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a b s t r a c t

We propose a new numerical method to solve an elliptic problem with jumps both in the solution and
derivative along an interface. By considering a suitable function which has the same jumps as the solu-
tion, we transform the problem into one without jumps. Then we apply the immersed finite element
method in which we allow uniform meshes so that the interface may cut through elements to discretize
the problem as introduced in [1–3]. Some convenient way of approximating the jumps of the solution by
piecewise linear functions is suggested. Our method can also handle the case when the interface passes
through grid points. We believe this paper presents the first resolution of such cases. Numerical exper-
iments for various problems show second-order convergence in L2 and first order in H1-norms. Moreover,
the convergence order is very robust for all problems tested.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, there have been extensive efforts to find numer-
ical methods for solving problems with interface. There are many
physical problems where the underlying partial differential equa-
tions have an interface. For example, second-order elliptic equa-
tions with discontinuous coefficients are often used to model
problems in material sciences and porous media when two or more
distinct materials or media with different conductivities, densities
or permeability are involved. The solution of these interface prob-
lems must satisfy certain interface jump conditions due to conser-
vation laws. Interface problems with jump conditions also arise in
many other applications. For example, they are used to describe
the electroporation state of a biological cell under an electric field
[4,5]. Other examples of a problem with interface are time-depen-
dent parabolic equations having a moving interface, the incom-
pressible Navier–Stokes equations which describe two phase
fluids, and the motion of elastic body embedded in some fluids.

The solution of the interface problem is smooth only on the
individual regions where the coefficients are smooth, but due to
the jumps of the coefficients across the interface, the global regu-
larity is usually low and the solution usually belongs to H1(X) if
the jumps are homogeneous; however, if the jumps are inhomoge-
neous, then the solution or derivative is often discontinuous, hence
the corresponding numerical method is more difficult to design.
ll rights reserved.
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Because of the discontinuity of solution, achieving accuracy is very
difficult with standard finite element methods, unless the elements
fit with the interface of general shape.

For these problems, many numerical methods have been sug-
gested. An early attempt to study the interface problem goes back,
at least, to 1977 where Peskin [6] used the Dirac d function in
describing the motion of a heart embedded in the human body
fluid. Since then there have been many attempts to solve the prob-
lem with immersed interface. For example, the Immersed Bound-
ary Method (IBM) was introduced in [6–9]. IBM uses a finite
difference method in conjunction with a regularized d-function.
However this method smears out the solution near the interface
and shows first order accuracy only.

To resolve the low order accuracy, some new types of methods
have been proposed based on the immersed boundary idea of
Peskin. In [10], LeVeque and Li proposed the ‘‘Immersed Interface
Method (IIM)’’ where they derived jump conditions in the solution
from the effect of d-function and used finite difference to incorpo-
rate them into the finite difference scheme, thus avoiding large er-
rors arising from discretizing the d-function directly. This seems
one of the early results to have second-order accuracy with Carte-
sian grid. Also, the numerical solution does not smear near the
interface.

One of the advantages of IIM is the use of uniform Cartesian
grids. Ideas similar to IIM were subsequently applied to other
interface problems such as Hele–Shaw, Stokes flow, Navier–Stokes
flow problem, etc., see [11–15] and references therein. Although
these methods were demonstrated to be very effective, there is
room to improve the schemes. For example, in most of IIM
schemes, the coefficients for the numerical stencil are derived with
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Fig. 1. Sketch of the domain X for the interface problem.
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a minimization method to preserve the M-matrix property; thus in
general the resulting system is nonsymmetric even though the ori-
ginal system is symmetric and positive definite and the stencil is
complicated to derive. This makes it impossible to use easy and fast
solvers such as conjugate gradient, ADI, etc. Other disadvantage is
that the IIM is derived from Taylor series on each side the region
which requires higher order regularity of the solution while most
solutions of an elliptic problem only have H2 regularity in each
subdomain. Thus, for problems having rough data or corners, IIM
may not work well. Other related works in this direction can be
found in [16–22] and references therein.

Above listed methods are all finite difference based methods.
While, for finite element method sides, Li, Lin, Rogers and Ryan de-
signed an Immersed Finite Element Method (IFEM) for rectangular
grid in [3], Lin, Lin, Rogers and Wu considered IFEM for triangular
grid and proved approximation properties in [1,2]. In these meth-
ods the interface is allowed to cut through the interior of the ele-
ment, while the basis function is designed to satisfy the
continuity and jump of the flux along the interface. Their numeri-
cal examples demonstrated optimal orders of the error.

A rigorous convergence analysis for this method for elliptic case
was provided in a recent paper by the authors in [24,25], where
they have shown that the convergence order is O(h) in H1 and
O(h2) in L2 norm independently of the location of interface.

IFEM is quite convenient in several aspects. First of all, the sten-
cil is a five point stencil, while that of IIM is six points, and the
coefficients are computed element-by-element just like the stan-
dard finite element methods. Hence the structure of stiffness ma-
trix is exactly the same as that of the standard finite element
method. Hence, the method can be easily incorporated into exist-
ing software packages. This is in contrast to the IIM of Li et al.,
where they need to solve a linear system involving 9 unknowns
for each grid point. Secondly, IFEM results in a symmetric positive
definite matrix when the underlying problem is symmetric and
uniformly elliptic. Hence many known efficient solvers can be
exploited. Third, when moving interface problems such as Hele–
Shaw problem, which involves two phase flows with different vis-
cosity and variable surface tension, one does not need to generate a
new grid as time evolves. This saves considerable amount of time
and storage. So far the IFEM was only developed for problems with
homogeneous jumps.

