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Abstract
We develop a formal construction of a pointwise divergence-free basis in the
nonconforming virtual element method of arbitrary order for the Stokes problem
introduced in Zhao et al. (SIAM J. Numer. Anal. 57(6):2730–2759, 2019). The pro-
posed construction can be seen as a generalization of the divergence-free basis
in Crouzeix-Raviart finite element space (Brenner, Math. Comp. 55(192):411–437,
1990; Thomasset, 1981) to the virtual element space. Using the divergence-free basis
obtained from our construction, we can eliminate the pressure variable from the
mixed system and obtain a symmetric positive definite system. Several numerical
tests are presented to confirm the efficiency and the accuracy of our construction.

Keywords Nonconforming virtual element method · Stokes problem · Polygonal
mesh · Divergence-free element

Mathematics Subject Classification (2010) 65N12 · 65N30 · 76D07

1 Introduction

Recently, the virtual element method (VEM) was proposed in [5] as a generalization
of the finite element method (FEM) to general polygonal and polyhedral meshes.
In VEMs, the local discrete spaces on the mesh polygons/polyhedrons, called local
virtual element spaces, consist of polynomials of certain degrees and some other

� Do Y. Kwak
kdy@kaist.ac.kr

Hyeokjoo Park
hjpark235@kaist.ac.kr

1 Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology,
Daejeon, 34141, Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01269-z&domain=pdf
http://orcid.org/0000-0002-5743-1501
mailto: kdy@kaist.ac.kr
mailto: hjpark235@kaist.ac.kr


Numerical Algorithms

non-polynomial functions that are solutions of specific partial differential equations.
Although such functions are not defined explicitly, they are characterized by degrees
of freedom, such as values at mesh vertices, the moments on mesh edges/faces,
and the moments on mesh polygons/polyhedrons. On each (polygonal or polyhe-
dral) element, the discrete bilinear form can be computed using only the degrees of
freedom, and satisfies two properties, called consistency and stability. Here the con-
sistency means that the discrete bilinear form is equal to the continuous bilinear form
when one of the arguments is a polynomial, and the stability means that the discrete
bilinear form is coercive for general virtual elements. Moreover, the virtual element
spaces can be extended to arbitrary order in straightforward way. Because of such
advantages, VEMs have been developed for many different types of equations, and
successfully applied to various problems. The authors in [4] presented nonconform-
ing VEMs for elliptic problems. In [17], the conforming and nonconforming VEMs
for general elliptic problems were proposed. Various VEMs for solving linear elas-
ticity problems can be found in [9, 22, 25, 27]. In [6–8, 13], VEMs for magnetostatic
problems and Maxwell’s equations were presented. The authors in [15] constructed
H (div)-conforming virtual elements and presented mixed VEMs for Darcy flow.
Conforming and nonconforming VEMs for elliptic eigenvalue problems were stud-
ied in [20, 21], respectively. For more thorough survey, we refer to [1, 3–5, 10, 11,
15, 19, 28] and references therein.

There have appeared some results concerning the VEMs for the Stokes problem as
well. In [2], a stream formulation of the VEM for the Stokes problem was presented.
In [16, 23], the nonconforming VEM of arbitrary order for the Stokes problem on
polygonal and polyhedral meshes was first introduced. Therein, each component of
the velocity is approximated by the nonconforming virtual element space presented in
[4]. However, the velocity approximation in [16, 23] is not pointwise divergence-free,
and it is merely divergence-free in a relaxed (projected) sense.

In the two-dimensional case, some researchers have developed VEMs for the
Stokes problem in which the velocity approximation is pointwise divergence-free.
In [12], the divergence-free velocity approximation is presented in the conforming
virtual element space of order k ≥ 2. On each polygon, the virtual element space
consists of velocity solutions of the local Stokes problem with Dirichlet boundary
condition. On the other hand, the nonconforming virtual element space of arbitrary
order was constructed by enriching a H (div)-conforming virtual element space in
[29]. However, the proposed methods in [12, 29] only showed that the computed
velocity approximation is pointwise divergence-free. They do not discuss the con-
struction of divergence-free basis functions. To the best of our knowledge, a formal
construction of divergence-free bases in these VEMs has never been considered and
developed.

The main goal of this paper is to present a formal construction of a divergence-free
basis in the two-dimensional nonconforming VEMs for the Stokes problem intro-
duced in [29]. We first compute the dimension of the divergence-free subspace of the
nonconforming virtual element space, using Euler’s formula. We then construct basis
functions of the subspace, in a similar fashion to the divergence-free basis functions
proposed in [14, 26] but we generalize to polygonal meshes and higher-order vir-
tual elements. Using the construction of a divergence-free basis, we can eliminate the
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pressure variable from the coupled system and reduce the saddle point problem to a
symmetric positive definite system having fewer unknowns in velocity variable only.
Although we only consider the Stokes problem in this paper, we expect that our con-
struction can be applied to more complicated problems, such as the incompressible
Navier-Stokes problem.

The rest of this paper is organized as follows. In Section 2, we state the sta-
tionary Stokes problem and its variational formulation. In Section 3, we review the
divergence-free nonconforming VEM for the Stokes problem introduced in [29]. In
Section 4, we discuss a formal construction of divergence-free basis of the noncon-
forming virtual element space. In Section 5, we discuss implementations including
nonhomogeneous Dirichlet boundary conditions. In Section 6, we offer some numer-
ical experiments that verify the efficiency and the accuracy of our construction.
Finally, conclusions are given in Section 7.

