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aim of this paper is to prove the stability and convergence of an immersed finite element
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We show that spectral analysis for the classical eigenvalue problem can be easily applied to
ourmodel problem.We analyze the IFEM for elliptic eigenvalue problemswith an interface
and derive the optimal convergence of eigenvalues. Numerical experiments demonstrate
our theoretical results.
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1. Introduction

In this paper, we consider the approximation of elliptic eigenvalue problems with an interface. The interface problems
are often encountered in fluid dynamics, electromagnetics, and materials science [1–4]. The main difficulty in solving such
problems is caused mainly by the non-smoothness of solution across the interface. One choice to overcome it is to use
finite element methods based on fitted meshes along the interface. Another choice is to use unfitted meshes independent
of interface geometry for the computational domain. One of the advantages of using unfitted meshes is that we do not need
to generate a mesh each time in the case of a moving interface which reduces computational costs. In this respect, several
numerical methods have been proposed for example an immersed boundary method (IBM), extended finite element method
(XFEM), immersed interface method (IIM), and immersed finite element method (IFEM). The IBM was introduced by Peskin
to simulate cardiac mechanics and associated blood flow [5]. This method employs Eulerian and Lagrangian variables on
Cartesian mesh and curvilinear mesh and they are linked by a smooth approximation of the Dirac delta function [6,7]. The
XFEM is developed by extending the classical finite element method by enriching the finite element space with additional
degrees of freedom [8,9]. LeVeque and Li [10] introduced the IIM based on the finite difference method where the jump
conditions are properly incorporated in the scheme. However, the resulting linear system of equation from thismethodmay
not be symmetric and positive definite [11]. As an alternative, the IFEM has been developed for solving interface problems
with unfitted meshes [11]. A feature of IFEM is that local basis functions are constructed to satisfy the jump conditions
without additional degrees of freedom. The method has been applied to various types of partial differential equations
involving interface such as two-phase incompressible flows [12] and a linear elasticity problem with a perfectly bonded
interface [13,14]. The related works in this direction can be found in [15–20] and references therein.

The purpose of this paper is to prove the stability and convergence of an immersed finite elementmethod for eigenvalues
using Crouzeix–Raviart P1-nonconforming approximation [17]. As a model problem, we consider the eigenvalue problem
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with an interface, i.e.

−∇ · (β∇u) = λu in Ω+
∪ Ω−,

[u]Γ = 0,

β

∂u
∂n


Γ

= 0,

u = 0 on ∂Ω,

(1)

where Ω is a convex polygonal domain in R2 which is separated into two subdomains Ω+ and Ω− by a C2-interface
Γ = ∂Ω−

⊂ Ω with Ω+
= Ω \ Ω−. The symbol [ · ]Γ denotes the jump across Γ . The coefficient β is bounded below and

above by two positive constants,

0 < β1 ≤ β ≤ β2 < ∞.

The P1-nonconforming FEM is widely used in solving elliptic equations and is shown to be useful in solving the mixed
formulation of elliptic problems [21] and the Stokes equations [22]. Recently, Kwak et al. [17] introduced an immersed FEM
based on the piecewise P1-nonconforming polynomials and they proved optimal orders of convergence.

There have been various mathematical studies of finite element methods for eigenvalue problems. A unified approach
to a posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems
is presented in [23]. The convergence of an adaptive method for elliptic eigenvalue problems is proved in [24]. For a
nonconforming approximation, Dari et al. [25] provide a posteriori error analysis of the eigenvalue. The study of mixed
eigenvalue problems can be found in [26–28]. To our best knowledge, spectral and convergence analysis of IFEM for
eigenvalue problems with an interface has not been done so far. It is worth emphasizing that the spectral properties of
eigenvalue problems with interface play key roles in the analysis and simulation for more complicated problems such as
fluid–structure interactions, moving interfaces and the numerical stability for PDEs.

In this work, we analyze the IFEM for elliptic eigenvalue problems with interface and derive the optimal convergence
of eigenvalues. Furthermore, we show that spectral analysis for the classical eigenvalue problem can be easily applied to
our model problem. In particular, the spectral approximation of Galerkin methods can be proved by using fundamental
properties of compact operators in Banach space. Such an investigation originates from a series of papers of Osborn and
Babuška [29,30]. It has been extended in [31,32] to estimate Galerkin approximations for noncompact operators. Further
application to discontinuous Galerkin approximations has been developed by Buffa et al. [33]. We formulate the eigenvalue
problem with interface in terms of compact operators in order to understand the spectral behavior. The analysis presented
in this paper is carried out along the lines of Refs. [31,32].

The paper is structured as follows. In the next section, we give a brief review on P1-nonconforming IFEM [17]. In
Section 3, we introduce a modified version of IFEMwith an additional term and formulate the eigenvalue problemwith the
interface. Section 4 contains the analysis of the spectral approximation which is proved to be spurious-free and complete.
The approximation is proved by means of basic results from the theory of compact operator in Banach space. In Section 5
we derive the convergence rate of eigenvalues based on P1-nonconforming IFEM. In Section 6, we demonstrate numerical
experiments for a model problem which corroborate the theoretical results in the preceding sections. In the final section,
we provide a summary of our results.

2. Preliminaries

We consider an elliptic interface problem corresponding to the model problem (1):

−∇ · (β∇u) = f in Ω+
∪ Ω−,

[u]Γ = 0,


β
∂u
∂n


Γ

= 0,

u = 0 on ∂Ω.

(2)

The weak formulation of the problem (2) is to find u ∈ H1
0 (Ω) such that

Ω

β∇u · ∇vdx =


Ω

f vdx, ∀v ∈ H1
0 (Ω) (3)

with f ∈ L2(Ω).
We begin by introducing a Sobolev space which is convenient for describing the regularity of the solution of the elliptic

interface problem (2). For a bounded domain D, we let Hm(D) = Wm
2 (D) be the usual Sobolev space of order m with semi-

norm and norm denoted by | · |m,D and ∥·∥m,D, respectively. For realm ≥ 0, the spaceHm(D) is defined by interpolation [34].
We define the spaceH1+α(D) := {u ∈ H1(D) : u ∈ H1+α(D ∩ Ω s), s = +, −} for 0 < α ≤ 1
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Fig. 1. A domain Ω with interface.

equipped with the norm

|u|2H1+α(D)
:= |u|21+α,D∩Ω+ + |u|21+α,D∩Ω− ,

∥u∥2H1+α(D)
:= ∥u∥2

1+α,D∩Ω+ + ∥u∥2
1+α,D∩Ω− .

Then we have following regularity theorem for the weak solution u of the variational problem (3); see [35] and [36].

Theorem 2.1. The variational problem (3) has a unique solution u ∈ H1+α(Ω) which satisfies for some constant C > 0

∥u∥H1+α(Ω) ≤ C∥f ∥0,Ω ,

for some α ∈ (0, 1].

