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We study a new mixed finite element of lowest order for general quadrilateral grids which
gives optimal order error in the H(div)-norm. This new element is designed so that the
H(div)-projection Ph satisfiesr �Ph = Phdiv. A rigorous optimal order error estimate is car-
ried out by proving a modified version of the Bramble–Hilbert lemma for vector variables.
We show that a local H(div)-projection reproducing certain polynomials suffices to yield an
optimal L2-error estimate for the velocity and hence our approach also provides an
improved error estimate for original Raviart–Thomas element of lowest order. Numerical
experiments are presented to verify our theory.
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1. Introduction

Since the 1970’s much effort has gone into the computation of the velocity variable of a physical state. The mixed finite
element method of decoupling the partial differential equations into a system of lower order equations to solve for both the
pressure and velocity has been effective for that purpose and has been a very active area of research [3–6,8,13,15,16,18–20].

The importance of obtaining a more accurate velocity occurs in the problem of fluid flow in porous media. For example, it
is well known that the transport and diffusion terms in the flow and transport equations are governed by fluid velocities.
Further, the mixed finite element method has the important property of conserving mass locally. It is a meaningful method,
since the flow equations are based on the mass balance law.

As for the meshes, there are two standard ways; triangular grids and rectangular grids. For these standard grids, the con-
vergence and the accuracy of these mixed methods are well established [4,6,8,18]. One of the advantages of the triangular
grids is the ability to fit complex geometry, while that of the rectangular grids lies in nice data structures. Quadrilateral grids
have the advantages of both grids: They not only can fit complex geometry well, but also maintain the structures of rectan-
gular grids. While there have been some attempts for the error estimates of mixed methods using quadrilateral grids, they
were carried out under the (sometimes implicit) assumption that the grids are almost parallelogram [10–12,14]. When the
distortion is given on a large scale, refinements of the grid yield almost parallelograms so that the preceding analysis is appli-
cable. In reality, there are cases when the fine grid itself has to be distorted; the geology may have fine variations due to the
rugged rock formulation in the porous media problem. However, when one attempts to use the usual mixed elements to
arbitrary quadrilaterals, the existing theory cannot be extended due to the violation of the condition div Vh �Wh, and
numerical experiments show that the velocity vector does not converge in the divergence norm (see Sections 3, 4 below).
Similar phenomena were observed for primal approaches for elliptic problems in [1,7].

In this paper, we study a new mixed finite element for quadrilaterals by modifying the lowest order Raviart–Thomas (RT)
element [18]. This modified element is dependent on each quadrilateral and the role of the modified part is to maintain the
. All rights reserved.
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condition, div Vh = Wh. We believe it was first considered by Shen [21] but they use Taylor series expansion under the
assumption that u is at most linear (see page 11 of [21]). We believe this approach cannot handle the case where u is not
linear or u does not have Taylor series expansion (see remark 3.1 and the paragraph following it). Further, no computational
results are given there. The difficult part of the proof is the approximation of vector variables. For this purpose, we provide a
Bramble–Hilbert type of lemma for vector variables, which enables us to provide O(h)-error estimate for vector variables for
Raviart–Thomas element and its modified version. Also, we give an optimal error estimate for the modified element in the
divergence norm. Another family of spaces yielding correct vector approximation were created by Arnold, Boffi and Falk in
[2] at the expense of additional degrees of freedom (two in the case of the lowest order), whereas our space has the same
degrees of freedom as the RT element.

The rest of this paper is organized as follows. In the next section, we consider a mixed formulation for a model second
order elliptic problem and its discretization using quadrilateral grids. In Section 3, we study a modified Raviart–Thomas ele-
ment of lowest order and give an optimal order error estimate (for velocity and its divergence) by proving a modified version
of the Bramble–Hilbert lemma. This approach incidentally results in an improved estimate of Raviart–Thomas element. We
briefly discuss how our ideas can be applied to modify the Brezzi–Douglas–Marini (BDM) space [4] of order one to obtain a
similar result for the divergence error of the velocity. Finally, in Section 4, we present numerical experiments.