2 Model problem

Let� ⊂ R
2 be a bounded, convex polygonal domain with boundary ∂�. We consider

the Stokes problem on �: Given f : � → R
2 and g : ∂� → R

2, find u : � → R
2

and p : � → R such that

⎧
⎨

⎩

−�u + ∇p = f in �,

div u = 0 in �,

u = g on ∂�.
(1)

In order to obtain the variational formulation of (1), we introduce the usual nota-
tion for Sobolev spaces, norms, seminorms, and inner products. Let D be a bounded
domain in R

2. We then define L2(D) = [L2(D)]2 and H s(D) = [Hs(D)]2 for
s > 0. The L2-inner product of L2(D) and L2(D) is denoted by (·, ·)0,D . Next, for
s ≥ 0, the Hs-norm of Hs(D) and H s(D) is denoted by ‖·‖s,D . Similarly, for s > 0,
the Hs-seminorm of Hs(D) and H s(D) is denoted by | · |s,D . The subspace L2

0(D)

of L2(D) is defined by

L2
0(D) =

{

q ∈ L2(D) :
∫

D

qdx = 0

}

.

Let us define

H 1
0(�) = {v ∈ H 1(�) : v = 0 on ∂�},

H 1
g(�) = {v ∈ H 1(�) : v = g on ∂�}.

Then, the variational form of the Stokes problem (1) is written as follows: For a given
f ∈ L2(�) and a given g ∈ H 1/2(∂�) satisfying

∫

∂�

g · n�ds = 0 (2)
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where n� is the unit normal vector on ∂� in the outward direction with respect to �,
find u ∈ H 1

g(�) and p ∈ L2
0(�) such that

{
a(u, v) + b(v, p) = (f , v)0,� ∀v ∈ H 1

0(�),

b(u, q) = 0 ∀q ∈ L2
0(�),

(3)

where

a(u, v) =
∫

�

∇v : ∇udx, b(v, q) = −
∫

�

q div v dx. (4)

The functions u and p are called velocity and pressure, respectively.

3 Divergence-free nonconforming VEM for the stokes problem

In this section, we summarize some preliminaries and review the divergence-free
nonconforming VEM for the Stokes problem introduced in [29].

3.1 Notations and preliminaries

Let {Ph}h be a family of decompositions (meshes) of the domain � into polygonal
elements K with maximum diameter h. We assume that the decompositions satisfy
the following regularity properties [4, 5, 12, 29].

Assumption 1 There exists ρ > 0 independent of h such that

• the decomposition Ph consists of a finite number of nonoverlapping convex
polygonal elements;

• if K ∈ Ph and e is an edge of K then he ≥ ρhK , where he and hK denote the
diameter of e and K , respectively;

• every element K of Ph is star-shaped with respect to the ball of radius ρhK .

We next define some notations for sets of mesh items. We denote by Vh and Eh the
set of all mesh vertices and mesh edges in Ph, respectively. We also denote by V i

h and
V∂

h the set of all mesh vertices in the internal and the boundary of Ph, respectively.
Similarly E i

h is the set of all mesh edges in the internal of Ph, and E∂
h the set of all

mesh edges in the boundary of Ph. We also define

NP = the number of polygons in Ph,

NE = the number of edges in Eh,

NE,i = the number of edges in E i
h,

NE,∂ = the number of edges in E∂
h ,

NV = the number of vertices in Vh,

NV,i = the number of vertices in V i
h,

NV,∂ = the number of vertices in V∂
h .
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For each K ∈ Ph, let nK and tK denote its exterior unit normal vector and coun-
terclockwise tangential vector, respectively. Let e ∈ E i

h. We then define respectively
ne and te as the unit normal and tangential vector of e with orientation fixed once
and for all. Next let e ∈ E∂

h , we define respectively ne and te as the unit normal and
tangential vector on e in the outward and counterclockwise direction with respect to
�.

Let e ∈ E i
h and let K− and K+ be the polygons in Ph that have e as a common

edge, and satisfy ne = nK+ on e (i.e., ne points from K+ to K−). If e ∈ E∂
h , we

define ne by the unit normal vector in the outward direction with respect to �.
Again let e ∈ E i

h and let K− and K+ be the polygons in Ph having e as a common
edge. For v : � → R

2 satisfying v|K+ ∈ H 1(K+) and v|K− ∈ H 1(K−), we define
the jump of v on the edge e by

[v]e = v|K+(ne · nK+) + v|K−(ne · nK−).

If e ∈ E∂
h , we define [v]e = v|e.

We define the broken Sobolev space H 1(�;Ph) by

H 1(�;Ph) = {v ∈ L2(�) : v|K ∈ H 1(K) ∀K ∈ Ph}
and define its norm and seminorm by

‖v‖1,h =
⎛

⎝
∑

K∈Ph

‖v‖21,K
⎞

⎠

1/2

, |v|1,h =
⎛

⎝
∑

K∈Ph

|v|21,K
⎞

⎠

1/2

.

We also define

H 1,nc(�;Ph) =
{

v ∈ H 1(�;Ph) :
∫

e

[v]e · qdx = 0 ∀q ∈ P k−1(e), ∀e ∈ E i
h

}

.

Let O be an 1 or 2 dimensional geometrical object (edge or polygon). For an
integer k ≥ 0, Pk(O) denotes the space of polynomials of degree ≤ k on O. Mk(O)

denotes the set of scaled monomials of degree ≤ k on O, that is,

Mk(O) =
{(

x − xO

hO

)α

: |α| ≤ k

}

,

where x is a local coordinate system on O, xO is the barycenter of O in the local
coordinate system, α is a multi-index, and hO = diam(O).

Conventionally we define P−1(O) = {0}. We also define P k(O) = (Pk(O))2 for
k ≥ −1 and Mk(O) = (Mk(O))2 for any nonnegative integer k.