A finite element approach for nonhomogeous jump is consid-
ered in [18] where they used triangular grid with built-in jump
conditions in the basis function. In their approach, the trial finite
function belongs to an affine space which is not a vector space.
Hence their approach is different from the usual finite element
method. Furthermore, the resulting linear system is nonsymmetric
which is expensive to solve. Also, they cannot deal with the case
when the interface passes through grid points. So they perturb
the interface by a small amount, adjusting the level set function
to avoid such a case.

Some other methods related to this problems are XFEM type
which were developed for fluid–structure problems, see [26,27],
where they enrich standard finite element space by augmenting
extra functions near the interface to handle the jump. Usually they
require extra degrees of freedom and mesh refinement.

In this paper, we propose a fast accurate algorithm for problems
with nonhomogeneous jump conditions. The algorithm is based on
the finite element method based algorithm which can use any
regular triangular finite element meshes including uniform
meshes. The idea is to consider certain a singular function in a
neighborhood of the interface whose jumps match the given jump
conditions. By subtracting this function, we obtain a problem in
which the solution has homogeneous jumps. Then we can use
any reasonable numerical method to solve the resulting equation.
We specifically suggest a method of constructing piecewise linear
interpolation near the interface whose jumps match the given
jump conditions. Then we use the IFEM to solve the resulting equa-
tion. It obtains a sharp solution near the interface contrary to ap-
proaches based on discrete Dirac source terms. Thus, our new
method (we call it Discontinuous Bubble Immersed Finite Element
Method-DBIFEM) provides a natural framework to incorporate the
jumps of solutions in the immersed finite element formulation.
The resulting discretization leads to a symmetric system that can
be efficiently solved with standard algorithms such as conjugate
gradient method, ADI method or multigrid method. Furthermore,
our DBIFEM can handle the case when the interface passes through
a vertex or many vertices (Examples 6, 7). To the authors’ knowl-
edge, this is the first algorithm that can handle these cases. See
Section 3.1 for details. Numerical experiments show our method
gives optimal order convergence for various examples.

Some features of our method are:

� We can use any shape regular grid including the uniform grid;
� We do not add any extra degree of freedom near the interface;
� We subtract a piecewise linear discrete singular function with a

thin support which satisfies the given jump conditions, so the
cost is cheap;
� Our method shows optimal convergence order in L2 and in H1

for all of the problems tested;
� The resulting system is symmetric and positive definite when

the original equation is symmetric and uniformly elliptic;
� Our stencil is independent of the jump condition, while some

IIM based methods have jump conditions built into the stencil.
Thus the condition number of the matrix is independent of
jumps, which is not the case for most other methods (see the
comment in [20, p. 231]);
� Our method allows the interface to pass one or more grid points

exactly, while all the other method known so far cannot handle
these cases; they usually avoid such cases by perturbing the
interface slightly, see [18, p. 418].

2. Preliminaries

2.1. Mathematical formulation

Let X be a convex domain with Lipschitz continuous boundary
in R2, which is separated into two disjoint subdomains X+and X�

by a interface C as in Fig. 1. Let n be the unit outward normal vec-
tor to C. We consider the following elliptic interface problem

�r � ðbruÞ ¼ f in X�; u ¼ g on @X; ð1Þ

together with the jump conditions on the interface:

½u�CðxÞ � u�ðxÞ � uþðxÞ ¼ J1ðxÞ on C; ð2aÞ

b
@u
@n

� �
C

ðxÞ � b�
@u�

@n
� bþ

@uþ

@n
¼ J2ðxÞ on C; ð2bÞ
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where f 2 L2(X), g 2 H3/2(oX), J1 2 H3/2(C), and J2 2 H1/2(C). For sim-
plicity we may assume the domain is the rectangle
X = [�1,1] � [�1,1], but our presentation works for general domain
with Lipschitz boundary. We assume b(x) is a positive function
greater than a constant b0 > 0 having discontinuity along C, i.e.,

bðxÞ ¼ b�ðxÞ for x 2 X�; bðxÞ ¼ bþðxÞ for x 2 Xþ: ð3Þ

Here, superscripts ‘‘+, �’’ refer to limits taken from within the
subdomains X±.

We introduce some notations of function spaces: For any
subdomain D, we write D+ = D \X+, D� = D \X� and let
HmðDÞ;H1

0ðDÞ and Hm(@D), etc., be ordinary Sobolev spaces on D
and @D. Define the following spaces:

Hm
P ðDÞ :¼ HmðDþÞ \ HmðD�Þ

with piecewise norms

kuk2
Hm

P ðDÞ
¼ kuk2

HmðDþÞ þ kuk
2
HmðD�Þ: ð4Þ

Finally, we define some subsets of functions in H2
PðDÞ which have

prescribed jump conditions: For any c1, c2 2 L2(D \ C),

Uc1 ;c2 ðDÞ :¼ u 2 H2
PðDÞj½u� ¼ c1; b @u

@n

� �
¼ c2 on D \ C

n o
;

Uc1 ;c2
0 ðDÞ :¼ u 2 Uc1 ;c2 ðDÞju ¼ 0 on @Df g:

