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Abstract

In this paper, we develop a new immersed finite element method (IFEM) for two phase incompressible
Stokes flows. We allow the interface to cut the finite elements. On the non-interface element, standard
Crouzeix-Raviart element and P, element pair is used. On the interface element, the basis functions
developed for scalar interface problems (Kwak et al. An analysis of a broken Py-nonconforming finite
element method for interface problems, SIAM J. Numer. Anal. (2010)) are modified in such a way
that the coupling between the velocity and pressure variable is different. There are two kinds of basis
functions. The first kind of basis satisfies the Laplace-Young condition under the assumption of the
continuity of the pressure variable. In the second kind, the velocity is of bubble type and is coupled
with the discontinuous pressure, still satisfying the Laplace-Young condition. We remark that in the
second kind the pressure variable has two degrees of freedom on each interface element. Therefore,
our methods can handle the discontinuous pressure case. Numerical results including the case of the
discontinuous pressure variable are provided. We see optimal convergence orders for all examples.

Keywords: immersed finite element method, Crouzeix-Raviart finite element, Two phase Stokes
problems, Laplace-Young condition

1. Introduction

Recently, there have emerged many unfitted grid methods to solve interface problems involving
interface between two materials. Extended finite element method (XFEM) [26, 4, 27, 5, 21, 8, 29]
is one of the popular methods to solve for interface/crack problems based on uniform grids. Some
additional basis functions constructed by truncating the shape function along the interfaces are added
to the trial/test spaces. Thus, the number of degrees of freedom increase near the interface. For
Stokes interface problems, Gross and Reusken proposed a method that adopt an XFEM enrichment
of the pressure space, incorporating functions that are discontinuous at the interface in [9, 10, 28].

Meanwhile, Hansbo et al. introduced a so called cut-FEM, combining XFEM and Nitche’s method
for elliptic interface problems [11, 3]. For Stokes interface problem, iso P»-P; element based cut-
FEM type method was proposed [12] where ghost penalty stabilization is used near the interface
to avoid instabilities. Also, Wang et al. introduced P;-nonconforming based cut-FEM method for
Stokes interface problems [31], where stabilization terms defined on the transmission edges are used
to ensure stability condition. However, all of the methods mentioned above require additional degrees
of freedom than the nodal basis functions.
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On the other hand, Z. Li et al. [22, 23] introduced immersed finite element method (IFEM) for
elliptic problems, where the basis functions are modified to satisfy the flux type continuity condi-
tions along the interface. The advantage of this scheme is that it does not require additional basis
functions. Since then, the error estimates for IFEMs were developed for various elliptic interface
problems, see [25, 6, 18, 13] and references therein. The Crouzeix-Raviart Pj-nonconforming based
IFEM [18] were used to solve elasticity interface problems in [19]. Also, IFEMs have been applied to
various problems, including plasma particle simulation, electric field simulation in composite materi-
als, electroencephalography, fluid-structure interaction, multiphase flows in porous media, elasticity,
and Poisson-Boltzmann equation [24, 17, 32, 30, 15, 14, 20].

For Stokes equations, Adjerid et al. [1, 2] introduced immersed discontinuous finite element
method, which uses modified Q1/Qo basis functions in the frame work of discontinuous Galerkin
methods. The velocity and pressure variables are modified on the interface element so that the basis
functions satisfy Laplace-Young condition (see details in [1, 2]). An IFEM based on P;/Q; noncon-
forming elements are introduced in [16], where modification process is similar to [1, 2]. We remark
that the pressure variable in the immersed finite element (IFE) space of [1, 2] or [16] uses the average
(on each element) as degrees of freedom on the interface element. Clearly, these elements cannot
approximate the pressure variable in general.

