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Abstract: In this paper, we introduce a new family of mixed finite element
spaces for elliptic problem on a domain partitioned by a class of distorted
hexahedra. We show an optimal order of approximation for the velocity variable
for all k ≥ 0. For the pressure variable, we suggest a local post-processing
technique to obtain an optimal order.
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1. Introduction

In this paper, we consider mixed finite element approximations of Darcy equa-
tions. Mixed finite element methods have been widely used to obtain an ac-
curate approximation of the velocity of a fluid in porous media (see [1], [2],
[3], [4], [5], [6], [7], [8], [9]). It is known that classical mixed finite element
spaces such as the Raviart-Thomas [1], Brezzi-Douglas-Marini [2] and Brezzi-
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Douglas-Fortin-Marini [3] spaces perform well for meshes consisting of triangles
or rectangles in two dimensions. However, for general quadrilateral meshes,
not all the classical mixed finite element spaces are optimal. Arnold et al. [10]
have recently shown that only Raviart-Thomas spaces are optimal in L2-norm.
In three dimensions, most spaces [7], [8], [9] are designed for cubes or paral-
lelepiped. Study for distorted hexahedra are rare. Naff et al. [11], [12], [13]
have shown that even the Raviart-Thomas-Nedelec mixed finite element spaces
[7], [8] do not show optimal orders of approximation.

The purpose of this paper is to introduce a new family of mixed finite
element spaces when the domain consists of distorted hexahedra having only
one pair of quadrilateral faces that are parallel but not necessarily congruent.
As usual, shape functions are defined through mappings from a reference cube:
Scalar functions are defined by a composition with a trilinear map; The vectors
are mapped by the Piola transformation. It can be shown that, when the
vectors in the classical Raviart-Thomas-Nedelec (RTN[k]) spaces are mapped
through the Piola transformation, the mapped spaces do not contain full set
of polynomials of degree k. This is the reason why one cannot obtain optimal
order of approximation. Our idea is to construct a new set of polynomials
S∗
k on the reference element which would retain the set of all polynomials of

degree k in the mapped space. Then we define proper degrees of freedom which
determine the element uniquely. We take S∗

k as the reference vector space V̂.

Next, we define the corresponding pressure space Ŵ by taking the divergence
of V̂. Thus we obtain a stable pair (V̂, Ŵ ) for which we show an optimal
order of approximation for the velocity variable for all k ≥ 0. For k = 0, our
new space is also optimal for the pressure variable. For k ≥ 1, we use a local
post-processing technique to obtain the optimal order. Thus we obtained a new
family of mixed finite element spaces which are optimal for both velocity and
pressure for all k ≥ 0. Near the completion of our paper, we have found out
that Falk et al. [14] have constructed a similar space for the lowest order case.

The organization of this paper is as follows: In the next section, we de-
scribe notations and basic material for mixed methods, focused on hexahedral
meshes. In section 3, we define our new spaces and prove the optimal order of
approximation for the velocity. Finally, a local post-processing technique for
the pressure is presented.
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2. The Mixed Finite Element Methods

We introduce notations for various function spaces. Let K be any distorted
hexahedron having at least one pair of quadrilateral faces that are parallel but
not necessarily congruent (see Fig. 1). We let

Pk(K) = {polynomials of total degree up to k },

Pk(K) = (Pk(K))3,

Qℓ,m,n(K) = {polynomials of degree up to ℓ,m and n

in x, y and z, respectively},

Q′
ℓ,m,n(K) = Span{xiyjzk | 0 ≤ i ≤ ℓ, 0 ≤ j ≤ m, 0 ≤ k ≤ n,

(i, j, k) 6= (ℓ,m, n)},

Qℓ,m′,n′(K) = Span{xiyjzk | 0 ≤ i ≤ ℓ, 0 ≤ j ≤ m,

0 ≤ k ≤ n, (j, k) 6= (m,n)}.

The spaces Qℓ′,m′,n(K) and Qℓ′,m,n′(K) are similarly defined. Define

Q′′
ℓ,m,n(K) ≡ Qℓ,m′,n′(K) ∩Qℓ′,m′,n(K) ∩Qℓ′,m,n′(K)

= Span{xiyjzk | 0 ≤ i ≤ ℓ, 0 ≤ j ≤ m, 0 ≤ k ≤ n,

(i, j) 6= (ℓ,m), (j, k) 6= (m,n) and(k, i) 6= (n, ℓ)}.

Finally, we define

ymznPℓ(x) = {ymznp(x) | p ∈ Pℓ(x)}.

The spaces xℓznPm(y) and xℓymPn(z) are similarly defined.
Let Ω be a bounded polyhedral domain in R

3 with the boundary ∂Ω. We
consider the following second order elliptic boundary value problem:

{

−div(κ∇p) = f, in Ω,
p = 0, on ∂Ω,

(1)

where f ∈ L2(Ω) and κ = κ(x) is a symmetric and uniformly positive definite
matrix, i.e., there exists two positive constants c1 and c2 such that

c1ξ
T ξ ≤ ξTκ(x)ξ ≤ c2ξ

T ξ, ∀ξ ∈ R
3, x ∈ Ω.