If the pair (c1,c2) is equal to (J1, J2), then we omit the notation (J1, J2),
i.e., we shall write UðDÞ;U0ðDÞ for U J1 ;J2 ðDÞ;U J1 ;J2

0 ðDÞ respectively. We
cite without proof the following result obtained in [28] that asserts
that the problem (1) is well-posed:

Theorem 1. Assume that f 2 L2(X). Then the problem (1) has a unique
solution u 2 UðXÞ such that for some constant C > 0

kukH2
P ðXÞ
6 C kfkL2ðXÞ þ kgkH3=2ð@XÞ þ kJ1kH3=2ðCÞ þ kJ2kH1=2ðCÞ

� �
: ð5Þ
2.2. Weakly enforced jump conditions

Without loss of generality, we assume g � 0 from now on. To
find a weak formulation for the interface problem, we multiply
(1) by v and integrate on each subdomain:

�
Z
@X�

b
@u
@n

v dsþ
Z

X�
bru � rv dx ¼

Z
X�

f v dx; 8v 2 H1
0ðXÞ: ð6Þ

By summation, we get:Z
Xþ

bru � rv dxþ
Z

X�
bru � rv dx

¼
Z

C
b
@u
@n

� �
v dsþ

Z
X

fv dx; 8v 2 H1
0ðXÞ: ð7Þ

Define

aðu;vÞ ¼
Z

Xþ
bru � rv dxþ

Z
X�

bru � rvdx;

8u;v 2 H1ðXþÞ \ H1ðX�Þ:

Then the problem (1), (2) becomes: find u 2 H2
PðXÞ satisfying the

jump condition (2a) and

aðu;vÞ ¼< J2; v>C þ ðf ; vÞ;8v 2 H1
0ðXÞ: ð8Þ

Here (�, �) denotes the L2(X) inner product and < �, � > C denotes the
L2(C) inner product.

We shall show this is equivalent to the original problem (1), (2).
Suppose that Eq. (8) holds. Then, for any v 2 H1

0ðX
�Þ, we have:Z

Xþ
bru � rv dxþ

Z
X�

bru � rv dx ¼
Z

X
f vdx: ð9Þ
So, we obtain the following equations (holding on each subdomain
X+ and X� respectively).

�r � ðbruÞ ¼ f a:e: on X�: ð10Þ

Now let v 2 H1
0ðXÞ. Integrating by parts, we see the left hand side of

(8) becomes:X
s¼�

Z
@Xs

b
@u
@n

v ds�
Z

Xs
r � ðbruÞv dx

� 	
¼
Z

C
b
@u
@n

� �
v ds�

X
s¼�

Z
Xs
r � ðbruÞv dx

¼
Z

C
b
@u
@n

� �
v dsþ

Z
X

f v dx ðbyð10ÞÞ ð11Þ

Comparing this with the right hand side (8), we obtain:

b
@u
@n

� �
¼ J2:

Thus, we have shown that (8) is equivalent to the original problem
(1), (2).

Since the solution u belongs to an affine subset H2
PðXÞ, which is

not a subspace, we would like to change it to a problem in H1
0ðXÞ.

For this purpose, we subtract a function satisfying nonhomogene-
ous jump conditions: Let u* be any function in H2

PðXÞ satisfying the
jump condition and having zero boundary condition on oX. Then
we have the following decomposition for u:

u ¼ u0 þ u	; ð12Þ

where u0 2 H1
0ðXÞ. Then the problem (1) becomes:

�r � ðbru0Þ ¼ f þr � ðbru	Þ in Xþ; ð13aÞ
� r � ðbru0Þ ¼ f þr � ðbru	Þ in X�; ð13bÞ

u ¼ 0 on @X:

Hence the variational form for the new problem becomes: find
u0 2 H1

0ðXÞ satisfying

aðu0;vÞ ¼< J2; v>C þ ðf ; vÞ � aðu	; vÞ; 8v 2 H1
0ðXÞ: ð14Þ

Then, we have the following regularity theorem for the weak solu-
tion u of the variational problem (8).

Theorem 2. Assume that f 2 L2(X). Then the variational problem (8)
has a unique solution u 2 U0ðXÞ which satisfies

kukH2
P ðXÞ
6 C infðkfk0 þ ku	kH2

p ðXÞ
Þ; ð15Þ

where infimum is taken over all u	 2 U0ðXÞ.
Proof. We have by (12), (13a) and (13b),

kukH2
P ðXÞ
6 ku0keH2ðXÞ

þ ku	kH2
P ðXÞ

6 C
X
s¼�
kf þrbru	kL2ðXsÞ þ ku

	kH2
P ðXÞ

:

Now the result follows by taking infimum for u	 2 U0ðXÞ. h
Remark 1

1. Since the choice of u* is not unique, we have to find one such u*
in numerical computation. The idea is to choose u* (or its
approximation) whose norm is as small as possible. As a simple
choice, a function u* with small support seems to be easiest for
implementation and good enough as our numerical experi-
ments show. Another choice is to let u* be the solution of a
biharmonic problem:



K.S. Chang, D.Y. Kwak / Comput. Methods Appl. Mech. Engrg. 200 (2011) 494–508 497
�D2u	 ¼ 0 in X�

½u	� ¼ J1; b @u	
@n

� �
¼ J2 on C � @X�

and compute a finite element approximation to u*. This would
be a robust method. However, solving a biharmonic problem is
a heavy task, especially on irregular grids. As our numerical
experiments show, our scheme works well even for the noncon-
stant coefficient case.

