collection of macroelements Mh is called a macroelement partition of Ph if every element is contained in at
least one macroelement in Mh , that is, for each K ∈ Ph there exists M ∈ Mh such that K ⊂ M .

A macroelement M is said to be equivalent to a reference macroelement M̂ if there exists a continuous bijection
FM : M̂ → M such that the following are true:

• FM (M̂) = M .
• If M̂ consists of elements K̂1, . . . , K̂m , then M consists of elements K1, . . . , Km such that FM (K̂i ) = Ki and

both K̂i and Ki have the same number of edges.
• FM |K̂ j

= FK j ◦ F−1
K̂ j

for each j = 1, 2, . . . , m.

• Both M̂ and M have the same number of interior/boundary edges.
• Both M̂ and M have the same number of interior/boundary vertices.

We say that two macroelements are equivalent if they are equivalent to the same reference macroelement.
Given macroelement M , we define local spaces V (M) and Q(M) as follows:

Vnc(M) =

{
v ∈ L2(M) : v|K ∈ Vnc(K ) ∀K ⊂ M,

∫
e
[v]eds = 0 ∀e ∈ EM

}
,

Vc(M) =
{
v ∈ H 1

0 (M) : v|K ∈ Vc(K ) ∀K ⊂ M
}
,

V (M) = Vnc(M) × Vc(M),
Q(M) =

{
q ∈ L2(M) : q|K ∈ P0(K ) ∀K ⊂ M

}
,

where EM denotes the set of all edges in the macroelement M .
Under the definitions above, we state the macroelement condition as follows. Note that it is essentially identical

to Theorem 4.1 of [32], and therefore we skip the proof of the theorem here.

Theorem 2 (Macroelement Condition). Let Mh be a macroelement partition of Ph . Suppose that there exists a fixed
set of equivalent classes Σ1, . . . ,Σl of the macroelements and a positive integer L independent of h such that

(i) For each M ∈ Σi , i = 1, . . . , l, the space

N (M) :=

{
q ∈ Q(M) :

∑ ∫
div vqdx = 0 ∀v ∈ V (M)

}
. (25)
K⊂M K

11
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Fig. 2. A macroelement about a vertex.

is one-dimensional, consisting of functions that are constant on M.
(ii) For each M ∈ Mh there exists i ∈ {1, . . . , l} such that M ∈ Σi .

(iii) Each K ∈ Ph is contained in at least one and not more than L macroelements of Mh .

hen there exists a positive constant β independent of h such that

sup
vh∈V h
vh ̸=0

(div hvh, qh)0,Ω

|vh |1,h
≥ β∥qh∥0,Ω ∀qh ∈ Qh .

We next define a macroelement partitioning Mh and equivalent classes Σ1, . . .Σl of macroelements satisfying
he assumptions in Theorem 2. For each interior vertex x in Ph , let Mx be the macroelement consisting of elements
K1(x), . . . , Kk(x)(x) having x as a common vertex, ordered counterclockwise about the vertex x (see, for example,
ig. 2). We then define

Mh := {Mx : x ∈ V i
h}.

hen Mh is clearly a macroelement partitioning of Ph satisfying the condition (iii) in Theorem 2.
Consider two macroelements Mx and Mx′ in Mh . Two macroelements are clearly equivalent if the following

re true:

(i) k(x) = k(x′), that is, the number of polygons in Mx is equal to the number of polygons in Mx′ .
(ii) Mx and Mx′ have the same number of interior/boundary edges and vertices.

(iii) For i = 1, 2, . . . , k(x) (= k(x′)), the polygons Ki (x) and Ki (x′) have the same number of edges and vertices.
(iv) The number of edges in ∂Ki (x) ∩ ∂Ki+1(x) is equal to the number of edges in ∂Ki (x′) ∩ ∂Ki+1(x′), for

i = 1, 2, . . . , k(x) modulo k(x).

As mentioned in Section 2.2, since the minimum angle of the triangular decomposition of any polygon in Ph is
uniformly bounded below by a positive constant controlled by ρ, there exists k ∈ N independent of h such that

(x) ≤ k for any x ∈ V i
h . Moreover, since each polygon in Ph has at most N edges and vertices, where N ∈ N

is independent of h, each macroelement Mx has at most k N edges and vertices. Therefore there exists at most ℓ

equivalent class Σ1, . . . ,Σℓ in Mh , where ℓ is a positive integer depending only on k and N . Thus the condition
(ii) in Theorem 2 is true. Now it remains to show that the condition (i) in Theorem 2 is also true.