We remark that the parameter α with respect to the regularity of the solution u depends on the domain Ω and the
interface Γ . As long as the domain is convex and the interface is smooth enough, the solution u belongs toH2(Ω) [37]. Since
the domain is convex polygonal and the interface is sufficiently smooth in our paper, we set α = 1 (see Fig. 1).

Now describe an immersed finite element method (IFEM) based on Crouzeix–Raviart elements [17]. Let {Kh} be the
usual quasi-uniform triangulations of the domain Ω by the triangles of maximum diameter h. Note that we do not require
an element K ∈ Kh to be aligned with the interface Γ . We assume the following situations:

• (H1) the interface intersects the edges of an element at no more than two points
• (H2) the interface intersects each edge at most once, except possibly it passes through two vertices.

For a smooth interface, those assumptions are satisfied if mesh size h is sufficiently small. We call an element K ∈ Kh an
interface element if the interface Γ passes through the interior of K , otherwise K is a non-interface element. We denote by
K∗

h the collection of all interface elements.
If we consider the problem in each subdomain, interface conditions are regarded as boundary conditions of elliptic

problems in each subdomain. According to the works [35,38–41] which deal with the polygonal approximation of a smooth
curved boundary, it suffices to consider the piecewise linear approximation of interface for our problem. We may replace
Γ ∩ K by the line segment joining two intersection points on the edges of each K ∈ K∗

h .
For each K ∈ Kh and non-negative integerm, letHm(K) := { u ∈ L2(K) : u|K∩Ωs ∈ Hm(K ∩ Ω s), s = +, − },

equipped with norms

|u|2m,K := |u|2m,K∩Ω+ + |u|2m,K∩Ω− ,

∥u∥2
m,K := ∥u∥2

m,K∩Ω+ + ∥u∥2
m,K∩Ω− .

To deal with the interface conditions in the model problem (1), we introduce the following spaces,

H2
Γ (K) :=


u ∈ H1(K) : u|K∩Ωs ∈ H2(K ∩ Ω s), s = +, − and


β

∂u
∂n


Γ

= 0 on Γ ∩ K


,

H2
Γ (Ω) :=


u ∈ H1

0 (Ω) : u|K ∈ H2
Γ (K), ∀K ∈ Kh


.

Clearly,H2
Γ (K) andH2

Γ (Ω) are subspace ofH2(K) andH2(Ω), respectively.
As usual, we construct local basis functions on each element K of the triangulation Kh. We let

v|e =
1
|e|


e
v ds
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Fig. 2. A reference interface triangle.

denote the average of a function v ∈ H1(K) along an edge e. For a non-interface element K ∈ Kh, we simply use the standard
linear shape functionswhose degrees of freedom are determined by average values on the edges. LetNh(K) denote the linear
space spanned by the three basis functions φi satisfying φi|ej = δij for i, j = 1, 2, 3. The P1-nonconforming space Nh(Ω) is
given by

Nh(Ω) =

φ : φ|K ∈ P1(K) for K ∈ Kh \ K∗

h ; if K1, K2 ∈ Kh share an edge e,

then

e
φ|∂K1ds =


e
φ|∂K2ds; and


∂K∩∂Ω

φ ds = 0

 .

Now we consider a reference interface element K and assume that the interface Γ intersects the edges of an element K
at D and E as in Fig. 2. Given linear basis functions φi, (i = 1, 2, 3) [22], we construct new basis functions φ̂i which hold
the same degrees of freedom as φi. Additionally, the functions φ̂i should be linear on K+ and K−, and satisfy the interface
conditions in (1). The functions φ̂i, (i = 1, 2, 3) on the interface element K can be described as follows:

φ̂i =


c−

1 φ1 + c−

2 φ2 + c−

3 φ3 in K−,
c+

1 φ1 + c+

2 φ2 + c+

3 φ3 in K+,
(4)

satisfying

φ̂−

i (D) = φ̂+

i (D), φ̂−

i (E) = φ̂+

i (E), (5)

1
|ej|


ej

φ̂i ds = δij, j = 1, 2, 3, (6)

β−
∂φ̂−

i

∂n
|DE = β+

∂φ̂+

i

∂n
|DE, (7)

where β−, β+ are the averages of the coefficient β(x) over the segment DE. The modified basis functions φ̂i are uniquely
determined by (4)–(7) (see [17]).

We note that for a sharp interface, a violation of assumptions (H1) and (H2)may occur with even small h. Fig. 3 illustrates
an example of a sharp interface. In this case, the way of constructing the modified IFEM basis functions (4)–(7) cannot be
applied to elements K1 and K2 in Fig. 3.

We denote byNh(K) the local finite element space on the interface element K whose basis functions φ̂i, i = 1, 2, 3 are
defined by above construction. We define the immersed finite element spaceNh(Ω) as the collection of functions φ̂ ∈ L2(Ω)
such that

• φ̂|K ∈ Nh(K) if K ∈ K∗

h
• φ̂|K ∈ Nh(K) if K ∈ Kh \ K∗

h
•

e φ̂|∂K1ds =


e φ̂|∂K2ds if K1, K2 ∈ Kh share an edge e

•

∂K∩∂Ω

φ̂ ds = 0.

Additionally let Hh(Ω) := H1
0 (Ω) +Nh(Ω) be endowed with the broken H1-norm ∥v∥

2
1,h :=


K∈Kh

∥v∥
2
1,K .

We remark that the high-order IFEM for general curved interface is not reported yet to the best of authors’ knowledge.
Although the authors in [42] provide the construction of IFEM for nodal basis functions of higher order with extended
jump conditions [42,43], they state that the construction is restricted to a linear interface and further investigation for
approximation of curved interface is required.
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Fig. 3. Violation of assumptions (H1) and (H2).

3. Variational formulation

In this section, we consider a variational formulation for the model problem (1). Let Ω and Γ be the same as in the
previous section. In our analysis, we restrict the coefficient β to be piecewise constant. Multiplying v ∈ H1

0 (Ω) and
integrating by parts in Ω±, we obtain

s=±


Ωs

−∇ · (β∇u) · v dx =


s=±


Ωs

β∇u · ∇v dx −


Γ


β

∂u
∂n


v dx

=


Ω

β∇u · ∇v dx.

Hence the weak formulation of the problem (1) is to find the eigenvalues λ ∈ R+ := {x ∈ R : x > 0} and the eigenfunctions
u ∈ H1

0 (Ω) such that

a(u, v) = λ(u, v), ∀v ∈ H1
0 (Ω), (8)

where

a(u, v) =


Ω

β∇u · ∇v dx, ∀u, v ∈ H1
0 (Ω).

Since the bilinear form a(·, ·) is symmetric, continuous, and coercive on the space H1
0 (Ω), the eigenvalues λ belong to R+.

By a regularity property in Theorem 2.1, the eigenfunctions u ∈ H2(Ω). Using the solution operator T : L2(Ω) → H1
0 (Ω),

the eigenvalue problem (8) can be treated in terms of the variational form

a(Tf , v) = (f , v), ∀v ∈ H1
0 (Ω)

with f ∈ L2(Ω). Note that if (λ, u) ∈ R+ × H1
0 (Ω) is an eigenpair of (8), then (λ−1, u) is an eigenpair for the operator T .