2. If the jumps are homogenous, i.e., J1 = J2 = 0, then u0: = u belongs
to H1

0ðXÞ so that we have:
aðu0; vÞ ¼ ðf ; vÞ; 8v 2 H1
0ðXÞ: ð16Þ

The numerical methods for problems with homogeneous jump
conditions have been considered by many authors in finite dif-
ference approach and a few authors in finite element approach;
In particular, the immersed finite element method considered in
[1–3] can solve this problem very efficiently. The error estimate
of such method is recently shown in [25].

In the next section, we shall describe our DBIFEM using any
shape regular grid independent of the interface for solving prob-
lems with nonhomogeneous jump. When jump becomes homoge-
neous, our method reduces to IFEM in [2].

3. Numerical method

To discretize the problem, we define the following finite-dimen-
sional spaces: let

BhðDÞ :¼ uju is piecewise linear on T�; is continuous at


vertices of T satisfying jump conditions ð2aÞ; ð2bÞ
for T 
 D; 8T 2 T hg;

Bh;0ðDÞ :¼ u 2 BhðDÞj u ¼ 0 on @Df g

with the piecewise norm

kuk2
m;hðDÞ :¼

X
T
D

T2T h

kuk2
Hm

P ðTÞ
; m ¼ 0;1: ð17Þ

Note that a function in the space BhðDÞ is allowed to be discontinu-
ous across edges between elements.

Assuming we have a u* and its approximation u	h, we consider
the decomposition of the discrete solution uh as u0

h þ u	h satisfying

½u0
h�C ¼ 0 u	h

� �
C ¼ J1ðxÞ;

b
@u0

h

@n

� �
C

¼ 0 b
@u	h
@n

� �
C

¼ J2ðxÞ:
ð18Þ
Fig. 2. Interface elements in u
Then the discrete weak formulation for (14) with the numerical
solution uh 2 Bh;0ðXÞ is: Find u0

h 2 bShðXÞ such thatX
T2T h

Z
Tþ
ru0

h � rvh dxþ
Z

T�
ru0

h � rvh dx
� 	
¼
X
T2T I

h

Z
Cseg

b
@u
@n

� �
vh dsþ

X
T2T h

Z
T

f vh dx�
Z

T�
ru	h � rvh dx

� 	
;

8vh 2 bShðXÞ: ð19Þ

To solve this problem, we need to construct u	h 2 Bh;0ðXÞ corre-
sponding to the exact nonhomogeneous part u	 2 U0ðXÞ. So, the
above scheme is divided into three parts:

1. Choose a suitable u* satisfying jump conditions.
2. Find a good approximation u	h to u*.
3. Solve the fem formulation (19) by IFEM.

In the next section, we assume u* is supported in a thin strip XI
h

near C, say the union of interface elements, and we suggest a con-
venient way to construct u	h 2 Bh;0ðXI

hÞ.

3.1. Construction of u	h

The idea is similar to the construction of immersed finite ele-
ment method introduced in [2,3,25] to solve an interface problem
with homogeneous jumps (J1 = J2 = 0). They use any shape regular
grid so that the general interface is allowed to cut through ele-
ments. The basis functions are constructed to satisfy the homoge-
neous jump conditions.

The basis functions are piecewise linear but generally broken
along the interface. Let T h be the usual quasi-uniform finite ele-
ment triangulations of the domain X. We call an element T 2 T h

an interface element if the interface C passes through the interior
of T, otherwise we call T a non-interface element. We shall assume
the interface C meets the edges of an interface element T 2 T I

h at
no more than two intersections. Now, we introduce some symbols
(see Fig. 2(a)):

T I
h ¼ the set of all interface elements;

T N
h ¼ the set of all non-interface elements;

XI
h ¼

S
T2T I

h

T:

Using the idea similar to construct basis for immersed finite ele-
ment method, we shall construct a general piecewise function sat-
isfying the nonhomogeneous jumps.
niform triangular mesh.
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Consider an interface element T. For simplicity, we assume the
three vertices are given by A1 = (0,0), A2 = (1,0), A3 = (0,1) (see
Fig. 2(b)). For any element T in general position, all the construc-
tions to be presented below carries over through affine equiva-
lence. Assume the interface meets with the element’s edges at
points B1 and B2.

Let ‘i be the usual linear Lagrange nodal basis function associ-
ated with the vertex Ai for i = 1, 2, 3. Then ‘1 = 1 � x � y, ‘2 = x,
‘3 = y. For any given function w on T 2 T I

h satisfying jump condi-
tions, we shall construct wp which is linear on T+ and T� respec-
tively, retaining vertex values di = w(Ai) for i = 1, 2, 3, and
satisfying the jump conditions on B1B2. Since wp(Ai) = di, we note
that we can write wp in the following form:
0.0

0.5

1.0 0.0

0.5

1.00.0

0.5

1.0

0

1.

0.0

0.5

1.0 0.0

0.5

1.0
0.0

0.5

1.0

-

0

0

1.

Fig. 3. (a), (b), (c) are immersed shape functions and the local bubble function o
J2ðB1B2Þ ¼ 100.