Lemma 6. Consider the macroelement M = Mx , for x ∈ V i
h . Then the space N (M) in (25) is one-dimensional,

onsisting of functions that are constant on M.

roof. We follow the argument in the proof of [3, Lemma 4.3]. Let x ∈ V i
h be fixed and consider the macroelement

Mx ∈ Mh consisting of polygons K1, . . . , Kk , with k = k(x), ordered counterclockwise about the vertex x. Let
e1, . . . , ek be the interior edges in M having x as a common vertex and satisfying ei ⊂ ∂Ki ∩ ∂Ki+1 for each

= 1, . . . , k modulo k. Let q ∈ N (M). If v ∈ V (M) with v = (v1, v2) satisfies v2 ≡ 0,
∫

ei
v1ds = |ei | for each i ,

nd
∫

e v1ds = 0 for any other interior edge e in M , then

0 =

k∑∫
div vqdx =

k∑∫
v · nqds = nei ,1|ei |(qi − qi+1),
i=1 Ki i=1 ∂Ki

12
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where nei = (nei ,1, nei ,2) and qi =
1

|Ki |

∫
Ki

qdx for each i = 1, . . . , k. Thus qi = qi+1 unless nei ,1 = 0, for any
= 1, . . . , k modulo k. Note that there exist at most two edges in {e1, . . . , ek} such that the normal vectors at the
dges are parallel to y-axis.

If there is one index i ∈ {1, . . . , k} such that nei ,1 = 0, then we obtain q1 = · · · = qi and qi+1 = · · · = qk = q1.
Thus q must be constant on M .

If there are two indices i and i ′ in {1, . . . , k} such that nei ,1 = 0 and nei ′ ,1 = 0 (we may assume that i < i ′ < k),
hen qi+1 = · · · = qi ′ and qi ′+1 = · · · = qk = q1 = · · · = qi but qi ̸= qi ′ in general. In this case, consider v ∈ V (M)
ith v = (v1, v2) satisfying v1 ≡ 0, v2(x) = 1, and v2(x) = 0 for any other interior vertex x in M . Then, since

i+1 = · · · = qi ′ and qi ′+1 = · · · = qk = q1 = · · · = qi ,

0 =

k∑
j=1

∫
K j

div vqdx =

k∑
j=1

∫
∂K j

v · nqds

=
1
2

nei ,2|ei |(qi − qi+1) +
1
2

nei ′ ,2|ei ′ |(qi ′ − qi ′+1)

=
1
2

(
nei ,2|ei | − nei ′ ,2|ei ′ |

)
(qi − qi+1).

ince nei and nei ′
are unit vectors such that nei ,1 = nei ′ ,1 = 0 and e1, . . . , ek are edges having x as a common

vertex and ordered counterclockwise about x, we have nei ,2 = −nei ′ ,2 and nei ,2 ̸= 0. Thus qi = qi+1 and q must
e constant on M . □

As a corollary, we now obtain that the Kouhia–Stenberg type virtual element satisfies the discrete inf–sup
ondition.

orollary 1 (Discrete Inf–Sup Condition). There exists a positive constant β independent of h such that

sup
vh∈V h
vh ̸=0

(div hvh, qh)0,Ω

|vh |1,h
≥ β∥qh∥0,Ω ∀qh ∈ Qh .

Using Corollary 1 and the classical arguments (see, for example, Proposition 2.5 in Chapter 2 of [33]), we have
he following property.

orollary 2. Let u ∈ (H 1
0 (Ω ) ∩ H 2(Ω ))2. Then there exists uI ∈ V h such that

(div h uI , qh)0,Ω = (div u, qh)0,Ω ∀qh ∈ Qh, |u − uI |1,h ≤ Ch|u|2,Ω , (26)

where C is a positive constant independent of h.

Proof. We follow the argument in the proof of Proposition 2.5 in Chapter 2 of [33]. Let vh = Ih u, where Ih is the
interpolation operator in Lemma 4. Then, from Corollary 1, there exists rh ∈ V h such that

(div h rh, qh)0,Ω = (div u − div hvh, qh)0,Ω ∀qh ∈ Qh

and |rh |1,h ≤ C |u − vh |1,h , where C is a positive constant independent of h. Define uI := rh +vh . Then uI satisfies
(div h uI , qh)0,Ω = (div u, qh)0,Ω for any qh ∈ Qh . From Lemma 4,

|u − uI |1,h ≤ |u − vh |1,h + |rh |1,h ≤ C |u − vh |1,h ≤ Ch|u|2,Ω .

