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Abstract. In this paper, we propose a finite element method for the elasticity prob-
lems which have displacement discontinuity along the material interface using uni-
form grids. We modify the immersed finite element method introduced recently for
the computation of interface problems having homogeneous jumps [20,22]. Since the
interface is allowed to cut through the element, we modify the standard Crouzeix-
Raviart basis functions so that along the interface, the normal stress is continuous and
the jump of the displacement vector is proportional to the normal stress. We construct
the broken piecewise linear basis functions which are uniquely determined by these
conditions. The unknowns are only associated with the edges of element, except the
intersection points. Thus our scheme has fewer degrees of freedom than most of the
XFEM type of methods in the existing literature [1,8,13]. Finally, we present numerical
results which show optimal orders of convergence rates.
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1 Introduction

Discontinuities often occur in many model problems in mechanics. For example, they ap-
pear along defects of devices, structures, etc. The defects (of material) may arise by pores,
cracks, and inclusions. Other kinds of discontinuities can occur between two different
solids which interact across a common interface. Examples of this kind are adhesive
joints, frictional contacts, laminated structures, composite materials and so on. A simple
example happens when two materials of distinct mechanical properties are bonded. Fast
and accurate numerical methods to compute the displacements/stresses of such prob-
lems have been a challenging task.
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There are several numerical approaches to solve linear elasticity problems by finite el-
ement methods (FEM) (see [3,7,36]). For problems with an interface, there are a few meth-
ods available. These methods may include: adaptive finite element methods (see [11,
12]), mixed finite element methods (see [30]), and discontinuous Galerkin methods (DG)
(see [15,24,31]). All of these methods use grids aligned with the interface, which natu-
rally induces unstructured meshes. Hence the structure of the stiffness matrix is complex,
and it is difficult to design efficient solver such as multigrid method. This problem be-
comes more severe if one has to solve time dependent problems in which the interface
may move, since it requires regeneration of the mesh for every time step.

In recent years, there have been some developments to solve interface problems using
uniform grids. One approach is to use a uniform grid and conventional basis functions
such as P;/Q1, and add some enrichment functions to them in a hope to cope the dis-
continuities. The so called extended finite element method (XFEM) was developed by J.
Dolbow and T. Belytschko [8] to solve crack modeling problems. After its introduction,
the XFEM was successively applied to solve many problems in solid mechanics, such as
holes, crack and inclusions, [2,32,33]. Similar schemes were proposed by Becker et al. [1]
and Hansbo et al. [13], where the authors proposed certain combined methods of XFEM
and Nitsche’s penalty methods for weak/strong discontinuities, respectively.

There is a different approach for solving (scalar) interface problems using uniform
grids. The immersed finite element methods (IFEM) which use modified basis functions
near the interface were introduced in [6,21,25-27] and were shown to be effective. The
IFEM using Crouzeix-Raviart P; element were studied in [22] together with applications
to mixed finite volume method. The IFEMs were used to solve various types of problems
such as nonhomogeneous jumps case [5,10,18], parabolic equations [16], elasticity equa-
tions [17, 20, 28, 29, 34], electrical potential interface problem [4], PIC simulations in ion
optics [19] and so on.

Recently, the IFEMs for elasticity problems with interface have been studied by var-
ious authors in different contexts. Lin et al. [29] solved planar elasticity problems with
homogeneous interface conditions [u] =0 and [¢(u)n]| = 0 using IFEM based on lin-
ear/bilinear finite element. Hou et al. [17,34] studied linear based IFEM including non-
homogeneous jumps in which they claim second order convergence in L*-norm. But it is
well known that such elements suffer locking phenomena for the nearly incompressible
case, see [9] for example. In [28], Lin et al. used Rannacher Turek element on rectan-
gular grid for solving elasticity problems with homogeneous interface conditions. The
numerical results shows optimal order convergence in H! and L? norms, but no theory
was provided.

Kwak et al. [20] proposed an IFEM based on Crouziex-Raviart P; element with sta-
bility term to solve elasticity problems with homogeneous interface conditions, where
they provided the convergence proof and the optimal numerical results in L?> and H'-
norms. One of the differences from the above IFEMs is the addition of stability terms
[, #[u][v]ds. It is well-known that the lowest order linear/bilinear element are not stable
since the associated bilinear forms are not coercive [9,14]. Brenner and Sung [3] inves-
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tigated the convergence of Crouziex-Raviart P; element without stability term to solve
elasticity equations. However, they used an orthogonal projection (to a macro element) in
their bilinear form to resolve the non-coerciveness of the bilinear form. Recently, Hansbo
et al. [15] showed that CR element becomes stable if the stability terms are added.

In this paper, we extend the method proposed in [20] for solving elasticity equations
with spring-type non-homogeneous jumps [35] along an interface. We add four extra
shape functions to the IFEM basis functions and impose non-homogeneous jump condi-
tions for the displacement (proportional to the normal stresses). Our scheme is differ-
ent from XFEM'’s in the sense that extra basis functions associated with the intersection
points are introduced, and our element has two less degrees of freedom per element than
XFEM'’s. Numerical experiments show that our scheme is robust in the sense that con-
vergence rates are optimal even if the materials are nearly incompressible.