In this paper, we develop a new P;-nonconforming based IFEM for Stokes interface problems
where modification of basis functions are different from that in [1] or [16]. On the interface element,
we construct two kinds of basis functions for the velocity variables. First kind is related to the
continuous pressure. Second kind is of bubble type in the sense that velocity variables has vanishing
averages on the edges, and it satisfies Laplace-Young condition for discontinuous pressure. In this
way, we construct velocity basis on interface element which is less coupled to pressure basis compared
with [1] or [16]. Another aspects of our IFE space is that the pressure basis has two degrees of
freedom on the interface element so that it can handle the discontinuity of pressure variable. For the
bilinear form, we add stabilization terms across edges as in [12, 19] to make the system stable. The
numerical examples including the case of the discontinuous pressure variable are provided. We see
optimal convergence rates for both the pressure and velocity variables.

The rest of the paper is organized as follows. We describe an incompressible Stokes interface
problem in Section 2 and develop IFEM for the Stokes problems in Section 3. Numerical experiments
are reported in Section 4 and the conclusion follows in Section 5.

2. A model problem

Let © be a connected polygonal domain in R? which is divided into two subdomains QO+ and Q~
by a C? interface I' = 90T N 9N~ (see Figure 1). We assume that subdomains are filled with two
incompressible fluids of different viscosities.

The equation describing the steady-state of such fluids is given by

—dive = f inQtuQ, (2.1a)
o(u,p) = 2ue(u) —pl inQtuQ-, (2.1b)
divu = 0 inQtuQ-, (2.1c)
u= g on 9N (2.1d)
with the interface conditions
[ulp= 0 onT, (2.2a)
[o(u,p) n]p= 0 onT, (2.2b)
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Figure 1: A domain Q with an interface I".

where €(u) = %(Vu 4+ Vu”) is the strain tensor, the vector f is a body force, u > 0 is a piecewise
constant function of the viscosity:
B ut o in QF
"= pu- in Q7

and n is the outward unit normal vector to I'. For the simplicity, we may assume g = 0. The bracket
[-Ir means the jump across the interface

[u]r := ulo- —ulo+.

We use standard Sobolev space notations (see section 4). Multiplying v € HE(2)? to the left hand
side of the equation (2.1a), we get by Green’s formula

2 /Qszaew /Q Zaxz '
_ Z/ (m . (v)—/sspdivv) v+ Y </ans(pn—2,ue(u)n)-v). (2.3)

s=+,—

Using the jump conditions (2.2a) and (2.2b), we obtain the following variational formulation of
problem (2.1a) and (2.1c) : Find the velocity u € (H}(£2))? and the pressure p € L3(2) satisfying

a(u,v) —b(v,p) = (f,v), Vve H&(Q)Q, (2.4a)
b(u,q) = 0, Vg € L3(9), (2.4b)

where

a(u,v) = Z /SSQ/LE(U)ZE(V)CLT
b(u,p) := Z /dewud:c

s=+,—

3. An IFEM based on Crouzeix-Raviart element

Let {71} be a any structured triangulations of 2 by the triangles of maximum diameter h. We
allow the grid to be cut by the interface. We call an element T" € T, an interface element if the



interface I' passes through the interior of T, otherwise we call it a noninterface element. Let Tl be
the collection of all interface elements.

Let the collection of all the edges of T' € Tj, be denoted by £,. We denote the set of edges cut by
the interface I' by &/, its complement is denoted by &Y. Even though the interface I' is a curve in
general, we replace for the simplicity of presentation, the part of interface in 7' by the line segment
connecting the intersection points with 9T'. Therefore, the interface I' is assumed to be polygonal for
the rest of the paper.

8.1. Construction of IFEM basis for Stokes interface problem

As
E =(0,y) e
62 T 1
T+
-
A Ao
D = (z,0) €3

Figure 2: A typical interface triangle

For the noninterface elements, we use classical Crouzeix-Raviart element [7] for the velocity variable
which consists of piecewise linear polynomials whose degrees of freedom are the average value along
each edge. In other words, for T € T,\T/, let N (T) denote the linear space spanned by the six
Lagrange basis functions, ¢, = (¢;1, ¢i2)T, i=1,---,6;

1 . 1 .
Ny (T) = span{¢,; € (P1)*: W/ ¢i1 = dij, 7 =1,2,3, m/ ¢iz2 = 0i—3,5, j =4,5,6}. (3.1)
J € J €,