2. Mixed methods for elliptic problems

Let X be a bounded polygonal domain in R2 with the boundary @X. We consider the following second-order elliptic
boundary value problem
�r � ðjrpÞ ¼ f in X;

p ¼ 0 on @X;
ð1Þ
where j = j(x) is a symmetric and uniformly positive definite matrix. Let us introduce a vector variable u = �jrp and re-
write problem (1) in mixed form
uþ jrp ¼ 0; in X;

r � u ¼ f ; in X;

p ¼ 0 on @X:

ð2Þ
Denote by H1(X) = (H1(X))2, V :¼ H(div;X) and W = L2(X) the usual Sobolev spaces with obvious norms. Then we have the
following variational form for (2):
ðj�1u;vÞ � ðp;r � vÞ ¼ 0; 8v 2 V;
ðr � u; qÞ ¼ ðf ; qÞ; 8q 2W:

ð3Þ
This problem has a unique solution (u,p) 2 V �W. Assume that we have approximating spaces Vh � V and Wh �W. Then we
have the following finite dimensional problem corresponding to (3).
ðj�1uh;vhÞ � ðph;r � vhÞ ¼ 0; 8vh 2 Vh;

ðr � uh; qhÞ ¼ ðf ; qhÞ; 8qh 2Wh:
ð4Þ
Let fT h : h > 0g be a family of partitions of X into convex quadrilaterals. The intersection, if any, of any two (closed) quad-
rilaterals in the partition is either a common edge or a common vertex.

We assume a usual shape-regularity condition [p. 247,8], on the partition fT h : h > 0g.
(A): The quadrilaterals Q 2 fT hg are convex and there exist constants c > 0 and 0 < q < 1 independent of h such that the

ratio of the diameter and the smallest side of each Q is bounded by c and the absolute maximum cosine of angles of Q are
bounded by q.

We can replace (A) by other shape regularity condition such as the one in [9], where they used the ratio between the
diameter of K and the maximum of diameter of triangles formed by three vertices of K.

Let x̂ ¼ ðx̂; ŷÞ and x = (x,y). We use the unit square Q̂ ¼ ½0;1� � ½0;1� as the reference element in the x̂ŷ-plane with the
vertices
x̂1 ¼ ð0;0Þ; x̂2 ¼ ð1;0Þ; x̂3 ¼ ð1;1Þ; x̂4 ¼ ð0;1Þ:
Let Q be a convex quadrilateral with vertices xi arranged counterclockwise. Then there exists a unique invertible bilinear
transformation FQ which maps Q̂ onto Q and satisfies
xi ¼ FQ ðx̂iÞ; i ¼ 1;2;3;4:
The Jacobian matrix DFQ of FQ is given by
DFQ ¼
@x
@x̂

@x
@ŷ

@y
@x̂

@y
@ŷ

 !
: ð5Þ
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Simple calculation shows that the determinant JQ = detDFQ is a linear function of x̂ and ŷ,
JQ ðx̂; ŷÞ ¼ aþ bx̂þ cŷ; ð6Þ
for some constants a, b and c depending on FQ (see Fig. 1). Note that
jQ j ¼
Z

Q
1dx ¼

Z
Q̂

JQ dx̂ ¼
Z

Q̂
ðaþ bx̂þ cŷÞdx̂ ¼ aþ 1

2
bþ 1

2
c:
From (A), we derive the following estimates for the Jacobian matrix DFQ and its determinant JQ: there exists a constant c
independent of h and independent of Q such that
kDFQk1 6 ch; ð7Þ
jJ�1

Q j1 6 ch�2
: ð8Þ
The vector valued functions on Q̂ are transformed into vector valued functions on Q by the so called Piola transformation
v ¼ Pv̂;
where
ðPv̂ÞjQ ¼ PQðv̂jQ̂ Þ :¼ DFQ