Let us introduce a vector variable u = −κ∇p. Then the problem (1) can be
factored to give the following first order system:







u+ κ∇p = 0, in Ω,
divu = f, in Ω,

p = 0, on ∂Ω.
(2)



574 J.H. Kim, D.Y. Kwak

In the mathematical modeling of fluid flow in porous media, u and p represent
the velocity and pressure, respectively. The first equation of (2), which relates u
and p, is called Darcy’s law, and the second equation represents the conservation
of mass. In the full system of equations for certain porous media problems such
as oil reservoir, these equations are coupled with a concentration equation.
Since the coupling is only through the velocity variable u, it is important to
get a very accurate approximation for the velocity u.

Now we introduce the function spaces

V = H(div ,Ω) = {v ∈ (L2(Ω))3 : divv ∈ L2(Ω)},

W = L2(Ω).

The weak form of the problem (2) appropriate for the mixed method is to find
(u, p) ∈ V ×W such that

{

(κ−1u,v)− (p,div v) = 0, ∀v ∈ V,
(divu, q) = (f, q), ∀q ∈W,

(3)

where (·, ·) indicates the inner product in L2(Ω) or (L2(Ω))3. Then it is well
known [15] that this problem has a unique solution pair (u, p) ∈ V ×W . Now
we consider finite element methods. Assume that we have some finite element
subspaces Vh ⊂ V andWh ⊂W . Then the mixed finite element approximation
(uh, ph) ∈ Vh ×Wh is defined as the solution of the following equations:

{

(κ−1uh,vh)− (ph,div vh) = 0, ∀vh ∈ Vh,
(divuh, qh) = (f, qh), ∀qh ∈Wh.

(4)

First, we consider the case when Ω is a domain partitioned into a family of
tetrahedrons, cubes or parallelepiped. Assume that Th = {K} is regular and
non-degenerate, i.e. Th satisfy the following two conditions [16]:

(i) if hK is the diameter ofK then the quantity h = maxK∈Th
hK approaches

zero.
(ii) if rK is the radius of the ball inscribed in K, then there exists a constant σ
such that hK/rK ≤ σ.
If the spaces Vh and Wh are chosen to satisfy the inf-sup condition and the
ellipticity on the kernel of the divergence operator, then we have the following
error estimates:

‖ u− uh ‖H(div ) + ‖ p− ph ‖0≤ C( inf
v∈Vh

‖ u− v ‖H(div ) + inf
q∈Wh

‖ p− q ‖0).

Next, we consider general hexahedral grids. Here we describe how the space Vh

are constructed via Piola transformation from a space of shape functions on a
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reference element. Let K̂ be a fixed reference element, typically unit cube with
vertices x̂i = (x̂i, ŷi, ẑi) and let K be a hexahedron with vertices xi = (xi, yi, zi)
for i = 1, . . . 8. Here we assume that there exists a one to one map FK from K̂
onto K satisfying

FK(x̂i) = xi, i = 1, . . . 8.

Let V̂(K̂) ⊂ H(div , K̂) be a given finite dimensional space of vector fields on
K̂. We describe how the space Vh is constructed from V̂(K̂). Define u = PF û

by

u(x) = PF û(x̂) = |JK(x̂)|−1DFK(x̂)û(x̂), û ∈ V̂(K̂),

where x = FK(x̂), DFK is the Jacobian matrix of the mapping FK and JK is
its determinant. The transformation PF is called a Piola transformation. Then
the Piola transformation has the following well-known properties [1], [17]:

divv =
1

|JK |
ˆdiv v̂, (5)

∫

K
div vq dx =

∫

K̂

ˆdiv v̂q̂ dx̂, (6)

∫

∂K
v · n q ds =

∫

∂K̂
v̂ · n̂ q̂ dŝ, (7)

where n and n̂ denote the unit outward normal vectors on ∂K and ∂K̂, respec-
tively.

Assume that Th = {K} is regular and non-degenerate, i.e., each K satisfies
the following two conditions [18]:

(i) There exists a constant σ such that hK/rK ≤ σ, where hK is the diameter
of K and rK is the radius of the largest ball inscribed in K.

(ii) There exists a constant γ > 0 such that JK ≥ γh3K .

Using the Piola transformation, we define the following space of shape func-
tions on K

Vh(K) = {v = PF v̂ : v̂ ∈ V̂(K̂)}. (8)

Then the global finite element space is defined naturally as

Vh = {v ∈ V : v |K∈ Vh(K), ∀K ∈ Th}. (9)

Next, we define the scalar function space Wh. For any scalar function q̂ on K̂,
we let q = q̂ ◦ F−1

K . Then we define

Wh(K) = {q = q̂ ◦ F−1
K : q̂ ∈ Ŵ (K̂)}, (10)
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and define
Wh = {q ∈ L2(Ω) : q |K∈Wh(K), ∀K ∈ Th}. (11)

Here we recall a well-known example when K̂ is the unit cube. The Raviart-
Thomas-Nedelec spaces of index k ≥ 0 is given by

V̂(K̂) = RTN[k] = Qk+1,k,k(K̂)×Qk,k+1,k(K̂)×Qk,k,k+1(K̂),

Ŵ (K̂) = Qk,k,k(K̂).

