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We investigate an L2-error estimate of a covolume scheme for the Stokes problem recently introduced by
Chou (Math Comp 66 (1997), 85–104). We show the error in L2 norm is of second order provided the exact
velocity is in H� 3 and the exact pressure is in H2. © 2005 Wiley Periodicals, Inc. Numer Methods Partial
Differential Eq 22: 165–179, 2006
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I. INTRODUCTION

In developing numerical schemes for various PDEs, optimal order of convergence is often a
primary concern. For second-order elliptic problems, for example, we expect first-order con-
vergence in H1 norm and second-order convergence in L2 norm when piecewise linear element
is used. Similar result holds for velocity components for the Stokes problem, when certain basis
functions are chosen to satisfy inf-sup condition. These facts are well documented in standard
finite element literature [1]. In contrast, the error estimates for finite volume methods or
covolume methods are either ad-hoc or lack proper optimal order although they have been used
widely among engineers for quite some time because of its local conservation property and
simplicity. For a survey of covolume methods and related works, see [2–7] and references
therein.

The analysis for the covolume method for various flow problems have been carried out by
many authors. For Delaunay-Voronoi type of grid, Cai and McCormick [8], Cai et al. [9] showed
certain discrete energy error estimate for elliptic problem and Nicholaides showed first-order
convergence in L2 and H1 norm of div-curl system [10]. For rectangular grids, Bank and Rose
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[11] analyzed elliptic problem while Porsching [12], Nicolaides [6], and Nicolaides and Wu [13]
analyzed the Stokes problem. Recently, Chou [14] introduced a covolume scheme for the Stokes
problem using P1 nonconforming finite element on triangular grid. Also, see Chou and Kwak
[15, 16] for rectangular grid using bilinear or rotated bilinear element. For elliptic problem using
triangular grids, see Chou and Li [17] where barycenter was used instead of commonly used
circumcenter as in Delaunay-Voronoi pair.

The central idea in analyzing various covolume schemes studied by Chou et al. [14–16] is
to treat it as a Petrov-Galerkin type by introducing certain transfer operator �h from finite
element space to the space of piecewise constant functions on covolume, which plays the role
of test function space. It turns out that in certain cases [14, 17], the covolume scheme is
equivalent to committing a variational crime to finite element formulations and H1-error
estimate follows by analyzing the perturbation terms. However, the optimal order L2-error
estimate for the Stokes problem using the covolume scheme can be found nowhere. The
difficulty in showing second-order convergence lies in the framework of the covolume method:
The transfer operator �h does not have enough approximation property necessary to apply the
Aubin-Nitsche duality argument. In this article, we show an L2-error estimate of the velocity of
the covolume scheme introduced in [14] under higher regularity assumption. We overcome the
abovementioned difficulty by a careful examination of the difference of two bilinear forms and
by using a generalization of the Aubin-Nitsche duality argument.

The rest of the article is organized as follows. In §2, we describe the covolume scheme for
the Stokes problem using P1 nonconforming finite element space. A second-order L2-error
estimate for the velocity is shown in §3. Numerical experiments are shown in §4.

II. NOTATION AND PRELIMINARIES

Consider the generalized Stokes problem in two dimensions for steady flow of a heavily viscous
fluid:

�0u� � ��u� � �p � f�, in � � R2, (2.1a)

div u� � 0, in �, (2.1b)

u� � 0, on ��, (2.1c)

where �0 � 0, � � 0. When �0 � 0, we have the Stokes problem, and the case of �0 � 0 usually
arises as part of the solution process for the Navier-Stokes equation. We shall assume � � 1 for
simplicity. Let H0

1(�) be the space of weakly differentiable functions with zero trace, Hi(�), i �
1, 2, 3, be the usual Sobolev spaces, and L0

2(�) be the set of all L2 functions over � with zero
integral mean, and underline denote vector-valued functions and spaces.

The approximation of this system using the mixed finite element method is well known ([1,
18]), which we describe briefly.