Fig. 4. The bubble function conta
wp ¼
w�p ¼ d1‘1 þ c2‘2 þ c3‘3 in T�;

wþp ¼ c1‘1 þ d2‘2 þ d3‘3 in Tþ:

(
ð20Þ

Now imposing the jump conditions on C, we have:

w�p ðxÞ � wþp ðxÞ ¼ J1ðxÞ; x ¼ B1;B2; ð21aÞ

b�
@w�p
@n
� bþ

@wþp
@n

( )
B1B2

¼ Jf :¼ ðJ2ðB1Þ þ J2ðB2ÞÞ=2; ð21bÞ

where the notation ‘‘{v}’’ refer to the average of a function v on the
interface segment Cseg ¼ B1B2. Since w�p and wþp are linear, (21b) can
be written as:
0.0

0.5

1.0 0.0

0.5

1.0
0.0

.5

0

0.0

0.5

1.0
0.0

0.5

1.0

-1.0
0.5

.0

.5

0

n an interface element where a ¼ b ¼ 0:5; b� ¼ 1;bþ ¼ 100; J1ðB1Þ ¼ 2; J1ðB2Þ ¼ 1;

ining an interface vertex A2.



Fig. 5. The bubble function containing an interface edge A2A3.

Fig. 6. A circle interface which passes four vertices.
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Fig. 7. A heart shape interface.

Table 1
(Circle) 2nd order with k � kL2 and 1st order with k�k1,h.

Nx � Ny ku� uhkL2 Order ku � uhk1,h Order

Case (a)
b� = x2 + y2,
b+ = 1

8 � 8 0.3124280 – 4.3886981 –
16 � 16 0.0885818 1.82 2.2376150 0.97
32 � 32 0.0244866 1.86 1.1224202 1.00
64 � 64 0.0065874 1.89 0.5632125 1.00
128 � 128 0.0013879 2.25 0.2827034 0.99
256 � 256 0.0003367 2.04 0.1420148 0.99
512 � 512 0.0000882 1.93 0.0723010 0.97

Case (b)
b� = x2 + y2,
b+ = 0.1

8 � 8 3.6991611 – 39.625309 –
16 � 16 1.1037592 1.75 20.951918 0.97
32 � 32 0.2806672 1.98 10.709964 0.99
64 � 64 0.0728569 1.95 5.3930402 0.99
128 � 128 0.0136462 2.42 2.7018477 1.00
256 � 256 0.0031685 2.11 1.3518338 1.00
512 � 512 0.0007942 2.00 0.6764209 1.00
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b�
@w�p
@n
� bþ

@wþp
@n
¼ Jf ;

where b�; bþ are the averages over the segment B1B2. Hence our
construction works naturally for variable coefficient. Now, the con-
ditions (21a), (21b) become

d1ð1� aÞ þ c2a ¼ c1ð1� aÞ þ d2aþ J1ðB1Þ;
d1ð1� bÞ þ c3b ¼ c1ð1� bÞ þ d3bþ J2ðB2Þ;
b�ðd1r‘1 þ c2r‘2 þ c3r‘3Þ � n ¼ bþðc1r‘1 þ d2r‘2 þ d3r‘3Þ � nþ Jf :

In matrix form, the coefficient ci’s are determined by the following
relations:

a� 1 a 0

b� 1 0 b

�bþm1 b�m2 b�m3

264
375 c1

c2

c3

0B@
1CA

¼
a� 1 a 0

b� 1 0 b

�b�m1 bþm2 bþm3

264
375 d1

d2

d3

0B@
1CAþ

J1ðB1Þ
J1ðB2Þ

Jf

0BB@
1CCA;

ð22Þ

where mi =r‘i�n, (i = 1,2,3). Let A be the matrix on the left hand
side. Then, we see it has unique solution since

detðAÞ ¼ ða2ðð1� bÞb� þ bbþÞ þ b2ðð1� aÞb� þ abþÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
> 0;

for 0 < bþ;b� and 0 < a, b 6 1.



Table 2
(Heart shape) 2nd order with k � kL2 and 1st order with k�k1,h.

Nx � Ny ku� uhkL2 Order ku � uhk1,h Order

Case (a) b� = 1,
b+ = 1

8 � 8 0.1596806 – 0.7770398 –
16 � 16 0.0721703 1.15 0.4287888 0.86
32 � 32 0.0295279 1.29 0.1929842 1.15
64 � 64 0.0086040 1.78 0.0758858 1.35
128 � 128 0.0020612 2.06 0.0354244 1.10
256 � 256 0.0005715 1.85 0.0175126 1.02
512 � 512 0.0000677 3.07 0.0086673 1.02

Case (b) b� = 1,
b+ = 10

8 � 8 0.3644745 – 0.4036730 –
16 � 16 0.2035256 0.84 0.2511432 0.69
32 � 32 0.0893858 1.19 0.1091449 1.20
64 � 64 0.0223604 2.00 0.0386975 1.50
128 � 128 0.0053210 2.07 0.0156123 1.31
256 � 256 0.0016342 1.70 0.0077259 1.02
512 � 512 0.0001743 3.23 0.0039854 0.96

Table 3
(Starfish) 2nd order with k � kL2 and 1st order with k�k1,h.

Nx � Ny ku� uhkL2 Order ku � uhk1,h Order

b� = x2 + y2, b+ = 1 8 � 8 0.3984737 – 4.5337993 –
16 � 16 0.1300373 1.61 2.3349810 0.95
32 � 32 0.0429278 1.59 1.1596418 1.01
64 � 64 0.0175488 1.29 0.5754026 1.01
128 � 128 0.0015901 3.46 0.2831408 1.02
256 � 256 0.0004215 1.92 0.1427670 0.99
512 � 512 0.0000919 2.19 0.0721531 0.99

Table 4
(Many interface vertices) 2nd order with k � kL2 and 1st order with k�k1,h.