The rest of our paper is organized as follows. In the following section we introduce
some notations, spaces, model problem and variational form. In Section 3, we define
shape functions on interface elements satisfying the jump conditions. We provide a
framework for the convergence proof based on the approximation property of the IFEM
space and the consistency error estimate. In Section 4, we provide numerical examples
for our IFEM scheme. Optimal convergence rate for various cases are observed. In the
last section, conclusions are given.

2 Preliminaries

Let Q) be a connected, convex polygonal domain in IR? which is divided into two subdo-
mains Q" and O~ by a Clinterface T=0Q1tNaQ~, see Fig. 1. We assume the subdomains
QO and Q) are occupied by two different elastic materials. For a differentiable function

v=(v1,v7) and a tensor
T T
= (M T2\
T21 T2

we let
dv;  9v; J0T11  9T12
x| . ox oy
YV e avp |0 VT | o, 9t
ox ady ox  dy

From now on, we denote the vector variables by bold face characters and the scalar vari-
ables by normal characters. Let p>1 and m >0 be an integer. For any domain D, we
let W'(D) (H™ (D) =W;"(D)) be the usual Sobolev space with (semi)-norms denoted by
| [m,p,0 and || -{|m,p,0 (|| lm,p =1l - |m,2,0)- For any domain D=T(&7,) or D=, let

(N™(D))?:={u=(uy,up) € (H"(DNO¥))? for s=+,—, and u=0 on 90}

with norms

[allnn () = [[allma+np +1ullma-np-
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Figure 1: A domain Q) with interface.

When a finite element triangulation {7}, } is involved, the norms are understood as piece-
wise norms (Yre7, ||u|\me(T))l/”.

We consider the following elasticity problem having strong discontinuity along the
material interface T': find u= (u1,u7) such that

—dive(u)=f in Q° (s=+4,—), (2.1a)
[ulp=—Ro(u)-n, (2.1b)
[o(u)n] =0, (2.10)
u=0 on JQ), (2.1d)
where
o(u)=2pe(u) +Atr(e(w)d, e(w)=(Vu+Tul), 2)

are the stress tensor and the strain tensor respectively, n is outward unit normal vector to
QF, § is the identity tensor, and f & (L?(Q)))? is the external force. Here

_ Ev E
Tarna-2y Py

are the Lame constants, satisfying 0 < 1 <p <p and 0 <A < oo, and E is the Young’s
modulus and v is the Poisson ratio. When the parameter A — oo, this equation describes
the behavior of nearly incompressible material. Since the material properties are different
in each region, we set the Lamé constants y = u°, A =A° on ()° for s=+,—. In general
ut#u~ and AT #£A7. The bracket [-] means the jump across the interface

[ulr:=ulgr —ulq-.

R is a second-order tensor representing the compliance of the interface. In this paper, we
consider only the case of elastic isotropy, i.e., R can be written in a following form

at(B—a)ni (B—a)mn
R_<(,5 )nznll a+(B— 1)%) or Rjj=uwadjj+(B—a)nn;,
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where « and  are nonnegative constants denoting the compliance in the tangential and
the normal directions of the interface, respectively (see [35]). Note that R becomes singu-
lar if either of if « or 8 is zero. Let the stiffness of the interface M be defined by

R™1 for a>0, B>0,
a~l for a>0, B=0,

M=1 61 for a=0, p>0, 23)
0 for a=0, pB=0,
and define the space V as following :
V={veN(Q):[v]=MR[v] onT}. (2.4)

Then we have the following result [13,23].

Theorem 2.1. There exists a unique solution u € V of (2.1a)-(2.1d) and the solution is in
(H2(Q®))? on each subdomain Q¥ , s =+, —.

Remark 2.1. Note that the case « = =0 has been studied in [20]. If « and  are greater
than zero, V is the same as N!(Q)).

Now we define our variational problem as follows. Find u € V such that
a(u,v)=(fv), Vvev, (2.5)
where

a(u,v):zs_;_< QSZySe(u):e(V)dx—F QS)Lsdivudivvdx) +/FM[u] [v]ds.

As usual, (+,+) denotes the L?(Q)) inner product.
Theorem 2.2. The variational problem (2.5) is equivalent to the original problem (2.1a)-(2.1d).

Proof. Assume u satisfy (2.5) for all ve V. Integration by parts gives

72 /Qs—diva(u)-vdx+/amcr(u)n+-vds+/m_ a(u)n_-vds+/rM[u] [v]ds

Let v vanish on I'. Then

) —diva(u)'vdx:/ fvdx forall ve VN{v|r=0}.
o o)

Hence it holds that
—dive(u)=f in QTUQ~
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and

0= ¢7(u)n+~vds+/ a(u)n’-vds—i—/M[u] [v]ds forall veV.
A0+ 0~ r

Choosing v satisfying v =v~ on I, we obtain
[c(u)n]=0 on T.

Hence we obtain
/r o(u)n-[v]ds = — /r M{u][v]ds,

from which (2.1b) holds trivially when « >0 and p>0. If « =0 and >0, or « >0 and
B=0, we can show the same relation using the condition [v]=MR[v] in (2.4) and the fact
that MR is idempotent.