We need to partition the domain �, which for simplicity, will be assumed to be polygonal.
Referring to Fig. 1, let �h � �KC be a partition of the domain � into of triangular elements.
The nodes of an element are defined to be the midpoints of its sides. These points are represented
in Fig. 2 as Pi, i � 1, . . . , 3. We shall assume throughout the article that the primal partition
family {�h} is regular.
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The trial and test function space H� h associated with the approximation of the fluid velocity
space H� 0

1 is defined as

H� h�{v h : v h�K�P12(K ), @triangle K � �h;

v h � 0� at all boundary nodes and is continuous at all nodes,}

where P1 denote the space of linear functions on the triangle K.
As for the approximation of pressure space Lh � L0

2(�), we define it to be the set of all
piecewise constants with respect to the primal partition.

Then the corresponding nonconforming mixed finite element problem is: Given f � (L2(�))2,
find (u�*h, p*h) � H� h � Lh such that

a*�u� *h, v
h
	
b*�v h, p*h	��f�, v

h
	, @v h�H� h, (2.2a)

b*�u� *h, qh	 � 0, @qh � Lh, (2.2b)

where

FIG. 1. Primal and dual partition of �.

FIG. 2. Notation of primal element �A1A2A3.
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a*�u� h, v h	 � �0�u� h, v h	 � �
K��h

��u� h � �v h	, @u�h, v h � H� h,

b*�v h, qh	 � � �
K��h

�div v h, qh	, @v h � H� h, qh � Lh.

Next, we describe covolume method. The idea is to replace the test function space H� h by the
space of piecewise constant functions on each covolume that straddles each edge of triangles in
primal triangulation.

The trial function space is unchanged, except that we use the mean value w� h
m of w� h over the

edge ej of K, i.e.,

w� h
m�Pj	 :�

1

�ej� �
ej

w� h�x	ds

as a degree of freedom, where Pj is the midpoint of ej. We say w� h is continuous at node Pj of
an edge if

w� h
m�Pj	 :�

1

�ej� �
ej

w� h��K1ds �
1

�ej� �
ej

w� h��K2ds.

Since w� h
m(Pj) � w� h(Pj) when w� h is a linear function on K, the mean value degree of freedom is

equivalent to point value degree of freedom. However, the former is more natural to covolume
concepts and its formulations.

To introduce the test function space, we construct the dual partition �*h. Divide each triangle
of the primal partition into three subtriangles by connecting two vertices and barycenter of a
primal element as in Fig. 1. As in Fig. 2, the dual element based at the node P1 is made up of
the two triangles �A1C1A2 and �A1C2A2. We do the obvious modification at a boundary node.
Carrying out the construction for every node in the primal partition, we obtain a dual partition
for the domain. We denote the dual element based at node P as K*P and the dual partition as
�*h � �K*P. Define the associated test function space Y� h as the space of piecewise constant
vector-valued functions:

Y� h � �z� � �L2��		2 : z� �K*P is a constant vector, and z��K*P

� 0� on any boundary dual element K*P
.

Denote by 	*j the scalar characteristic function associated with the dual element K*Pj
, j �

1, . . . , NI. Here NI is the number of interior nodes of �h. We see that, for any vh � Y� h,

v h�x	 � �
j�1

NI

v h�Pj		*j�x	, @x � �.

Define, for u�h � H� h and vh � Y� h,
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a�u� h, v h	 :� �0�u�h, v h	 � �
i�1

NI �
�K*Pi

�u�h

�n�
� v hd
 (2.3a)

� �0�u� h, v h	 � �
i�1

NI

v h�Pi	 � �
�K*Pi

�u� h

�n�
d
, (2.3b)

where �u�h /�n� is the vector field containing two normal derivatives of u�h. Equation (2.3) is
motivated by integrating the second term of (2.1a) against a test function and then formally
applying Green’s formula. Let NR denote the number of elements in the primal partition and
define, for u�h � H� h, vh � Y� h, and ph, qh � Lh,

b�v h, ph	 :� �
i�1

NI

v h�Pi	 � �
�K*Pi

phn�d
,

�f, v h	 � �
i�1

NI

v h�Pi	 � �
K*Pi

f�dx.