For the application of IFEM to eigenvalue problems, we construct IFEM with a penalty term. We start by presenting a
modified P1-nonconforming IFEM for the elliptic problem (2). For some additional notations, let the collection of all the
edges of K ∈ Kh be denoted by Eh. We split Eh into two disjoint sets Eh = Eo

h ∪ Eb
h , where Eo

h is the set of edges lying in the
interior of Ω , and Eb

h is the set of edges on the boundary of Ω .
The IFEM (modified by a penalty term) for (3) is to find ûh ∈ Nh(Ω) such that

aσ
h (ûh, φ̂) = (f , φ̂), ∀φ̂ ∈ Nh(Ω), (9)

where

aσ
h (u, v) := ah(u, v) + jσ (u, v),

ah(u, v) :=


K∈Kh


K

β∇u · ∇v dx,

jσ (u, v) :=


e∈Eo

h


e

σ

h
[u]e[v]e ds, for some σ > 0.

We define the mesh dependent norm ∥ · ∥1,J on the space Hh(Ω) by

∥v∥
2
1,J :=


K∈Kh

∥v∥
2
0,K +


K∈Kh

∥∇v∥
2
0,K +


e∈Eo

h

h−1
∥[v]∥

2
0,e.



S. Lee et al. / Journal of Computational and Applied Mathematics 313 (2017) 410–426 415

By the trace inequality [44], this norm is equivalent to ∥ · ∥1,h. For any penalty parameter σ > 0, the boundedness of the
bilinear form aσ

h (·, ·) can be shown easily by definition. The coerciveness of aσ
h (·, ·) is obtained as follows. From [17], it holds

that
ah(v, v) ≥ C


K∈Kh

∥v∥
2
0,K , ∀v ∈ Nh(Ω),

where C is a positive constant which is independent of mesh size h and interface Γ under the assumptions (H1) and (H2).
We also have

ah(v, v) ≥ |βmin|

K∈Kh

∥∇v∥
2
0,K , jσ (v, v) ≥ σ


e∈Eo

h

h−1
∥[v]∥

2
0,e.

Hence, the coerciveness and boundedness of the bilinear form aσ
h (·, ·) are satisfied.

Lemma 3.1. There exist positive constants Cb andCc which are independent of interface under the assumptions (H1) and (H2) such
that

|aσ
h (u, v)| ≤ Cb∥u∥1,J∥v∥1,J , ∀ u, v ∈ Hh(Ω),

aσ
h (v, v) ≥ Cc∥v∥

2
1,J , ∀ v ∈ Nh(Ω).

The following error estimate for (9) can be obtained by a slightmodification of the proof in [17] by noting that jσ (u, v) = 0
for any u ∈ H2(Ω) and v ∈ Nh(Ω).

Theorem 3.2. Let u ∈ H2(Ω), ûh ∈ Nh(Ω) be the solutions of (3) and (9), respectively. Assume that the solution u satisfies
β∇u ∈


H1(Ω)

2. Then there exists a constant C > 0 independent of the mesh size h and the location of interface under the
assumptions (H1) and (H2) such that

∥u − ûh∥0,Ω + h∥u − ûh∥1,J ≤ Ch2
∥f ∥0,Ω .

The IFEM for the eigenvalue problem (1) is to find the pairs (λh, ûh) ∈ R+ ×Nh(Ω) such that

aσ
h (ûh, φ̂) = λh(ûh, φ̂), ∀φ̂ ∈ Nh(Ω).

Let us define the discrete solution operator Th : L2(Ω) → Nh(Ω) by

aσ
h (Thf , φ̂) = (f , φ̂), ∀φ̂ ∈ Nh(Ω)

with f ∈ L2(Ω). In view of the definition of the discrete solution operator Th, the eigenvalues µh of the operator Th are given
by µh = 1/λh.

4. Spectral approximation

Now we are concerned with the spectral approximation that can be proved by using some properties of compact
operators in Banach space. We follow the approaches given in [31,32].

Clearly, the operator T is self-adjoint and bounded. Similarly, the operator Th is self-adjoint onNh(Ω) such that
aσ
h (Thf , φ) = aσ

h (f , Thφ), ∀f , φ ∈ Nh(Ω).

Next, the boundedness of the operator Th can be shown by using the coerciveness of the bilinear form aσ
h (·, ·). For any

f ∈ L2(Ω), it holds that

∥Thf ∥2
1,J ≤ Caσ

h (Thf , Thf )

= C(f , Thf )
≤ C∥f ∥0,Ω∥Thf ∥0,Ω

≤ C∥f ∥0,Ω∥Thf ∥1,J .

Therefore, ∥Thf ∥1,J ≤ C∥f ∥0,Ω .
The operator T is compact in H1

0 (Ω) due to the boundedness of T and Rellich–Kondrachov theorem i.e. the compact
embedding H1

0 (Ω) ⊂ L2(Ω) [34]. Clearly, the operator Th is compact in Hh(Ω) by the definition of Th.
In order to obtain uniform convergence of Th to T from Theorem 3.2, we assume β∇(Tf ) ∈


H1(Ω)

2 for f ∈ L2(Ω).
Let σ(T ) and ρ(T ) be the spectrum and resolvent set of T , respectively. The spectrum σ(T ) is a countable set with no

accumulation points different from zero and consists of positive real eigenvalues with finite multiplicity [45]. The algebraic
multiplicity of each eigenvalueµ ∈ σ(T ) is equal to the geometric multiplicity due to the self-adjointness and compactness
of the operator T [45]. For any z ∈ ρ(T ), the resolvent operator Rz(T ) is defined by Rz(T ) = (z−T )−1 from L2(Ω) to L2(Ω) or
from H1

0 (Ω) to H1
0 (Ω). Following Refs. [31,32], we prove the non-pollution of the spectrum. To do so, we need the following

results.
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Lemma 4.1. For z ∈ ρ(T ), z ≠ 0, there is a constant C > 0 depending on only Ω and |z| such that

∥(z − T )f ∥1,J ≥ C∥f ∥1,J , ∀f ∈ Hh(Ω).

Proof. Let g = (z − T )f . We need to show ∥f ∥1,J ≤ C∥g∥1,J . From the definition of T and g , we have the equalities,

a(Tf , v) = a(zf − g, v) = (f , v), ∀v ∈ H1
0 (Ω). (10)

Reformulating the second equality in (10), we obtain

a(zf − g, v) −
1
z
(zf − g, v) =

1
z
(g, v), ∀v ∈ H1

0 (Ω). (11)

Since z ∈ ρ(T ), the inverse z−1 is not an eigenvalue of a(·, ·). Hence zf − g is the solution of the weak formulation (11). By
using Theorem 2.1, we have

∥zf − g∥1,J ≤ C
1
|z|

∥g∥0,Ω ≤ C
1
|z|

∥g∥1,J . (12)

From the triangle inequality and (12), it follows immediately that

∥f ∥1,J ≤
1
|z|

(∥zf − g∥1,J + ∥g∥1,J)

≤
1
|z|


C

1
|z|

∥g∥1,J + ∥g∥1,J


≤ C(|z|)∥g∥1,J ,

where C(|z|) is a constant depending on |z|. �

Theorem 4.2. For z ∈ ρ(T ), z ≠ 0, there is a constant C > 0 depending only on Ω and |z| such that for h small enough

∥(z − Th)f ∥1,J ≥ C∥f ∥1,J , ∀f ∈ Hh(Ω).