This completes the proof. □

We next prove a discrete version of Korn’s inequality.

Theorem 3. There exists a positive constant C independent of h such that

|vh |1,h ≤ C∥εh(vh)∥0,Ω ∀vh ∈ V h .

Proof. We first define some finite element spaces on the triangulation Th as follows:

M =
{
w ∈ L2(Ω ) : w| ∈ P (T ) ∀T ∈ T

}
,
h T 1 h

13
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Xh,c = Mh ∩ H 1
0 (Ω ),

Xh,nc =

{
w ∈ Mh :

w is continuous at the midpoints of interior edges of Th

and w = 0 at the midpoints of boundary edges of Th

}
,

Xh = Xh,nc × Xh,c.

ccording to [3, Lemma 4.5], there is a positive constant C independent of h such that

|wh |H1(Ω;Th ) ≤ C∥εh(wh)∥0,Ω ∀wh ∈ Xh . (27)

We next define a subspace W h of Xh whose degrees of freedom can be chosen as the same with the degrees of
reedom of V h . Let K ∈ Ph . We define some auxiliary spaces as follows:

W̃ (K ) =
{
v ∈ H 1(K ) : v|T ∈ P1(T ) ∀T ∈ T K } , W̃0(K ) = H 1

0 (K ) ∩ W̃ (K ),

BD(∂K ) =
{
g ∈ C0(∂K ) : g|e ∈ P1(e) ∀e ⊂ ∂K

}
,

BN (∂K ) =
{
g ∈ L2(∂K ) : g|e ∈ P0(e) ∀e ⊂ ∂K

}
.

he local spaces Wc(K ) and Wnc(K ) are defined as follows:

Wc(K ) =
{
v ∈ W̃ (K ) ∩ BD(∂K ) : (∇v, ∇w)0,K = 0 ∀w ∈ W̃0(K )

}
Wnc(K ) =

{
v ∈ W̃ (K ) : ∃g ∈ BN (∂K ) such that (∇v, ∇w)0,K =

∫
∂K gwds ∀w ∈ W̃0(K )

}
.

hat is, Wc(K ) consists of P1-conforming finite element approximate solutions of the Dirichlet problem

−∆v = 0 in K , v = g on ∂K

with g ∈ BD(∂K ), and Wnc(K ) consists of P1-conforming finite element approximate solutions of the Neumann
roblem

−∆v = 0 in K , ∂v/∂n = g on ∂K

with g ∈ BN (∂K ). We then define W h := Wh,nc × Wh,c, where

Wh,c =
{
v ∈ H 1

0 (Ω ) : v|K ∈ Wc(K ) ∀K ∈ Ph
}
,

Wh,nc =

{
v ∈ L2(Ω ) : v|K ∈ Wnc(K ) ∀K ∈ Ph,

∫
e
[v]eds = 0 ∀e ∈ Eh

}
.

It is clear that W h is a subspace of Xh and its degrees of freedom can be chosen as (22)–(23). Let Φ : V h → W h
e the linear bijection such that both vh and Φ(vh) have exactly the same values of degrees of freedom. That is,
iven vh ∈ V h with vh = (vh,1, vh,2), we define wh := Φ(vh) in W h with wh = (wh,1, wh,2) as∫

e
wh,1ds =

∫
e
vh,1ds ∀e ∈ Eh, wh,2(x) = vh,2(x) ∀x ∈ Vh .

oreover, there exist two positive constants c∗ and c∗ independent of h such that

c∗|vh |1,h ≤ |Φ(vh)|1,h ≤ c∗
|vh |1,h ∀vh ∈ V h . (28)

hen, following Section 4.2, we can construct a discrete bilinear form âµ,h : W h ×W h → R satisfying the following
roperties:

• If vh, v
′

h ∈ V h , wh = Φ(vh) and w′

h = Φ(v′

h), then

aµ,h(vh, v
′

h) = âµ,h(wh, w
′

h). (29)