Let K ∈ Ph and let k be a nonnegative integer. We define (∇Pk+1(K))⊕ as the
subspace of P k(K) satisfying

P k(K) = ∇Pk+1(K) ⊕ (∇Pk+1(K))⊕,

and denote by M⊕
k a basis of the space (∇Pk+1(K))⊕. For example, one can choose

(∇Pk+1(K))⊕ = x⊥Pk−1(K), M⊕
k = {m(x)x⊥ : m ∈ Mk−1(K)},

where x⊥ = (x2, −x1) with x = (x1, x2).
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3.2 Virtual element space

We first define a local virtual element space on each element K ∈ Ph. Let k be a
fixed positive integer. Let

W 1
h(K) := {v ∈ H 1(K) : div v ∈ Pk−1(K), rot v = 0, v·nK |e ∈ Pk(e), ∀e ⊂ ∂K},

where rot v = ∂v1
∂x2

− ∂v2
∂x1

for v = (v1, v2) ∈ H 1(K). Also, let

�h(K) := {φ ∈ H 2(K) : �2φ ∈ Pk−3(K), φ|e = 0, �φ|e ∈ Pk−1(e), ∀e ⊂ ∂K}

with the convention that P−1(K) = P−2(K) = {0}. In [29, Lemma 2], it was shown

that W 1
h(K) ∩ curl�h(K) = {0}, where curl q =

(
− ∂q

∂x2
,

∂q
∂x1

)
for q ∈ H 1(K). It

was also shown in [29, Lemma 3] that if the local space Ṽ h(K) is defined by

Ṽ h(K) = W 1
h(K) ⊕ curl�h(K),

then the following degrees of freedom (DOFs) are unisolvent for Ṽ h(K):

the moments
1

|e|
∫

e

v · neqds, q ∈ Mk(e),

the moments
1

|e|
∫

e

v · teqds, q ∈ Mk−1(e),

the moments
1

|K|
∫

K

v · qdx, q ∈ Mk−2(K).

We define a local projection �∇
K : H 1(K) → P k(K) on each polygon K in Ph. It is

defined by

∫

K

∇(�∇
Kv) : ∇qdx =

∫

K

∇v : ∇qdx, ∀v ∈ H 1(K), ∀q ∈ P k(K),

∫

∂K

�∇
Kvds =

∫

∂K

vds,

for v ∈ H 1(K). Note that �∇
Kq = q for any q ∈ P k(K) and the local projection �∇

K

is computable using only the moments of v up to order (k − 1) on each edge e ⊂ ∂K

and the moments of v up to order (k − 2) on K .
Now the local nonconforming virtual element space V h(K) on K is defined by

V h(K)=
{

v∈ Ṽ h(K) :
∫

e

(v−�∇
Kv) · neqds =0, ∀q ∈Pk(e)/Pk−1(e), ∀e⊂∂K

}

,

where Pk(e)/Pk−1(e) is the subspace of polynomials in Pk(e) that are L2(e)-
orthogonal to Pk−1(e). It was shown in [29] that the following DOFs are unisolvent
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for V h(K):

1

|e|
∫

e

v · neqds, q ∈ Mk−1(e),

1

|e|
∫

e

v · teqds, q ∈ Mk−1(e),

1

|K|
∫

K

v · qdx, q ∈ Mk−2(K).

For each i = 1, 2, · · · , NK := dimV h(K), let χi be the operator associated to the ith
local DOF. Then, for any v ∈ H 1(K), there exists a unique element IK

h v ∈ V h(K)

such that

χi(v − IK
h v) = 0 ∀i = 1, 2, · · · , NK .

The operator v 
→ IK
h v is called a local interpolation operator for V h(K). It was

shown in [29] that we can obtain the following interpolation error estimates.

Proposition 1 (see [29, Lemma 6]) There exists a positive constant C independent
of h such that for every K ∈ Ph and every v ∈ H s(K) with 1 ≤ s ≤ k + 1,

‖v − IK
h v‖0,K + h|v − IK

h v|1,K ≤ Chs |v|s,K .

The global nonconforming virtual element spaces are defined as follows:

V h =
{

vh ∈ L2(�) : vh|K ∈ V h(K) ∀K ∈ Ph,

∫

e

[vh]e · qds = 0 ∀q ∈ P k−1(e), ∀e ∈ E i
h

}

,

V h,0 =
{

vh ∈ L2(�) : vh|K ∈ V h(K) ∀K ∈ Ph,

∫

e

[vh]e · qds = 0 ∀q ∈ P k−1(e), ∀e ∈ Eh

}

.

The global DOFs for V h can be chosen as, for any edge e and polygon K in Ph,

χn
e,q(vh) := 1

|e|
∫

e

vh · neqds, q ∈ Mk−1(e), (5)

χt
e,q(vh) := 1

|e|
∫

e

vh · teqds, q ∈ Mk−1(e), (6)

χK,q(vh) := 1

|K|
∫

K

vh · qdx, q ∈ ∇Mk−1(K) + M⊕
k−2(K). (7)

Similarly, the global DOFs for V h,0 can be chosen. We also define the global inter-
polation operator Ih : H 1,nc(�;Ph) → V h by (Ihv)|K = IK

h (v|K) for each K ∈ Ph

and v ∈ H 1,nc(�;Ph).
The discrete pressure space Qh is defined by

Qh = {qh ∈ L2
0(�) : qh|K ∈ Pk−1(K) ∀K ∈ Ph}.
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The global DOFs for the space Qh can be chosen as

1

|K|
∫

K

qhφdx, φ ∈ Mk−1(K), K ∈ Ph.