Nx � Ny ku � uhkL2 Order ku � uhk1,h Order

Case (a) b� = 1,
b+ = 1

8 � 8 0.3903390 – 5.7814835 –
16 � 16 0.1324147 1.56 3.2310644 0.83
32 � 32 0.0365502 1.85 1.6795824 0.94
64 � 64 0.0093927 1.96 0.8487105 0.98
128 � 128 0.0023648 1.99 0.4255416 0.99
256 � 256 0.0005922 2.00 0.2129317 1.00
512 � 512 0.0001481 2.00 0.1064890 1.00

Case (b) b� = 1,
b+ = 1000

8 � 8 0.3879398 – 5.7798689 –s
16 � 16 0.1321048 1.55 3.2272795 0.84
32 � 32 0.0364295 1.85 1.6782963 0.94
64 � 64 0.0093603 1.96 0.8483104 0.98
128 � 128 0.0023565 1.99 0.4254178 0.99
256 � 256 0.0005901 1.99 0.2128912 1.00
512 � 512 0.0001476 2.00 0.1064744 1.00

Case (c) b� = 1000,
b+ = 1

8 � 8 0.0066192 – 0.0858238 –
16 � 16 0.0017208 1.94 0.0432789 0.98
32 � 32 0.0004386 1.97 0.0217335 0.99
64 � 64 0.0001107 1.98 0.0108902 0.99
128 � 128 0.0000278 1.99 0.0054509 0.99
256 � 256 0.0000069 1.99 0.0027269 1.00
512 � 512 0.0000017 2.00 0.0013638 1.00
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If the last term of right hand side of (22) is not present, then wp

constructed here is exactly the immersed finite element shape
function proposed in [2,24] (see Fig. 3(a)–(c)).

Since Lagrange basis {‘i}i=1,2,3 form a partition of unity
ð
P3

i¼1‘i � 1Þ, we have:

X3

i¼1

mi ¼
X3

i¼1

r‘i � n ¼ r
X3

i¼1

‘i

 !
� n ¼ ðr1Þ � n � 0: ð23Þ

Then, solving the Eq. (22) with dj = dij, we see the coefficients of im-
mersed basis functions bwi are represented as follows:
Fig. 8. A starfish
bw1 :

c11 ¼ �b�ðbm2 þ am3Þ
� 


=K;

c12 ¼ ð�1þ aÞbðb� � bþÞðm2 þ m3Þ
� �

=K;

c13 ¼ að�1þ bÞðb� � bþÞðm2 þ m3Þ
� �

=K;

8>>><>>>:

bw2 :

c21 ¼ abðb� � bþÞm2

� �
=K;

c22 ¼ �bbþm2 þ aðb� � bb� þ bbþÞm3

� �
=K;

c23 ¼ að1� bÞðb� � bþÞm2

� �
=K;

8>>>><>>>>: ð24Þ

bw3 :

c31 ¼ abðb� � bþÞm3

� �
=K;

c32 ¼ ð1� aÞbðb� � bþÞm3

� �
=K;

c33 ¼ bðð�1þ aÞb� � abþÞm2 � abþm3

� �
=K;

8>>>><>>>>:
interface.



Fig. 9. An interface which has large number of interface vertices.
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where K ¼ �ab�m3 þ bðaðm2 þ m3Þðb� � bþÞ � b�Þ. Then, we can eas-
ily checkX3

i¼1

bwiðxÞ ¼
X3

i¼1

X3

j¼1

cijljðxÞ ¼
X3

j¼1

X3

i¼1

cij

 !
ljðxÞ ¼

X3

j¼1

ð1ÞljðxÞ � 1:
Table 5
(Kink interface) 2nd order with k � kL2 and 1st order with k�k1,h.

Nx � Ny ku� uhkL2 Order ku � uhk1,h Order

Case (a) b� = 1,
b+ = 1

8 � 8 0.7588050 – 12.222602 –
16 � 16 0.4052782 0.91 6.7643648 0.85
32 � 32 0.1137956 1.83 3.6674650 0.88
64 � 64 0.0213542 2.41 1.8710598 0.97
128 � 128 0.0044784 2.25 0.9423337 0.99
256 � 256 0.0010532 2.09 0.4722868 1.00
512 � 512 0.0002588 2.03 0.2363261 1.00

Case (b) b� = 1,
b+ = 1000

8 � 8 0.8593644 – 14.189973 –
16 � 16 0.1893472 2.18 6.8193067 1.06
32 � 32 0.0618386 1.61 3.7891892 0.85
64 � 64 0.0162176 1.93 1.8974015 1.00
128 � 128 0.0040655 2.00 0.9493310 1.00
256 � 256 0.0010113 2.01 0.4740717 1.00
512 � 512 0.0002517 2.01 0.2367674 1.00

Case (c) b� = 1000,
b+ = 1

8 � 8 0.0185411 – 0.2639868 –
16 � 16 0.0039237 2.24 0.1283171 1.04
32 � 32 0.0009531 2.04 0.0633187 1.02
64 � 64 0.0002514 1.92 0.0315504 1.01
128 � 128 0.0000665 1.92 0.0158155 1.00
256 � 256 0.0000172 1.94 0.0079709 0.99
512 � 512 0.0000044 1.95 0.0040528 0.98
Remark 2. In the above construction, we have assumed the
variables a and b are given constants. For a moving interface such
as Hele-Shaw problem, the variables a and b are functions of the
solution. In this case, one can either compute a and b from the
solution of previous time step (Forward Euler) as in [23] or
compute by implicit scheme (such as Heun’s Predictor–Corrector
method): Let a*, b* be the interface points obtained by Forward
Euler method. Then apply above method to find the solution. Call
this solution u1=2

h (predictor step). Using u1=2
h as an intermediate

step, we compute the evolving interface either by front tracking or
level set method. Using this new interface, we solve the problem
once more (correcting step). Since the cost of computing the
bubble is almost nil, the computational complexity in this case is
equivalent to solving elliptic problem once more.