JQ
v̂jQ̂ � F�1

Q : ð9Þ
This transformation maps Hðdiv; Q̂Þ space on the reference element onto H(div;Q), and has the following well known prop-
erties [6]: if we let p̂ ¼ p � F and v ¼ Pv̂, then
Z

Q
rp � v dx ¼

Z
Q̂
r̂p̂ � v̂ dx̂; ð10Þ

r � v ¼ 1
JQ
r̂ � v̂: ð11Þ
3. A modified Raviart–Thomas (MRT) space of the lowest order

Let Wh be the space of functions which are piecewise constant on T h. To define Vh, let VhðQ̂Þ denote the local space on the
reference element Q̂ consisting of all functions of the form:
v̂ ¼ aþ bx̂þ ðbþ dÞ b
2jQ j x̂ðx̂� 1Þ; c þ dŷþ ðbþ dÞ c

2jQ j ŷðŷ� 1Þ
� �

;

where a; b; c; d 2 R; b; c are from (6) and the local space Vh(Q) on each quadrilateral Q is defined by
VhðQÞ ¼ v ¼ PQ v̂ j v̂ 2 VhðQ̂Þ
n o

ð12Þ
and the global space Vh is defined by
Vh ¼ v 2 V jvjQ 2 VhðQÞ; 8Q 2 T h
� �

: ð13Þ
Note that the space VhðQ̂Þ is dependent on each quadrilateral Q, hence it should be denoted as VhðQ̂ ;QÞ. But we drop
Q for brevity when there is no worry of confusion. When b = c = 0, the spaces Vh and VhðQ̂Þ correspond to the usual
Raviart–Thomas space which we denote by Uh and UhðQ̂Þ, respectively.
x̂

ŷ

x̂ 1 x̂ 2

x̂ 3x̂ 4

FQ

x 1
x 2

x 3
x 4

Fig. 1. Bilinear transformation FQ.
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Let v 2 Vh be arbitrary and let v̂ be the inverse image of the Piola transformation of v. Then for any given Q 2 T h,
r̂ � v̂jQ ¼ bþ ðbþ dÞ b
2jQ j ð2x̂� 1Þ þ dþ ðbþ dÞ c

2jQ j ð2ŷ� 1Þ ¼ ðbþ dÞ2jQ j � b� cþ 2bx̂þ 2cŷ
2jQ j ¼ ðbþ dÞ

JQ

jQ j

so that
r � vjQ ¼
1
JQ
r̂ � v̂ ¼ bþ d

jQ j
is constant. We conclude that the discrete space Vh has the property that for any v 2 Vh,r � vjQ is constant for each Q 2 T h. So
div Vh �Wh.

3.1. The H(div;X)-projection Ph

For any domain K with straight edges, we let eHðKÞ be a subspace of functions in H(div;K) having L2 normal trace on each
edge of K. Then the projection Ph : H1(X) ? Vh is defined as follows: First define P̂Q̂ from eHðQ̂Þ onto VhðQ̂Þ satisfying
Z

ê
P̂Q̂ v̂ � n̂ dŝ ¼

Z
ê

v̂ � n̂ dŝ ð14Þ
for each edge ê of Q̂ and then set
PQv ¼ PQ ðP̂Q̂ v̂Þ; 8v 2 H1ðQÞ;
where PQ v̂ ¼ v. Finally, we define
PhvjQ ¼ PQv:
We note that with this modified space, the following crucial commutativity holds:
r �Ph ¼ Phdiv; ð15Þ

where as usual, we denote by Ph : W ? Wh the L2 projection defined by
ðPhw;vhÞ ¼ ðw;vhÞ ð16Þ

for all vh 2Wh.