It was shown in [29] that div V h(K) ⊂ Pk−1(K) for each K ∈ Ph, and divhV h,0 ⊂
Qh, where divh denotes the discrete divergence operator defined by (divhvh)|K =
div(vh|K) for each K ∈ Ph and vh ∈ V h. Therefore, the nonconforming virtual
element space V h is divergence-free.

3.3 The discrete problem

We define a local discrete bilinear form aK
h for each polygon K in Ph, as follows.

aK
h (vh, wh) = aK(�∇

K(vh), �
∇
K(wh))

+SK((I − �∇
K)vh, (I − �∇

K)wh), vh, wh ∈ V h(K),

where aK is the bilinear form defined by

aK(v, w) =
∫

K

∇v : ∇wdx, v, w ∈ H 1(K),

and SK is a symmetric positive definite bilinear form defined as

SK(vh, wh) =
NK∑

i=1

χi(vh)χi(wh), vh, wh ∈ V h(K),

where NK = dim(V h(K)) and χi denotes the operator associated to the ith local
DOF for i = 1, 2, · · · , NK . As described in [5, 29], we obtain the k-consistency and
stability of aK

h :

• (k-consistency) aK
h (q, vh) = aK(q, vh) for any q ∈ P k(K), vh ∈ V h(K);

• (stability) there exist constants c∗, c∗ > 0 independent of h such that

c∗aK(vh, vh) ≤ aK
h (vh, vh) ≤ c∗aK(vh, vh) ∀vh ∈ V h(K).

The global bilinear form ah is defined by

ah(vh, wh) =
∑

K∈Ph

aK
h (vh, wh), vh, wh ∈ V h.

On the other hand, the discrete bilinear form bh is simply defined by

bh(vh, qh) =
∑

K∈Ph

bK(vh, qh), vh ∈ V h, qh ∈ Qh,

where

bK(v, q) = −
∫

K

q div vdx,

for v ∈ H 1(K), q ∈ Pk−1(K), and K ∈ Ph. Note that bh(vh, qh) is also computable
using only the DOFs (5)–(7) and we do not rely on the discrete version of it, indeed
we omit the subscript h on such bilinear form.
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We next discretize the right-hand side (f , ·)0,� as follows:

〈f h, vh〉 =
{

(f h, vh)0,� if k = 1
(f h, vh)0,� if k > 1

, vh ∈ V h,

where f h, vh ∈ L2(�) are defined by

f h|K =
{

�K
0 f if k = 1

�K
k−2f if k > 1

, vh|K = 1

|∂K|
∫

∂K

vhds, K ∈ Ph.

Here, �K

 denotes the L2-projection operator onto P 
(K) for each K ∈ Ph.

In order to consider the nonhomogeneous Dirichlet boundary condition, let

V h,g =
{

vh ∈ V h :
∫

e

g · qds =
∫

e

vh · qds, ∀q ∈ P k−1(e), ∀e ∈ E∂
h

}

.

We formulate the nonconforming VEM for the Stokes problem (3) as follows: Find
uh ∈ V h,g and ph ∈ Qh such that

{
ah(uh, vh) + bh(vh, ph) = 〈f h, vh〉 ∀vh ∈ V h,0,

bh(uh, qh) = 0 ∀qh ∈ Qh.
(8)

Here uh and ph will be called discrete velocity and discrete pressure, respectively. It
was shown in [29] that the bilinear form bh(·, ·) satisfies the inf-sup condition and
the discrete problem (8) is well-posed. Moreover, for the case g = 0, we can obtain
the following error estimate.

Theorem 1 (see [29, Theorem 13]) Suppose that f ∈ H k−1(�) and g = 0. Let
(u, p) ∈ (H 1

0(�)∩H k+1(�))× (L2
0(�)∩Hk(�)) be the solution of the continuous

problem (3). Let (uh, ph) ∈ V h,0 × Qh be the solution of the discrete problem (8).
Then,

|u − uh|1,h + ‖p − ph‖0,� ≤ Chk(|u|k+1,� + |p|k,� + |f |k−1,�),

where C is a positive constant independent on h.

4 A formal construction of divergence-free basis

In this section, we present a formal construction of a divergence-free basis for the
virtual element space V h,0.

We first define the canonical basis associated with the DOFs (5)–(7) of the space
V h. Recall that the global DOFs of V h are given by

χn
e,q(vh) = 1

|e|
∫

e

vh · neqds, q ∈ Mk−1(e), e ∈ Eh,

χt
e,q(vh) = 1

|e|
∫

e

vh · teqds, q ∈ Mk−1(e), e ∈ Eh,

χK,q(vh) = 1

|K|
∫

K

vh · qdx, q ∈ ∇Mk−1(K) + M⊕
k−2(K), K ∈ Ph.
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We sometimes write χ to denote χn
e,q , χ

t
e,q , or χK,q when it is clear from the context.

Using these notations, we define the canonical basis functions of V h associated to
the DOFs (5)–(7) as follows:

• For e ∈ Eh and q ∈ Mk−1(e), let ϕn
e,q be the function in V h such that

χn
e,q(ϕn

e,q) = 1 and χ(ϕn
e,q) = 0 for all other DOFs.

• For e ∈ Eh and q ∈ Mk−1(e), let ϕt
e,q be the function in V h such that

χt
e,q(ϕt

e,q) = 1 and χ(ϕt
e,q) = 0 for all other DOFs.

• For K ∈ Ph and q ∈ (∇Mk−1(K)) + M⊕
k−2(K), let ϕK,q be the function in V h

such that χK,q(ϕK,q) = 1 and χ = 0 for all other DOFs.

Let us define

Zh = {vh ∈ V h : divhvh = 0}, Zh,0 = {vh ∈ V h,0 : divhvh = 0}.
We first compute the dimension of Zh,0.