In other words, the resolvent operator Rz(Th) = (z − Th)−1 is bounded.

Proof. By Theorem 3.2 and Lemma 4.1, we get

∥(z − Th)f ∥1,J ≥ ∥(z − T )f ∥1,J − ∥(T − Th)f ∥1,J

≥ (C1(|z|) − C2h)∥f ∥1,J

≥ C(|z|)∥f ∥1,J ,

for h small enough. �

Before we state the following Corollary, we denote an operator norm ∥L∥L (X,Y ) for a bounded linear operator L : X → Y
by

∥L∥L (X,Y ) = sup
x∈X

∥Lx∥Y

∥x∥X
. (13)

Corollary 4.3. Let F ⊂ ρ(T ) be closed, then

∥Rz(Th)∥L (Hh(Ω),Hh(Ω)) ≤ C, ∀z ∈ F ,

for some constant C.

The following result is a direct consequence of Corollary 4.3. We note that the proof is analogous to Theorem 1 in [31].

Theorem 4.4 (Non-Pollution of the Spectrum). Let A ⊂ R+ be an open set containing σ(T ). Then for sufficiently small h,
σ(Th) ⊂ A.

This implies that there are no discrete spurious eigenvalues of the solution operator Th.
Now we turn to show the non-pollution and completeness of the eigenspace [31,32]. Let µ be an eigenvalue of T with

algebraic multiplicity n. We define the spectral projection E(µ) from L2(Ω) into H1
0 (Ω) by

E(µ) =
1

2π i


Λ

Rz(T ) dz,
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where Λ is a Jordan curve in C containing µ, which lies in ρ(T ) and does not enclose any other points of σ(T ) [45]. By
Corollary 4.3, the discrete resolvent operator Rz(Th) is bounded. Therefore, we can define the discrete spectral projection
Eh(µ) from L2(Ω) into Hh(Ω) by

Eh(µ) =
1

2π i


Λ

Rz(Th) dz.

The projections E(µ) and Eh(µ) are simply denoted by E and Eh, respectively. The following theorem provides the uniform
convergence of spectral projections.

Theorem 4.5. It holds that

lim
h→0

∥E − Eh∥L (L2(Ω),Hh(Ω)) = 0.

Proof. By using the resolvent identity

Rz(T ) − Rz(Th) = Rz(Th)(T − Th)Rz(T ),

we obtain for f ∈ L2(Ω),

∥(E − Eh)f ∥1,J ≤ C∥(Rz(T ) − Rz(Th))f ∥1,J

= C∥Rz(Th)(T − Th)Rz(T )f ∥1,J

≤ C∥Rz(Th)∥L (Hh(Ω),Hh(Ω))∥T − Th∥L (L2(Ω),Hh(Ω))

· ∥Rz(T )∥L (L2(Ω),L2(Ω))∥f ∥L2(Ω).

For h small enough, ∥Rz(Th)∥L (Hh(Ω),Hh(Ω)) and ∥Rz(T )∥L (L2(Ω),L2(Ω)) are bounded by Theorem 4.2 and Fredholm
alternative [46], respectively. The operator norm∥T−Th∥L (L2(Ω),Hh(Ω)) goes to zero ash → 0. Theproof is nowcomplete. �

We are now in a position to show the boundedness of the distance between eigenspaces. Such a distance for any closed
subspaces of Hh(Ω) may be evaluated by means of distance functions

disth(x, Y ) = inf
y∈Y

∥x − y∥1,J , disth(Y , Z) = sup
y∈Y ,∥y∥1,J=1

disth(y, Z),

dist (Y , Z) = max(disth(Y , Z), disth(Z, Y )).

The following results are analogous to Theorem 4.5, whose proofs can be obtained as in [31].

Theorem 4.6. • (Non-pollution of the eigenspace)

lim
h→0

disth(Eh(Hh(Ω)), E(H1
0 (Ω))) = 0.

• (Completeness of the eigenspace)

lim
h→0

disth(E(H1
0 (Ω)), Eh(Hh(Ω))) = 0.

It remains to show that the distance between the spectrums of T and Th vanishes as h goes to zero.

Theorem 4.7 (Completeness of the Spectrum). For all z ∈ σ(T ),

lim
h→0

disth(z, σ (Th)) = 0.

Proof. The proof follows from Theorem 6 in [31]. �

5. Convergence analysis

In this section, we present the convergence analysis of eigenvalues. By using the spectral properties of compact operators
in the previous section, we show the convergence rate of eigenvalues.

Theorem 5.1. Let µ be an eigenvalue of T with multiplicity n. Assume that the corresponding eigenfunction u satisfies β∇u ∈
H1(Ω)

2. Then for h small enough there exist n eigenvalues {µ1,h, . . . , µn,h} of Th which converge to µ in such a way that

sup
1≤i≤n

|µ − µi,h| ≤ Ch2,

where a positive constant C is independent of µ, the mesh size h, and the location of interface under the assump-
tions (H1) and (H2) .
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Fig. 4. The operators Sh and T̃h .

Proof. The existence of µi,h is a direct consequence of the previous section. Now we estimate the convergence rate of µi,h.
Let Φh be the restriction of Eh to E(L2(Ω)):

Φh = Eh|E(L2(Ω)) : E(L2(Ω)) → Eh(Hh(Ω)).

Following the arguments in [29,30], we can show that the inverse Φ−1
h : Eh(Hh(Ω)) → E(L2(Ω)) is bounded for h small

enough. To show Φ−1
h is defined, let Φhf = 0 with f ∈ E(L2(Ω)). Then by Theorem 4.5, we have

∥f ∥0,Ω = ∥f − Φhf ∥0,Ω = ∥Ef − Ehf ∥0,Ω ≤ ∥E − Eh∥L (L2(Ω),Hh(Ω))∥f ∥0,Ω .

Thus Φh is one-to-one. By Theorem 4.6, Φh is onto such that the inverse Φ−1
h is defined. Nowwe show that Φ−1

h is bounded.
For f ∈ E(L2(Ω)) and h small enough,

∥Φhf ∥0,Ω ≥ ∥f ∥0,Ω − ∥f − Φhf ∥0,Ω

= ∥f ∥0,Ω − ∥Ef − Ehf ∥0,Ω

≥ (1 − ∥E − Eh∥L (L2(Ω),Hh(Ω)))∥f ∥0,Ω

≥
1
2
∥f ∥0,Ω .

Hence the inverse Φ−1
h is bounded.