The covolume scheme of equation (2.1) is: Given f � (L2(�))2, find (u�h, ph) � H� h � Lh such
that

a�u� h, v h	 � b�v h, ph	 � �f�, v h	, @v h � Y� h, (2.4a)

b*�u� h, qh	 � 0, @qh � Lh. (2.4b)

Since H� h is nonconforming, the gradient and divergence operator on it must be defined
piecewisely:

��hw� h	�K :� ��w� h�K 	,

�divhw� h	�K :� div�w� h�K 	.

On the space H� h, we define

�w� h�1,h
2 :� ��hw� h, �hw� h	 � �

K��h

��w� h, �w� h	K,

��w� h, �z�h	K :� �
i�1

2

�Diw� h, Diz�h	K,

�w� h�1,h
2 :� �w� h�1,h

2 � �w� h�0
2,
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where (�, �)K is the L2(K )2 inner product, and Di denotes the partial derivative. Below, we shall
use � for �h and div for divh when there is no danger of confusion.

III. L2-ERROR ESTIMATE

In this section, we give an L2-error estimate for the velocity vector under the assumption u� �
H� 3(�) and p � H2(�). This higher regularity seems to be inevitable because of the low
approximation property of �h.

Before proceeding the L2-error estimate, we need some preliminary results.
First, we introduce an one-to-one transfer operator �h from H� h onto Y� h by

�hv h�x	 :� �
j�1

NI

v h�Pj		*j�x	, @x � �. (3.1)

Then, we have that [14]

b��hw� h, qh	 � b*�w� h, qh	, @w� h � H� h, qh � Lh (3.2)

and there exists C0 � 0 independent of h such that

��hw� h � w� h�0 � C0h�w� h�1,h, @w� h � H� h. (3.3)

Due to (3.2), (2.4) can be rewritten as

a�u� h, �hw� h	 � b��hw� h, ph	 � �f�, �hw� h	, @w� h � H� h, (3.4a)

b��hu� h, qh	 � 0, @qh � Lh. (3.4b)

Then the error estimate of this covolume scheme can be carried out by comparing (3.4) with
(2.2) to yield the following theorem [14].

Theorem 3.1. Let the triangular partition family �h of the domain � be regular, let (u�h, ph)
be the solution of the problem (2.4), and (u� , p) be that of the problem (2.1). Then there exists
a positive constant C independent of h such that

�u� � u� h�1,h � � p � ph�0 � Ch��u� �2 � � p�1 � 1	,

provided that u� � H� 0
1(�) � H� 2(�), p � H1(�).

The proof of the next Lemma can be found in [18].

Lemma 3.2. Let m indicate the mean value over an edge e in K. There exists a constant C �
0 independent of K such that

� �
e

� �v � vm	d
� � Ch�K 	���1,K�v�1,K,
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for all �, v � H1(K).
The following two lemmas and corollary are easy to verify.

Lemma 3.3. For � � H1(�) and gh � H� h, we have

�
i�1

NR �
�Ki

�g h � n� d
 � �
i�1

NI �
ei

��gh�ei
� n� d
,

where [�]ei
denotes the jump of a function across ei if ei is an interior edge and denotes the value

of a function on ei if ei is a boundary edge and n� is an outward unit normal vector on �Ki and
any unit normal vector on edge ei. Also, we have

�
i�1

NR �
�Ki

�f

�n�
� ghd
 � �

i�1

NI �
ei

�f

�n�
� �gh�ei

d
,

for f� � H� 2(�) and gh � H� h.