We define the pressure space My, (T) = Py(T') to be the space of constant on T

Now, we consider the interface elements. We adopt the broken P;-nonconforming finite element
introduced in [18, 19] for the velocity. For the pressure we use two pieces of piecewise constant
function for the interface element. An important property of the IFEM basis is that it should satisfy
the Laplace-Young condition (2.2b) at least weakly. For that purpose, we shall construct two kinds of
basis functions: The first kind is unrelated to the pressure; the second kind is coupled with pressure.
We assume the three vertices are given by 4; = (0,1), Ay = (0,0), A5 = (1,0) (see Figure 2). For any
interface element T € T;! in general position, all the constructions to be presented below carries over
through affine equivalence. Let DE be the line segment connecting the intersections of the interface
and the edges of a triangle T'. This line segment divides T into two parts T+ and T~

We describe the first type. We set, for i =1,2,--- ,6,

+ at +bFx+cf
oF (z,y) = ( é) = (a§+b;+x+cifz , (xy)eTT,
¢i(z,y) = (3.2)
- oy a; +bjx+ciy _
, = (") =("L " "1 r T
o) = (2) = (DT wper,

and require these functions satisfy the 6 degrees of freedom (3.1), continuity condition (2.2a), and the
Laplace-Young condition with zero pressure along the interface I' N T". In other words, let

N (T) = span{@; € (P1(T*))? s = +,— : satisfying (3.4) below}. (3.3)



1 .
m / (bil = 51_]7 J = 17 27 37 (34&)
J €j

|€_1j| / (bi? = 5i—3,j7 .7 = 47 57 67 (34b)
[¢:r =0, (3.4c)
[210(¢;,0) - n]r =0. (3.4d)

We state proposition regarding the existence and uniqueness of the basis functions.

Proposition 3.1. The function dA) in (3.2) is determined uniquely by conditions (3.4).
Proof The proof can be found in [19].

Now, we define the global IFE space ﬁh for the velocity variable to be the set of all functions satisfying

¢l € Nip(T) if T is a noninterface element,

dlr € Nu(T) if T is an interface element,

[ o1l = [, ¢1lr,  if e is the common edges of T} and T,
[, ®2lm, = [ ¢2|r, if e is the common edges of T; and T,
fe d=0 if e € 9T is a part of the boundary 9f2.

We also need the usual space of piecewise constant for all T' for pressure:

Muo = {pn€ LiQ):pulr € Po(T),YT € Tp}.

However, the space Nh X My o cannot satisfy the interpolation property for the pressure when
pressure variable is discontinuous across the interface.

Now, we describe the second type of basis functions. Given a typical interface element T', we take
¢" (x,y) as in (3.2) and set the piecewise constant pressure as

_[p (wy)eTt,
pE(xvy) - {5, (x7Z) c T,, (35)

and require the pair (¢¥, p¥) satisfy the following conditions:

|€_1|/ ¢1E = 07 j = 17 2737 (36&)

J e;

|6—1|/ ¢y =0, j=1,2,3, (3.6b)
J e;

[¢"Ir =0, (3.6¢)

[2pe(¢”) - n]r = [p” - n]r. (3.6d)

This is a system of twelve equations in fourteen unknowns. We add the following equations.
pt=1lonTT, (3.7a)
p-=0onT". (3.7b)

The fourteen conditions (3.6) - (3.7) lead to a system of linear equations in fourteen unknowns
azabzaczvpsvéz 1725‘9: +7_'



Proposition 3.2. The systems (3.6) - (3.7) have a unique solution pair (¢*,p”).

Proof For each pf = (pT,p~) satisfying (3.7a)-(3.7b)), the system of equations (3.6a)-(3.6d) is
exactly the same as (3.4a-d) with modified right hand side. Hence the existence proof is the same.

Changing the role of p™ and p~ in (3.7a,b), we obtain another enriched pair of functions for the
interface element 7. If pt =1 on T and p~ =0 on T in (3.7), we denote the pair as (¢$+,p%+).