We also need the standard projection Û onto the Raviart–Thomas space UhðQ̂Þ defined by
Z
ê
Ûv̂ � n̂ ds ¼

Z
ê

v̂ � n̂ dŝ ð17Þ
for each edge ê of Q̂ and let the global projection defined by
UhvjQ ¼ PQ ðÛv̂Þ: ð18Þ
Lemma 1. Let u = (u,v)T 2 H1(Q) be arbitrary where Q is an arbitrary quadrilateral in T h. If û ¼ ðû; v̂ÞT satisfies u ¼ PQ û, then we
have
kûx̂k0;Q̂ þ kv̂ ŷk0;Q̂ 6 Cðkuk0;Q þ hjuj1;Q Þ; ð19Þ
kûŷk0;Q̂ þ kv̂ x̂k0;Q̂ 6 Chjuj1;Q ; ð20Þ
kr � ûk0;Q̂ 6 Chkr � uk0;Q : ð21Þ
Proof. By the definition of the Piola transformation, we have
û

v̂

� �
¼ JQ ðDFQ Þ�1 u

v

� �
: ð22Þ
Since JQ is the determinant of DFQ,
JQ ðDFQ Þ�1 ¼
yŷ �xŷ

�yx̂ xx̂

� �
ð23Þ
so that
û ¼ yŷu� xŷv ; ð24Þ
v̂ ¼ �yx̂uþ xx̂v : ð25Þ
Differentiate both side of (24) with respect to x̂, then
ûx̂ ¼ xx̂yŷux þ yx̂yŷuy � xx̂xŷvx � xŷyx̂vy þ yx̂ŷu� xx̂ŷv: ð26Þ
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By (7) and (8) we have
kûx̂k2
0;Q̂ ¼

Z
Q̂
jûx̂j2dx̂ ð27Þ

6 C
Z

Q
h4ðu2

x þ u2
y þ v2

x þ v2
yÞ

1
JQ

dxþ C
Z

Q
h2ðu2 þ v2Þ 1

JQ
dx ð28Þ

6 Ch2juj21;Q þ Ckuk2
0;Q ; ð29Þ
where C is independent of h and u. Hence
kûx̂k0;Q̂ 6 C kuk0;Q þ hjuj1;Q
� �

: ð30Þ
Similarly, we have
kv̂ ŷk0;Q̂ 6 C kuk0;Q þ hjuj1;Q
� �

: ð31Þ
Now consider the term ûŷ. In this case, we have
ûŷ ¼ xŷyŷux þ ðyŷÞ
2uy � ðxŷÞ2vx � xŷyŷvy; ð32Þ
since the term yŷŷu� xŷŷv vanishes. Proceeding as in (28) and (29) we obtain
kûŷk0;Q̂ 6 Chjuj1;Q : ð33Þ
Similarly, we have
kv̂ x̂k0;Q̂ 6 Chjuj1;Q : ð34Þ
Note that r � û ¼ JQr � u. Using the estimate of the jacobian JQ 6 Ch2 we can easily obtain the following estimation for the
divergence
kr � ûk0;Q̂ 6 Chkr � uk0;Q : �
Remark 3.1. Our result is different from the standard result for the affine case;
jûj1;Q̂ 6 Chjuj1;Q
which is obtained by scaling. If we assume that the quadrilateral is almost parallelogram such that the terms xx̂ŷ and yx̂ŷ are of
order h2, then (19) reduces to
jûj1;Q̂ 6 Chkuk1;Q : ð35Þ
Now we give a counterexample which shows (35) does not hold for general quadrilaterals. Let Q be a trapezoid with vertices
x1 ¼ ð0;0Þ; x2 ¼ ðh;0Þ; x3 ¼ h

2 ;h
� 	

, and x4 = (0,h). This satisfies (A). Let u = (u,v)T = (1,1)T be a constant function. Then
ûx̂ ¼ yx̂ŷu� xx̂ŷv ¼ ðy32 � y41Þ � ðx32 � x41Þ ¼
h
2