Conversely, let u be the solution of the problem (2.1a)-(2.1d). Multiply (2.1a) by ve 'V,
integrate on each subdomain, then apply integration by parts. Using similar arguments
as above, we see (2.5) holds. O

3 Numerical method

In this section, we propose a new finite element method for the elasticity problem with
displacement discontinuity. It resembles an IFEM for the elasticity problem without dis-
continuity [20]. Let {7, } be any (reasonable) quasi-uniform triangulations of (), by trian-
gles of maximum diameter i. We do not require the mesh to be aligned with the interface.
We call an element T € 7, an interface element if the interface I passes through the interior
of T, otherwise we call it a noninterface element. Let 7, be the collection of all interface
elements. We assume the following situations which are easily satisfied when / is small
enough:

o the interface intersects the edges of an element at no more than two points.

e the interface intersects each edge at most once, except possibly it passes through
two vertices.

For simplicity, we replace the curved interface by a line segment connecting two points of
intersection on each element. So on a typical triangle T (Fig. 2), we assume the interface
is given by the line segment DE which divides T into two parts T+ and T~ with T =
TH*UT~UDE.

3.1 Shape functions on the interface element

The key to the immersed finite element methods for scalar elliptic problem is to paste
two pieces of linear basis functions so that the newly constructed function satisfy certain
interface conditions [22]. For elasticity problem with homogeneous jumps, the authors
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As
E=(0,y)
e
T+
-
A

D = (z,0) €3

Figure 2: A typical interface triangle.

in [20] use similar idea to construct the local vector basis functions so that they satisfy the
homogeneous jump conditions [u]; =0 and [¢(u)n]=0.

For our problem the situation is slightly different since the jump condition (2.1b) is
nonhomogeneous. Since the solution is discontinuous along the interface, we need extra
degrees of freedom to take care of the discontinuity. For the basis related to the homo-
geneous jump, we use the same six nodal (edge based) piecewise linear functions (two
copies of Crouzeix-Raviart element) as in [20]. For the nonhomogeneous jump, we need
four basis functions associated with them. These are described in detail below.

For simplicity, we assume the three vertices are given by A; = (0,0), A» =(1,0) and
A3=(0,1). We assume that the component of each basis function is given by two pieces
of linear functions:

. - ST SV
b )= (J2) = (00T, et
R P ay +byx+cyy _
¢i(xy)= i=1,2,---,10. (3.1)

- _ <1311> (™ +byx+cyy o
¢l (x/y) <¢z§ ﬂ2_+b2_x+C2_y 7 (x/y) 7

Now we assign six basis functions for the edges satisfying the homogeneous jump con-
ditions. We need twelve conditions to determine the coefficients, six of them are the
average values on the edges ; four continuity conditions (at D, E); two stress conditions
along DE (Eq. (2.1¢)). In other words, the basis functions ¢, = (¢i1,$in), for i=1,2,---,6
are determined by following relations:

E’e] :51]/ ]: 12,3, (3.2a)
Pilej=0( 3y, j=123, (3.2b)
[¢;(D)]=0, (3.20)
[¢,(E)] =0, (3.2d)
[o(¢;)n]=0. (3.2e)
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Next, we consider the basis functions associated with the discontinuity of the dis-
placement vector. In this case, the conditions are similar to the above, but the right hand
sides of (3.2a), (3.2b), (3.2c) and (3.2d) are changed, respectively, to 0, 0, (1,0)" or (0,1)7,
etc. These twelve conditions uniquely determine the basis functions ¢, i=7,---,10.

For a noninterface element T, we use Nj(T) to denote the space of six standard
Crouzeix-Raviart basis functions associated with the edges. For an interface element T,
we use Ny, (T) to denote the space of functions generated by ¢;, i=1,---,10. Define the
space V;,(T) as following :

V,(T):={veN,(T):[v]=MR[v] on DE}. (3.3)

Remark 3.1. If the constant « and B are greater than zero, then the space V;,(T) is the
same as the space Nj,(T). If the constant « or B is zero (but not both), then the dimension
of the space V,,(T) is reduced to eight. When a =0, then MR =nn", hence the conditions
[v] = MR[v] become the single condition n;[v1]| —n1[v2] =0 at each intersection points (D
and E). The case p=0 is similar.

Using these local finite element spaces, we define the global immersed finite element
space Vj, by
¢V, (T)if TET,, and ¢ €Ny (T) if T T,*;
if T; and T, share an edge e, then

/97’|and5:/e<f>!and5; and ¢ds=0

aTNoQY

§>
|

We now propose a numerical scheme for (2.1a)-(2.1d) using \A/h.

3.1.1 JIFEM

Find u;, € Vh such that R
ay(up,vy) = (f,vy), Vv, €Vy, (3.4)

where

ah(u,v)::T;l(/T%te(u):e(v)dx—l—/T/\divudivvdx) +/FM[u] [v]ds

+Y / Clu][vlds, Vu,veV,(Q). (35)

ecf

Here £ denotes the collection of all the interior edges of T € 7;. The last terms of the
above form is required in order to ensure the coercivity (see [15,20]) when nonconforming
elements are used. We define the energy type norm:

VI3, :=an(v,v)

=) </T2ye(v):e(v)dx+/T/\]divv|2dx>+/FM[V]2ds+Z/E%[V]2dS. (3.6)

TeT, ecf
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It is clear that the bilinear form ay,(-,-) is coercive by definition. Also, it is bounded, i.e.,
ap(w,v) <Cillullg, V]la, Yu,veEV,+V.
We can measure the energy type of error using the Second Strang Lemma.