On the other hands, if p* = 0 on T* and p~ = 1 on T, we denote the pair as (¢5 ,p% ). We name
the set of such pairs as E(T), i.e.,

En(T) = span{(¢% ,pE ), (6% ,pF )}.

By combining ﬁh x My, and above bubble type pairs, we define the immersed finite element space
W, for Stokes equation to be set of pairs of functions (¢, 1)) satisfying

(&, ¢)|r € Np(T) x Mp(T) if T is a noninterface element,

(@, 9)|r € Ny, (T) x {0} & Exn(T) if T is an interface element,

fe o1l = fe 1T, if e is the common edges of T1 and T,
[ d2lr, = [ b2l if e is the common edges of T} and T,
J.o=0 if e € 9T is a part of the boundary 912,

€
¥ € L§(9).
We give some remarks regarding the proposed space.

Remark 3.1. The space ¥y, is not equal to the IFE space proposed in [16]. Consider a typical
interface element T. The pressure variable of Wy, has degrees of freedom on each subregion T* (s =
+, —), while the pressure variable in IFE space of [16] has one (average) degree of freedom on the whole
T. An advantage of our scheme is that one can handle discontinuous pressure (see next section,).

We give a lemma regarding the satisfaction of Laplace-Young condition.

Lemma 3.3. For any pair of functions (¢, ) in ¥y, we have [o(¢p, ) - n]r = 0.

Proof It suffices to consider interface element only. Suppose (¢, 1)) is any pair of basis functions in
W, and let T be any interface element. We can decompose it as

(@, 9)lr = (v°,0) + (vF, ),
where v € l/\\Tg(T) and v is velocity part of pairs E,(T), i.e., (v¥, 1) € E,(T). Then
[o(¢,¢) - nlrar = [6(v°,0) - n]zar + [o(vF,¢) - n]rar =0,
by the definitions of the space ﬁ% and Ej. This completes the proof.

The associated variational form

We define the associated variational form for the problem (2.1). For this purpose, we let Hp,(Q) :=
(HL(Q))? + (velocity part of ¥}). We define two bilinear forms

wwy) = 3 ([ wetwemars [ ouetwiewiar) + ¥ L [l ileas,

ecElN

(3.8)

Wdivu dx) , (3.9)

bu(w, ) = — Y </Tm 1/)divudx+/

TeThH Tna+



where u,v € Hy,(Q2) and v € L?(Q2). Here, []. denotes the jump along the edge e and v is some
positive parameter. We remark that we need stability terms in ay(+, ) to ensure a coercivity property
as in [19].

Finally, we propose IFEM scheme for Stokes problem: Find (up, pp) in ¥y, such that

an(up,vy) = bn(vi,pn) = (£, va),
bh(uhu Qh) = 07

for all (vp,qn) in Wy

4. Numerical results

In this section, we present numerical examples. The errors in L? and H' norms for the velocity
and pressure variables are reported on a rectangular domain. The numerical simulations are carried
out on uniform triangulation 7;, by right triangles having size h = hgy - 27 (k = 1,2,...) for some hy.
We define the interface as the zero set of some level function L(z,y) which is used to separate sub-
domains, i.e., Q7 = {(z,y) € Q| L(z,y) < 0} and Q" = {(x,y) € Q| L(z,y) > 0}. We consider three
problems. In first two examples, some known exact solutions are given to satisfy the Laplace-Young
condition. In particular, we consider the case of discontinuous pressure variable in Example 4.1. In
the third example, we consider a driven cavity benchmark problem.

In all the examples, we choose penalty parameter v = 20u in (3.8). In Example 4.1 and Example
4.2 we observe the optimal orders of error.

Example 4.1. In this example, the interface is given by zero sets of L(xz,y) = x +y —r = 0 with
r = —0.1. The parameters are u~ = 10 and p+ = 0.1. Ezact solutions are

T
((:E oy =)@t g2 (g 4y — ety 4 5”2) on QF,
u=

(u+(ew+yf;‘j1)+u’y2, u*zzfﬁéfﬁyw*l))ip on Q.
Ot
p={P0 O where po = 5.220703125.
2wt —p )z +y)+po, onQ,

The errors in L? and H' norms for uy, and L? error for py are reported in Table 1. We observe that
both variables converge in optimal orders. The graphs of un1, un2 and py, are shown in Figure 3.