Proposition 2 The dimension of Zh,0 is

NV,i + kNE,i + (k − 1)NE,i + (k − 1)(k − 2)

2
NP .

Proof Since divhV h,0 = Qh and since divhV h,0 ∼= V h,0/Zh,0, we obtain

dimZh,0 = dimV h,0 − dim(divhV h,0) = dimV h,0 − dimQh.

Note that

dimV h,0 = 2

(
k(k − 1)

2
NP + kNE,i

)

, dimQh = k(k + 1)

2
NP − 1,

Since NP − NE,i + NV,i = 1 from Euler’s formula, we have

dimZh,0 = dimV h,0 − dimQh = k(k − 1)NP + 2kNE,i − k(k + 1)

2
NP + 1

= k(k − 1)NP + 2kNE,i − k(k + 1)

2
NP + NP − NE,i + NV,i

= NV,i + kNE,i + (k − 1)NE,i + (k − 1)(k − 2)

2
NP .

This concludes the proof of the proposition.

In order to construct a basis of Zh,0, we first define some functions in V h.

(D1) For each vertex v ∈ Vh, let e1, · · · , el be the edges in Eh having v as an
end point, and let K1, · · · , Kl be the elements in Ph having v as a vertex.
For each i = 1, · · · , l, let nei ,v be a unit vector normal to ei pointing in the
counterclockwise direction with respect to the vertex v (see Fig. 1a). Define
ψv ∈ V h by

ψv := h

l∑

i=1

〈nei
, nei ,v〉
|ei | ϕn

ei ,1 +
l∑

j=1

∑

q∈Mk−1(Kj )\{1}
cj,qϕKj ,∇q,
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Fig. 1 Examples of functions defined in (D1) (a) and (D3) (b)

where

cj,q = h

|Kj |
l∑

i=1

〈nei
, nei ,v〉
|ei |

∫

ei∩∂Kj

ϕn
ei ,1 · nKj

qds

for q ∈ Mk−1(Kj ) \ {1} and j = 1, · · · , l.
(D2) For each edge e ∈ Eh and each q ∈ Mk−1(e), define ψ t

e,q by

ψ t
e,q = ϕt

e,q .

(D3) Assume k ≥ 2. For each edge e ∈ Eh and each q ∈ Mk−1(e)\ {1}, define ψn
e,q

by

ψn
e,q = ϕn

e,q +
∑

K∈Ph

∑

r∈Mk−1(K)\{1}
cK,rϕK,∇r ,

where

cK,r = 1

|K|
∫

e∩∂K

ϕn
e,q · nKrds, r ∈ Mk−1(K) \ {1}, K ∈ Ph.

(See Fig. 1b.)
(D4) Assume k ≥ 3. For each K ∈ Ph and each q ∈ M⊕

k , define ψK,q by

ψK,q = ϕK,q .

Remark 1 The coefficients cj,q and cK,r defined in (D1) and (D3) are exactly com-
putable using the DOFs (5)–(7). Moreover, since it is computed elementwise, the cost
of computing the coefficients is negligible.

We first show that the functions defined in (D1)–(D4) are indeed contained in Zh.

Lemma 1 The functions defined in (D1)–(D4) are contained in Zh.

Proof Since div V h(K) ⊂ Pk−1(K) for each K ∈ Ph, if vh ∈ V h, then

vh ∈ Zh if and only if
∫

K

qdiv vhdx = 0 ∀q ∈ Mk−1(K), ∀K ∈ Ph. (9)
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From (9), the functions in (D2) and (D4) are obviously contained in Zh. We first
show that the functions in (D1) belong to Zh. Note that

∫

K

qdiv ψvdx = 0 ∀q ∈ Mk−1(K), ∀K ∈ Ph with K �= K1, · · · , Kl .

Let j = 1, · · · , l. Since Kj is a polygon having v as a vertex, there are exactly two
edges ei1,v and ei2,v with 1 ≤ i1, i2 ≤ l such that ei1,v, ei2,v ⊂ ∂Kj . Moreover, one of
the normal vectors ne1,v and ne2,v coincides with nKj

, and the other has the opposite
direction of nKj

. We may assume that nei1,v
= nKj

|ei1
and nei2,v

= −nKj
|ei2

. Then,

∫

Kj

div ψvdx =
∫

∂Kj

ψv · nKj
ds

= h
〈nei1

,nei1,v
〉

|ei1 |
∫

ei1

ϕn
ei1 ,1 · nKj

|ei1
ds + h

〈nei2
, nei2,v

〉
|ei2 |

∫

ei2

ϕn
ei2 ,1 · nKj

|ei2
ds

= h〈nei1
,nei1,v

〉〈nKj
|ei1

,nei1
〉 + h〈nei2

,nei2,v
〉〈nKj

|ei2
,nei2

〉
= h〈nei1

,nei1,v
〉〈nei1,v

, nei1
〉 − h〈nei2

,nei2,v
〉〈nei2,v

, nei2
〉

= 0.

Suppose q ∈ Mk−1(Kj ) \ {1}. Then,
∫

Kj

qdiv ψvdx =
∫

∂Kj

qψv · nKds −
∫

Kj

ψv · ∇qdx

= h

l∑

i=1

〈nei
, nei ,v〉
|ei |

∫

ei∩∂Kj

qϕn
ei ,1 · nKj

ds

−
∑

q ′∈Mk−1(Kj )\{1}
cj,q ′

∫

Kj

ϕKj ,∇q ′ · ∇qdx

= h

l∑

i=1

〈nei
, nei ,v〉
|ei |

∫

ei∩∂Kj

qϕn
ei ,1 · nKj

ds − cj,q

∫

Kj

ϕKj ,∇q · ∇qdx

= h

l∑

i=1

〈nei
, nei ,v〉
|ei |

∫

ei∩∂Kj

qϕn
ei ,1 · nKj

ds − |Kj |cj,q

= 0.