so that kûx̂k0;Q̂ ¼ h
2. But
kuk1;Q ¼ kuk0;Q ¼
Z

Q
1dx

� �1
2

¼ jQ j
1
2 ¼

ffiffiffi
3
p

2
h

so that
kûx̂k0;Q̂ ¼
1ffiffiffi
3
p kuk1;Q : ð36Þ
As we have seen in Remark 3.1, inequalities (19) and (21) are sharp. Hence a simple application of the Bramble–Hilbert lem-
ma cannot lead to obtain h factor by scaling back to original element. To overcome the difficulty, we introduce a special poly-
nomial space and prove a modified Bramble–Hilbert lemma. Let D0 be the space of polynomials of the form (a + bx,c � by).
The following is a key result in proving optimal O(h)-error estimates in L2-norm for RT and MRT elements (see the proof of
Lemma 4).
Lemma 2. Let eX be any Lipschitz domain in R2. There exists a constant CeX such that for all v ¼ ðu;vÞ 2 H1 :¼ H1ðeXÞ,

inf

w2D0

kv þwk1 6 CeXðkuyk0 þ kvxk0 þ kr � vk0Þ: ð37Þ
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Proof. Let fi, 1 6 i 6 3, be a dual basis of D0. By the Hahn–Banach extension theorem, there exist continuous linear forms
over the space H1, again denoted fi, 1 6 i 6 3, such that for any w 2 D0, fi(w) = 0, 1 6 i 6 3 implies w = 0. We will show that
there exists a constant CeX such that for all v = (u,v) 2 H1,
kvk1 6 CeX kuyk0 þ kvxk0 þ kr � vk0 þ
X3

i¼1

jfiðvÞj
 !

: ð38Þ
Inequality (37) will follow from inequality (38): Given any function v 2 H1, let q 2 D0 be such that fi(v + q) = 0, 1 6 i 6 3. Then,
we have
inf
w2D0

kv þwk1 6 kv þ qk1 6 CeXðkuyk0 þ kvxk0 þ kr � vk0Þ;
since r � q = 0. This proves (37).
Assume that (38) is false. There exists a sequence fv‘g1‘¼1 of functions v‘ = (u‘,v‘) 2 H1, such that for all ‘
kv‘k1 ¼ 1 ð39Þ

and
lim
‘!1

ku‘yk0 þ kv ‘
xk0 þ kr � v‘k0 þ

X3

i¼1

jfiðv‘Þj
 !

¼ 0: ð40Þ
Since the sequence {v‘} is bounded in H1, there exists a subsequence (Kondrasov Rellich theorem), again denoted {v‘}, and a
function v = (u,v) 2 L2, such that
lim
‘!1
kv‘ � vk0 ¼ 0: ð41Þ
Note that, by Banach–Alaoglu theorem, this subsequence converges weakly in H1. Hence by (40) uy, vx, andr � v exist and are
equal to 0. Since any L2 function v which satisfies uy = vx =r � v = 0 is of the form (a + bx,c � by), v is in D0.

Since
fiðvÞ ¼ lim
‘!1

fiðv‘Þ ¼ 0; 1 6 i 6 3;
we have v = 0. But this is a contradiction, since kv‘k1 = 1 for all ‘. h
Theorem 3. Let eX be an connected open subset of R2 with a Lipschitz continuous boundary. Let f be a continuous linear form on
the space H1ðeXÞ with the property that for all w 2 D0,
f ðwÞ ¼ 0:
Then there exists a constant CeX such that for all v ¼ ðu;vÞ 2 H1ðeXÞ,

jf ðvÞj 6 CeXkfk� kuyk0 þ kvxk0 þ kr � vk0

� 	
; ð42Þ
where kfk⁄ is the dual norm of f.
Proof. Since f(v) = f(v + w) for all w 2 D0, we have that for all w 2 D0,
jf ðvÞj ¼ jf ðv þwÞj 6 kfk� � kv þwk1
and thus
jf ðvÞj 6 kfk� inf
w2D0

kv þwk1: ð43Þ
Now the conclusion follows by Lemma 2. h

Notice that, (locally) both the RT-space and the MRT-space contain the space D0. Hence, using the above result and the
estimates in Lemma 1, we can now prove optimal L2-error estimates for both the projections Ph and Uh.