The dimensions of V̂(K̂) and Ŵ (K̂) are 3(k+1)2(k+2) and (k+1)3, respectively.
It is well known that, when the elements are partitioned into general hex-

ahedra, we do not obtain an optimal order error estimates even for the lowest
element [11], [12]. The reason is that the velocity vector fields mapped by Piola
transformation do not contain all polynomials of degree k. Fortunately, for a
special class of distorted hexahedra, we can find a set of polynomials which
have an optimal order of approximation. Utilizing this set, we can design a new
family of mixed finite.

3. Construction of New Mixed Finite Elements

FK

x̂1,1
x̂4,1

x̂2,1 x̂3,1

x̂5,2 x̂8,2

x̂6,2 x̂7,2 parallel,not congruent

x1,1 x4,1

x2,1 x3,1

x5,2
x8,2

x6,2

x7,2

Figure 1: A Transformation onto a distorted hexahedron having two
parallel sides

For convenience’ sake, we assume that K is a distorted hexahedron where
two faces are parallel to the xy-plane. Let xi,1 = (xi, yi, z1), i = 1, 2, 3, 4, and
xi,2 = (xi, yi, z2), i = 5, 6, 7, 8 denote its vertices (Fig. 1). We use the unit
cube K̂ = [0, 1] × [0, 1] × [0, 1] as the reference element in the x̂ŷẑ-space with
the vertices

x̂1,1 = (0, 0, 0), x̂2,1 = (1, 0, 0), x̂3,1 = (1, 1, 0), x̂4,1 = (0, 1, 0),
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Figure 2: The mesh generation on unit cube

x̂5,2 = (0, 0, 1), x̂6,2 = (1, 0, 1), x̂7,2 = (1, 1, 1), x̂8,2 = (0, 1, 1).

First, we consider the mesh generation. We give an example how to generate
hexahedral grids satisfying our conditions. We start from a unit cube [0, 1]3.
First, consider the face z = 0. We refine it by four shape regular quadrilaterals.
We do the similar refinement for the face z = 1. (See the step 1 of Fig. 2). Next,
we connect the each points A...E to A′...E′, respectively(See the step 2 of Fig.
2). Then, we slice the box by the plane z = 1

2 to obtain eight hexahedra(See
the step 3 of Fig. 2). Note that the inner faces of these sub hexahedra are
not necessarily planar. Repeat the same process to each of the sub hexahedra.
Then the hexahedra constructed above look like those in the left side of Figure
3. In this case, we can do the similar method on these hexahedra(See Fig. 3).

We assume there exists a unique invertible transformation FK which maps
K̂ onto K:

FK(x̂) = (F1(x̂, ŷ, ẑ), F2(x̂, ŷ, ẑ), α + βẑ), (12)

where Fi(x̂, ŷ, ẑ) ∈ Q1,1,1(x̂, ŷ, ẑ), i = 1, 2. Also, we assume that the map in
(12) is in its most general form, i.e., the coefficients of FK(x̂) are all nonzero.
It is easy to check that the image of K̂ under FK has two faces which are
parallel to the xy-plane. Let V̂(K̂) be a finite dimensional space of vector
fields on K̂. Since u(x) = PF û(x̂) = JK(x̂)−1DFK(x̂)û(x̂) for û ∈ V̂(K̂), we
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Figure 3: The mesh generation for the distorted hexahedron

can construct the finite element space Vh(K) from the definition (8). In order
to obtain O(hk+1) approximation order, it is sufficient that Vh(K) contains
Pk(K). From this fact, we determine V̂(K̂) by applying the inverse Piola
transformation to Pk(K). We first consider the following vectors for 0 ≤ i ≤ k:

si11 = (x̂k+2ŷk+1ẑi, 0, 0), si12 = (0, x̂k+1ŷk+2ẑi, 0),

si21 = (x̂k+2ŷiẑk+1, 0, 0), si22 = (0, 0, x̂k+1ŷiẑk+2),

si31 = (0, x̂iŷk+2ẑk+1, 0), si32 = (0, 0, x̂iŷk+1ẑk+2),

si1 = (x̂k+2ŷk+1ẑi, −x̂k+1ŷk+2ẑi, 0),

si2 = (x̂k+2ŷiẑk+1, 0, −x̂k+1ŷiẑk+2),

si3 = (0, x̂iŷk+2ẑk+1, −x̂iŷk+1ẑk+2).

