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Abstract. This paper presents the lowest-order nonconforming immersed vir-

tual element method for solving elliptic interface problems on unfitted polyg-
onal meshes. The local discrete space on each interface mesh element consists

of the solutions of local interface problems with Neumann boundary condi-

tions, and the elliptic projection is modified so that its range is the space of
broken linear polynomials satisfying the interface conditions. We derive opti-

mal error estimates in the broken H1-norm and L2-norm, under the piecewise

H2-regulartiy assumption. In our scheme, the mesh assumptions for error
analysis allow small cut elements. Several numerical experiments are provided

to confirm the theoretical results.

1. Introduction

In recent years, there has been a lot of interest in developing numerical methods
for solving partial differential equations (PDEs) on general polygonal/polyhedral
meshes, including mimetic finite difference (MFD) methods [12,19,21], hybrid high-
order (HHO) methods [31,36], hybridizable discontinuous Galerkin (HDG) methods
[33,34], weak Galerkin (WG) methods [59,65], and so on. Among them, the virtual
element method (VEM), as an evolution of the MFD method into the framework
of the finite element method (FEM), was introduced in [7]. The main feature of
the VEM is that the local shape functions, called the virtual elements, are defined
implicitly as the solutions of certain local PDEs, and they are characterized by the
degrees of freedom (DOFs). Although it is impossible to construct these functions
explicitly in general, the VEM can be implemented using the DOFs only. The
VEM also has been successfully developed for a wide range of problems: Stokes
problem [13,24], elasticity problem [9,51,66], Maxwell problem [8,11], etc. We also
refer to [2, 5, 10,20,49] and the references therein for more thorough survey.

On the other hand, there are numerous engineering and physical problems where
the underlying PDEs have an interface, such as multiphase flows, solid mechanics
with multiple materials, and Hele-Shaw flows, etc (see, e.g., [6, 40, 42, 47]). The
PDEs governing such problems involve with discontinuous coefficients across the
interface, which usually leads to low global regularity of the solution, even when the
interface is smooth. The low global regularity causes a deterioration in performance
of the traditional FEMs, unless the mesh is aligned with the interface. However, it
takes a lot of time to generate interface-fitted meshes when the interface is geomet-
rically complicated or is moving as time evolves. For such cases, it may be more
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efficient to use unfitted or structured meshes than fitted meshes. Moreover, one can
exploit geometric multigrid methods for the structured meshes. Researchers devel-
oped several numerical schemes using unfitted triangular or rectangular meshes:
cut FEMs [39, 40], extended FEMs [14, 15], and immersed FEMs [52, 56, 57], to
name just a few. In particular, the immersed FEM modifies the traditional finite
elements so that they satisfy the interface conditions, while keeping the optimal ap-
proximation capabilities. Lagrange-type elements were studied in [41,56,57], while
nonconforming-type elements were studied in [44, 52, 58]. Other related works can
be found in [27,38,43,45,48,50,53] and the references therein.

Due to the great flexibility of polygonal meshes in the mesh generation process,
several researchers focused on developing interface-fitted polygonal mesh generators
and analyzing schemes for interface problems on such meshes (see, e.g., [28,60,64]).
Nevertheless, it would be still attractive to use unfitted polygonal meshes in some
situations, such as problems involving moving interfaces as time evolves or dur-
ing the computation of the free-boundary problems. Recently, several numerical
schemes using unfitted polygonal meshes were developed. The authors in [22, 23]
proposed the unfitted HHO method for elliptic interface problems, where a Nitsche-
type formulation is used. They proved that the method exhibits an optimal error
estimate in the H1-norm. However, to ensure the optimal convergence, it requires
some additional mesh procedures, which prevent the appearance of small cut ele-
ments. The lowest-order Lagrange-type immersed VEM for triangular meshes was
developed in [26]. Unlike the Lagrange-type immersed FEM, the local shape func-
tions are conforming, and DG-type consistency terms are not required to guarantee
the optimal convergence. However, its convergence analysis is limited to the trian-
gular meshes. The virtual finite element method [25] was also developed for solving
two-dimensional Maxwell interface problems, in which each interface element is di-
vided into subtriangles and the local space on the interface element is defined by
piecewise Nédélec elements. However, its convergence analysis is also limited to the
triangular meshes. The immersed WG method on triangular meshes was proposed
in [61], and extended to polygonal meshes in [62]. Compared to the lowest-order
unfitted HHO method, the immersed WG method requires less restrictive mesh
assumptions: the unfitted HHO method requires that two subregions of each inter-
face element divided by the interface must contain a ball with radius comparable
to the diameter of the element, while the immersed WG does not require such con-
ditions. However, the immersed WG requires an additional regularity assumption:
The Darcy velocity must be H1 on the entire domain.

In this paper, we define and analyze the lowest-order nonconforming immersed
VEM for elliptic interface problems on unfitted polygonal meshes. Motivated by
the conforming immersed VEM [26] and the nonconforming VEM [5], we define the
virtual elements on each interface mesh element by the solutions of local interface
problems with Neumann boundary conditions, and the elliptic projection is modi-
fied so that its range is the space of broken linear polynomials satisfying interface
conditions, which is also used in the linear immersed FEMs (see, e.g., [52, 56]).
We derive optimal error estimates in the broken H1-norm and L2-norm under the
standard regularity assumption that the solution is a piecewise H2-function. More-
over, as in the immersed WG [62], the mesh assumptions in our scheme allow small
cut elements. In addition, since our scheme is also a nonconforming method, the
Darcy velocity can be recovered efficiently by casting a mixed formulation into
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the nonconforming method (see, e.g., [3, 4, 47, 49, 52]). We also note that, since
there is an equivalence relation between the nonconforming VEM and the HHO
method [32, 54], we can reformulate our scheme in the context of HHO methods.
However, it will be different from the unfitted HHO methods in [22,23], since these
methods use the Nitsche-type formulation, while our method does not.

The rest of the paper is organized as follows. In Section 2, we introduce the
model problem and mesh assumptions. In Section 3, we explain the nonconforming
immersed VEM. In Section 4, we prove some approximation properties of the dis-
crete spaces. In Section 5, we prove optimal error estimates of our scheme in the
broken H1-norm and the L2-norm. Finally, we report several numerical tests that
confirm the theoretical results in Section 6.

2. Preliminaries

We follow the standard notation of Sobolev spaces (see, e.g., [17, 30]). For an
integer k ≥ 0 and a subset D of R or R2, we denote by Pk(D) the space of all
polynomials of degree at most k on D. For a subset A of R or R2, the indicator
function on A is denoted by χA. For a bounded measurable subset D of R or R2

and v ∈ L1(D), we denote by (v)D the average of v on D.