Lemma 4. Let ph denote either Ph or Uh. Then
ku� phuk0 6 Chjuj1; 8u 2 H1ðXÞ; ð44Þ
Also, the following estimates are valid
ðr � ðu�PhuÞ;wÞ ¼ 0; 8u 2 H1ðXÞ;w 2Wh; ð45Þ
kr � ðu�PhuÞk0 6 Chjr � uj1; if u satisfies div u 2 H1ðXÞ: ð46Þ
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Remark 3.2. Note that (45), (46) do not holds if Ph is replace by the unmodified RT projection Uh.
Proof. To prove (44) we take ph = Ph. The case ph = Uh is similar. Observe that
ku�Phuk2
0 ¼

X
Q2T h

ku�PQ uk2
0;Q : ð47Þ
By (7), (8), we have
ku�PQ uk2
0;Q ¼

Z
Q
ðu�PQ uÞ � ðu�PQ uÞdx ¼

Z
Q̂

1
JQ

û� P̂Q̂ û
� �T

DFT
Q DFQ û� P̂Q̂ û

� �
dx̂ 6 c1

Z
Q̂
jû� P̂Q̂ ûj2 dx̂

¼ c1kû� P̂Q̂ 3ûk2
0;Q̂ 6 C kûyk2

0;Q̂ þ kv̂xk2
0;Q̂ þ kr � ûk

2
0;Q̂

� �
6 Ch2 juj21;Q þ kr � uk2

0;Q

� �
; ð48Þ
where Theorem 3, (20) and (21) have been used. Summing over Q, we have (44).
The relation (45) follows from (15) and finally, the estimate (46) is direct from (45) and the property of L2-projection. h

Now we show the boundedness of Ph.

Lemma 5. For any v 2 eHðQÞ, there exists a constant c which is independent of h such that
kPQ vkHðdiv;QÞ 6 c1kvkHðdiv;QÞ: ð49Þ
Furthermore, if v 2 H(div;X) and Phv is well defined, the following also holds.
kPhvkHðdiv;XÞ 6 c1kvkHðdiv;XÞ: ð50Þ
Proof. It suffices to show (49). The same argument as (48) shows that
kPQ vk2
0;Q 6 ckP̂Q̂ v̂k2

0;Q̂ : ð51Þ
Observe that
P̂Q̂ v̂ ¼ P̂Q̂ v̂ � Ûv̂ þ Ûv̂ ¼ P̂Q̂ Ûv̂ � Ûv̂ þ Ûv̂:
By direct computation, it is easy to see that
kP̂Q̂ Ûv̂ � Ûv̂k0;Q̂ 6 ckr � v̂k0;Q̂ : ð52Þ
Note that Û is the standard interpolation of Raviart–Thomas over the reference element Q̂ . Therefore we have
kÛv̂k0;Q̂ 6 ckv̂kHðdiv;Q̂Þ: ð53Þ
By (52), (53) and scaling, we have
kP̂Q̂ v̂k0;Q̂ 6 ckvkHðdiv;QÞ: ð54Þ
Therefore (51) and (54) show that
kPQ vk0;Q 6 ckvkHðdiv;QÞ: ð55Þ

Now the following is an immediate consequence of (15):
kr �PQvk0;Q 6 kr � vk0;Q : ð56Þ

Finally, (55) and (56) implies (49). h
3.2. Error estimates

To prove the existence and uniqueness, we need the inf–sup condition:

Lemma 6. There exists a positive constant b0, which is independent of h, such that for all wh 2Wh
kwhk0 6 b0 sup
vh2Vh

ðwh;r � vhÞ
kvhkHðdivÞ

: ð57Þ
Proof. This follows from a standard method using the boundedness of Ph, see [6,18]. h