Lemma 3.1 (Second Strang Lemma). There exits a constant ¢ independent of h such that

Juwill, < inf uvil + sup ) ol wi)ly
viEV), wieV, ||Wh Hﬂh
3.2 Approximation property

Now we investigate the approximation property of V). First, let us define the interpola-
tion operator. Assume T is an interface element. For any v = (v1,02) € V(T), we define
Iyv=(Iyv1,1,v2) € Vi (T) using the average of v on each edge of T by

/Ihvids:/vids, i=12, j=123, (3.7)
(3]‘ ;

i
and the (four) jump values of v at the intersections of the interface and edges of T:
[Iiv(D)]=v*(D)=v~(D), [lyv(E)]=v"(E)=v"(E).

For noninterface element, the conditions (3.7) defines the interpolation as the usual (vec-
tor version) Crouzeix-Raviart element. We then define I,v € V), for ve V by

(Iyv)|r=Iy(v|r) foreach TeT,. (3.8)

By following the framework in Section 4.1 of [20], and noting that we have four extra
degree of freedom to capture the discontinuity in this case, we can prove the following
interpolation property:

Lemma 3.2. For any v €V, there exists a constant C, independent of h such that
1V =11Vl < Cah][ v

Numerical results for interpolation are given in Section 4 to support the claim. Now
we consider the consistency error. We have

Lemma 3.3. Let u€'V be the solution of (2.1a). We assume o(u)-n€ (H'(T))? for each T. Then
there exists a constant C. independent of h such that

a u,w —a u/w
sup 1@ W) —an(wpwn)| o

e [willo,
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Proof. Sketch of the proof. We note that the consistency error term is
| (w,vi) = ap (wp, viy)|
=|ay (u,vy) —£(vy)]

=) /2],te( e(vi)+ ), //\dlvudlvvh—l— Z/
TeT, T h

TeT, ec&

+/M Jlvilds+ Y _ (dive(u),vy)r ‘
TeT,

( (dive(u),vy, T+/ n-vh)+ ) /a'(us)ns-vfzds

TeT, s=+—T
+e§:€/ . 1[vn ds—l—/M [v), ds—l—T; (dive (u),vy) 1 ‘
h
Z / n Vh Z/ Vh dS
TeT, ecf

where we used integration by parts and the fact that [u] =0 across each edge and
Z / )n’® vhds+/M J[vi]ds=0.

The rest of the proof follows by the same argument in Section 4.2 of [20]. O

Now we are ready to proof the ||- ||, error estimate.

Theorem 3.1. Let u (resp. uy,) be the solution of (2.1a) (resp. (3.4)). Assume that Lemma 3.3
and Lemma 3.2 hold. Then we have

[u—uy[la, < Chl[ull,
for some constant C > 0.
Proof. By the coercivity of the bilinear form and Lemma 3.3, we have
[w, = Lywl7, =an (w, — Iyu,w, — L)
=ay(u—Iu,u,—u)+a,(u,—u,u,—Iu)
<Ctllu—Ipulla, [lup—Iyulla,+Cchl[ull x|l up— Iyulla,,

and it follows that
[u,— Iyul|a, < Cillu—Tyulls, +Cchl[ull.

Finally, by Lemma 3.2 and triangular inequality, we have
[a—wpla, <[lup—Ipalla, +[lu—Tull,
<(C+1)[[u—Iyulla, +Cehflull
<Chllull2-

Thus, we complete the proof. O
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4 Numerical results

In this section, we provide some numerical examples. In all of the experiments, the do-
main (—1,1) x (—1,1) is partitioned by uniform rectangles with sizes h, =h,=1/2""1, for
n=1,2,---, which are again cut along diagonals. In order to describe the interface, we
use the level-set function ¢(x). In all of the graphs in these examples, we draw the first
component of the solution u;, on the left column, while the right column shows the vector
plot of u;. We also report the interpolation error using separate tables for each example.

Example 4.1. In this example, we test three sets of parameters with line interface. The
level-set function, and the solution u are given as follows:

P(x,y)=x—y—c,
- 212 212
u (x,y)z (77y ,77y ),

V K
wey)= (5

T fcﬁA+>

(a) We choose «=0.7, =0.3, = =100, u™ =1, v=0.49 and c¢=0.999949.

(b) We choose a=0.04, =0.08, u~ =10, p* =1, v=0.4 and ¢=0.062854.

(c) We choose a=0.6, =0.4, u~ =1000, u* =1, v=0.25 and ¢=0.849378.

(d) We choose a=0.4, =0.6, u~ =1000, u™ =1, v=0.499 and c=0.566252.

(e) We choose a=0.64, =0.39, = =100, u* =1, v=0.4999 and ¢ =0.9194239.

Table 1 shows the convergence behavior of our numerical schemes. And Table 2 which is
the case of nearly incompressible shows the convergence behavior also. In all the cases,
we see optimal orders of convergence in L?, H! and divergence norms. So our scheme is
working property even if Poisson ratio approaches 1/2. First components of the solution
and vector plot of u are present in Fig. 3. We have listed the interpolation error in the
Table 3.