Corollary. We have

� �
i�1

NR �
�Ki

�v � vm	z� � n� d
� � � �
i�1

NI �
ei

�v � vm	�z��ei
� n� d
� � Ch�v�1�z� �1,h,

��
i�1

NR �
�Ki

��v
�n�

� ��v
�n� �m� � z�d
� � ��

i�1

NI �
ei

��v
�n�

� ��v
�n� �m� � �z��ei

d
�
� Ch��v

�n� �
1

�z� �1,h � Ch�v� �2�z��1,h,

for all v � H1(�), v � H� 2(�), z � Hh Q H2(�) (or C0(�)), and z� � H� h Q H� 2(�) (or (C0(�))2).

Lemma 3.4. For any w� h � H� h and any v � H� 2(�) � H� 0
1(�), we have

�
e

�w� h�ed
 � 0, �
e

f � �v �ed
 � 0,

for any edge e in � and for any f � (L2(e))2.

Lemma 3.5. For any w� h � H� h and for all element K in �, we have

�
K

�w� h � �hw� h	dx � 0.

COVOLUME METHOD FOR THE STOKES PROBLEM 171



Proof. Since �hw� h is constant for each subtriangle �i � �AiC1Ai
1, i � 1, 2, 3, and w� h is
linear, we have

�
K

�hw� hdx � �
i�1

3 �
�i

�hw� hdx � �
i�1

3

w� h�Pi	��i� �
�K�
3 �

i�1

3

w� h�Pi	 � �
K

w� hdx.
y

Lemma 3.6. For any f �Ki
� H� 2(Ki) for all Ki � �h and w� h � Y� h, we have

�
i�1

NR �
Ki

�f� � w� hdx � �
i�1

NI �
�K*i

�f�

�n�
� w� hd
 � �

i�1

NR �
�Ki

�f�

�n�
� w� hd
.

Proof. Since �w� h � 0, using Green’s formula over each Ki � K*Pj
, j � 1, 2, 3, we get

�
i�1

NR �
Ki

�f� � , w� hdx � �
i�1

NR �
j�1

3 �
K*Pj�Ki

�f � w� hdx � �
i�1

NR �
j�1

3 �
��K*Pj�Ki	

�f

�n�
� w� hd


� �
i�1

NR �
j�1

3 ��
��K*Pj	�Ki

�f

�n�
� w� hd
 � �

��Ki	�K*Pj

�f

�n�
� w� hd
�

� �
i�1

NI �
�K*Pj

�f

�n�
� w� hd
 � �

i�1

NR �
�Ki

�f

�n�
� w� hd
.

y

Lemma 3.7. For any z� � (C0(�))2 � H� 0
1(�), v � H� 3(�), and vh, z�h � H� h, we have

�
i�1

NR ��
�Ki

��v � v h	

�n�
� �z�h � �hz�h	d
� � Ch�v �2�z�h � z� �1,h.

Proof. Since �vh /�n� is constant along an edge e of the element Ki, and �v /�n� � �hz�h

continuous on any edge e of the element Ki, we have, by Lemma 3.4,

�
i�1

NR �
�Ki

��v � v h	

�n�
� �z�h � �hz�h	d
 � �

i�1

NR �
�Ki

�v
�n�

� �z�h � �hz�h	d
 � �
i�1

NI �
ei

�v
�n�

� �z�h�ei
d


� �
i�1

NI �
ei

��v
�n�

� ��v
�n� �

m� � �z�h�ei
d
 � �

i�1

NI �
ei

��v
�n�

� ��v
�n� �

m� � �z�h � z��ei
d
,

for any z� � (C0(�))2 � H� 0
1(�). The result follows from Corollary. y

To prove L2-error estimate, we introduce a perturbation operator E that is defined by

E�v � v h, z�h	 :� a*�v � v h, z�h	 � a�v � v h, �hz�h	,
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where v � H� 3(�), vh, z�h � H� h.