Now the existence and uniqueness follow easily from the standard theory of mixed method since div Vh �Wh.
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Theorem 7. Let (u, p) be the solution pair of (3) and (uh,ph) be the solution pair of (4) using MRT-space. Also, let ð~uh; ~phÞ be the
solution pair of (4) using the unmodified RT-space. Then we have
ku� uhk0 6 Chjuj1;
kr � ðu� uhÞk0 6 Chjr � uj1;
kp� phk0 6 Chkuk1
and
ku� ~uhk0 6 Chjuj1;
kp� ~phk0 6 Chkuk1:
Proof. Subtracting (3) from (4), we have
ðj�1ðu� uhÞ;vhÞ � ðp� ph;r � vhÞ ¼ 0; 8vh 2 Vh; ð58Þ
ðr � ðu� uhÞ; qhÞ ¼ 0; 8qh 2Wh: ð59Þ
Hence,
cku� uhk2
0 6 ðj�1ðu� uhÞ;u� uhÞ ¼ ðj�1ðu� uhÞ;Phu� uhÞ þ ðj�1ðu� uhÞ;u�PhuÞ
¼ ðPhp� ph;r � ðPhu� uhÞÞ þ ðj�1ðu� uhÞ;u�PhuÞ ¼ ðj�1ðu� uhÞ;u�PhuÞ
6 Cku� uhk0ku�Phuk0; ð60Þ
where c and C are independent of h and u. Here, we note that (60) holds becauser � (Phu � uh) is piecewise constant. There-
fore, we have from (44)
ku� uhk0 6 cku�Phuk0 6 Chjuj1: ð61Þ
Since r � (u � uh) =r � (u � Phu), we have from (46)
kr � ðu� uhÞk0 6 Chjr � uj1: ð62Þ
Using the inf–sup condition (57), we have following
kPhp� phk0 6 C sup
vh2Vh

ðPhp� ph;r � vhÞ
kvhkHðdivÞ

¼ C sup
vh2Vh

ðj�1ðu� uhÞ;vhÞ
kvhkHðdivÞ

6 Cku� uhk0:
Hence we obtain
kp� phk0 6 kp� Phpk0 þ kPhp� phk0 6 Chðkpk1 þ kuk1Þ 6 Chkuk1:
The proof for unmodified case is slightly different. In this case, the equality (60) does not holds. However, if we modify L2-
projection Ph by
ðPM
h p; qhÞ ¼ ðp̂; q̂hÞ; qh 2Wh;
then (60) holds since
ðp;r � vhÞ ¼ ðp̂; r̂ � v̂hÞ ¼ ðPM
h p;r � vhÞ
with vh = Uhu � uh. The rest of the proof is the same as before since the approximation property (44) also holds for Uh. h
Remark 3.3. Incidentally, we proved an optimal L2-error estimate for the original RT space (of lowest order). This is an
improvement over [18] in regularity which says
ku� ~uhk0 6 Chðjuj1 þ hjr � uj1Þ:

Arnold, Boffi and Falk [2] have obtained similar result for the RT-space with a different approach. They also obtained an opti-
mal error estimate for the divergence, but at the expense of extra degrees of freedom.
Remark 3.4. The condition that RTðQ̂Þ or MRTðQ̂Þ contains the space D0 turns out to be sufficient (see Lemma 2, 4 and The-
orem 3.7) to show optimal error estimate of velocity in L2-norm (not the divergence), which is also discovered recently in [2]
by a quite different approach.
Remark 3.5. Similar argument can be used to modify the BDM space of lowest order to show O(h)-error estimate for diver-
gence. For example, one can modify four basis functions corresponding to the lower weight by the same way as in Section 3.
We will not pursue the details here.
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Remark 3.6. Our method can be generalized to compute the divergence of velocity accurately for three dimensional prob-
lems with distorted grid. But in [17], it is indicated that the standard Raviart–Thomas–Nedelec element of the lowest order
does not reproduce a constant vector fields in this case. In our experiment (although not reported), the standard Raviart–
Thomas–Nedelec element of the lowest order does not converge even in L2-norm. It is an interesting future topic to
investigate.
4. Numerical experiments

To confirm the theoretical results established in Section 3, several numerical tests are carried out on the unit square
X = (0,1)2. First we partition the unit square into uniform squares of size h :¼ 2�J, J = 1,2, . . . Then, we distort each element
by pulling or pushing the vertices alternatively by a factor of a. For example, the quadrilateral in the corner has vertex (0,0),
((1 + a)h,0), ((1 � a)h,h), and (0,h) (see Fig. 2). Assuming that the error is of the form Chb, we report the value b at the end of
each table. Tables 1–3 show the results of MRT for a = 0,0.4 and 0.8, while Tables 1, 4, 5 show the results of RT for a = 0,0.4
(1 +α)h

h

(1−α)h

Q

Fig. 2. Partition T h on X.