2.1. Model problem. Let Ω be a polygonal domain in R2, which is separated
into two disjoint subdomains Ω+ and Ω− by an interface Γ = ∂Ω−∩∂Ω+ (see, e.g.,
Figure 1). Here we assume that Γ is a C2-curve that is not self-intersecting. For
any domain D ⊂ Ω and any function u : D → R, we define its jump across the
portion of the interface Γ ∩D as

[u]Γ∩D := u|D∩Ω+ − u|D∩Ω− .

We consider the elliptic interface problem: Given f ∈ L2(Ω), find u ∈ H1
0 (Ω) such

that

(2.1)

{
−∇ · (β∇u) = f in Ω+ ∪ Ω−,

u = 0 on ∂Ω,

with the jump conditions on the interface

(2.2) [u]Γ = 0,

[
β
∂u

∂n

]
Γ

= 0,

where the coefficient β is positive and piecewise constant on Ω±, that is, βs := β|Ωs

is constant for s = +,−. Let β∗ = min{β+, β−} and β∗ = max{β+, β−}. A weak
formulation of the model problem (2.1)-(2.2) is written as follows: Find u ∈ H1

0 (Ω)
such that

(2.3) (β∇u,∇v)0,Ω = (f, v)0,Ω ∀v ∈ H1
0 (Ω).

For any domain D ⊂ Ω, let us introduce the space

H̃2(D) :=
{
u ∈ H1(D) : u|D∩Ωs ∈ H2(D ∩ Ωs), s = +,−

}
equipped with the following norm:

∥u∥22,D± := ∥u∥21,D + |u|22,D∩Ω+ + |u|22,D∩Ω− .

We also define

H̃2
Γ(D) :=

{
u ∈ H̃2(D) : [β∂u/∂n]Γ∩D = 0

}
.

Then we have the following regularity theorem for the problem (2.3); see [16,29].
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Ω−

Ω+

Γ

Figure 1. A domain Ω with interface Γ.

Theorem 2.1. Suppose that Ω is a convex polygon in R2 and f ∈ L2(Ω). Then

the problem (2.3) has a unique solution u ∈ H1
0 (Ω) ∩ H̃2

Γ(Ω) satisfying

(2.4) ∥u∥2,Ω± ≤ CΩ∥f∥0,Ω
for some generic positive constant CΩ.

2.2. Mesh assumptions. Let Ph be a decomposition (mesh) of Ω into polygonal
elements K with maximum diameter h. Let Eh be the set of all edges in Ph. Let E◦

h

and E∂
h denote the set of all interior and boundary edges in Ph, respectively. For

each K ∈ Ph, let hK and |K| be the diameter and the area of K, respectively. For
each e ∈ Eh, we denote by |e| the length of e.

An element K ∈ Ph is called an interface element if the interface Γ passes
through the interior of K; otherwise K is called a non-interface element. We denote
by PI

h and PN
h the collections of all interface and non-interface elements in Ph,

respectively. Analogously, an edge e ∈ Eh is called an interface edge if Γ passes
through the interior of e; otherwise e is called a non-interface edge. The collection
of all interface edges and non-interface edges in Eh are denoted by EI

h and EN
h ,

respectively. For each K ∈ Ph, let EI
K and EN

K be the set of all interface and
non-interface edges of K, and let EK := EI

K ∪ EN
K .

We assume that h is sufficiently small, and Ph satisfies the following regularity
assumptions [5, 7, 20].

Assumption 2.2. There exists ρ > 0 independent of h such that

(i) the decomposition Ph consists of a finite number of nonoverlapping polyg-
onal elements;

(ii) every element K ∈ Ph is star-shaped with respect to a ball BK with center
xK and radius ρhK ;

(iii) for each element K ∈ Ph, all the edges in K have length larger than ρhK ;
(iv) the interface Γ meets the edges of each interface element at no more than

two points;
(v) the interface Γ meets each edge in Eh at most once, except possibly it passes

through two vertices.

Remark that the assumptions (iv) and (v) are reasonable for sufficiently small
h. As mentioned earlier, these assumptions allow small cut elements and do not
require additional mesh procedures.

For each K ∈ Ph, let nK be the exterior unit normal vector along ∂K. For each
e ∈ Eh, let ne be a unit normal vector of e with orientation fixed once and for all.
Let e ∈ E◦

h and let K1 and K2 be the polygons in Ph having e as a common edge.
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Figure 2. An interface element K in Ph.

For u : Ω → R satisfying u|K1 ∈ H1(K1) and u|K2 ∈ H1(K2), we define the jump
of u on e by

[u]e := (u|K1)(nK1 · ne) + (u|K2)(nK2 · ne).

For e ∈ E∂
h , we define [u]e := u|e. We use the notations ∇h and ∇h· when the gradi-

ent and divergence operators are taken elementwise for piecewise smooth functions
on Ph.

Let K ∈ PI
h. For s = +,−, we define Ks := K ∩ Ωs. We denote by ΓK

h the line
segment connecting the intersections of Γ and the edges of K. This line segment

divides K into two parts K+
h and K−

h with K = K+
h ∪K−

h (see, e.g., Figure 2). For
each e ∈ EI

h, we let es := e ∩ Ωs for s = +,−. We define the jumps of a function
u : K → R across ΓK

h ∩K as

[u]ΓK
h
:= u|K+

h
− u|K−

h
.

Let βh be the piecewise constant function on Ω defined as follows:

βh|K :=

{
β+χK+

h
+ β−χK−

h
if K ∈ PI

h,

β otherwise.

We also define β∗
K := ∥βh∥L∞(K). Let Γh =

⋃
K∈PI

h
ΓK
h , and let nh

Γ and thΓ be the

unit normal and tangential vectors along Γh.

3. Nonconforming immersed virtual element method

In this section, we present the nonconforming immersed virtual element method
for the elliptic interface problem (2.3).

3.1. Broken linear polynomials. We consider the space of piecewise linear poly-
nomials satisfying the interface conditions on each interface element. Let K ∈ Ph

be an interface element. The broken polynomial space P̂1(K) is defined by

P̂1(K) :=
{
q ∈ H1(K) : q|Ks

h
∈ P1(K

s
h) ∀s = +,−, [βh∂q/∂n]ΓK

h
= 0
}
.