Here we used the relations
∫

Kj

ϕKj ,∇q ′ · ∇qdx =
{ |Kj | if q = q ′
0 if q �= q ′.

Thus, ψv ∈ Zh. We next show that the functions ψn
e,q in (D3) belong to Zh. Note

that cK,r = 0 for any r ∈ Mk−1(K) \ {1} and any K ∈ Ph with e �⊂ ∂K . Then,
∫

K

rdiv ψn
e,qdx =

∫

∂K

rψn
e,q · nKds −

∫

K

ψn
e,q · ∇rdx

=
∫

∂K

rψn
e,q · nKds = 0
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for any r ∈ Mk−1(K) \ {1} and K ∈ Ph with e �⊂ ∂K . We next suppose that K ∈ Ph

satisfies e ⊂ ∂K . Since q �= 1,
∫

K

div ψn
e,qdx =

∫

∂K

ψn
e,q · nKds = 0,

and
∫

K

rdiv ψn
e,qdx =

∫

∂K

rψn
e,q · nKds −

∫

K

ψn
e,q · ∇rdx

=
∫

e∩∂K

rϕn
e,q · nKds −

∑

r ′∈Mk−1(K)\{1}
cK,r ′

∫

K

ϕK,∇r ′ · ∇rdx

=
∫

e∩∂K

rϕn
e,q · nKds − cK,r

∫

K

ϕK,∇r · ∇rdx

=
∫

e∩∂K

rϕn
e,q · nKds − |K|cK,r = 0

for any r ∈ Mk−1(K) \ {1}. Here, as before, we used the relations
∫

K

ϕK,∇r ′ · ∇rdx =
{ |K| if r = r ′
0 if r �= r ′.

Thus, ψn
e,q ∈ Zh. This concludes the proof of the lemma.

The next theorem shows that some of these functions generate a basis for Zh,0.

Theorem 2 Let Z1, Z2, Z3, Z4 be the subspaces of V h defined by

Z1 = span({ψv : v ∈ V i
h}),

Z2 = span({ψ t
e,q : q ∈ Mk−1(e), e ∈ E i

h}),

Z3 =
{
span({ψn

e,q : q ∈ Mk−1(e) \ {1}, e ∈ E i
h}) if k ≥ 2

{0} otherwise
,

Z4 =
{
span({ψK,q : q ∈ M⊕

k , K ∈ Ph}) if k ≥ 3
{0} otherwise

,

where ψv , ψ
t
e,q , ψ

n
e,q , and ψK,q are the functions given in (D1)–(D4), respectively.

Then, the following hold.

(i) Z1, Z2, Z3, Z4 ⊂ Zh,0.
(ii) Zi ∩ Zj = {0} for any pair (i, j) with i �= j .
(iii) The dimensions of the subspaces Z1, Z2, Z3, and Z4 satisfy

dimZ1 = NV,i, dimZ2 = kNE,i,

dimZ3 = (k − 1)NE,i, dimZ4 = (k − 1)(k − 2)

2
NP .

Consequently, Zh,0 = Z1 ⊕ Z2 ⊕ Z3 ⊕ Z4.
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Proof Since Zh,0 = Zh ∩ V h,0, and from Lemma 1, it suffices to show that the
functions in (D1)–(D4) are contained in V h,0. Clearly ψK,q ∈ V h,0 for any K ∈ Ph

and any q ∈ M⊕
k . If e ∈ E i

h, then ψ t
e,q ∈ V h,0 for any q ∈ Mk−1(e) and ψn

e,q ∈ V h,0

for any q ∈ Mk−1(e) \ {1}. If v ∈ V i
h, then the edges in Eh that have v as an end point

are contained in E i
h. Thus, ψv ∈ V h,0 for any v ∈ V i

h. Hence, Z1, Z2, Z3, and Z4 are
subspaces of Zh,0.

On the other hand, it is easy to show that Zi ∩ Zj = {0} for any pair (i, j) with
i �= j and

dimZ1 = NV,i, dimZ2 = kNE,i,

dimZ3 = (k − 1)NE,i, dimZ4 = (k − 1)(k − 2)

2
NP .

Then, since Z1 ⊕ Z2 ⊕ Z3 ⊕ Z4 ⊂ Zh,0 and since dimZh,0 = dimZ1 + dimZ2 +
dimZ3 + dimZ4 by Proposition 2, we obtain

Zh,0 = Z1 ⊕ Z2 ⊕ Z3 ⊕ Z4.

This concludes the proof of the theorem.

Remark 2 If k = 1 and the mesh Ph is a triangular mesh, then the construction of
the basis of Zh,0 described in Theorem 2 is exactly the same with the divergence-free
basis in the Crouzeix-Raviart finite element space [14, 26].

5 Implementation details

In this section, we present how to compute the solution (uh, ph) of the discrete
problem (8) by using the construction of Zh,0 presented in Section 4.

5.1 Computing the discrete velocity uh

We first consider the case g = 0. Note that the discrete velocity uh is the solution of
the following discrete problem [18]: Find uh ∈ Zh,0 such that

ah(uh, vh) = 〈f h, vh〉 ∀vh ∈ Zh,0. (10)

Since dimZh,0 = dimV h,0 − dimQh, the system (10) has a smaller number of
unknowns than system (8). Moreover, system (10) is symmetric positive definite,
while problem (8) is a saddle point problem. Thus, it is more efficient to compute uh

from (10) than from the problem (8).
We next consider the case g �= 0. Let us decompose uh ∈ V h,g into

uh = uh,0 + ũh,

where ũh ∈ V h,g ∩ Zh and uh,0 ∈ Zh,0 is the solution of the problem

ah(uh,0, vh) = 〈f h, vh〉 − ah(̃uh, vh) ∀vh ∈ Zh,0.