LetT be the restriction of T to E(L2(Ω)) and defineTh := Φ−1
h ThΦh. Setting Sh = Φ−1

h Eh : L2(Ω) → E(L2(Ω)) (see Fig. 4),
we see that Sh is bounded and Shf = f for any f ∈ E(L2(Ω)). By definitions ofT ,Th, Sh, Φh, and the properties ThEh = EhTh
and Tf ∈ E(L2(Ω)), we have for any f ∈ E(L2(Ω)),

(T −Th)f = Tf − Φ−1
h ThΦhf

= ShTf − Φ−1
h ThEhf

= ShTf − Φ−1
h EhThf

= Sh(T − Th)f .

By definition of operator norm (13) and Theorem 3.2, we have

sup
1≤i≤n

|µ − µi,h| ≤ C∥T −Th∥L (E(L2(Ω)),E(L2(Ω)))

= C sup
f∈E(L2(Ω))

∥(T −Th)f ∥0,Ω

∥f ∥0,Ω

= C sup
f∈E(L2(Ω))

∥Sh(T − Th)f ∥0,Ω

∥f ∥0,Ω

≤ C sup
f∈E(L2(Ω))

∥(T − Th)f ∥0,Ω

∥f ∥0,Ω

≤ Ch2 .

Remark 1. Theorem 5.1 can be expressed in terms of the eigenvalues λ = µ−1 and λi,h = µ−1
i,h as

|λ − λi,h|

|λi,h|
≤ C1h2.
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Fig. 5. Example of mesh generation. The inner broken line represents the interface Γ .

For h small enough, we derive the estimate for the relative error

|λ − λi,h|

|λ|
≤

C1h2

1 − C1|λ|h2
≤ Ch2.

6. Numerical results

We demonstrate numerical experiments for our model problem (1). In the first example, we test an elliptic eigenvalue
problem with a circular interface for which we know the exact eigensolutions. Next we perform experiments for the
cases with star-shaped interface and straight-line interface. We observe the optimal orders of convergence of numerical
eigenvalues. In our computations we use the package ARPACK [47] which is designed for solving large sparse eigenvalue
problems.

Example 1. Let a circular computational domain be Ω = {(r, θ) : 0 ≤ r ≤ RO, 0 ≤ θ < 2π} with an interface
Γ = {(r, θ) : r = RI , 0 ≤ θ < 2π}. The eigenpairs (λ, u) of the model problem (1) are given by u(x, y) = R(r)Θ(θ),

Θ(θ) = d1 cosmθ + d2 sinmθ,

R(r) =


c+

1 Jm


λ

β+
r


+ c+

2 Ym


λ

β+
r


, RI < r ≤ RO,

c−

1 Jm


λ

β−
r


, 0 ≤ r ≤ RI ,

where c±

i and di, i = 1, 2 are constants, and Jm and Ym the Bessel functions of the first and second kind of order m,
respectively. In the Appendix, we explain in more detail how the coefficients c±

i , di could be determined. We set RO = 1,
RI = 0.38 and (β−, β+) = (1, 1000), (1000, 1). It seems to be good to choose σ dependent on β , say σ = κβ for some
κ ≥ 0. The triangulation of the circular domain consists of quasi-regular triangles with the maximal diameter h, which may
intersect the interface Γ as Fig. 5. Tables 1 and 2 show the first ten eigenvalues λi, i = 1, 2, . . . , 10 in increasing order and
their rates of convergence. The first columns are the exact values and the other columns are the eigenvalues computed by
IFEM for varying h. From the second to sixth column, the meshes are generated so that the degree of freedom quadruples,
thus h nearly halves. The numbers in parentheses for each column show the order of convergence. We observe that the
order of convergence is quadratic and there are no spurious eigenvalues. Fig. 8 illustrates two eigenfunctions corresponding
to eigenvalues λ1 and λ2 in the case of β−

= 1, β+
= 1000. The cases with other values of RI and β show similar results,

although we do not present here.

Nowwe investigate the influence of penalty parameter σ in (9). Numerical results with various choices of σ are depicted
in Figs. 6 and 7.We observe the optimal convergence of eigenfunctions which are corresponding to λ1, λ2, λ4 together with
the case of σ = 0 in Fig. 7. For all the results in Fig. 7, the second and first order convergence of eigenfunctions in L2 norm
and energy normwith respect toHh(Ω) are clearly shown. This confirms that the IFEM (including the case of σ = 0) satisfies
the following approximation properties for eigenfunction u,

inf
vh∈Nh(Ω)

∥u − vh∥0,Ω ≤ C1h2
∥u∥H2(Ω), inf

vh∈Nh(Ω)

∥u − vh∥1,J ≤ C2h∥u∥H2(Ω),
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Table 1
Eigenvalues computed by IFEM in Fig. 5 when coefficients β−

= 1, β+
= 1000 and penalty parameter σ = β . (ord) in the first row represents the

convergence rate.

λexact h = 1/25 (ord) h = 1/26 (ord) h = 1/27(ord) h = 1/28(ord) h = 1/29(ord)

39.972 40.018 (2.11) 39.982 (2.15) 39.974 (1.99) 39.972 (2.08) 39.972 (1.99)
101.523 101.744 (2.40) 101.566 (2.33) 101.533 (2.02) 101.525 (2.12) 101.523 (2.17)
101.523 101.772 (2.52) 101.573 (2.31) 101.534 (2.18) 101.525 (2.13) 101.523 (2.18)
182.473 183.212 (2.64) 182.626 (2.27) 182.507 (2.18) 182.481 (2.20) 182.475 (2.25)
182.473 183.522 (2.56) 182.636 (2.68) 182.507 (2.27) 182.481 (2.16) 182.475 (2.27)
210.604 211.120 (1.82) 210.723 (2.11) 210.635 (1.96) 210.612 (2.00) 210.606 (2.00)
281.713 283.846 (2.54) 282.098 (2.46) 281.792 (2.29) 281.730 (2.18) 281.716 (2.28)
281.713 284.413 (2.67) 282.140 (2.66) 281.798 (2.32) 281.731 (2.25) 281.717 (2.29)
340.329 341.615 (2.00) 340.625 (2.11) 340.404 (1.98) 340.347 (2.06) 340.333 (2.08)
340.329 341.799 (2.16) 340.643 (2.22) 340.405 (2.04) 340.347 (2.05) 340.333 (2.09)

D.O.F 14744 59386 232605 932343 3732735

Table 2
Eigenvalues computed by IFEM in Fig. 5 when coefficients β−

= 1000, β+
= 1 and penalty parameter σ = β . (ord) in the first row represents the

convergence rate.