It is easy to see that dim P̂1(K) = 3 and the following piecewise polynomials form

a basis of P̂1(K):

q1(x) = 1, q2(x) = t · (x− x0), q3(x) = β−1
h n · (x− x0),

where x0 is the midpoint of the line segment ΓK
h , n = (n1, n2) is a unit vector

normal to ΓK
h pointing from K+

h to K−
h , and t = (−n2, n1). Since P̂1(K) ⊂ H1(K),

the space ∇P̂1(K) is well-defined, and ∇q2 and ∇q3 form a basis of ∇P̂1(K).

We set P̂1(K) := P1(K) for non-interface element K ∈ Ph.
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3.2. Nonconforming immersed virtual elements. We first define the local
space on each element. For each interface element K ∈ Ph, let

Vh(K) :=
{
v ∈ H1(K) : ∇ · βh∇v = 0 in K, βh∂v/∂n ∈ P̃0(e) ∀e ∈ EK ,

[βh∂v/∂n]ΓK
h
= 0 on ΓK

h

}
,

where P̃0(e) is defined by

P̃0(e) := {aχe+ + bχe− : a, b ∈ R} for e ∈ EI
h,

and P̃0(e) := P0(e) for e ∈ EN
h . Proceeding as in Lemma 3.1 in [5], it is easy to

verify that P̂1(K) ⊂ Vh(K) and the DOFs of Vh(K) can be chosen as follows:

1
|e+|
´
e+

v ds, ∀e ⊂ ∂K with e ∈ EI
h,(3.1a)

1
|e−|
´
e−

v ds, ∀e ⊂ ∂K with e ∈ EI
h,(3.1b)

1
|e|
´
e
v ds, ∀e ⊂ ∂K with e ∈ EN

h ,(3.1c)

For each non-interface element K ∈ Ph, the local space is defined as in the standard
nonconforming VEM [5]:

Vh(K) :=
{
v ∈ H1(K) : ∆v = 0 in K, ∂v/∂n ∈ P0(e) ∀e ∈ EK

}
,

and its DOFs can be chosen as (3.1c).

Remark 3.1. If the local space Vh(K) on the interface element K defined as in

the local space in the non-interface element, then the inclusion P̂1(K) ⊂ Vh(K)
and the interface condition [βh∂v/∂n]ΓK

h
= 0 does not hold. It may lead difficul-

ties in analysis and extending our scheme to some other applications such as the
nonhomogeneous interface problems.

The global nonconforming immersed virtual element space Vh(Ω) is given by

Vh(Ω) :=

{
vh ∈ L2(Ω) : vh|K ∈ Vh(K) ∀K ∈ Ph,

ˆ
e

[vh]eq ds = 0 ∀q ∈ P̃0(e), ∀e ∈ Eh
}
.

Note that the DOFs of Vh(Ω) are the edge moments (3.1) for e ∈ E◦
h.

For K ∈ Ph and v ∈ H1(K), the local interpolant IKh v is defined as the unique
element of Vh(K) satisfyingˆ

e

IKh vq ds =

ˆ
e

vq ds ∀q ∈ P̃0(e), ∀e ∈ EK .

Analogously, for v ∈ H1
0 (Ω), the (global) interpolant Ihv is defined as the unique

element of Vh(Ω) such thatˆ
e

Ihvq ds =

ˆ
e

vq ds ∀q ∈ P̃0(e), ∀e ∈ Eh.

Let Hh(Ω) := Vh(Ω)+H1
0 (Ω). We define the broken H1-seminorm on Hh(Ω) by

|vh|21,h =
∑

K∈Ph

∥∇vh∥20,K , ∀vh ∈ Hh(Ω).
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3.3. The discrete problem. In order to define the discrete bilinear form ah(·, ·)
on Hh(Ω), we first introduce some projection operators on the mesh elements and

mesh edges. For each K ∈ Ph, let Π
∇
K be the projection from H1(K) onto P̂1(K)

satisfying ˆ
K

βh∇Π∇
Kv · ∇q dx =

ˆ
K

βh∇v · ∇q dx ∀q ∈ P̂1(K),(3.2)

ˆ
∂K

Π∇
Kv ds =

ˆ
∂K

v ds.(3.3)

Note that integration by parts givesˆ
K

βh∇v · ∇q dx =

ˆ
∂K

βh∇q · nKv ds ∀v ∈ H1(K), ∀q ∈ P̂1(K).

Here, since βh∇q · ne ∈ P̃0(e) on each e ⊂ ∂K, the projection Π∇
Kv of v ∈ Vh(K)

can be computed by the DOFs of v. For v ∈ Hh(Ω), we define Π
∇v by the piecewise

broken linear polynomial such that (Π∇v)|K = Π∇
K(v|K) for any K ∈ Ph.

Next, for each edge e ∈ Eh, let Π∂
e be the L2-projection from L2(e) onto P̃0(e).

For v ∈ H1(K) with K ∈ Ph, let Π∂
Kv be such that (Π∂

Kv)|e = Π∂
e (v|e) for any

e ⊂ ∂K. Analogously, for v ∈ Hh(Ω), let Π
∂v be such that (Π∂v)|e = Π∂

e (v|e) for
any e ∈ Eh.

For each K ∈ Ph, we define

aKh (u, v) :=
(
βh∇Π∇

Ku,∇Π∇
Kv
)
0,K

+ SK
h

(
u−Π∇

Ku, v −Π∇
Kv
)
, u, v ∈ H1(K),

where SK
h is the stabilization term defined by

SK
h (u, v) :=

β∗
K

hK

(
Π∂

Ku,Π∂
Kv
)
0,∂K

, u, v ∈ H1(K).

The discrete bilinear forms ah and Sh on Hh(Ω) are defined by

ah(uh, vh) :=
∑

K∈Ph

aKh (uh, vh), Sh(uh, vh) =
∑

K∈Ph

SK
h (uh, vh),

We also define the discrete energy norm |||·||| on Hh(Ω) by |||vh|||2 := ah(vh, vh). It
is indeed a norm on Vh(Ω), as given in the following lemma.

Lemma 3.2. |||·||| is a norm on Vh(Ω).