Table 1
RT and MRT: a = 0.

h kp � phk0 kPhp � phk0 kdiv(u � uh)k0 ku � uhk0

1/4 3.121(e�2) 2.736(e�3) 5.035(e�1) 1.071(e�1)
1/8 1.640(e�2) 7.400(e�4) 2.610(e�1) 5.538(e�2)
1/16 8.301(e�3) 1.886(e�4) 1.317(e�1) 2.792(e�2)
1/32 4.163(e�3) 4.739(e�5) 6.602(e�2) 1.399(e�2)
1/64 2.083(e�3) 1.188(e�5) 3.304(e�2) 6.998(e�3)
b 0.999 1.996 0.999 0.999

Table 2
MRT: a = 0.4.

h kp � phk0 kPhp � phk0 kdiv(u � uh)k0 ku � uhk0

1/4 3.240(e�2) 3.516(e�3) 5.376(e�1) 1.146(e�1)
1/8 1.730(e�2) 1.098(e�3) 2.839(e�2) 6.487(e�2)
1/16 8.806(e�3) 3.096(e�4) 1.422(e�2) 3.397(e�2)
1/32 4.422(e�3) 8.209(e�5) 7.077(e�2) 1.732(e�2)
1/64 2.214(e�3) 2.114(e�5) 3.526(e�2) 8.738(e�3)
b 0.998 1.957 1.005 0.987

Table 3
MRT: a = 0.8.

h kp � phk0 kPhp � phk0 kdiv(u � uh)k0 ku � uhk0

1/4 3.524(e�2) 6.041(e�3) 6.031(e�1) 1.394(e�1)
1/8 1.952(e�2) 2.217(e�3) 3.240(e�1) 8.622(e�2)
1/16 1.001(e�2) 6.701(e�4) 1.625(e�1) 4.657(e�2)
1/32 5.035(e�3) 1.820(e�5) 8.078(e�2) 2.400(e�2)
1/64 2.521(e�3) 4.731(e�6) 4.021(e�2) 1.216(e�2)
b 0.998 1.944 1.006 0.981



Table 4
RT: a = 0.4.

h kp � phk0 kdiv(u � uh)k0 ku � uhk0

1/4 3.300(e�2) 8.599(e�1) 1.219(e�1)
1/8 1.757(e�2) 6.953(e�1) 6.858(e�2)
1/16 8.930(e�3) 6.495(e�1) 3.600(e�2)
1/32 4.483(e�3) 6.378(e�1) 1.840(e�2)
1/64 2.244(e�3) 6.349(e�1) 9.298(e�3)
b 0.998 0.007 0.984

Table 5
RT: a = 0.8.

h kp � phk0 kdiv(u � uh)k0 ku � uhk0

1/4 3.860(e�2) 1.617(e+0) 1.729(e�1)
1/8 2.090(e�2) 1.508(e+0) 1.035(e�1)
1/16 1.063(e�3) 1.483(e+0) 5.595(e�2)
1/32 5.333(e�3) 1.477(e+0) 2.898(e�2)
1/64 2.668(e�3) 1.475(e+0) 1.473(e�2)
b 0.999 0.002 0.976
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and 0.8. Tables 1–3 show the OðhÞ for all the variables; pressure and divergence and velocity. We observe superconvergence
for the pressure. Note that the results for RT and MRT are the same as is seen in Table 1. This is evident because MRT and RT
are exactly the same for rectangular meshes. Tables 4 and 5 show that the usual RT-element does not converge in the diver-
gence norm.
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