λexact h = 1/25 (ord) h = 1/26 (ord) h = 1/27(ord) h = 1/28(ord) h = 1/29(ord)

6.047 6.049 (2.01) 6.047 (1.99) 6.047 (2.00) 6.047 (1.98) 6.047 (1.98)
27.355 27.380 (2.35) 27.360 (2.33) 27.356 (2.19) 27.355 (2.13) 27.355 (2.46)
27.355 27.382 (2.42) 27.360 (2.36) 27.356 (2.26) 27.355 (2.12) 27.355 (2.46)
34.126 34.175 (2.49) 34.135 (2.44) 34.128 (2.24) 34.126 (2.13) 34.126 (2.33)
34.126 34.183 (2.42) 34.136 (2.54) 34.128 (2.28) 34.126 (2.16) 34.126 (2.35)
39.742 39.766 (2.08) 39.748 (1.99) 39.744 (2.03) 39.743 (1.96) 39.742 (2.01)
45.091 45.171 (2.12) 45.104 (2.54) 45.094 (2.21) 45.091 (2.11) 45.091 (2.23)
45.091 45.176 (2.62) 45.106 (2.44) 45.094 (2.27) 45.091 (2.17) 45.091 (2.27)
59.871 59.968 (2.40) 59.890 (2.31) 59.875 (2.17) 59.872 (2.09) 59.871 (2.17)
59.871 59.990 (2.21) 59.892 (2.50) 59.875 (2.20) 59.872 (2.14) 59.871 (2.17)

D.O.F 14744 59386 232605 932343 3732735

where C1 and C2 are positive constants independent of interface location under the assumptions (H1) and (H2) . The results
show non-pollution and completeness of eigenspace, and an optimal convergence order. Fig. 6 illustrates convergence
behavior of eigenvaluesλ1,λ2, λ4, λ6. For someeigenvalues such asλ2, λ4 in Fig. 6,we observe that the rates of convergence
oscillate. Despite such oscillatory rates, the average convergence order of eigenvalues is roughly quadratic (see Fig. 6). We
added the penalty term in (9) to avoid such fluctuations. For small values of σ , fluctuations in the convergence order of
eigenvalues are observed (see λ2, λ4 in Fig. 6). If we choose large values of σ , absolute values of errors become larger since
the dependence of σ for the constants C in Theorem 5.1 becomes dominant. Based on a variety of numerical experiments,
we observe robust convergence behaviors for eigenvalues in the cases of σ = β, 10β, 100β .

Example 2. Let a computational domain be Ω = [−1, 1]2 and a star-shaped interface is given by Γ = {(x, y) :

x2 + y2 −

0.2 sin(5θ − π/5) + 0.5 = 0}, where θ = tan−1(y/x). In this example, we consider the model problem (1) with variable
coefficients. The coefficients β±(x, y) are given as follows:

β−(x, y) = 10 + 5 cos(xy + 10), β+(x, y) = x2 + y2.

Our computation is performed on a uniform mesh in Fig. 9. Since the exact eigenvalues are not available, we use the
numerical results on a sufficiently refined mesh with mesh size h = 2−10 as the reference eigenvalues for the purpose of
estimating the orders. Table 3 contains errors of the eigenvaluesλh with variousmesh size h.Wedisplay someeigenfunctions
in Fig. 10.

Example 3. We consider the problem (1) with a straight-line interface. Let subdomains Ω− and Ω+ be

Ω−
:= {(x, y) : y < 0.5x − 0.2}, Ω+

:= {(x, y) : y > 0.5x − 0.2}. (14)

The example of mesh for this experiment is shown in Fig. 9. Table 4 shows the first ten eigenvalues and their rates of
convergence in the case of (β−, β+) = (100, 1). The reference solutions in the first column are computed from very fine
mesh size h = 2−10. The results in Table 4 are in good agreement with our theoretical analysis in the previous sections. We
display eigenfunctions of λ1 and λ3 in Fig. 11.

7. Conclusion

In this paper, we present an elliptic eigenvalue problem with an interface and adapt a P1-nonconforming IFEM whose
analysis for source problems is established in [17]. The spectral analysis starts from formulating the eigenvalue problem
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Fig. 6. The log–log plot of mesh size h versus the relative error of eigenvalues λ1, λ2, λ4, λ6 with penalty parameter σ = 0 (triangle), σ = 10−1β

(asterisk), σ = β (circle), σ = 10β (plus sign) and σ = 100β (cross). The broken line represents the convergence rate.

Table 3
First ten eigenvalues calculated by IFEM in Example 2 in the case of variable coefficients β−(x, y) = 10+5 cos(xy+10), β+(x, y) = x2 + y2 . The reference
eigenvalues λref in the first column are computed with mesh size h = 1/210 . The numbers in parentheses show convergence rates. (ord) in the first row
represents the convergence rate.

λref h = 1/24 (ord) h = 1/25 (ord) h = 1/26 (ord) h = 1/27 (ord) h = 1/28 (ord)

4.139 4.183 (2.11) 4.150 (2.04) 4.142 (1.99) 4.140 (2.25) 4.139 (2.23)
16.502 17.052 (1.93) 16.643 (1.97) 16.534 (2.10) 16.509 (2.17) 16.503 (2.30)
16.605 17.153 (1.93) 16.736 (2.07) 16.631 (2.30) 16.611 (2.22) 16.606 (2.50)
19.868 20.515 (2.11) 20.029 (2.01) 19.902 (2.21) 19.876 (2.10) 19.869 (2.24)
22.901 23.722 (1.89) 23.096 (2.07) 22.947 (2.09) 22.911 (2.12) 22.903 (2.19)
26.898 27.636 (1.96) 27.078 (2.03) 26.941 (2.05) 26.907 (2.13) 26.900 (2.19)
31.158 32.454 (1.81) 31.498 (1.93) 31.237 (2.11) 31.175 (2.16) 31.161 (2.29)
32.267 33.546 (1.88) 32.560 (2.13) 32.338 (2.04) 32.282 (2.20) 32.270 (2.35)
36.817 38.398 (1.88) 37.201 (2.04) 36.908 (2.07) 36.837 (2.12) 36.821 (2.18)
38.376 40.009 (1.91) 38.775 (2.03) 38.466 (2.14) 38.396 (2.15) 38.380 (2.27)

Table 4
First ten eigenvalues calculated by IFEM in Example 3 in the case of coefficients β−

= 100, β+
= 1. The reference eigenvalues λref in the first column are

computed with mesh size h = 1/210 . The numbers in parentheses show convergence rates. (ord) in the first row represents the convergence rate.

λref h = 1/24 (ord) h = 1/25 (ord) h = 1/26 (ord) h = 1/27 (ord) h = 1/28 (ord)

16.246 16.384 (1.98) 16.277 (2.19) 16.254 (1.98) 16.248 (2.11) 16.247 (2.06)
29.327 29.765 (1.99) 29.417 (2.28) 29.350 (1.99) 29.332 (2.11) 29.328 (2.05)
43.906 44.798 (1.99) 44.092 (2.26) 43.953 (1.99) 43.917 (2.10) 43.908 (2.05)
47.775 49.002 (2.00) 48.050 (2.16) 47.845 (1.99) 47.792 (2.07) 47.779 (2.06)
62.893 64.720 (1.98) 63.258 (2.32) 62.984 (2.01) 62.914 (2.11) 62.898 (2.05)
70.654 73.191 (1.98) 71.207 (2.20) 70.792 (2.00) 70.686 (2.07) 70.661 (2.06)
84.750 87.997 (1.99) 85.412 (2.29) 84.913 (2.02) 84.788 (2.10) 84.759 (2.06)
89.980 93.757 (2.00) 90.848 (2.12) 90.197 (2.00) 90.032 (2.06) 89.992 (2.06)
97.993 103.090 (1.99) 99.116 (2.18) 98.274 (2.00) 98.060 (2.07) 98.009 (2.06)
110.748 116.059 (1.99) 111.834 (2.29) 111.015 (2.02) 110.810 (2.10) 110.763 (2.06)
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Fig. 7. The log–log plot of mesh size h versus the error of eigenfunctions ui corresponding to λi, i = 1, 2, 4 with penalty parameter σ = 0 (triangle),
σ = 10−1β (asterisk), σ = β (circle), σ = 10β (plus sign) and σ = 100β (cross). The broken line represents the convergence rate. Top row: error of
eigenfunction u1; middle row: error of eigenfunction u2; bottom row: error of eigenfunction u4 .