If di = 0 (i = 1,2,3) in the Eq. (22), then we obtain an approxima-
tion to u*. We call such a wp the (local) discontinuous bubble(DB) be-
cause it vanishes on the vertices of XI

h(see Fig. 3(d)). Since the cost of
solving this 3 � 3 element level system is almost nil, the total cost is
similar to that of standard elliptic problem which is a big advantage
of our scheme. Our scheme is different from the one in [18] where
the corresponding discrete singular function is globally supported.
Furthermore, we can even handle the case when the interface passes
one or more vertices. So far, we have assumed the interface does not
pass any vertex. When the interface passes vertices, we need to look
more carefully; these situations can be understood as limiting cases
which will be explained in detail below.

3.2. The interface passes one vertex (interface vertex)

We assume a = 1 in Fig. 2(b) so that B1 = A2, i.e., the interface
passes one vertex. In this case, we see the Eq. (22) with di = 0
becomes:

0 1 0
b� 1 0 b
ðbþ1Þbþffiffiffiffiffiffiffiffi

1þb2
p bb�ffiffiffiffiffiffiffiffi

1þb2
p b�ffiffiffiffiffiffiffiffi

1þb2
p

2664
3775

c1

c2

c3

0B@
1CA ¼ J1ðB1Þ

J1ðB2Þ
Jf

0B@
1CA: ð25Þ

This system clearly has a unique solution. We note that wp deter-
mined by:

wp ¼
w�p ¼ c2l2 þ c3l3; in T�1 ;

wþp ¼ c1l1; in Tþ1 ;

(
has support on T1, but it has multi-values at A2, i.e.,
wpðA2ÞjT�1 ¼ J1ðB1Þ and wpðA2ÞjTþ1 ¼ 0. This can be regarded as a limit
case as the point B1 approaches A2 (see Fig. 4). Similar computation
determines wp on T3. The function wp on T2 is naturally determined
by continuity.

Next, we consider the case a = b = 0. Then, we see (22) does not
define {ci}. However, this corresponds to the limiting case as B1,
B2) A1 in Fig. 4(a). This is the same situation as B1, D2) A2 on
T2. Hence the value of wp at A2 on T2 is naturally determined by
continuity from T1, T3 and the bubble condition on the other verti-
ces determines wp on T2.

3.3. The interface passes two vertices (interface edge)

Let us consider the case when interface passes two vertices as in
Fig. 5(b). This corresponds to the case a = b = 1 in the Eq. (22) with
di = 0 for i = 1, 2, 3. Hence wp is uniquely determined on T1 and sim-
ilar construction works on T3. This can be again viewed as a limit-
ing case where B1 approaches A2, and B2 approaches A3(of course,
D2 approaches A2). Finally, we extend it continuously on T2. (see
Figs. 6 and 7).
Remark 3. In the actual computation of wp, we have to be
consistent in choosing the viewpoint: Whenever the interface
meet with vertex (or vertices), it must be viewed as a limiting case
of the same side of subdomain; For example, we always view it as
the limit from X�. If we are not consistent, i.e., if we view it as the
limit from X+ on T1, and as the limit from X� on T3, then we run
into conflict of vertex values at A2.
4. Numerical experiments

In all of the experiments, the domain is (�1,1) � (�1,1) and tri-
angularized by uniform triangle grids with hx = hy = 1/2n�1 for
n = 3, . . . ,9. In order to describe the interface, we consider the le-
vel-set function U(x) for the interface C which is assumed to be
smooth. Let U : X! R be a continuous function such that

UðxÞ ¼
< 0 x in X�;

¼ 0 x on C;

> 0 x in Xþ:

8><>: ð26Þ

We assume that U(x) is smooth and rU is not zero in any neigh-
borhood of the interface C. Then the unit normal vector n(x) is rep-
resented by rU

jrUj. In all of the figures in these examples, we draw the

discontinuous bubbles on the left column, while the right column
have solutions.

Example 1 (Circle). The level-set function U(x), the coefficients b±

and the solution u± are given as follows:

UðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:5;

ðaÞ b� ¼ x2 þ y2; bþ ¼ 1;

ðbÞ b� ¼ x2 þ y2; bþ ¼ 0:1;

u� ¼ 6x2 þ 7y2; uþ ¼ ðsinð3xyÞ þ cosð5x2y2ÞÞ
bþ

:

ð27Þ

This interface has four interface vertices. Note that the interface
vertex points are (±1/2,0), (0,±1/2). We observe the robust 2nd or-
der in L2 and 1st order convergence in H1-norm (see Table 1).