Example 4.2. In this example, we test three sets of parameters with circle interface. The
level-set function, and the solution u are given as follows:

P(x,y) =x>+y*—15,

242 2.2
w ()= (S ),

2.2 2 .2 .2 2
u+(x’y):<xy+y (yi*_yiyfo xwy (yi*_yi)%o)
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Table 1: Example 4.1.

NyxNy | lu—uyllpy | order | ||divu—divuyllpy, | order | [Jlu—uyll;; | order

16 x 16 2.697e-2 - 6.950e-2 - 5.370e-1 -
32 x 32 6.311e-3 2.095 3.542e-2 0.973 2.384e-1 1.172
Example 64 x 64 1.523e-3 2.051 1.788e-2 0.986 1.125e-1 1.084
4.1(a) 128 x 128 3.739%e-4 2.026 8.981e-3 0.993 5.469e-2 1.040
256 x 256 | 9.26le-5 | 2.013 4.501e-3 0.997 | 2.699-2 1.019
512 x 512 2.304e-5 2.007 2.253e-3 0.998 1.341e-2 1.009

16 x 16 2.380e-3 - 1.382e-1 - 1.675e-1 -
32 x 32 6.116e-4 1.957 6.961e-2 0.990 8.402e-2 0.995
Example 64 x 64 1.484e-4 2.043 3.498e-2 0.993 4.201e-2 1.000
4.1(b) 128 x 128 3.644e-5 2.026 1.753e-2 0.996 2.100e-2 1.001
256 x 256 9.022e-6 2.014 8.777e-3 0.998 1.050e-2 1.000
512 x 512 2.244e-6 2.007 4.391e-3 0.999 5.247e-3 1.000

16 x 16 1.823e-3 - 8.051e-2 - 9.978e-2 -
32 x 32 4.604e-4 1.985 4.082e-2 0.980 5.001e-2 0.996
Example 64 x 64 1.157e-4 1.992 2.060e-2 0.987 2.512e-2 0.994
4.1(c) 128 x 128 2.907e-5 1.994 1.034e-2 0.995 1.260e-2 0.995
256 x 256 7.280e-6 1.997 5.179e-3 0.997 6.315e-3 0.997
512 x 512 | 1.822e-6 1.999 2.592¢-3 0.998 | 3.159%-3 0.999

Table 2: Example 4.1 when the materials are nearly incompressible (v=0.499, v=0.4999).

NyxNy | lu=uplloy | order | |[divu—divuy|lo, | order | [Jlu—wylly, | order

16 x 16 9.585e-2 - 1.003e-1 - 1.902e-0 -
32 x 32 2.254e-2 2.089 5.109e-2 0.973 8.57%-1 1.149
Example 64 x 64 5.577e-3 2.015 2.571e-2 0.991 4.158e-1 1.045
4.1(d) 128 x 128 1.389%-3 2.006 1.289e-2 0.996 2.046e-1 1.023
256 x 256 | 3.466e-4 | 2.002 6.455e-3 0.998 | 1.015e-1 1.012
512 x 512 8.666e-5 2.000 3.231e-3 0.999 5.045e-2 1.007

16 x 16 4.437e-1 - 7.545e-2 - 8.430e-0 -
32 x 32 1.027e-1 2.112 3.837e-2 0.975 3.634e-0 1.214
Example 64 x 64 2.397e-2 2.099 1.942e-2 0.982 1.710e-0 1.088
4.1(e) 128 x 128 | 5.851e-3 | 2.035 9.748e-3 0.995 | 8.313e-1 1.040
256 x 256 1.439%-3 2.024 4.888e-3 0.996 4.072e-1 1.029
512 x 512 3.579%-4 2.007 2.447e-3 0.998 2.033e-1 1.002

(a) We choose a =p5=0.0891, u~ =100, y* =1,v=0.25 and ry =0.36.
(b) We choose a==0.1035, y~ =10, u* =1, v=0.25 and o =0.46.

(c) We choose a =p=0.14985, y~ =1000, u™ =1, v=0.25 and ry =0.6.

Table 4 shows the convergence behavior. In all the cases, we see optimal orders of
convergence in L2, H' and divergence norms also. Plots are shown in Fig. 4. The interpo-
lation error is shown in the Table 5.
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Table 3: Interpolation error of Example 4.1.

NyxNy | [lu=Tyullgy | order | ||diva—divlyullgy | order | [[u—TIyull;; | order

16 x 16 9.227e-4 - 6.913e-2 - 8.322e-2 -
32 x 32 2.219¢-4 2.056 3.534e-2 0.968 4.165e-2 0.999
Example 64 x 64 5.434e-5 2.030 1.786e-2 0.985 2.083e-2 0.999
4.1(a) 128 x 128 1.344e-5 2.015 8.978e-3 0.992 1.042e-2 1.000
256 x 256 3.342¢-6 2.008 4.501e-3 0.996 5.210e-3 1.000
512 x 512 8.333e-7 2.004 2.253e-3 0.998 2.605e-3 1.000