1/h [lu —unllo order || |[u—up|1,n | order lp = prllo order
20 |] 9.643x1071 1.691x 10" 1.726x 10"
2! 3.181x1071 | 1.600 || 1.111x10' | 0.605 || 5.569x10° | 1.632
22 9.137x1072 | 1.800 || 5.846x10° | 0.927 || 1.564x10° | 1.832
23 2.834x1072 | 1.689 || 3.030x10° | 0.948 || 5.559x10~! | 1.492
24 |1 7.897x1073 | 1.843 || 1.550x10° | 0.967 || 2.615x10~! | 1.088
25 2.076x1073 | 1.928 || 7.839x1071 | 0.984 || 1.279x107! | 1.031
26 5.317x107% | 1.965 || 3.941x107! | 0.992 || 6.351x1072 | 1.010
27 1.345x107* | 1.983 || 1.976x10~1 | 0.996 || 3.169x1072 | 1.003

Table 1: L2 and H?! errors for the velocity and pressure variables of Example 4.1.
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Figure 3: Plots of up 1 (left), up o (right) and pressure (bottom) for Example 4.1.

Example 4.2. The interface is the zero set of L(x,y) = 2% +y* — r? with r = 0.31. The parameters
are p= =1 and p* = 100. The exact solutions are

T
(%2@2 +y? —r?)y, —%Z(xz +y? - TQ)I) on QF,
u= T
(%2@2 +y? =)y, — =202 +y? - r2)x) on Q~,
p = 100xy.

Errors for uy and pp, are reported in Table 2. We see the optimal convergence. The graphs of the
vector field and the pressure variable are shown in Figure 4.

Example 4.3 (Driven cavity). We consider a well known driven cavity problem. Dirichlet bound-
ary condition is imposed ; u=[0,1] ony =1 andu=1[0,0] ifx = =1,z =1 ory = —1. The interface
is the zero set of L(x,y) = x? +y* — 0.42 and the parameters are u~ = 1 and py*t = 100. Finally,
we let the forcing vector £ = (0,1)T on the right hand side of (2.1a). The graphs of the vector field
and the pressure variable are shown in Figure 5. We see that there is no spurious oscillation near the

interface for both the velocity and pressure variable.
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Figure 4: Plots of velocity field (left) and pressure (right) for Example 4.2.

1/h lu —ugpllo | order || |[u—upl1,, | order llp — prllo order
20 2.009x10~1 1.398x10° 3.724x 101
2! 1.313x1072 | 3.935 || 1.185x10~% | 3.560 1.983x10% | 0.910
22 || 8.338x1073 | 0.655 || 1.331x1071 | -0.168 || 1.024x10! | 0.953
23 || 3.063x1073 | 1.445 || 6.676x1072 | 0.995 5.159x10° | 0.989
24 1.233x1073 | 1.313 || 4.384x1072 | 0.607 2.591x10° | 0.994
25 2.945x1074 | 2.066 || 1.948x1072 | 1.170 1.295%x10° | 1.001
26 7.415x107° | 1.990 || 8.895x1073 | 1.131 6.472x10~1 | 1.000
27 1.844x107° | 2.008 || 4.064x1073 | 1.130 || 3.235x10~* | 1.001

Table 2: L2 and H'! errors for the velocity and pressure variables of Example 4.2.

5. Conclusion and future work

In this work, we have developed a new IFEM for Stokes interface problems by modifying Crouzeix
Raviart element. We introduce two kinds of basis functions in such a way that the coupling between the
velocity and pressure variable is different. First basis functions are constructed under the assumption
of the continuity of the pressure variable. In the second kind, a bubble type velocity variable is
coupled with the discontinuous pressure variable. In each case, basis functions satisfy the Laplace-
Young condition. Also, the pressure variable has two degrees of freedom on each interface element.
Therefore, our methods can handle the discontinuous pressure case. We observe optimal convergence
rates for all numerical examples.
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