Definition 1. We let

S′
k = Qk+2,(k+1)′,(k+1)′(K̂)×Q(k+1)′,k+2,(k+1)′(K̂)×Q(k+1)′,(k+1)′,k+2(K̂),

and let S∗
k be the subspace of S′

k where for i = 1, . . . , k, j = 1, 2, 3, the elements
sijℓ(ℓ = 1, 2) are replaced by the elements sij .

Lemma 2. The image of S∗
k under the Piola transformation of any FK

contains Pk(K).

Proof. It suffices to show that the inverse image of any polynomial p(x) ∈
Pk(K) lies in S∗

k. First, note that

FK(x̂) =





a0 + a1x̂+ a2ŷ + a3ẑ + a4x̂ŷ + a5ŷẑ + a6ẑx̂+ a7x̂ŷẑ
b0 + b1x̂+ b2ŷ + b3ẑ + b4x̂ŷ + b5ŷẑ + b6ẑx̂+ b7x̂ŷẑ

α+ βẑ



 .



A NEW FAMILY OF MIXED FINITE ELEMENT... 579

Then it can be easily shown that

DFK(x̂) =





A11 A12 A13

A21 A22 A23

0 0 β



 ,

and

JK(x̂)DF−1
K (x̂) =





βA22 −βA12 A′
13

−βA21 βA11 A′
23

0 0 1
βJK(x̂)



 .

Here ai, bi(i = 1, . . . 7), cj , dj , ej(j = 1, 2, 3), α, β, γ are constants and

A11 = a1 + a4ŷ + a6ẑ + a7ŷẑ,

A12 = a2 + a4x̂+ a5ẑ + a7x̂ẑ,

A13 = a3 + a5ŷ + a6x̂+ a7x̂ŷ,

A21 = b1 + b4ŷ + b6ẑ + b7ŷẑ,

A22 = b2 + b4x̂+ b5ẑ + b7x̂ẑ,

A23 = b3 + b5ŷ + b6x̂+ b7x̂ŷ,

A′
13 = A12A23 −A13A22 = p1 + c1x̂ŷ + c2x̂ẑ + c3x̂

2 + αx̂2ŷ − γx̂2ẑ, (13)

A′
23 = A13A21 −A11A23 = p2 + d1x̂ŷ + d2ŷẑ + d3ŷ

2 − αx̂ŷ2 + βŷ2ẑ, (14)

JK = β(A11A22 −A12A21) = p3 + e1ŷẑ + e2x̂ẑ + e3ẑ
2 + γx̂ẑ2 − βŷẑ2,(15)

where pj ∈ P1(x̂, ŷ, ẑ) for j = 1, 2, 3. Let u(x) ∈ Pk(x, y, z). Then û(x̂) =
P−1
F u(x) = JK(x̂)DF−1

K (x̂)u(x) contains all the elements belonging to the fol-
lowing set:











βA22 −βA12 A′
13

−βA21 βA11 A′
23

0 0 1
βJK(x̂)









r1
r2
r3



 ∀ r1, r2, r3 ∈ Pk(x, y, z)







. (16)

For each polynomial rj in Pk(x, y, z), j = 1, 2, 3, we have

rj(x, y, z) = rj(F1(x̂, ŷ, ẑ), F2(x̂, ŷ, ẑ), α+ βẑ) (17)

= qj(x̂, ŷ, ẑ),

for some qj(x̂, ŷ, ẑ) ∈ Qk,k,k(x̂, ŷ, ẑ). Noting that

A22, A12, A
′
13 ∈ Q2,1′,1′(K̂),

A11, A21, A
′
23 ∈ Q1′,2,1′(K̂),
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JK(x̂) ∈ Q1′,1′,2(K̂),

we see that the vectors in (16) belong to S′
k. We now show that any el-

ement in the set (16) is contained in S∗
k. To do so, we only need to con-

sider the highest degree terms of vectors in (16). Since those are of the form
(x̂k+2ŷk+1ẑi, −x̂k+1ŷk+2ẑi, 0), (x̂k+2ŷiẑk+1, 0, −x̂k+1ŷiẑk+2) and (0, x̂iŷk+2ẑk+1, −x̂iŷk+1ẑk

we see that they belong to S∗
k.

For the error analysis, we need to define a new space.

Definition 3. We let

R−1 = 1 and Rk = Q(k+1)′,(k+1)′,k+2(K̂),

for k ≥ 0.

Lemma 4. Given any element K, the space Rk for k ≥ 0 contains all

functions of the form

JK(x̂)p(FK(x̂)),

for all p ∈ Pk(K).

Proof. Let p ∈ Pk(K) be arbitrary and consider JK(x̂)(p ◦ FK)(x̂). Since
JK(x̂) ∈ Q1′,1′,2(K̂) and p(x, y, z) = q(x̂, ŷ, ẑ) for some q(x̂, ŷ, ẑ) ∈ Qk,k,k(x̂, ŷ, ẑ)
by (18), we obtain the desired result.

By the construction above, we see that Vh(K) contains Pk(K). Similarly,
divVh(K) contains Pk(K). Hence the space Vh(K) contains enough polyno-
mials to achieve an optimal order of approximation in the H(div )-norm. Hence
we have the following result.