Lemma 3.8. For any v � H� 3(�), vh, z�h � H� h, and z� � (C0(�))2 � H� 0
1, we have

�E�v � v h, z�h	� � Ch��v � v h�0�z�h�1,h � �v �2�z�h � z� �1,h � h�v �3�z�h�1,h	. (3.5)

Proof. By using Green’s formula over each Ki � �h, we get, for v � H� 3(�) and vh, z�h �
H� h,

a*�v � v h, z�h	 � �0�v � v h, z�h	 � �
i�1

NR �
Ki

��v � v h	 � �z�hdx

� �0�v � v h, z�h	 � �
i�1

NR ��
�Ki

��v � v h	

�n�
� z�hd
 � �

Ki

��v � v h	 � z�hdx� . (3.6)

Let f� � v � vh and w� h � �hz�h in Lemma 3.6, then we see

a�v � v h, �hz�h	 :� �0�v � v h, �hz�h	 � �
i�1

NI �
�K*Pi

��v � v h	

�n�
� �hz�hd


� �0�v � v h, �hz�h	 � �
i�1

NR ��
�Ki

��v � v h	

�n�
� �hz�hd
 � �

Ki

��v � v h	 � �hz�hdx�. (3.7)

Subtracting (3.7) from (3.6), we obtain

E�v � v h, z�h	 � �0�v � v h, z�h � �hz�h	

� �
i�1

NR ��
�Ki

��v � v h	

�n�
� �z�h � �hz�h	d
 � �

Ki

��v � v h	 � �z�h � �hz�h	dx� . (3.8)

We have, from Hölder inequality and (3.3),

�0�v � v h, z�h � �hz�h	 � C�v � v h�0�z�h � �hz�h�0 � Ch�v � v h�0�z�h�1,h. (3.9)

Next, we estimate the third term on right side (3.8). Since �vh � 0, we obtain, by
Bramble-Hilbert lemma and Lemma 3.5,

�
i�1

NR �
Ki

��v � v h	 � �z�h � �hz�h	dx � �
i�1

NR �
Ki

��v � ��v 	m	 � �z�h � �hz�h	dx

� Ch��v �1�z�h � �hz�h�0 � Ch2�v �3�z�h�1,h, (3.10)

where (�v )m is a mean value of �v over K. From (3.9), Lemma 3.7, and (3.10), we have (3.5).y
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Lemma 3.9. For any p � H2(�), ph � Lh, �h � H� h with b*(�h, qh) � 0, @qh � Lh, and � �
H� 2(�) with div � � 0, we have

���
i�1

NI �
K*Pi

�p � �h�hdx� � ch2�p�2��h�1,h � Ch�p�1��h � ��1,h � ��h � ��1,h�ph � p�0. (3.11)

Proof. By adding and subtracting �h and rearranging of domain of integration, we have

��
i�1

NI �
K*Pi

�p � �h�hdx � ��
i�1

NI �
K*Pi

�p � ��h�h � �h	dx � �
i�1

NI �
K*Pi

�p � �hdx

� ��
i�1

NR �
Ki

�p � ��h�h � �h	dx � �
i�1

NR �
Ki

�p � �hdx.

We see, by Lemma 3.5, Bramble-Hilbert lemma, and (3.3), that

���
i�1

NR �
Ki

�p � ��h�h � �h	dx� � ���
i�1

NR �
Ki

��p � ��p	m	 � ��h�h � �h	dx�
� ��p � ��p	m�0��h�h � �h�0 � Ch2�p�2��h�1,h. (3.12)

Also, by Green’s Theorem, continuity of p and the fact that b*(�h, ph) � 0, we have

��
i�1

NR �
Ki

�p � �hdx � ��
i�1

NR �
�Ki

p�h � n�d
 � �
i�1

NR �
Ki

p div �hdx

� ��
i�1

NI �
ei

p��h � n��ei
d
 � �

i�1

NR �
Ki

div �h�p � ph	dx.