Fig. 8. Eigenfunctions corresponding to eigenvalues λ1 and λ2 in Example 1 in the case of (β−, β+) = (1, 1000).
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Fig. 9. Star-shaped interface and straight-line interface.

Fig. 10. Eigenfunctions corresponding to eigenvalues λ4 and λ6 in Example 2.

Fig. 11. Eigenfunctions corresponding to eigenvalues λ1 and λ3 in Example 3.

with interface in terms of a solution operator. By using the fact that the solution operator is compact, we show the
spectral correctness of IFEM; non-pollution and completeness of the spectrum, and non-pollution and completeness of
the eigenspace. Also, an optimal order of convergence for eigenvalues is derived by the approximation properties of IFEM.
A series of numerical results with various shapes of interface verify our theoretical results. We observe that the order of
convergence for eigenvalues is quadratic. Moreover, we present the optimal convergence of eigenfunctions in the example
where the analytic eigensolutions are available. Finally, themethod can be applied to the numerical study of stability analysis
which plays an important role in many physical problems involving interface. In particular, the results of this paper can be
extended to analyze a vibration of composite elastic membranes [48], phase transitions in solid–liquid systems [49], and
incompressible flows subject to moving interfaces and rigid boundaries [12,22].
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Appendix

We show how the eigenvalues from Example 1 in Section 6 can be determined in an analytical way. Recall the domain
Ω = {(r, θ) : 0 ≤ r ≤ RO, 0 ≤ θ < 2π} and the interface Γ = {(r, θ) : r = RI , 0 ≤ θ < 2π}. The eigenfunction
u(x, y) can be determined by the separation of variables, i.e. u(x, y) = R(r)Θ(θ). The model problem (1) is rewritten in
polar coordinates as follows:

∂2R
∂r2

Θ +
1
r

∂R
∂r

Θ +
1
r2

R
∂2Θ

∂θ2
= −

λ

β
RΘ in Ω s, s = ±, (A.1)

[R(r)]Γ = 0,

βr

∂R(r)
∂r


Γ

= 0, (A.2)

R(r) = 0 on ∂Ω. (A.3)

A reformulation of Eq. (A.1) is

r2R′′
+ rR′

+
λ
β
r2R

R
= −

Θ ′′

Θ
= m2 in Ω s, s = ±. (A.4)

The second relation in (A.4) gives Θ(θ) = d1 cosmθ + d2 sinmθ . It also establishes thatm is an integer since we must have
the same value at θ = 0 and θ = 2π . The first relation in (A.4) is the Bessel equation

r2R′′
+ rR′

+


λ

β
r2 − m2


R = 0 in Ω s, s = ±.

Recall that β and λ are positive by the properties of the model problem (1). We obtain R(r) as follows:

R(r) =


c+

1 Jm


λ

β+
r


+ c+

2 Ym


λ

β+
r


, in Ω+,

c−

1 Jm


λ

β−
r


+ c−

2 Ym


λ

β−
r


, in Ω−,

where Jm and Ym are the Bessel functions of the first and second kind of order m. Since Jm is analytic and Ym is singular at
the origin, we have c−

2 = 0. The coefficients c+

1 , c+

2 , c−

1 are determined by (A.2) and (A.3). The condition (A.3) leads to the
equation

c+

1 Jm


λ

β+
RO


+ c+

2 Ym


λ

β+
RO


= 0. (A.5)

By using the first relation of (A.2), we obtain the equation

c+

1 Jm


λ

β+
RI


+ c+

2 Ym


λ

β+
RI


= c−

1 Jm


λ

β−
RI


. (A.6)

The second part of (A.2) gives

β+


c+

1
d
dr


Jm


λ

β+
r


+ c+

2
d
dr


Ym


λ

β+
r


= β−c−

1
d
dr


Jm


λ

β−
r


on r = RI . (A.7)

From Eqs. (A.5), (A.6), and (A.7), we have a homogeneous matrix equation

Ac = 0, (A.8)
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where

A =



Jm


λ

β+
RO


Ym


λ

β+
RO


0

Jm


λ

β+
RI


Ym


λ

β+
RI


−Jm


λ

β−
RI



β+
d
dr


Jm


λ

β+
r


r=RI

β+
d
dr


Ym


λ

β+
r


r=RI

−β−
d
dr


Jm


λ

β−
r


r=RI


and c = [c+

1 , c+

2 , c−

1 ]
T . A nonzero solution of (A.8) exists when the determinant of the matrix A is zero. For each index m,

the eigenvalues λ from (A.1) coincide with the roots of the determinant of the matrix A, which can be easily calculated by
any root-finding method such as bisection method.

References

[1] B. Deka, T. Ahmed, Convergence of finite element method for linear second-order wave equations with discontinuous coefficients, Numer. Methods
Partial Differential Equations 29 (2013) 1522–1542.

[2] C. Zhang, R.J. LeVeque, The immersed interfacemethod for acoustic wave equationswith discontinuous coefficients,WaveMotion 25 (1997) 237–263.
[3] S. Badia, R. Codina, A combined nodal continuous-discontinuous finite element formulation for theMaxwell problem, Appl. Math. Comput. 218 (2011)

4276–4294.
[4] R. Hiptmair, J. Li, J. Zou, Convergence analysis of finite elementmethods forH(curl; Ω)-elliptic interface problems, Numer. Math. 122 (2012) 557–578.
[5] C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (1977) 220–252.
[6] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.
[7] R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005) 239–261.
[8] N.Moës, J. Dolbow, T. Belytschko, A finite elementmethod for crack growthwithout remeshing, Internat. J. Numer.Methods Engrg. 46 (1999) 131–150.
[9] T.P. Fries, T. Belytschko, The extended/generalized finite elementmethod: An overview of themethod and its applications, Internat. J. Numer.Methods

Engrg. 84 (2010) 253–304.
[10] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal.

31 (1994) 1019–1044.
[11] Z. Li, T. Lin, X. Wu, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math. 96 (2003) 61–98.
[12] S. Adjerid, N. Chaabane, T. Lin, An immersed discontinuous finite elementmethod for Stokes interface problems, Comput. Methods Appl. Mech. Engrg.