Theorem 5. There exists a constant C such that

inf
v∈Vh

(‖ u− v ‖0 + ‖ divu− div v ‖0) ≤ Chk+1(| u |k+1 + | divu |k+1), (18)

for all u ∈ Hk+1(Ω) with divu ∈ Hk+1(Ω).

Now, we introduce new mixed finite element spaces that are based on S∗
k.
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Definition 6. We let

V̂(K̂) = S∗
k,

Ŵ (K̂) = Q′′
k+1,k+1,k+1(K̂),

where Q′′
k+1,k+1,k+1(K̂) is the space defined at the beginning of section 2.

Then we see that the dimensions of V̂(K̂) and Ŵ (K̂) are 3(k+1)(k+2)(k+4)
and (k + 2)3 − 3(k + 1)− 1, respectively.

Remark 7. This type of element can be used if any one pair of opposite
faces are flat quadrilaterals paralleled to yz or zx-plane.

Remark 8. From the definition of above, we know that Ŵ (K̂) contains
Rk−1 but not Rk. For example, we see that Ŵ (K̂) for k = 0 is a space containing
polynomials of the following form:

p = a0 + a1x̂+ a2ŷ + a3ẑ.

Since R0 = b0 + b1x̂+ b2ŷ + b3ẑ + b4ŷẑ + b5x̂ẑ + b6ẑ
2 + b7x̂ẑ

2 + b8ŷẑ
2 for some

constants bi(i = 0, . . . , 8), Ŵ (K̂) contains R−1 only.

Lemma 9. We have the following property:

ˆdiv V̂(K̂) = Ŵ (K̂).

Proof. First, we shall investigate the divergence of an element in S′
k. Then

as a special case, we show that the the divergence of elements in S∗
k must

belong to Ŵ (K̂). Let v̂′ = (v̂′1, v̂
′
2, v̂

′
3) be any element in S′

k. Since v̂′1 ∈

Qk+2,(k+1)′,(k+1)′(K̂),

∂v̂′1
∂x̂

= q′1, for some q′1 ∈ Qk+1,(k+1)′,(k+1)′ .

In the same way, we have

∂v̂′2
∂ŷ

= q′2, for some q′2 ∈ Q(k+1)′,k+1,(k+1)′

and
∂v̂′3
∂ẑ

= q′3, for some q′3 ∈ Q(k+1)′,(k+1)′,k+1.

However, from the construction of S∗
k, we see that the following vectors are

replaced by divergence free vectors sij for i = 1, . . . , k, j = 1, 2, 3:

(x̂k+2ŷk+1ẑi, 0, 0),
(0, x̂k+1ŷk+2ẑi, 0),

(x̂k+2ŷiẑk+1, 0, 0),
(0, 0, x̂k+1ŷiẑk+2),

(0, x̂iŷk+2ẑk+1, 0),
(0, 0, x̂iŷk+1ẑk+2).
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Hence for v̂ = (v̂1, v̂2, v̂3) in S∗
k, we see that

∂v̂1
∂x̂

= q1,
∂v̂2
∂ŷ

= q2,
∂v̂3
∂ẑ

= q3 for some q1, q2, q3 ∈ Q′′
k+1,k+1,k+1.

Therefore we see that ˆdiv V̂(K̂) ⊆ Ŵ (K̂). The reverse inclusion ˆdiv V̂(K̂) ⊇
Ŵ (K̂) is clear, thus the proof is complete.

Now we need to define the degrees of freedom and show the unisolvence.
For this purpose, we first consider the following vectors for 0 ≤ i ≤ k:

φi
11 = (x̂kŷk+1ẑi, 0, 0), φi

12 = (0, x̂k+1ŷkẑi, 0),

φi
21 = (x̂kŷiẑk+1, 0, 0), φi

22 = (0, 0, x̂k+1ŷiẑk),

φi
31 = (0, x̂iŷkẑk+1, 0), φi

32 = (0, 0, x̂iŷk+1ẑk),

φi
1 = (x̂kŷk+1ẑi, −x̂k+1ŷkẑi, 0),

φi
2 = (x̂kŷiẑk+1, 0, −x̂k+1ŷiẑk),

φi
3 = (0, x̂iŷkẑk+1, −x̂iŷk+1ẑk).

Definition 10. We let

Ψ′
k = Qk,(k+1)′,(k+1)′(K̂)×Q(k+1)′,k,(k+1)′(K̂)×Q(k+1)′,(k+1)′,k(K̂)

and letΨ∗
k be the subspace ofΨ

′
k where for i = 1, . . . , k, j = 1, 2, 3 the elements

φi
jℓ(ℓ = 1, 2) are replaced by the elements φi

j .

Note that the definition of Ψ′
k and Ψ∗

k are similar to those of S′
k and S∗

k

except that the highest exponent k + 2 is replaced by k.