Since div � � 0, we have, by Corollary,

���
i�1

NR �
Ki

�p � �hdx� � ���
i�1

NI �
ei

�p � �p	m	���h � �	 � n��ei
d
�


��
i�1

NR �
Ki

div��h � �	�p � ph	dx� � Ch�p�1��h � ��1,h � �div��h � �	�0�ph � p�0

�Ch�p�1��h � ��1,h � ��h � ��1,h�ph � p�0.

From this and (3.12), we obtain (3.11). y
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Lemma 3.10. Let u� � H� 3(�) and p � H2(�) be the solution of (2.1). Then for any u�h, �h �
H� h with b*(�h, qh) � 0, for all qh � Lh, and ph � Lh, we have

�a*��, u� � u� h	� � C�� � �h�1,h��u� � u� h�1,h � � ph � p�0	

� �� � �h�1,h��u� �2 � � p�1	 � ��h�1,h�u� � u� h�1,h] � Ch2��h�1,h��u� �3 � � p�2	.

Proof. Integrating the first equation of (2.1) against any vh � Y� h over each covolume K*P,
we see that

a�u� , v h	 � b�v h, p	 � �f�, v h	. (3.13)

Subtracting (2.4a) from (3.13), we see that

a�u� � u� h, v h	 � b�v h, ph	 � b�v h, p	 � b�v h, ph	 � �
i�1

NI �
K*Pi

�p � v hdx. (3.14)

By the definition of a*(�, �), E(�, �), and (3.14), we have

a*��, u� � u� h	 � a*�� � �h, u� � u� h	 � a*�u� � u� h, �h	

�a*�� � �h, u� � u�h	 � E�u� � u�h, �h	 � a�u� � u�h, �h�h	

a*�� � �h, u� � u�h	 � E�u� � u�h, �h	 � b��h�h, ph	 � �
i�1

NI �
K*Pi

�p � �h�hdx.

From this, the boundedness of the bilinear form a*, Lemma 3.8 and 3.9, we obtain the Lemma.y
Now we are ready to use the duality argument. For that purpose, we first consider the

following: Given g � (L2(�))2, we let (�, 	) be the solution of the generalized Stokes problem

�0� � �� � �	 � g, in �, (3.15a)

div � � 0, in �, (3.15b)

� � 0� , on ��. (3.15c)

Then, by the regularity property of the Stokes problems [18] for the convex polygonal
domain �, we have (�, 	) � H� 0

2(�) � H1(�) and

���2 � �	�1 � C�g�0. (3.16)

If we let (�h, 	h) � H� h � Lh to be the solution of nonconforming mixed finite element
problem

a*��h, v h	 � b*�v h, 	h	 � �g, v h	, @v h � H� h, b*��h, qh	 � 0, @qh � Lh,
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we have the following well-known error estimate about nonconforming mixed finite element for
the Stokes problem [18]:

�� � �h�1,h � �	 � 	h�0 � Ch����2 � �	�1	, (3.17a)

�� � �h�0 � Ch2����2 � �	�1	. (3.17b)

Proposition 3.11 (Generalized Aubin-Nitche’s Duality Argument). Let u� � H� 3(�) and p �
H2(�) be the solution of (2.1). Then for any u�h � H� h with b*(u�h, qh) � 0, @qh � Lh, and g �
(L2(�))2 satisfying (3.15), we have

��u� � u� h, g	� � �Ch��u� � u� h�1,h � � p � ph�0	 � Ch2��u� �3 � � p�2	��g�0. (3.18)

Proof. Multiplying (3.15a) by u� � u�h and using Green’s formula over each Ki, we obtain

�u� � u� h, g	 � �
�

��0� � �� � �		 � �u� � u� h	dx

� a*��, u� � u� h	 � �
i�1

NR �
�Ki

��

�n�
� �u� � u� h	d
 � �

i�1

NR ��
�Ki

	�u� � u� h	 � n� d


� �
Ki

	 div�u� � u�h	dx�. (3.19)