Proof. It is clear that |||·||| is a seminorm. Thus it suffices to show that vh = 0
if |||vh||| = 0 for vh ∈ Vh(Ω). Let vh ∈ Vh(Ω) satisfy |||vh||| = 0. Then we have
∇Π∇vh = 0 and Π∂(vh −Π∇vh) = 0. Since vh ∈ Vh(Ω), we have

β∗∥∇vh∥20,K ≤ (βh∇vh,∇vh)0,K = (βh∇vh,∇(vh −Π∇
Kvh))0,K

= (βh∇vh · nK , vh −Π∇
Kvh)0,∂K = (βh∇vh · nK ,Π∂

K(vh −Π∇
Kvh))0,∂K

= 0

for any K ∈ Ph. Thus vh is constant on every K ∈ Ph. Since Π∂
e [vh]e = 0 for any

edge e ∈ Eh, we obtain that vh = 0 on Ω. This completes the proof. □

With the above preparations, we state the nonconforming immersed virtual ele-
ment method as follows: Find uh ∈ Vh(Ω) such that

(3.4) ah(uh, vh) = ⟨f, vh⟩ , ∀vh ∈ Vh(Ω),
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where the loading term ⟨f, ·⟩ is given by ⟨f, vh⟩ := (f,Π∇vh)0,Ω. Note that the
well-posedness of the discrete problem (3.4) follows from Lemma 3.2.

Remark 3.3. The treatment of nonhomogeneous interface conditions is possible
using such techniques as in [1, 27]. However, its analysis involves more technical
issues. It is left for a future investigation.

4. Approximation properties on interface elements

In this section, we present some approximation properties of the broken linear
polynomials and the immersed virtual elements on the interface elements. Note
that some estimates were given in [62], but only the special case of the piecewise
straight interface was considered. In this paper, we consider the curved interface.
From now on, for X,Y ≥ 0, we write X ≲ Y or X ≳ Y if there exists a constant
C depending only on ρ, β and Γ (but independent of the location of the interface
intersected with the mesh elements), and X ≂ Y if both X ≲ Y and Y ≲ X hold.

4.1. Some technical inequalities. We present some technical inequalities used
in the analysis of our scheme. We first recall the Poincaré-Friedrichs inequality and
the trace inequality (see [18, Section 2]): For any K ∈ Ph,

h−1
K ∥v∥0,K ≲ h−1

K

∣∣∣∣ˆ
∂K

v ds

∣∣∣∣+ |v|1,K , ∀v ∈ H1(K),(4.1)

∥v∥20,∂K ≲ h−1
K ∥v∥20,K + hK |v|21,K , ∀v ∈ H1(K).(4.2)

Next, for δ > 0, let

Ωδ
Γ := {x ∈ Ω : dist(x,Γ) < δ},

where dist(x,Γ) denotes the distance between x and Γ. Since Γ is C2, there exists
δ0 > 0 such that the signed distance function ρ, which is defined by

ρ(x) :=

 dist(x,Γ) if x ∈ Ω+ ∩ Ωδ0
Γ ,

−dist(x,Γ) if x ∈ Ω− ∩ Ωδ0
Γ ,

0 if x ∈ Γ,

is a C2-function on Ωδ0
Γ such that ∥ρ∥

W 2,∞(Ω
δ0
Γ )

≲ 1 (see [37, 45]). Moreover, since

|∇ρ| = 1 on Ωδ0
Γ , the unit normal and tangential vectors nΓ and tΓ along Γ can be

extended to the region Ωδ0
Γ as follows:

nΓ = ∇ρ, tΓ =

(
∂ρ

∂x2
,− ∂ρ

∂x1

)
.

Thus nΓ and tΓ can be regarded as C1(Ωδ0
Γ )-functions such that

(4.3) ∥nΓ∥W 1,∞(Ω
δ0
Γ )

≲ 1, ∥tΓ∥W 1,∞(Ω
δ0
Γ )

≲ 1.

Note that for sufficiently small h (more precisely, for h < δ0), any interface element

in PI
h is included in Ωδ0

Γ .

Next, let K ∈ PI
h. Note that both nh

Γ and thΓ are constant on ΓK
h , and thus can

be regarded as constant vector fields on K. Since Γ is C2, for sufficiently small h,
there exist an interval IK with |IK | ≲ hK , a C2(IK)-function γK and x0 ∈ ΓK

h such
that the following mappings are parametrizations of Γ ∩K and ΓK

h , respectively:

(4.4) s 7→ x0 + sthΓ + γK(s)nh
Γ, s 7→ x0 + sthΓ.
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Since ΓK
h is the line segment connecting the intersections of Γ and ∂K,

(4.5) ∥γK∥Wm,∞(IK) ≲ h2−m
K , m = 0, 1, 2.

Using (4.3), (4.4) and (4.5) we obtain

(4.6) ∥nΓ − nh
Γ∥L∞(K) ≲ hK , ∥tΓ − thΓ∥L∞(K) ≲ hK .

By the definition of βh, we have

(4.7) β|e = βh|e, ∀e ⊂ ∂K, β = βh on Ks ∩Ks
h, s = ±.

Finally, we also need some estimates on the sets

Kr = K − (K+ ∩K+
h )− (K− ∩K−

h ) ∀K ∈ PI
h, Ωr :=

⋃
K∈PI

h

Kr.

That is, Kr is the region bounded by Γ∩K and ΓK
h , and Ωr is the region bounded

by Γ and Γh. By (4.5), there exists ϵ > 0 such that ϵ ≲ h2 and ΓK
h ⊂ Ωϵ

Γ. Thus

(4.8) Kr ⊂ Ωϵ
Γ ∩K, K ∈ PI

h.

According to [55, Lemma 2.1], the following estimate holds:

(4.9) ∥v∥0,Ωϵ
Γ
≲ h∥v∥1,Ω ∀v ∈ H1(Ω).

Let u ∈ H̃2
Γ(Ω). Then the Sobolev extension theorem (see, e.g., [17, 30]) implies

that for each s = ± there exists vs ∈ (H1(Ω))2 such that vs = ∇u on Ωs and
∥vs∥1,Ω ≲ ∥u∥2,Ωs . Now using (4.9), we obtain

∥∇u∥0,Ωϵ
Γ
≲ ∥v+∥0,Ωϵ

Γ
+ ∥v−∥0,Ωϵ

Γ
≲ h(∥v+∥1,Ω + ∥v−∥1,Ω) ≲ h∥u∥2,Ω± .

Combining the estimate above and (4.8), we obtain

(4.10) ∥∇u∥0,Ωr ≲ ∥∇u∥0,Ωϵ
Γ
≲ h∥u∥2,Ω± .

4.2. Approximation by broken linear polynomials. We consider the approx-

imation properties of the broken linear polynomial space P̂1(K). The following
lemma can be seen as a generalization of Bramble-Hilbert lemma (see, e.g., [17,

Lemma 4.3.8]) to the space P̂1(K).

Lemma 4.1. Let K ∈ PI
h. For each u ∈ H̃2

Γ(K), there exists q ∈ P̂1(K) such that

∥u− q∥0,K + hK |u− q|1,K + hK∥β∇u− βh∇q∥0,K
≲ (hK∥∇u∥0,Kr + h2

K∥u∥2,K±).(4.11)

Proof. Note that we can decompose ∇u as follows:

(4.12) ∇u = (∇u · tΓ)tΓ + (∇u · nΓ)nΓ.