For any û = (û1, û2, û3) ∈ V̂(K̂), we consider the following degrees of
freedom:

∫

f̂
û · n̂ q̂ dÂ, q̂ ∈ Q′

k+1,k+1(f̂), for each face f̂ , (19)

∫

K̂
û · ψ̂ dx̂, ψ̂ ∈ Ψ∗

k. (20)

The number of conditions is 6{(k + 2)2 − 1} + 3{(k + 1)(k + 2)2 − (k + 1)} −
6(k + 1) + 3(k + 1) which is also the dimension of V̂(K̂). See Fig. 4 for an
illustration of degrees of freedom when k = 0.

Now we show that these choice of V̂(K̂) and degrees of freedom determine
a finite element subspace of H(div ).
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Figure 4: The degrees of freedom for k = 0. Three normal components
per face and six interior degrees of freedom.

Theorem 11. A vector function û ∈ V̂(K̂) in the Definition 6 is uniquely

determined by the degrees of freedom (19) and (20). Moreover, the space Vh of

finite elements defined by mapping the element in V̂(K̂) using (8) is divergence
conforming.

Proof. We verify the unisolvence by showing that if all the quantities (19)
and (20) vanish, then û = 0. Since û · n̂ ∈ Q′

k+1,k+1(f̂), it is clear that û · n̂ = 0
on each face and this proves the conformity. Then, û = (û1, û2, û3) satisfies

û1 = x̂(1− x̂)v̂1, û2 = ŷ(1− ŷ)v̂2 and û3 = ẑ(1− ẑ)v̂3,

where v̂ = (v̂1, v̂2, v̂3) ∈ Ψ∗
k. Thus we can take ψ̂ = v̂ in condition (20) and

this implies û = 0.

For the error estimates, we define a projection operator Π̂ : Hk+1(K̂) →
V̂(K̂) satisfying

∫

f̂
(û− Π̂û) · n̂ q̂ dÂ = 0, q̂ ∈ Q′

k+1,k+1(f̂), for each face f̂ ,

∫

K̂
(û− Π̂û) · ψ̂ dx̂ = 0, ψ̂ ∈ Ψ∗

k.

Then this operator has the following property:

Lemma 12. We have

( ˆdiv (û− Π̂û), q̂)K = 0, ∀ û ∈ Hk+1(K̂), ∀ q̂ ∈ Ŵ (K̂).
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Proof. First, we note that q̂ |f̂∈ Q′
k+1,k+1(f̂) for all q̂ ∈ Ŵ (K̂). Since

∇q̂ ∈ Ψ∗
k, we have by the definition of Π̂,

( ˆdiv Π̂û, q̂)K =

∫

∂K̂
Π̂û · n̂q̂ dÂ−

∫

K̂
Π̂û · ∇̂q̂ dx̂

=

∫

∂K̂
û · n̂q̂ dÂ−

∫

K̂
û · ∇̂q̂ dx̂

= ( ˆdiv û, q̂)K .

For an arbitrary element K = F (K̂), we define the following projection
ΠK : Hk+1(K) → PF V̂(K̂) by ΠK = PF ◦ Π̂ ◦ P−1

F . Then we have the
following commutative diagram:

Hk+1(K̂)

PF

��

ˆΠ
// V̂(K̂)

PF

��

Hk+1(K)
ΠK

// PF V̂(K̂)

Lemma 13. We have

(div (u−ΠKu), q)K = 0, ∀u ∈ Hk+1(K̂), ∀q ∈Wh(K).

Proof. From (5) and Lemma 12, we know that

(divΠKu, q)K =

∫

K
divΠKu q dx =

∫

K
JK divΠKu q

1

JK
dx

=

∫

K̂

ˆdiv Π̂û q̂ dx̂ =

∫

K̂

ˆdiv û q̂ dx̂

=

∫

K̂

1

JK
ˆdiv û q̂ JK dx̂ =

∫

K
divu q dx

= (divu, q)K .

Now the global projection operator Πh : Hk+1(Ω) → Vh is defined by
(Πhu) |K= ΠK(u |K). Since Vh(K) contains Pk(K) by construction, we have
the following approximation property of ΠK .
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Lemma 14. There is a constant C independent of h such that

‖ u−ΠKu ‖0≤ Chk+1 ‖ u ‖k+1,

for all u ∈ Hk+1(K).

For the divergence, we have the following approximation property:

Lemma 15. There is a constant C independent of h such that

‖ div (u−ΠKu) ‖0≤ Chk ‖ divu ‖k,

for all u ∈ Hk(K) with divu ∈ Hk(K).

Proof. Since ˆdiv V̂(K̂) ⊇ Rk−1, we have divV(K) ⊇ Pk−1(K) by construc-
tion of Rk−1 and (5). Hence we have the result.

To prove the error estimates, we also need to define an operator Φh :
L2(Ω) → Wh. First, let Φ̂ be the local L2-projection onto Ŵ (K̂). Then define
ΦK : L2(K) → Wh(K) by ΦKp = (Φ̂p̂) ◦ F−1

K with p̂ = p ◦ FK . Finally, we let
(Φhp) |K= ΦK(p |K).