From Lemma 3.10 and (3.17a), we see

a*��, u� � u� h	 � Ch����2 � �	�1	��u� � u� h�1,h � � p � ph�0	

� Ch2����2 � �	�1	��u� �3 � � p�2	, (3.20)

where the inequality ��h�1,h � �� � �h�1,h 
 ���1 � ���2 
 �	�1 was used.
For the second term in (3.19), we see that, from Lemma 3.3, Lemma 3.4, Corollary,

�
i�1

NR �
�Ki

��

�n�
� �u� � u� h	d
 � �

i�1

NI �
ei

��

�n�
�u� � u� h�ei

d


� �
i�1

NI �
ei

���

�n�
� ���

�n� �
m� �u� � u� h�ei

d
 � Ch���2�u� � u� h�1,h. (3.21)

Using the fact that div u� � 0 and b*(u�h, 	h) � 0 and using Lemma 3.3, Lemma 3.4, Corollary,
and (3.17), we have
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�
i�1

NR ��
�Ki

	 �u� � u� h	 � n� d
 � �
Ki

	 div�u� � u�h	dx� � �
i�1

NI �
ei

�	 � �		m	��u� � u�h	 � n��ei
d


� �
i�1

NR �
Ki

�	 � 	h	div�u� � u�h	dx � Ch�	�1�u� � u�h�1,h � �	 � 	h�0�u� � u�h�1,h,

and thus, we have

�
i�1

NR ��
�Ki

	 �u� � u� h	 � n� d
 � �
Ki

	 div�u� � u�h	dx� � Ch����2 � �	�1	�u� � u�h�1,h. (3.22)

Collecting (3.20)–(3.22), we obtain the desired result using (3.16). y
Now we state the main result of this article.

Theorem 3.12. Let the triangular partition family �h of the domain � be regular, let (u�h, ph)
be the solution of the problem (2.4), and (u� , p) be that of the problem (2.1). Then there exists
a positive constant C, independent of h, such that

�u� � u� h�0 � Ch2��u� �3 � � p�2 � 1	,

provided that u� � H� 0
1(�) � H� 3(�), p � H2(�).

Proof. From Proposition 3.11 and Theorem 3.1, we have

��u� � u� h, g	� � Ch2�g�0��u� �3 � � p�2 � 1	.

TABLE I. L2 error with �0 � 0.0.

h
Covolume

�u� � u�h�0,h(
h)
Mixed FEM

�u� � u�h�0,h(
h)

1/4 0.573651 0.599566
1/8 0.216305(2.6520) 0.221553(2.7062)
1/16 0.064714(3.3425) 0.065847(3.3647)
1/32 0.017265(3.7483) 0.017532(3.7558)
1/64 0.004428(3.8991) 0.004493(3.9021)

TABLE II. L2 error with �0 � 1.0.

h
Covolume

�u� � u�h�0,h(
h)
Mixed FEM

�u� � u�h�0,h(
h)

1/4 0.569075 0.593256
1/8 0.215386(2.6421) 0.220419(2.6915)
1/16 0.064570(3.3357) 0.065669(3.3565)
1/32 0.017239(3.7456) 0.017499(3.7527)
1/64 0.004422(3.8985) 0.004486(3.9008)
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Taking supremum over g, we get

�u� � u� h�0 � Ch2��u� �3 � � p�2 � 1	. y

IV. NUMERICAL EXPERIMENTS

For the numerical verification of our theory, we have chosen one of the usual artificial test
problem on the unit square, � � (0, 1) � (0, 1), with the exact solution

u1�x1, x2	 � �256x1
2�x1 � 1	2x2�x2 � 1	�2x2 � 1	,

u2�x1, x2	 � �u1�x2, x1	,

p�x1, x2	 � 150�x1 � 1/2	�x2 � 1/2	.

Tables I–III represent the numerical results according to h and �0. As a reference, we
compare it with standard mixed nonconforming finite element method. In these tables, ���0,h is
the discrete L2-error and 
h � �u� � u�h�0,2h /�u� � u�h�0,h. For all the cases we tested, both schemes
exhibit similar error behavior.
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