Since u ∈ H̃2
Γ(K), we have [∇u · tΓ]Γ∩K = 0 and [β∇u · nΓ]Γ∩K = 0. Thus

(4.13) ∇u · tΓ ∈ H1(K), β∇u · nΓ ∈ H1(K).

Moreover, it follows from (4.3) that

|∇u · tΓ|1,K ≲ |∇u · tΓ|1,K+ + |∇u · tΓ|1,K−

≲
∑
s=±

|u|2,Ks∥tΓ∥L∞(Ks) + |u|1,Ks∥tΓ∥W 1,∞(Ks) ≲ ∥u∥2,K ,(4.14)

and similarly

(4.15) |β∇u · nΓ|1,K ≲ ∥u∥2,K .
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Let ct := (∇u · tΓ)K and cn := (β∇u · nΓ)K . Then, using (4.1), (4.14) and (4.15),

∥∇u · tΓ − ct∥0,K ≲ hK |∇u · tΓ|1,K ≲ hK∥u∥2,K± ,(4.16)

∥β∇u · nΓ − cn∥0,K ≲ hK |β∇u · nΓ|1,K ≲ hK∥u∥2,K± .(4.17)

Now we define q ∈ P̂1(T ) by

q = q0 + (u− q0)K where q0 = ct(x · thΓ) + β−1
h cn(x · nh

Γ).

Then we have ∇q = ctt
h
Γ + β−1

h cnn
h
Γ and

∥β∇u− βh∇q∥0,K ≤ ∥β(∇u · tΓ)tΓ − βhctt
h
Γ∥0,K + ∥β(∇u · nΓ)nΓ − cnn

h
Γ∥0,K

=: I1 + I2.

For I2, it follows from (4.6), (4.15) and (4.17) that

I2 ≤ ∥(β∇u · nΓ)(nΓ − nh
Γ)∥0,K + ∥β∇u · nΓ − cn∥0,K ≲ hK∥u∥2,K± .

For I1, using (4.6), (4.14) and (4.16) we obtain

I1 ≤ ∥(β − βh)∇u∥0,K + β∗∥(∇u · tΓ)(tΓ − thΓ)∥0,K + β∗∥∇u · tΓ − ct∥0,K
≲ ∥(β − βh)∇u∥0,K + hK∥u∥2,K± .

For the term ∥(β − βh)∇u∥0,K , it follows from (4.7) that

(4.18) ∥(β − βh)∇u∥0,K ≲ ∥∇u∥0,Kr
.

Thus we have I1 ≲ ∥∇u∥0,Kr
+ ChK∥u∥2,K± . Combining the estimates for I1 and

I2, we obtain
∥β∇u− βh∇q∥0,K ≲ ∥∇u∥0,Kr + hK∥u∥2,K± .

Next, using (4.18) again we have

|u− q|1,K ≲ ∥(βh − β)∇u∥0,K + ∥β∇u− βh∇q∥0,K
≲ ∥∇u∥0,Kr

+ hK∥u∥2,K± .

Finally, by (4.1), we have

∥u− q∥0,K ≲ hK |u− q|1,K ≲ hK∥∇u∥0,Kr + h2
K∥u∥2,K± .

This completes the proof of the lemma. □

Using this lemma, we obtain the following projection error estimate.

Lemma 4.2. Let K ∈ PI
h, u ∈ H̃2

Γ(K), and uπ := Π∇
Ku. Then we have

∥u− uπ∥0,K + hK |u− uπ|1,K + hK∥β∇u− βh∇uπ∥0,K
≲ hK∥∇u∥0,Kr

+ h2
K∥u∥2,K± .(4.19)

Proof. Let q ∈ P̂1(K) satisfy (4.11). By the definition of Π∇
K ,

β∗|u− uπ|21,K ≤ (βh∇(u− uπ),∇(u− uπ))0,K = (βh∇(u− uπ),∇u)0,K

= (βh∇(u− uπ),∇(u− q))0,K ≤ β∗|u− uπ|1,K |u− q|1,K
≲ |u− uπ|1,K(∥∇u∥0,Kr + hK∥u∥2,K±).

Thus we have

(4.20) |u− uπ|1,K ≲ ∥∇u∥0,Kr
+ hK∥u∥2,K± .

Next, by (3.3), (4.1), and (4.20),

∥u− uπ∥0,K ≲ hK |u− uπ|1,K ≲ hK∥∇u∥0,Kr
+ h2

K∥u∥2,K± .
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Finally, from (4.20) and (4.18),

∥β∇u− βh∇uπ∥0,K ≲ ∥∇u∥0,Kr + hK∥u∥2,K± .

This completes the proof of the lemma. □

Lemma 4.3. Let K ∈ PI
h, u ∈ H̃2

Γ(K), and uπ := Π∇
Ku. Then we have

(4.21) ∥β∇u− βh∇uπ∥0,∂K ≲ h
−1/2
K ∥∇u∥0,Kr

+ h
1/2
K ∥u∥2,K± .

Proof. As in the proof of Lemma 4.1, we have

∥β∇u− βh∇uπ∥0,∂K ≤ ∥(β∇u · tΓ)tΓ − (βh∇uπ · thΓ)thΓ∥0,∂K
+ ∥(β∇u · nΓ)nΓ − (βh∇uπ · nh

Γ)n
h
Γ∥0,∂K

=: I1 + I2.

Using (4.6), (4.7), ∇u · tΓ ∈ H1(K), ∇uπ · thΓ ∈ H1(K), (4.2) and (4.14), we obtain

I1 ≲
(
∥tΓ − thΓ∥L∞(∂K) + ∥β − βh∥L∞(∂K)

)
∥∇u · tΓ∥0,∂K

+ ∥∇u · tΓ −∇uπ · thΓ∥0,∂K
≲ hK∥∇u · tΓ∥0,∂K + ∥∇u · tΓ −∇uπ · thΓ∥0,∂K
≲ h

1/2
K

(
∥∇u · tΓ∥0,K + hK |∇u · tΓ|1,K

)
+ h

−1/2
K

(
∥∇u · tΓ −∇uπ · thΓ∥0,K + hK |∇u · tΓ −∇uπ · thΓ|1,K

)
≲ h

−1/2
K ∥∇u∥0,Kr

+ h
1/2
K ∥u∥2,K± .

By a similar argument, one can also obtain

I2 ≲ h
−1/2
K ∥∇u∥0,Kr + h

1/2
K ∥u∥2,K± .