• there exist two positive constants c∗ and c∗ independent of h such that

c∗∥εh(wh)∥2
0,Ω ≤ âµ,h(wh, wh) ≤ c∗

∥εh(wh)∥2
0,Ω ∀wh ∈ W h . (30)

sing (27)–(30) and the stability of the bilinear form aµ,h(·, ·), we obtain

|vh |
2
1,h ≤ C |Φ(vh)|21,h ≤ C∥εh(Φ(vh))∥2

0,Ω

≤ Câµ,h(Φ(vh),Φ(vh)) = Caµ,h(vh, vh) ≤ C∥εh(vh)∥2
0,Ω
or any vh ∈ V h . This concludes the proof of the theorem. □
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T

4.4. Error analysis

We are now ready to prove the following convergence theorem.

heorem 4. Suppose that f ∈ (L2(Ω ))2. The discrete problem (24) has a unique solution uh ∈ V h and, if
u ∈ (H 2(Ω ) ∩ H 1

0 (Ω ))2 is the solution of (2), then

|u − uh |1,h ≤ Ch∥ f ∥0,Ω , (31)

where C is a positive constant independent of h and the Lamé constant λ.

Proof. The proof is based on the same observation as for Theorem 1. Since the discrete bilinear form ah(·, ·)
is elliptic by Theorem 3 and is bounded, the discrete problem (24) has a unique solution, say uh . Let uπ be the
approximation in Lemma 3 and δh = uh − uI , where uI is the function in V h satisfying (26). Then, according to
Theorem 3 and the consistency of ah(·, ·),

C |δh |
2
1,h ≤

⟨
f h, δh

⟩
− ( f , δh)0,Ω −

∑
K∈Ph

(
aK

h (uI − uπ , δh) + aK (uπ − u, δh)
)

−

∑
K∈Ph

aK (u, δh) + ( f , δh)0,Ω . (32)

By Lemma 5,⏐⏐⟨ f h, δh
⟩
− ( f , δh)0,Ω

⏐⏐ ≤ Ch∥ f ∥0,Ω |δh |1,h . (33)

Note that

aK
h (uI − uπ , δh) + aK (uπ − u, δh)

= aK
µ,h(uI − uπ , δh) + aK

µ (uπ − u, δh) + aK
λ,h(uI − uπ , δh) + aK

λ (uπ − u, δh),

From (26),

aK
λ,h(uI − uπ , δh) + aK

λ (uπ − u, δh) = λ(Π K
0 div u − div u, div δh)0,K

for any K ∈ Ph . According to Lemma 3 and Corollary 2 we obtain⏐⏐⏐⏐⏐⏐
∑

K∈Ph

aK
h (uI − uπ , δh) + aK (uπ − u, δh)

⏐⏐⏐⏐⏐⏐
≤ C

∑
K∈Ph

(
|uI − uπ |1,K + |u − uπ |1,K + λ|Π K

0 div u − div u|0,K

)
|δh |1,K

≤ Ch
(
|u|2,Ω + λ|div u|1,Ω

)
|δh |1,h . (34)

Integrating by parts we obtain∑
K∈Ph

aK (u, δh) − ( f , δh)0,Ω =

∑
K∈Ph

∫
∂K

(σ (u)nK ) · δhds =

∑
e∈Eh

∫
e
σ (u)ne · [δh]eds.

For each e ∈ Eh , let P0
eσ (u)ne be the L2-orthogonal projection of σ (u)ne onto (P0(e))2. Then, since∫

e
[vh,1]eds = 0, [vh,2]e = 0, ∀e ∈ Eh, ∀vh = (vh,1, vh,2) ∈ V h, (35)

we obtain∫
e
σ (u)ne · [δh]eds =

∫
e

(
σ (u)ne − P0

eσ (u)ne
)
· [δh]eds.

Let se = σ (u)ne − P0
eσ (u)ne, and write se = (se,1, se,2) and δh = (δh,1, δh,2). Using (35) again, we obtain∫ (

σ (u)ne − P0
eσ (u)ne

)
· [δh]eds =

∫
se,1[δh,1]eds =

∫
se,1[δh,1 − P0

e δh,1]eds,

e e e

15
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Fig. 3. The meshes P (1)
h (left), P (2)

h (middle), and P (3)
h (right).

where P0
e δh,1 denotes the L2-orthogonal projection of δh,1 onto P0(e). From the classical argument in [29], if e ∈ E i

h
nd e is a common edge of two elements K + and K − in Ph , then

∥σ (u)ne − P0
eσ (u)ne∥0,e ≤ Ch1/2

e ∥σ (u)∥1,K +∪K − ,

∥[δh,1 − P0
e δh,1]e∥0,e ≤ Ch1/2

e

(
|δh,1|

2
1,K + + |δh,1|

2
1,K −

)1/2
.