16 x 16 1.751e-3 - 1.381e-1 - 1.620e-1 -
32 x 32 4.341e-4 2.012 6.968e-2 0.987 8.098e-2 1.000
Example 64 x 64 1.060e-4 2.033 3.500e-2 0.994 4.054e-2 0.998
4.1(b) 128 x 128 2.619e-5 2.018 1.754e-2 0.997 2.028e-2 0.999
256 x 256 6.507e-6 2.009 8.778e-3 0.998 1.014e-2 1.000
512 x 512 1.622e-6 2.004 4.391e-3 0.999 5.072e-3 1.000

16 x 16 1.031e-3 - 8.051e-2 - 9.504e-2 -
32 x 32 2.540e-4 2.022 4.090e-2 0.977 4.772e-2 0.994
Example | 64 x 64 6.245e-5 2.024 2.062e-2 0.988 2.389%-2 0.998
4.1(c) 128 x 128 1.544e-5 2.016 1.034e-2 0.995 1.197e-2 0.997
256 x 256 3.839%-6 2.007 5.180e-3 0.998 5.990e-3 0.999
512 x 512 9.581e-7 2.003 2.593e-3 0.999 2.995e-3 1.000

16 x 16 1.966e-3 - 1.000e-1 - 1.202e-1 -
32 x 32 4.843e-4 2.021 5.101e-2 0.971 5.968e-2 1.010
Example 64 x 64 1.206e-4 2.005 2.569e-2 0.990 2.985e-2 0.999
4.1(d) 128 x 128 3.013e-5 2.002 1.289%e-2 0.995 1.493e-2 0.999
256 x 256 7.539%-6 1.999 6.454e-3 0.998 7.470e-3 0.999
512 x 512 1.884e-6 2.001 3.230e-3 0.998 3.734e-3 1.000

16 x 16 1.461e-3 - 7.525e-2 - 9.046e-2 -
32 x 32 3.717e-4 1.975 3.832e-2 0.974 4.545e-2 0.993
Example 64 x 64 9.127e-5 2.026 1.941e-2 0.981 2.262e-2 1.007
4.1(e) 128 x 128 2.289%e-5 1.995 9.744e-3 0.994 1.132e-2 0.998
256 x 256 5.711e-6 2.003 4.887e-3 0.995 5.656e-3 1.001
512 x 512 1.427e-6 2.001 2.447e-3 0.998 2.828e-3 1.000

Example 4.3. In this example, we test four sets of parameters with f=0. The level-set
function ¢ and the solution u are given as follows:

qb(x,y):g—y—c,
() = ((§;_y)2, (%;_y)z),
u+(x,y>:(%V;g)z_%_%)gﬂcg@(%%wz_(%_%) > ac2VB),

(a) We choose a =0.06, =0, u~ =100, y* =1,¢c=0.36 and v=0.49.
(b) We choose a=0.04, =0, u~ =10, " =1, c=0.26 and v=0.3.
(c) We choose a=0.6, =0, y~ =100, p* =1, c=0.79 and v=0.25.
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Table 4: Example 4.2.

NyxNy | lu—uyllpy | order | ||divu—divuyllpy, | order | [Jlu—uyll;; | order
16 x 16 4.928e-3 - 1.930e-1 - 2.357e-1 -
32 x 32 1.244e-3 1.986 9.660e-2 0.999 1.177e-1 1.003
Example 64 x 64 3.066e-4 2.021 4.831e-2 0.999 5.885e-2 1.000
4.2(a) 128 x 128 7.866e-5 1.963 2.417e-2 0.999 2.945e-2 0.999
256 x 256 2.017e-5 1.964 1.209e-2 1.000 1.473e-2 1.000
512 x 512 4.970e-6 2.021 6.045e-3 1.000 7.365e-3 1.000
16 x 16 4.977e-3 - 1.856e-1 - 2.267e-1 -
32 x 32 1.213e-3 2.037 9.304e-2 0.997 1.133e-1 1.001
Example 64 x 64 3.087e-4 1.974 4.659e-2 0.998 5.676e-2 0.998
4.2(b) 128 x 128 | 7.756e-5 1.993 2.331e-2 0.999 2.839%-2 0.999
256 x 256 1.951e-5 1.991 1.166e-2 0.999 1.420e-2 0.999
512 x 512 4.822e-6 2.017 5.830e-3 1.000 7.103e-3 1.000
16 x 16 4.937e-3 - 1.715e-1 - 2.095e-1 -
32 x 32 1.205e-3 2.034 8.597e-2 0.997 1.048e-1 1.000
Example | 64 x 64 3.328e-4 1.857 4.313e-2 0.995 5.256e-2 0.995
4.2(c) 128 x 128 7.945e-5 2.067 2.158e-2 0.999 2.629%e-2 0.999
256 x 256 1.960e-5 2.019 1.080e-2 0.999 1.316e-2 0.999
512 x 512 | 4.97%-6 1.977 5.401e-3 1.000 6.580e-3 1.000
Table 5: Interpolation error of Example 4.2.
Ny xNy | [lu=Iyullg, | order | ||diva—divlullg) | order | [lu—Iyull;; | order
16 x 16 2.317e-3 - 1.929e-1 - 2.233e-1 -
32 x 32 5.741e-4 2.064 9.650e-2 0.999 1.116e-1 1.001
Example 64 x 64 1.431e-4 2.013 4.830e-2 0.999 5.581e-2 1.000
4.2(a) 128 x 128 3.571e-5 2.003 2.417e-2 0.999 2.792e-2 0.999
256 x 256 8.915e-5 2.002 1.209e-2 1.000 1.396e-2 1.000
512 x 512 2.223e-6 2.001 6.045e-3 1.000 6.981e-3 1.000
16 x 16 2.258e-3 - 1.853e-1 - 2.146e-1 -
32 x 32 5.569e-3 2.016 9.299e-2 0.995 1.075e-1 0.997
Example | 64 x 64 1.380e-4 2.013 4.658e-2 0.997 5.382e-2 0.998
4.2(b) 128 x 128 3.446e-5 2.002 2.331e-2 0.999 2.692e-2 0.999
256 x 256 8.600e-6 2.002 1.166e-2 0.999 1.346e-2 1.000
512 x 512 2.149¢-6 2.001 5.830e-3 1.000 6.732e-3 1.000
16 x 16 2.099%¢-3 - 1.713e-1 - 1.990e-1 -
32 x 32 5.194e-3 2.014 8.594e-2 0.995 9.953e-2 0.999
Example 64 x 64 1.284e-4 2.016 4.315e-2 0.994 4.989%-2 0.996
4.2(c) 128 x 128 3.198e-5 2.006 2.158e-2 0.999 2.494e-2 1.000
256 x 256 7.975e-6 2.003 1.080e-2 0.999 1.247e-2 1.000
512 x 512 1.992e-6 2.001 5.401e-3 1.000 6.237e-3 1.000