Using the construction of Zh,0 presented in Theorem 2, we can compute uh,0 by
solving a symmetric positive definite system of linear equations, as explained in the
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case g = 0. It remains to find a function ũh ∈ V h,g ∩ Zh. The following theorem
shows that we can easily find such a function.

Theorem 3 Let N = N∂
V and label the vertices in V∂

h by 1, 2, · · · , N such that
v1, · · · , vN are in counterclockwise order with respect to �. We also label the edges
in E∂

h by 1, 2, · · · , N , such that the endpoints of the edge ei are vi and vi+1 for
i = 1, 2, · · · , N − 1, and the endpoints of the edge eN are vN and v1 (since � is a
simply connected polygon, N∂

V = N∂
E). Let ũh be the function in V h defined by

ũh =
∑

v∈V∂
h

C1,vψv +
∑

e∈E∂
h

∑

q∈Mk−1(e)

C2,e,qψ t
e,q +

∑

e∈E∂
h

∑

q∈Mk−1(e)\{1}
C3,e,qψn

e,q ,

where the coefficients (C1,v)v = (C1,v1 , · · · , C1,vN
) are given by

C1,vk
= −

N∑

i=k

∫

ei

g · nei
ds, k = 1, 2, · · · , N,

and the coefficients (C2,e,q)e,q , and (C3,e,q)e,q are given by

C2,e,q = 1

|e|
∫

e

g · teqds, q ∈ Mk−1(e), e ∈ E∂
h ,

C3,e,q = 1

|e|
∫

e

g · neqds, q ∈ Mk−1(e) \ {1}, e ∈ E∂
h .

Then, ũh ∈ V h,g ∩ Zh.

Proof From the construction of ũh, it is obvious that divhũh = 0. Thus, it remains
to show that ũh ∈ V h,g . From the definition of the coefficients (C2,e,q)e,q , and
(C3,e,q)e,q , we obtain

∫

e

ũh · teqds =
∫

e

g · teqds, q ∈ Mk−1(e), e ∈ E∂
h ,

∫

e

ũh · neqds =
∫

e

g · neqds, q ∈ Mk−1(e) \ {1}, e ∈ E∂
h .

Since the boundary edge ei with 1 ≤ i ≤ N − 1 has endpoints vi and vi+1, and since
the vertices v1, · · · , vN are labeled in counterclockwise order with respect to �, we
obtain

nei ,vi+1 = nei
= −nei ,vi

,

where nei
is a unit normal vector in the outward direction with respect to�, and nei ,vi

and nei ,vi+1 are unit vectors normal to ei pointing in the counterclockwise direction
with respect to vi and vi+1, respectively (see Fig. 2). Similarly, we obtain

neN ,v1 = neN
= −neN ,vN

.
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Fig. 2 The normal vectors on
the edge ei

Thus, we have
∫

ei

ũh · nei
ds = −C1,vi

+ C1,vi+1 ∀i = 1, 2, · · · , N − 1,

∫

eN

ũh · neN
ds = −C1,vN

+ C1,v1 .

Using the definition of the coefficients (C1,v),

−C1,vi
+ C1,vi+1 =

∫

ei

g · nei
ds ∀i = 1, 2, · · · , N − 1.

From (2) we obtain C1,v1 = − ∫

∂�
g · n�ds = 0 and thus

−C1,vN
+ C1,v1 =

∫

eN

g · neN
ds.

Therefore ũh ∈ V h,g .

5.2 Recovery of the discrete pressure ph

Once we have the discrete velocity uh, the discrete pressure ph can be obtained by
solving the system

bh(vh, ph) = 〈f h, vh〉 − ah(uh, vh) ∀vh ∈ V h,0. (11)

This can be rewritten as an overdetermined linear system

Bp = f (12)

where B is a dim(V h,0) × dim(Qh) matrix. Since bh(·, ·) satisfies the inf-sup condi-
tion and since the discrete problem (8) is well-posed, the matrix B has full rank and
the linear system (12) has the unique solution. Note that this solution also solves the
normal equation

BᵀBp = Bᵀf. (13)

Since the matrix B has full rank, the normal (13) is a symmetric positive definite
linear system. Thus, (13) has only one solution, which is also the solution of (12).
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Fig. 3 The meshes P1
h (left), and P2

h (right)

6 Numerical experiments

In this section, we present several numerical experiments for the symmetric positive
definite linear system (10) and the overdetermined linear system (11). Consider the
Stokes problem (1) on the unit square domain � = [0, 1]2, where the exact solution
is given by

u(x, y) = ((1 − cos(2πx)) sin(2πy), −(1 − cos(2πy)) sin(2πx)),

p(x, y) = xy2 − 1

6
.