f e ∈ Eb
h , then (35) implies that [δh,1 − P0

e δh,1]e = 0. Thus⏐⏐⏐⏐⏐⏐
∑

K∈Ph

aK (u, δh) − ( f , δh)0,Ω

⏐⏐⏐⏐⏐⏐ ≤ Ch
(
∥u∥2,Ω + λ∥div u∥1,Ω

)
|δh |1,h (36)

ombining the results (32), (33), (34), and (36), we obtain

|δh |
2
1,h ≤ Ch

(
∥u∥2,Ω + λ∥div u∥1,Ω + ∥ f ∥0,Ω

)
|δh |1,h,

hich, together with the regularity estimate (3), leads to (31). □

. Numerical experiments

In this section we present some numerical experiments for the lowest-order nonconforming VEM with stabilizing
erm introduced in Section 3 and the Kouhia–Stenberg type VEM introduced in Section 4.

Let Ω = [0, 1]2 and µ = 1. Consider the problem (1) where the exact solution is given by

u(x, y) =

(
(cos(2πx) − 1) sin(2πy) +

1
1+λ

sin(2πx) sin(2πy)
−(cos(2πy) − 1) sin(2πx) +

1
1+λ

x(1 − x)y(1 − y)

)
.

We consider the following different families of meshes.

(i) uniform square meshes P (1)
h with h = 1/23, 1/24, . . . , 1/28,

(ii) uniform nonconvex hexagonal meshes P (2)
h with h = 1/23, 1/24, . . . , 1/28,

(iii) unstructured convex polygonal meshes P (3)
h with h = 1/23, 1/24, . . . , 1/28.

ome examples of the meshes are shown in Fig. 3. The unstructured convex polygonal meshes are generated from
´ 4
olyMesher [34]. The Lame constant λ is taken to be 1 and 10 , respectively.
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Fig. 4. The error curves Ee (left) and E2 (right) of lowest-order nonconforming element with λ = 1.

Fig. 5. The error curves Ee (left) and E2 (right) of lowest-order nonconforming element with λ = 104.

.1. Lowest-order nonconforming element

We first implement the method (11) with γ = 1 and compute the errors in the discrete energy norm and L2-norm

Ee := ah(uh − Ih u, uh − Ih u)1/2, E2 =

( Nh∑
i=1

|χi (uh) − χi (u)|2
)1/2

,

here Nh = dim V h and χi is the operator associated with the i th degree of freedom. In Figs. 4 to 5, we present
he error curves versus h for different values of λ. As shown in these figures, we see that the convergence order of
he errors Ee and E2 are O(h) and O(h2), respectively. Moreover, the convergence order is maintained in the nearly
ncompressible case (λ = 104). These results are consistent with the convergence rate predicted by the analysis in
heorem 1.

.2. Kouhia-Stenberg type element

We next implement the method (24) and compute the errors as above. In Figs. 6 to 7, we present the error curves
ersus h for different values of λ. As shown in these figures, we see that the convergence order of the errors Ee and

E2 are O(h) and O(h2), respectively. Moreover, the convergence order is maintained in the nearly incompressible
4
ase (λ = 10 ). These results are consistent with the convergence rate predicted by the analysis in Theorem 4.
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Fig. 6. The error curves Ee (left) and E2 (right) of Kouhia–Stenberg type element with λ = 1.

Fig. 7. The error curves Ee (left) and E2 (right) of Kouhia–Stenberg type element with λ = 104.

6. Conclusions

We proposed two kinds of lowest-order virtual element methods for the linear elasticity problem. For the first one,
we used the lowest-order virtual element method with a stabilizing term. This method can be seen as a modification
of the Crouzeix–Raviart nonconforming finite element method as suggested in [2] to the virtual element method. For
the second one, we studied Kouhia–Stenberg type virtual element space, which consists of the conforming virtual
element space for one component of the displacement vector and the nonconforming virtual element space for the
other. This method can be seen as an extension of the Kouhia–Stenberg finite element method suggested in [3]
to the virtual element method. We proved that proposed methods have the optimal convergence of the numerical
approximation to the displacement vector field, and that the convergence is locking-free, that is, is stable with respect
to λ. Finally, we present some numerical experiments that confirm the theoretical results.
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