Now the conclusion follows from the estimates on I1 and I2. □

Remark 4.4. Although it is not used in the following sections, one can prove the

following interpolation error estimates: For K ∈ PI
h, u ∈ H̃2

Γ(K), and uI = IKh u,

∥u− uI∥0,K + hK |u− uI |1,K + hK∥β∇u− βh∇uI∥0,K
≲ hK∥∇u∥0,Kr

+ h2
K∥u∥2,K± .

5. Error analysis

In this section, we derive the error estimate in the discrete energy norm for the
scheme (3.4). We first compute the consistency error.

Lemma 5.1. Let u ∈ H1
0 (Ω) ∩ H̃2

Γ(Ω) be the solution of (2.3). Then we have, for
any vh ∈ Hh(Ω),

ah(u, vh)− ⟨f, vh⟩ = Sh

(
u−Π∇u, vh −Π∇vh

)
+
(
βh∇hΠ

∇u− β∇u,∇hΠ
∇vh

)
0,Ω

+
∑

K∈Ph

(
(β∇u− βh∇Π∇u) · nK ,Π∇vh −Π∂vh

)
0,∂K

.

Proof. Since [β∇u · ne]e = 0 for any interior edge e ∈ Eh, we have

(5.1)
∑

K∈Ph

(β∇u · nK ,Π∂vh)0,∂K = 0.



12 HYEOKJOO PARK AND DO Y. KWAK

Integrating by parts we obtain

ah(u, vh)− ⟨f, vh⟩
= Sh

(
u−Π∇u, vh −Π∇vh

)
+
(
βh∇hΠ

∇u,∇hΠ
∇vh

)
0,Ω

−
(
f,Π∇vh

)
0,Ω

= Sh

(
u−Π∇u, vh −Π∇vh

)
+
(
βh∇hΠ

∇u− β∇u,∇hΠ
∇vh

)
0,Ω

+
∑

K∈Ph

(
β∇u · nK ,Π∇vh

)
0,∂K

= Sh

(
u−Π∇u, vh −Π∇vh

)
+
(
βh∇hΠ

∇u− β∇u,∇hΠ
∇vh

)
0,Ω

+
∑

K∈Ph

(
β∇u · nK ,Π∇vh −Π∂vh

)
0,∂K

,(5.2)

where the last equality follows from (5.1). Note also that, for any K ∈ Ph,

(βh∇Π∇u · nK ,Π∂vh −Π∇vh)0,∂K = (βh∇Π∇u · nK , vh −Π∇vh)0,∂K

= (∇ · βh∇Π∇u, vh −Π∇vh)0,K + (βh∇Π∇u,∇(vh −Π∇vh))0,K = 0,(5.3)

where the last equality follows from ∇·βh∇Π∇u = 0, which is a direct consequence

of the fact that Π∇
Ku ∈ P̂1(K), and the definition of Π∇. The conclusion follows

from (5.2) and (5.3). □

Lemma 5.2. Suppose that u ∈ H1
0 (Ω)∩ H̃2

Γ(Ω) be the solution of (2.3). Then, for
any vh ∈ Hh(Ω),∣∣∣∣∣ ∑

K∈Ph

(
(β∇u− βh∇Π∇u) · nK ,Π∇vh −Π∂vh

)
0,∂K

∣∣∣∣∣ ≲ h∥u∥2,Ω± |||vh|||.

Proof. Let K ∈ Ph. Using (4.21) we have(
(β∇u− βh∇Π∇u) · nK ,Π∇vh −Π∂vh

)
0,∂K

≤ ∥β∇u− βh∇Π∇u∥0,∂K∥Π∇vh −Π∂vh∥0,∂K
≲ (h

1/2
K ∥u∥2,K± + h

−1/2
K ∥∇u∥0,Kr )∥Π∇vh −Π∂vh∥0,∂K .

Let c := 1
|∂K|
´
∂K

Π∇vh ds. By (4.2) and (4.1),

∥Π∇vh −Π∂vh∥0,∂K ≤ ∥Π∇vh −Π∂Π∇vh∥0,∂K + ∥Π∂(vh −Π∇vh)∥0,∂K
≤ ∥Π∇vh − c∥0,∂K + ∥Π∂(c−Π∇vh)∥0,∂K + ∥Π∂(vh −Π∇vh)∥0,∂K
≤ 2∥Π∇vh − c∥0,∂K + ∥Π∂(vh −Π∇vh)∥0,∂K
≲ h

1/2
K (|Π∇vh|1,K + h

−1/2
K ∥Π∂(vh −Π∇vh)∥0,∂K) ≲ h

1/2
K |||vh|||.

Now the assertion of the lemma follows from the estimates above and (4.10). □

The following lemma shows that the discrete bilinear form ah(·, ·) is continuous
on Hh(Ω) with respect to the H1-seminorm.

Lemma 5.3. It holds that

aKh (v, v) ≲ |v|21,K ∀v ∈ H1(K), K ∈ Ph.
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Proof. Let K ∈ Ph and v ∈ H1(K). From (3.2),

β∗|Π∇
Kv|21,K ≤ (βh∇Π∇

Kv,∇Π∇
Kv)0,K = (βh∇Π∇

Kv,∇v)0,K

≤ β∗|Π∇
Kv|1,K |v|1,K .(5.4)

By (4.2), (4.1) and (5.4),

SK
h (v −Π∇

Kv, v −Π∇
Kv) ≲ h−1

K ∥v −Π∇
Kv∥20,∂K

≲ (h−2
K ∥v −Π∇

Kv∥20,K + |v −Π∇
Kv|21,K) ≲ |v|21,K .(5.5)

Combining (5.4)-(5.5), the conclusion follows. □

We now present the error analysis in the energy-norm and the broken H1-norm.

Theorem 5.4. Let u ∈ H1
0 (Ω) ∩ H̃2

Γ(Ω) be the solution of (2.3). Let uh ∈ Vh(Ω)
be the solution of (3.4). Then

(5.6) |||u− uh||| ≲ h∥u∥2,Ω± .

Proof. Let uπ = Π∇u and vh := u− uh ∈ Hh(Ω). By Lemma 5.1,

|||u− uh|||2 = ah(u− uh, vh) = ah(u, vh)− ⟨f, vh⟩
= Sh

(
u−Π∇u, vh −Π∇vh

)
+
(
βh∇hΠ

∇u− β∇u,∇hΠ
∇vh

)
0,Ω

+
∑

K∈Ph

(
(β∇u− βh∇Π∇u) · nK ,Π∇vh −Π∂vh

)
0,∂K

=: I1 + I2 + I3.