Lemma 16. We have

(ΦKp− p, divv)K = 0, ∀v ∈ Vh(K), ∀p ∈ L2(K).

Proof. By the definition of ΦK and (5), we obtain

(ΦKp, divv)K =

∫

K
(Φ̂p̂) ◦ F−1

K divv dx =

∫

K̂
(Φ̂p̂)

1

JK
ˆdiv v̂ JK dx̂

=

∫

K̂
p̂ ˆdiv v̂ dx̂ =

∫

K
p JKdivv

1

JK
dx

=

∫

K
p divv dx = (p, divv)K .

From Lemma 13 and Lemma 16, we have the following commutative dia-
gram:

Hk+1(K)

ΠK

��

div
// L2(K)

ΦK

��

Vh(K)
div

//Wh(K)

From this diagram, one can easily derive the inf-sup condition[2], [19], [20].
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Lemma 17. We have

‖ div (u− uh) ‖0≤ C ‖ div (u−Πhu) ‖0, ∀u ∈ H(div ,Ω).

Proof. Subtracting (4) from (3), we have

(κ−1(u− uh),vh)− (p− ph,divvh) = 0, ∀vh ∈ Vh, (21)

(div (u− uh), qh) = 0, ∀qh ∈Wh. (22)

We define

s(x) =

{

| JK | divv(x), x ∈ K, v ∈ Vh,
0, x ∈ Ω \K,

then s ∈Wh. From (22) we have

(div (u− uh), | JK | divv) = 0.

Choosing v = uh, we have

(divuh, | JK | divuh) = (divu, | JK | divuh).

Hence
‖| JK |

1

2 divuh ‖20 ≤ ‖| JK |
1

2 divu ‖0 ‖| JK |
1

2 divuh ‖0,

and so
‖| JK |

1

2 divuh ‖0 ≤ ‖| JK |
1

2 divu ‖0 .

Therefore
‖ divuh ‖0 ≤ C ‖ divu ‖0 .

Choosing v = Πhu− uh, we also have

(divuh, | JK | div (Πhu− uh)) = (divu, | JK | div (Πhu− uh)).

Subtracting (divΠhu, | JK | div (Πhu− uh)) from both sides, we have

(div (uh−Πhu), | JK | div (Πhu−uh)) = (div (u−Πhu), | JK | div (Πhu−uh)),

and so

‖| JK |
1

2 div (Πhu−uh) ‖
2
0 ≤ ‖| JK |

1

2 div (u−Πhu) ‖0 ‖| JK |
1

2 div (Πhu−uh) ‖0 .

Hence we obtain

‖ div (Πhu− uh) ‖0 ≤ C ‖ div (u−Πhu) ‖0 .

By the triangle inequality, we immediately obtain the result.
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We have the following error estimates:

Theorem 18. Let (uh, ph) be the solution of (4). Then

‖ u− uh ‖0 ≤ Chk+1 ‖ u ‖k+1, (23)

‖ div (u− uh) ‖0 ≤ Chk ‖ divu ‖k, (24)

‖ p− ph ‖0 ≤ Chk+δ0,k ‖ p ‖k+1+δ0,k , (25)

where δ0,k is the Kronecker delta.

Proof. From (22) and Lemma 16 we see that

c ‖ u− uh ‖20 ≤ (κ−1(u− uh),u− uh)

= (κ−1(u− uh),Πhu− uh) + (κ−1(u− uh),u−Πhu)

= (p− ph,div (Πhu− uh)) + (κ−1(u− uh),u−Πhu)

= (Φhp− ph,div (Πhu− uh)) + (κ−1(u− uh),u−Πhu)

= (κ−1(u− uh),u−Πhu)

= C ‖ u− uh ‖0‖ u−Πhu ‖0,

where c and C are independent of h and u. Therefore, by Lemma 14, we obtain
the first estimate of the theorem:

‖ u− uh ‖0≤ c ‖ u−Πhu ‖0≤ Chk+1 ‖ u ‖k+1 .

To estimate ‖ p − ph ‖0, we use duality argument. Let ψ be the solution of
Dirichlet problem

{

−div (κ∇ψ) = Φhp− ph, in Ω,
ψ = 0, on ∂Ω.

Then, by (21) and (22),

(Φhp− ph, Φhp− ph) = −(Φhp− ph,div (κ∇ψ))

= −(Φhp− ph,divΠh(κ∇ψ))

= −(κ−1(u− uh),Πh(κ∇ψ))

= (κ−1(u− uh), κ∇ψ −Πh(κ∇ψ)) + (κ−1(u− uh),−κ∇ψ)

= (κ−1(u− uh), κ∇ψ −Πh(κ∇ψ)) + (u− uh,−∇ψ)

= (κ−1(u− uh), κ∇ψ −Πh(κ∇ψ)) + (div (u− uh), ψ)

= (κ−1(u− uh), κ∇ψ −Πh(κ∇ψ)) + (div (u− uh), ψ − Φhψ).
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Using elliptic regularity and approximation property of Πh, we obtain

‖ Φhp− ph ‖0≤ C(h ‖ u− uh ‖0 +h ‖ div (u− uh) ‖0).