293 (2015) 170–190.
[13] D.Y. Kwak, S. Jin, D.H. Kyeong, A stabilized P1 immersed finite element method for the interface elasticity problems, arXiv:1408.4227.
[14] T. Lin, D. Sheen, X. Zhang, A locking-free immersed finite elementmethod for planar elasticity interface problems, J. Comput. Phys. 247 (2013) 228–247.
[15] S.H. Chou, D.Y. Kwak, K.T.Wee, Optimal convergence analysis of an immersed interface finite elementmethod, Adv. Comput.Math. 33 (2010) 149–168.
[16] S. Hou, X.D. Liu, A numerical method for solving variable coefficient elliptic equation with interfaces, J. Comput. Phys. 202 (2005) 411–445.
[17] D.Y. Kwak, K.T. Wee, K.S. Chang, An analysis of a broken P1-nonconforming finite element method for interface problems, SIAM J. Numer. Anal. 48

(2010) 2117–2134.
[18] Z. Li, T. Lin, Y. Lin, R.C. Rogers, An immersed finite element space and its approximation capability, Numer. Methods Partial Differential Equations 20

(2004) 338–367.
[19] K.S. Chang, D.Y. Kwak, Discontinuous bubble scheme for elliptic problemswith jumps in the solution, Comput. Methods Appl. Mech. Engrg. 200 (2011)

494–508.
[20] Y. Gong, B. Li, Z. Li, Immersed-interface finite-elementmethods for elliptic interface problemswith nonhomogeneous jump conditions, SIAM J. Numer.

Anal. 46 (2008) 472–495.
[21] D.N. Arnold, F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math.

Anal. Numér. 19 (1985) 7–32.
[22] M. Crouzeix, P.A. Raviart, Conforming and nonconforming finite elementmethods for solving the stationary Stokes equations I, Rev. Fr. Autom. Inform.

Rech. Oper. 7 (1973) 33–75.
[23] M.G. Larson, A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems, SIAM J. Numer.

Anal. 38 (2000) 608–625.
[24] S. Giani, I.G. Graham, A convergent adaptive method for elliptic eigenvalue problems, SIAM J. Numer. Anal. 47 (2009) 1067–1091.
[25] E.A. Dari, R.G. Durán, C. Padra, A posteriori error estimates for non-conforming approximation of eigenvalue problems, Appl. Numer. Math. 62 (2012)

580–591.
[26] D. Boffi, Approximation of eigenvalues in mixed form, discrete compactness property, and application to hp mixed finite elements, Comput. Methods

Appl. Mech. Engrg. 196 (2007) 3672–3681.
[27] D. Boffi, F. Brezzi, L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form, Math. Comp. 69

(2000) 121–140.
[28] B. Mercier, J.E. Osborn, J. Rappaz, P.A. Raviart, Eigenvalue approximation by mixed and hybrid methods, Math. Comp. 36 (1981) 427–453.
[29] I. Babuška, J.E. Osborn, Eigenvalue Problems, in: Handb. Numer. Anal., vol. II, North-Holland, Amsterdam, 1991.
[30] J.E. Osborn, Spectral approximation for compact operators, Math. Comp. 29 (1975) 712–725.
[31] J. Descloux, N. Nassif, J. Rappaz, On spectral approximation. I. The problem of convergence, RAIRO Anal. Numér. 12 (1978) 97–112.
[32] J. Descloux, N. Nassif, J. Rappaz, On spectral approximation. II. Error estimates for the Galerkin method, RAIRO Anal. Numér. 12 (1978) 113–119.
[33] P.F. Antonietti, A. Buffa, I. Perugia, Discontinuous Galerkin approximation of the Laplace eigenproblem, Comput. Methods Appl. Mech. Engrg. 195

(2006) 3483–3503.
[34] R.A. Adams, J.J.F. Fournier, Sobolev Spaces, second ed., Elsevier, Amsterdam, 2003.
[35] J.H. Bramble, J.T. King, A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math. 6

(1996) 109–138.
[36] O.A. Ladyženskaja, V.J. Rivkind, N.N. Ural’ceva, Solvability of diffraction problems in the classical sense, Tr. Mat. Inst. Steklova 92 (1966) 116–146.
[37] J.W. Barrett, C.M. Elliott, Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal. 7 (1987)

283–300.
[38] G. Strang, G. Fix, An Analysis of the Finite Element Method, second ed., Wellesley-Cambridge Press, Wellesley, MA, 2008.
[39] J.H. Bramble, J.T. King, A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries, Math. Comp. 63

(1994) 1–17.

http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref1
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref2
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref3
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref4
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref5
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref6
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref7
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref8
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref9
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref10
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref11
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref12
http://arxiv.org/1408.4227
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref14
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref15
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref16
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref17
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref18
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref19
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref20
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref21
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref22
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref23
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref24
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref25
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref26
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref27
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref28
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref29
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref30
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref31
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref32
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref33
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref34
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref35
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref36
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref37
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref38
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref39


426 S. Lee et al. / Journal of Computational and Applied Mathematics 313 (2017) 410–426

[40] M. Vanmaele, A. Ženíšek, External finite element approximations of eigenvalue problems, RAIRO Modél. Math. Anal. Numér. 27 (1993) 565–589.
[41] E. Hernández, R. Rodríguez, Finite element approximation of spectral problems with Neumann boundary conditions on curved domains, Math. Comp.

72 (2003) 1099–1115.
[42] S. Adjerid, M. Ben-Romdhane, T. Lin, Higher degree immersed finite element methods for second-order elliptic interface problems, Int. J. Numer. Anal.

Model. 11 (2014) 541–566.
[43] S. Adjerid, T. Lin, A pth degree immersed finite element for boundary value problems with discontinuous coefficients, Appl. Numer. Math. 59 (2009)

1303–1321.
[44] D.N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982) 742–760.
[45] T. Kato, Perturbation Theory for Linear Operators, in: Classics in Mathematics, Springer-Verlag, Berlin, 1995.
[46] J.B. Conway, A Course in Functional Analysis, second ed., Springer-Verlag, Berlin, 1990.
[47] R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods,

SIAM, Philadelphia, 1998.
[48] L.M. Cureton, J.R. Cureton, Eigenvalues of the Laplacian on regular polygons and polygons resulting from their dissection, J. Sound Vib. 220 (1999)

83–98.
[49] J. Prüss, G. Simonett, Stability of equilibria for the Stefan problem with surface tension, SIAM J. Math. Anal. 40 (2008) 675–698.

http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref40
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref41
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref42
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref43
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref44
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref45
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref46
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref47
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref48
http://refhub.elsevier.com/S0377-0427(16)30455-1/sbref49

	Immersed finite element method for eigenvalue problem
	Introduction
	Preliminaries
	Variational formulation
	Spectral approximation
	Convergence analysis
	Numerical results
	Conclusion
	Acknowledgment
	Appendix
	References