For I1, it follows from Lemma 5.3, (4.19) and (4.10) that

|I1| ≤ |u− uπ|1,h|||vh||| ≲ h∥u∥2,Ω± |||vh|||.

Next, for I2, we obtain from (4.19) and (4.10) that

|I2| ≤

( ∑
K∈Ph

∥βh∇uπ − β∇u∥20,K

)1/2

|||vh||| ≲ h∥u∥2,Ω± |||vh|||.

Finally, we have |I3| ≲ h∥u∥2,Ω± |||vh||| by Lemma 5.2. Now the conclusion follows
by combining the estimates of I1, I2, and I3. □

Remark 5.5. One can also obtain the estimate for |u − Π∇uh|1,h. Let uπ = Π∇u.
From (4.19), (4.10), and (5.6), we have

|u−Π∇uh|1,h ≤ |u− uπ|1,h + |Π∇(u− uh)|1,h ≲ |u− uπ|1,h + |||u− uh|||
≲ h∥u∥2,Ω± .

We next present the L2-norm estimate of u−Π∇uh.

Theorem 5.6. Suppose that Ω is convex. Let u ∈ H1
0 (Ω) ∩ H̃2

Γ(Ω) be the solution
of (2.3), and let uh ∈ Vh(Ω) be the solution of (3.4). Then

∥u−Π∇uh∥0,Ω ≲ h2(∥u∥2,Ω± + ∥f∥0,Ω),

where the hidden constant also depends on CΩ in (2.4).
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Proof. Let η = u−Π∇uh. Let φ ∈ H1
0 (Ω) be the solution of the dual problem

(β∇φ,∇v)0,Ω = (η, v)0,Ω, ∀v ∈ H1
0 (Ω).

Then Theorem 2.1 shows that φ ∈ H̃2
Γ(Ω) and

(5.7) ∥φ∥2,Ω± ≲ ∥η∥0,Ω.

Let φh ∈ Vh(Ω) be the solution of the corresponding discrete problem

ah(φh, vh) = ⟨η, vh⟩ ∀vh ∈ Vh(Ω).

Let uπ = Π∇u, uI = Ihu, φπ = Π∇φ, and φI = Ihφ. Then we have

∥u−Π∇uh∥20,Ω = (u−Π∇uh, u)0,Ω − (u−Π∇uh,Π
∇uh)0,Ω

= (β∇φ,∇u)0,Ω − ah(φh, uh) = (β∇u,∇φ)0,Ω − ah(uh, φh)

= (β∇u,∇φ)0,Ω − ah(uh, φI) + ah(uh, φI − φh)

= (β∇u,∇φ)0,Ω − ah(uh, φI) + ah(uI , φI − φh)− ah(uI − uh, φI − φh)

= (f, φ− φπ)0,Ω + ah(φ− φh, u)− ah(u− uh, φ− φh)

=: I1 + I2 + I3,(5.8)

where we have used the fact that Π∇
KuI = Π∇

Ku, Π∂
KuI = Π∂

Ku, Π∇
KφI = Π∇

Kφ and
Π∂

KφI = Π∂
Kφ. For I1, it follows from (4.19), and (4.10) that

|I1| ≲ h2∥f∥0,Ω∥φ∥2,Ω± .

Next, for I3, from (5.6) we have

|I3| ≤ |||u− uh||||||φ− φh||| ≲ h2∥φ∥2,Ω±∥u∥2,Ω± .

For I2, proceeding as in the proof of Lemma 5.1, we obtain

I2 = Sh(φ− φπ, u− uπ) + ((βh − β)∇φ,∇huπ)0,Ω

+
∑

K∈Ph

((β∇φ− βh∇φπ) · nK , uπ − u)0,∂K

=: I2,1 + I2,2 + I2,3.

Using the Cauchy-Schwarz inequality, Lemma 5.3, (4.19), and (4.10), we have

|I2,1| ≲ |φ− φπ|1,h|u− uπ|1,h ≲ h2∥φ∥2,Ω±∥u∥2,Ω± .

Using (4.7), (4.19), and (4.10), we have

|I2,2| ≤ |((βh − β)∇φ,∇h(uπ − u))0,Ω|+ |((βh − β)∇φ,∇u)0,Ω|
≲ ∥∇φ∥0,Ωr

|u− uπ|1,h + ∥∇φ∥0,Ωr
∥∇u∥0,Ωr

≲ h2∥φ∥2,Ω±∥u∥2,Ω± .

For I2,3, it follows from (4.2), (4.1), (4.21), (4.19), and (4.10), we have

|I2,3| ≤
∑

K∈Ph

∥β∇φ− βh∇φπ∥0,∂K∥u− uπ∥0,∂K

≲
∑

K∈Ph

∥β∇φ− βh∇φπ∥0,∂K
(
h
−1/2
K ∥u− uπ∥0,K + h

1/2
K |u− uπ|1,K

)
≲
∑

K∈Ph

h
1/2
K ∥β∇φ− βh∇φπ∥0,∂K |u− uπ|1,K ≲ h2∥φ∥2,Ω±∥u∥2,Ω± .
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Figure 3. The meshes M1 (left), M2 (middle) and M3 (right).

Thus we obtain |I2| ≲ h2∥φ∥2,Ω±∥u∥2,Ω± . Plugging the estimates of I1, I2 and I3
into (5.8), together with (5.7), we obtain

∥u−Π∇uh∥20,Ω ≲ h2∥φ∥2,Ω±(∥u∥2,Ω± + ∥f∥0,Ω)
≲ h2(∥u∥2,Ω± + ∥f∥0,Ω)∥u−Π∇uh∥0,Ω.

This proves the assertion of the theorem. □

6. Numerical tests

In this section, we present some numerical tests for our proposed method.

6.1. Test case 1: errors and condition number versus h. We consider the
problem (2.1)-(2.2) where Ω = (0, 1)2, and the interface Γ and the subdomains Ω+

and Ω− are determined by a given function L:

Γ = {(x, y) ∈ Ω : L(x, y) = 0},
Ω+ = {(x, y) ∈ Ω : L(x, y) > 0},
Ω− = {(x, y) ∈ Ω : L(x, y) < 0}.

The level-set function L, the coefficient β and the exact solution u are chosen as in
Examples 6.1 to 6.3. We use the following three different families of meshes:

(i) M1: uniform rectangular meshes with h = 1/23, 1/24, · · · , 1/27,
(ii) M2: uniform trapezoidal meshes with h = 1/23, 1/24, · · · , 1/27,
(iii) M3: unstructured polygonal meshes with h = 1/23, 1/24, · · · , 1/27.