Since ˆdiv V̂(K̂) ⊇ Rk−1, it follows from Lemma 15 that

‖ div (u−Πhu) ‖0≤ Chk ‖ divu ‖k .

By Lemma 17, we have the second estimate of the theorem

‖ div (u− uh) ‖0 ≤ C ′ ‖ div (u−Πhu) ‖0≤ Chk ‖ divu ‖k .

Hence, for k = 0 we obtain

‖ Φhp− ph ‖0 ≤ Ch ‖ u ‖1 .

For k ≥ 1 and 0 ≤ t ≤ k, we obtain

‖ Φhp− ph ‖0 ≤ C ′ht+1(‖ u ‖t+1 + ‖ divu ‖t) ≤ Cht+1 ‖ u ‖t+1 . (26)

Choosing t = k − 1, we obtain

‖ Φhp− ph ‖0 ≤ Chk ‖ u ‖k .

Since Wh(K) space does not fully contain the space Pk(x, y, z) except when
k = 0, we only have ‖ p − Φhp ‖0≤ Chk+δ0,k ‖ p ‖k+1. Then the final estimate
of the theorem follows directly from the triangle inequality.

Remark 19. We note that the pressure estimate of Theorem 18 is not
optimal for k ≥ 1. The loss of order results from the fact that the pressure
space Wh(K) does not contain enough polynomials. However, we introduce a
local post-processing technique in the next section to obtain an optimal order
in the pressure.

4. Post-Processing for the Pressure

In this section, we present a local post-processing technique which provides an
optimal approximation order for the pressure. Let

W ♯
h = { q ∈ L2(Ω) | q |K ∈ Qk,k,k(K), ∀K ∈ Th}.



A NEW FAMILY OF MIXED FINITE ELEMENT... 589

We define the approximation p♯h ∈ W ♯
h(K) locally on each element K ∈ Th as

the solution to the following equation:

∫

K
κ∇p♯h · ∇q dx = −

∫

K
uh · ∇q dx, ∀q ∈W ♯

h(K), (27)

∫

K
p♯h dx =

∫

K
ph dx. (28)

This technique has been studied on an affine element[21], [22], but we need

to modify it. Let Φ̂♯ : L2(K̂) → Ŵ ♯(K̂) be the L2-projection, we let Φ♯
K :

L2(K) →W ♯
h(K) be the local projection operator defined by Φ♯

Kp = (Φ̂♯p̂)◦F−1
K .

If we define the weighted norm ‖ · ‖0,κ:= (κ·, ·)1/2 and the weighted semi-norm
| · |1,κ:= (κ∇·,∇·)1/2, then we have the following error estimate.

Theorem 20. Suppose that (u, p) is the solution of (3) and p♯h is defined

by (27) and (28). Then we have

‖ p− p♯h ‖0 ≤ Chk+1 ‖ u ‖k+1 .

Proof. Let q = Φ♯
Kp− p♯h ∈W ♯

h. Then using (27), we have

| q |21,κ,K = (κ∇(Φ∗
Kp− p♯h),∇q)K

= (κ∇(Φ♯
Kp− p),∇q)K + (κ∇(p− p♯h),∇q)K

= (κ∇(Φ♯
Kp− p),∇q)K + (−u+ uh,∇q)K .

By Cauchy-Schwartz inequality and norm equivalence, we have

| q |1,K ≤ C( | Φ♯
Kp− p |1,K + ‖ u− uh ‖0,K ).

Let q′ = q − q̄ with q̄ = 1
V ol(K)

∫

K q dx. Then by Poincare inequality, we have

‖ q′ ‖0,K ≤ Ch | q |1,K .

From (28) and
∫

K Φ♯
Kp dx =

∫

K ΦKp dx, we obtain

‖ q̄ ‖0,K ≤ Ch ‖ q̄ ‖∞

= Ch |
1

V ol(K)

∫

K
(Φ♯

Kp− p♯h) dx |

≤ C ‖ ΦKp− ph ‖0,K .
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Then we have by the triangle inequality,

‖ p− p♯h ‖0,K = ‖ p− Φ♯
Kp+Φ♯

Kp− p♯h ‖0,K

= ‖ p− Φ♯
Kp+ q′ + q̄ ‖0,K

≤ ‖ p− Φ♯
Kp ‖0,K + ‖ q′ ‖0,K + ‖ q̄ ‖0,K

≤ ‖ p− Φ♯
Kp ‖0,K +Ch( | Φ♯

Kp− p |1,K + ‖ u− uh ‖0,K ) + C ‖ ΦKp− ph ‖0

The desired estimate follows from the approximation property of Φ♯
K , (23) and

(26).
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