(d) We choose «=0.03, =0, x~ =1000, y" =1, c=0.52 and v=0.4.
(e) We choose a=0.04, =0, u~ =1000, u* =1, c=0.67 and v=0.499.
(f) We choose a=0.36, =0, u~ =100, u* =1, c=0.74 and v=0.4999.

Table 6 shows the convergence behavior of our numerical schemes. And Table 7 which is
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Table 6: Example 4.3.

NyxNy | lu—uyllpy | order | ||divu—divuyllpy, | order | lu—uyll; | order

16 x 16 2.434e-2 - 4.347e-2 - 4.714e-1 -
32 x 32 6.212e-3 1.970 2.188e-2 0.990 2.337e-1 1.013
Example 64 x 64 1.567e-3 1.987 1.100e-2 0.992 1.165e-1 1.004
4.3(a) 128 x 128 3.950e-4 1.988 5.514e-3 0.996 5.850e-2 0.994
256 X 256 | 9.917e-5 1.994 2.761e-3 0.998 2.933e-2 0.996
512 x 512 2.484e-5 1.997 1.381e-3 0.999 1.468e-2 0.998

16 x 16 3.074e-3 - 5.263e-2 - 1.604e-1 -
32 x 32 7.872e-4 1.965 2.658e-2 0.985 8.117e-2 0.982
Example 64 x 64 1.976e-4 1.994 1.334e-2 0.995 4.082e-2 0.992
4.3(b) 128 x 128 5.018e-5 1.977 6.701e-3 0.993 2.047e-2 0.995
256 x 256 1.254e-5 2.000 3.354e-3 0.998 1.025e-2 0.998
512 x 512 3.146e-6 1.995 1.679%e-3 0.999 5.130e-3 0.999

16 x 16 1.426e-3 - 3.104e-2 - 9.058e-2 -
32 x 32 3.845e-4 1.891 1.615e-2 0.942 4.684e-2 0.951
Example 64 x 64 8.841e-5 2121 7.949¢-3 1.023 2.353e-2 0.993
4.3(c) 128 x 128 2.270e-5 1.962 4.019e-3 0.984 1.186e-2 0.988
256 x 256 5.537e-6 2.035 2.005e-3 1.003 5.938e-3 0.998
512 x 512 1.369¢-6 2.016 1.001e-3 1.002 2.971e-3 0.999

16 x 16 3.068e-3 - 4.152e-2 - 1.315e-1 -
32 x 32 7.163e-4 2.099 2.000e-2 1.054 6.58%¢-2 0.997
Example 64 x 64 1.900e-4 1.914 1.011e-2 0.985 3.330e-2 0.985
4.3(d) 128 x 128 4.612e-5 2.043 5.020e-3 1.009 1.664e-2 1.001
256 x 256 1.176e-5 1.971 2.519e-3 0.995 8.344e-3 0.996
512 x 512 2.911e-6 2.014 1.258e-3 1.002 4.171e-3 1.000

Table 7: Example 4.3 when the materials are nearly incompressible (v =0.499, v=0.4999).

Ny xNy | lu=wylloy | order | ||divu—divuyllpy, | order | lu—uylly; | order

16 x 16 2.766e-2 - 3.185e-2 - 6.131e-1 -
32 x 32 6.905e-3 2.002 1.608e-2 0.986 2.810e-1 1.013
Example 64 x 64 1.834e-3 1.913 8.114e-3 0.987 1.367e-1 1.040
4.3(e) 128 x 128 4.749e-4 1.949 4.068e-3 0.996 6.677e-2 1.034
256 x 256 1.218e-4 1.964 2.037e-3 0.998 3.289%e-2 1.021
512 x 512 3.091e-5 1.978 1.020e-3 0.998 1.632e-2 1.011

16 x 16 1.472e-1 - 2.862e-2 - 3.156e-0 -
32 x 32 3.533e-2 2.059 1.461e-2 0.970 1.381e-0 1.192
Example 64 x 64 8.695e-3 2.022 7.357e-3 0.990 6.454e-1 1.098
4.3(f) 128 x 128 2.150e-3 2.016 3.700e-3 0.992 3.168e-1 1.026
256 X 256 | 5.319¢-4 2.015 1.853e-3 0.997 1.554e-1 1.028
512 x 512 1.322e-4 2.009 9.279e-4 0.998 7.730e-2 1.007

423

the case of nearly incompressible shows the convergence behavior also. In all the cases,
we see optimal orders of convergence in L2, H' and divergence norms. So there is no
locking phenomena. Optimal order of the interpolation operator when =0 case is also
shown in the Table 8.
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Table 8: Interpolation error of Example 4.3.