Here the meshes in M3 are generated from PolyMesher [63]. Some examples of the
meshes are given in Figure 3.

Example 6.1 (straight line interface). In this example, we let

L(x, y) = 2x− y, (β+, β−) = (103, 1),

u(x, y) = 1 + (x+ 2y) + (2x− y)/β(x, y) + (2x− y)2, ∀(x, y) ∈ Ω.

Example 6.2 (circular interface). Let r2 = (x− 0.5)2 + (y − 0.5)2 and

L(x, y) = r2 − r20, (β+, β−) = (104, 1), u(x, y) = (r2 − r20)
3/β, ∀(x, y) ∈ Ω.

Example 6.3 (cubic interface). In this example, we let

L(x, y) = (2y − 1)− 3(2x− 1)(2x− 1.3)(2x− 1.8)− 0.34,

(β+, β−) = (102, 1), u = L/β, ∀(x, y) ∈ Ω.
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Figure 4. Example 6.1: errors versus h of NC-IVEM.
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Figure 5. Example 6.2: errors versus h of NC-IVEM.
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Figure 6. Example 6.3: errors versus h of NC-IVEM.

We compute the H1-seminorm and L2-norm errors given by

EH1 := |u−Π∇uh|1,h, EL2 := ∥u−Π∇uh∥0,Ω,

where uh is the solution of our scheme (3.4) (NC-IVEM). For all the examples, we
plot the errors versus h in Figures 4 to 6. We observe that the errors converge with
optimal order, which is consistent with the theoretical result (see Theorem 5.4,
Remark 5.5 and Theorem 5.6). In particular, for Example 6.1, we also plot the
results of the immersed WG method (IWG) [62] and the nonconforming immersed
FEM (NC-IFEM) [46,52] on the uniform triangular meshes in Figure 7. In contrast
with the NC-IVEM, both exhibit suboptimal convergence orders.
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Figure 7. Example 6.1: errors versus h of IWG and NC-IFEM.
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Figure 8. Examples 6.1 to 6.3: condition numbers versus h.

Next, we compute the condition number for each example, where the meshes are
fixed as M1. We plot the results in Figure 8. We observe that the condition number
behaves as usual order O(h−2) for all the examples.

6.2. Test case 2: effect of small-cut edges. In this test, we investigate the
effect of small-cut edges (i.e., the interface edges e with |e+| ≪ |e−| or |e−| ≪ |e+|)
on the condition number and the errors. Consider the problem with Ω = (0, 1)2,
Γ = {(x, y) :∈ Ω : x = 1/2},

Ω+ = {(x, y) ∈ Ω : x < 1/2}, Ω− = {(x, y) ∈ Ω : x > 1/2},

and the exact solution u is given by

u(x, y) =

{
1 + y + (x− 1/2)/β+ + (x− 1/2)2 if (x, y) ∈ Ω+,
1 + y + (x− 1/2)/β− + (x− 1/2)2 if (x, y) ∈ Ω−,

where (β+, β−) = (102, 1) and (1, 102). The mesh is built by partitioning Ω into
4 × 4 squares and relocating the nodes (1/2, j/4) to (1/2 + δ, j/4) if j is odd and
to (1/2 + 1/8, j/4) if j is even, for δ = 10−3, 10−4, 10−5, 10−6 (see Figure 9). In
Figures 10 and 11 we plot the condition number and the errors versus δ for each
pair (β+, β−). Here, the results indicated with the word “mod” will be explained
later.

We observe that the condition number seems to be proportional to δ−1. Further
theoretical investigation is needed to explain such a phenomenon, which will be a
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Γ Ω

Figure 9. Test case 2: the interface (red line) and the mesh (black
lines).

subject of future work. In contrast, the errors remain bounded, which is consistent
with our theoretical result that the error bounds are independent of the location
of the interface intersected with the mesh elements (see Theorem 5.4, Remark 5.5
and Theorem 5.6).

As observed above, the stiffness matrix becomes ill-conditioned in the presence
of small-cut edges. However, we can improve the condition number by a simple
modification of the discrete interface Γh like committing a variational crime in FEM:
If e is an interface edge with |e−| or |e+| ≲ h2, then we relocate the intersection
point of e and Γh to the closest vertex of e, and regard e as a non-interface edge
(see Figure 12). This procedure allows us to avoid extremely small-cut edges. The
errors of the modified scheme unchanged (see Figure 11 with “mod”).

We next compute the condition number of the modified scheme. The results are
reported in Figure 10 and are indicated with “mod.” We observe that the condition
number is uniformly bounded with respect to δ.

6.3. Test case 3: effect of small-cut cells. We also investigate the effect of
small-cut cells, as in [35]. Consider the problem with Ω = (0, 1)2, Ω− = (0.25, 0.75)2,

Ω+ = Ω− Ω−, Γ = ∂Ω− and the exact solution u is given by

u(x, y) =

{
sin(4πx) sin(4πy)/β+ if (x, y) ∈ Ω+,
sin(4πx) sin(4πy)/β− if (x, y) ∈ Ω−,

where (β+, β−) = (102, 1) and (1, 102). The mesh is built by partitioning Ω into
4×4 squares and relocating the nodes (1/4, j/4), (3/4, j/4), (i/4, 1/4) and (i/4, 3/4)
to (1/4 + δ, j/4), (3/4 − δ, j/4), (i/4, 1/4 + δ) and (i/4, 3/4 − δ), respectively, for
i, j = 0, 1, · · · , 4 and δ = 10−4, 10−6, · · · , 10−12 (see Figure 13). In Figures 14
and 15 we plot the condition number and the errors versus δ for each pair (β+, β−).
Similar with the previous numerical test, we observe that the condition number
seems to be proportional to δ−1, and the errors remain bounded.

7. Conclusion

We present the lowest-order nonconforming immersed VEM for elliptic interface
problems with unfitted polygonal meshes. The local shape functions on the interface
elements are defined as solutions of local interface problems with Neumann bound-
ary conditions. We prove that our scheme achieves an optimal convergence rates in
the broken H1-norm and L2-norm, under the piecewise H2-regularity assumption.
Some numerical tests are carried out to verify the theoretical results.
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Figure 10. Test case 2: the comparison of condition numbers
versus δ with and without the discrete interface modification pro-
cedure.
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Figure 11. Test case 2: the comparison of errors versus δ with
and without the discrete interface modification procedure.

e

Γh

e

Γh

Figure 12. The discrete interface Γh (red lines) before modifica-
tion (left) and after modification (right).
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