Table 1 Mesh information

h P1
h P2

h

NP NE,i NV,i NP NE,i NV,i

1/4 16 24 9 16 33 18

1/8 64 112 49 64 162 99

1/16 256 480 225 256 707 452

1/32 1024 1984 961 1024 2953 1930

1/64 4096 8064 3969 4096 12043 7948

1/128 16384 32512 16129 16384 48655 32272
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Table 2 Dimensions of the discrete spaces (k = 1)

h P1
h P2

h

dimV h,0 dimQh dimZh,0 dimV h,0 dimQh dimZh,0

1/4 48 15 33 66 15 51

1/8 224 63 161 324 63 261

1/16 960 255 705 1414 255 1159

1/32 3968 1023 2945 5906 1023 4883

1/64 16128 4095 12033 24086 4095 19991

1/128 65024 16383 48641 97310 16383 80927

We solve both (10) and (11) for k = 1, 2, 3, and we compute the velocity error in the
discrete energy norm

Ev := ah(uh − Ihu, uh − Ihu)1/2

and the pressure error in the L2-norm

Ep := ‖ph − �hp‖0,�,

where �hp is the piecewise polynomial function such that for each K ∈ Ph the
restriction �hp|K is the L2-projection of p onto Pk−1(K).

We decompose � into the following sequences of convex polygonal meshes:

(i) uniform square meshes P1
h with h = 1/4, 1/8, 1/16, 1/32, 1/64, 1/128,

(ii) unstructured polygonal meshes P2
h with h = 1/4, 1/8, 1/16, 1/32, 1/64,

1/128.

Some examples of the meshes are shown in Fig. 3. The unstructured polygonal
meshes {P2

h}h are generated from PolyMesher [24]. Mesh data (the number of
polygons, interior edges, and interior vertices) for each h are given in Table 1.

In Tables 2, 3 and 4, we present the dimensions of the spaces V h,0, Qh, and Zh,0,
for each mesh P1

h , P2
h and each k = 1, 2, 3. Since the number of unknowns of the

Table 3 Dimensions of the discrete spaces (k = 2)

h P1
h P2

h

dimV h,0 dimQh dimZh,0 dimV h,0 dimQh dimZh,0

1/4 128 47 81 164 47 117

1/8 576 191 385 776 191 585

1/16 2432 767 1665 3340 767 2573

1/32 9984 3071 6913 13860 3071 10789

1/64 40448 12287 28161 56364 12287 44077

1/128 162816 49151 113665 227388 49151 178237
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Table 4 Dimensions of the discrete spaces (k = 3)

h P1
h P2

h

dimV h,0 dimQh dimZh,0 dimV h,0 dimQh dimZh,0

1/4 240 95 145 294 95 199

1/8 1056 383 673 1356 383 973

1/16 4416 1535 2881 5778 1535 4243

1/32 18048 6143 11905 23862 6143 17719

1/64 72960 24575 48385 96834 24575 72259

1/128 293376 98303 195073 390234 98303 291931

10-2 10-1
10-3

10-2

10-1

100

101

10-2 10-1
10-3

10-2

10-1

100

101

Fig. 4 Error curves with respect to h for the velocity and pressure on the sequences of meshes P1
h (left)

and P2
h (right) with k = 1

10-2 10-1
10-4

10-3

10-2

10-1

100

101

10-2 10-1
10-4

10-3

10-2

10-1

100

101

Fig. 5 Error curves with respect to h for the velocity and pressure on the sequences of meshes P1
h (left)

and P2
h (right) with k = 2
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Fig. 6 Error curves with respect to h for the velocity and pressure on the sequences of meshes P1
h (left)

and P2
h (right) with k = 3

system (8) is dimV h,0 + dimQh and the number of unknowns of the system (10) is
dimZh,0, we can see that the system (10) has fewer unknowns than the system (8).

The errors Ev and Ep and their orders on the sequences of the meshes for k =
1, 2, 3 are given in Figs. 4, 5 and 6. In these figures, we see that the convergence
order of the errors Ev and Ep are O(hk) for k = 1, 2, 3. Thus, the numerical results
confirm the theoretical analysis in Theorem 1.

In Table 5, we compare the CPU running times (on a PC with an Intel Core i5
processor and 16GB RAM) required to solve the reduced system (10) and the original
saddle point system (8), for the uniform square meshes {P1

h}h and k = 1, 2, 3. For a
fair comparison, we use unpreconditioned conjugate gradient method (CG) to solve
(10) and the standard Uzawa method to solve (8). The cost for computing the discrete
pressure (by solving (11)) is a fraction of CG; hence, it is not included. For each

Table 5 CPU running times

h CPU time (secs)

k = 1 k = 2 k = 3

CG Uzawa CG Uzawa CG Uzawa

1/4 0.0002 0.030 0.001 0.829 0.004 18.636

1/8 0.0009 0.692 0.006 12.761 0.034 349/386

1/16 0.0090 11.567 0.029 304.348 0.389 5732.469

1/32 0.0810 338.71 0.392 7644.293 4.255 ∗
1/64 1.5880 10152.847 7.191 ∗ 53.712 ∗
1/128 26.999 ∗ 93.194 ∗ 721.477 ∗
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Fig. 7 CPU time curves of CG and Uzawa with respect to 1/h with k = 1 (left) and k = 2 (right)

experiment, we write “∗” if the CPU time is more than 12,000 s. For all cases, the
CPU time of solving the reduced system is much smaller than that of solving the
saddle point system (Fig. 7).

7 Conclusions

We presented a formal construction of divergence-free bases in the nonconforming
VEM for solving the stationary Stokes problem on arbitrary polygonal meshes intro-
duced in [29]. If k = 1 and the mesh is triangular, then the proposed construction
of the basis is exactly the same as the divergence-free basis in the Crouzeix-Raviart
finite element space [14, 26]. Using our construction, we are able to eliminate the
pressure variable from the discrete saddle point formulation, and reduce it to a sym-
metric positive definite linear system in the velocity variable only. Thus, we can apply
many efficient solvers available for symmetric positive definite systems. Finally, we
provided some numerical experiments confirming the theoretical results and the effi-
ciency of our construction of divergence-free bases in the nonconforming VEM for
the Stokes problem.
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