NyxNy | [lu=Tyullgy | order | ||diva—diviyullgy | order | [[u—TIyull;; | order

16 x 16 2.333e-3 - 4.289%-2 - 1.356e-1 -
32 x 32 5.929¢-4 1.977 2.175e-2 0.980 6.878e-2 0.980
Example 64 x 64 1.499e-4 1.984 1.095e-2 0.990 3.464e-2 0.990
4.3(a) 128 x 128 3.732e-5 2.006 5.495e-3 0.995 1.738e-2 0.995
256 x 256 9.313e-6 2.003 2.752e-3 0.998 8.702e-3 0.998
512 x 512 2.326e-6 2.001 1.377e-3 0.999 4.354e-3 0.999

16 x 16 2.643e-3 - 4.691e-2 - 1.483e-1 -
32 x 32 6.501e-4 2.023 2.36%e-2 0.986 7.491e-2 0.986
Example 64 x 64 1.613e-4 2.011 1.190e-2 0.994 3.762e-2 0.994
4.3(b) 128 x 128 4.043e-5 1.996 5.963e-3 0.996 1.886e-2 0.996
256 x 256 1.009e-5 2.003 2.985e-3 0.998 9.440e-3 0.998
512 x 512 2.524e-6 1.999 1.493e-3 0.999 4.723e-3 0.999

16 x 16 1.450e-3 - 2.631e-2 - 8.319%-2 -
32 x 32 3.758e-4 1.948 1.351e-2 0.961 4.273e-2 0.961
Example | 64 x 64 9.296e-5 2.015 6.836e-3 0.983 2.162e-2 0.983
4.3(c) 128 x 128 2.346e-5 1.986 3.440e-3 0.991 1.088e-2 0.991
256 x 256 5.846e-6 2.005 1.725e-3 0.996 5.455e-3 0.996
512 x 512 1.459¢-6 2.002 8.634e-4 0.998 2.731e-3 0.998

16 x 16 2.062e-3 - 3.685e-2 - 1.165e-1 -
32 x 32 5.102e-4 2.015 1.875e-2 0.974 5.930e-2 0.974
Example 64 x 64 1.292e-4 1.982 9.467e-3 0.986 2.994e-2 0.986
4.3(d) 128 x 128 3.217e-5 2.005 4.753e-3 0.994 1.503e-2 0.994
256 x 256 8.070e-6 1.995 2.382e-3 0.997 7.533e-3 0.997
512 x 512 2.015e-6 2.002 1.192e-3 0.998 3.771e-3 0.998

16 x 16 2.604e-3 - 3.096e-2 - 9.789%-2 -
32 x 32 6.719e-4 1.954 1.584e-2 0.967 5.008e-2 0.967
Example 64 x 64 1.702e-4 1.981 8.003e-3 0.985 2.531e-2 0.985
4.3(e) 128 x 128 4.286e-5 1.990 4.022e-3 0.992 1.272e-2 0.992
256 x 256 1.075e-5 1.995 2.017e-3 0.996 6.377e-3 0.996
512 x 512 2.693e-6 1.997 1.010e-3 0.998 3.193e-3 0.998

16 x 16 2.372e-3 - 2.828e-2 - 8.944e-2 -
32 x 32 6.131e-4 1.952 1.448e-2 0.966 4.578e-2 0.966
Example | 64 x 64 1.559¢-4 1.976 7.325e-3 0.983 2.316e-2 0.983
4.3(f) 128 x 128 3.923e-5 1.990 3.683e-3 0.992 1.165e-2 0.992
256 x 256 9.847¢-6 1.994 1.847¢-3 0.996 5.840e-3 0.996
512 x 512 2.466e-6 1.997 9.246e-4 0.998 2.924e-3 0.998

5 Conclusions

In this paper, we proposed an immersed finite element method for linear elasticity prob-
lems having displacement jump proportional to the normal stress across the interface.
We used a uniform grid so that the interface is allowed to cut through the element. This
scheme is convenient since no grid generation is necessary and it is easy to develop fast
solver such as multigrid. Our scheme has fewer degrees of freedom than most of XFEM.
Numerical results show optimal convergence orders in L?, divergence norm and H!-
norm. Numerical experiments also show that our scheme does not lock, in other words,
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Figure 5: Line interface, plots of u for Example 4.3.

the convergence rates of our method does not deteriorate even if the Poisson ratio ap-
proaches 1/2. For the future works, we will generalize it to 3-D problems, and consider
other type of jump conditions such as crack propagation problems.
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