Fig. 10. A kink interface.
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Fig. 11. An interface edge (constant coefficient).
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Example 2 (Heart shape). In this example, the interface is heart
shaped, but no interface vertex arises. The level-set function U(x),
the coefficients b± and the solution u± are given as follows:

UðxÞ ¼ ð3ðx2 þ y2Þ � xÞ2 � ðx2 þ y2Þ þ 0:1;
ðaÞ b� ¼ 1; bþ ¼ 1;
ðbÞ b� ¼ 1; bþ ¼ 10;

u� ¼ sinð2x2 þ y2 þ 2Þ þ x; uþ ¼ cosð1� x2 � y2Þ
bþ

:

ð28Þ

We again have similar optimal convergence behavior (see
Table 2).
Example 3 (Starfish shape). In this example, the interface is
starfish shaped with no vertex. The level-set function U(x), the
coefficients b± and the solution u± are given as follows:

UðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:2 sinð5h� p=5Þ � 0:5;

b� ¼ x2 þ y2; bþ ¼ 1;
u� ¼ 6x2 þ 7y2; uþ ¼ sinð3xyÞ þ cosð5x2y2Þ;

ð29Þ

where h = arctan (y/x).
This example also show O(h2) error in L2 and O(h1) error in H1-

norm (see Table 3).

Example 4 (Large number of interface vertices). The level-set
function U(x), the coefficients b± and the solution u± are given as
follows:

UðxÞ ¼ x� y;

ðaÞ b� ¼ 1; bþ ¼ 1;
ðbÞ b� ¼ 1; bþ ¼ 1000;
ðcÞ b� ¼ 1000; bþ ¼ 1;

u� ¼ sinð10xyÞ
b�

; uþ ¼ cosðyÞ
bþ

:

ð30Þ

In this case, we see every vertex along the diagonal line y = x
is on interface vertex. Hence, for 2n � 2n (n = 3, . . . ,9) grid, there
are 2n + 1 interface vertices. Also this example is different from
examples in most other papers; the interface is not a closed
curve, i.e., it cuts the boundary of the domain X. Still, our ex-
Table 6
(Interface edge (constant coefficient)) 2nd order with k � kL2 and 1st order with k�k1,h.

Nx � Ny ku� uhkL2 Order ku � uhk1,h Order

Case (a) b� = 1,
b+ = 1

8 � 8 2.0062850 – 22.258706 –
16 � 16 0.4676531 2.10 14.909455 0.57
32 � 32 0.1173290 1.99 7.5409868 0.98
64 � 64 0.0303525 1.95 3.8441953 0.97
128 � 128 0.0076558 1.98 1.9314622 0.99
256 � 256 0.0019182 1.99 0.9669059 0.99
512 � 512 0.0004798 2.00 0.4835999 1.00

Case (b) b� = 1,
b+ = 1000

8 � 8 1.5342145 – 21.148001 –
16 � 16 0.4517405 1.76 14.904000 0.50
32 � 32 0.1170623 1.94 7.5404862 0.98
64 � 64 0.0303779 1.94 3.8440567 0.97
128 � 128 0.0076666 1.98 1.9314055 0.99
256 � 256 0.0019212 1.99 0.9668791 0.99
512 � 512 0.0004805 2.00 0.4835867 1.00

Case (c) b� = 1000,
b+ = 1

8 � 8 0.0180073 – 0.2295807 –
16 � 16 0.0041460 2.11 0.1150814 0.99
32 � 32 0.0010529 1.97 0.0575507 1.00
64 � 64 0.0002641 1.99 0.0287850 1.00
128 � 128 0.0000660 1.99 0.0143937 1.00
256 � 256 0.0000165 2.00 0.0071970 1.00
512 � 512 0.0000041 2.00 0.0035985 1.00
tended bubble function catches the jump discontinuity very
well. The Table 4 shows perfect order of convergence, i.e., ex-
actly 2nd order in L2-norm and 1st order in H1-norm (see Figs.
8 and 9).

Example 5 (Kink interface). In this example, we consider the case
with a kink which corresponds to a vertex. The level-set function
U(x), the coefficients b± and the solution u± are given as follows:

UðxÞ ¼
yþ 2x; if y P 0;
x� 2y; if y < 0;

�
ðaÞ b� ¼ 1; bþ ¼ 1;
ðbÞ b� ¼ 1; bþ ¼ 1000;
ðcÞ b� ¼ 1000; bþ ¼ 1;

u� ¼ sinð10xðy� 2ÞÞ
b�

; uþ ¼ x2

bþ
:

The kink is (0,0) and Table 5 show 2nd order convergence in L2

and 1st order in H1-norm (see Figs. 10 and 11).
Example 6 (Interface edge (constant coefficient)). We consider the
case where the interface meets two vertices of elements. In this
case the interface is aligned with finite element meshes. The
construction of DB is naturally obtained as a limit of non-interface
edge case. The coefficients b± and the solution u± are same as (31).
The level-set function U(x) are given as follows:

UðxÞ ¼
1þ xþ y; if y P 0;
x; if y < 0:

�
ð32Þ

Table 6 shows 2nd order convergence in L2 and 1st order in H1-
norm.

Example 7 (Interface edge (variable coefficient)). We consider a
problem similar to Example 6, but with variable coefficient. The
level-set function U(x), the coefficients b± and the solution u± are
given as follows:

UðxÞ ¼ 1þ xþ y; if y P 0;
x; if y < 0;

�
b� ¼ x2 þ 3; bþ ¼ x2 � y2 þ 3;
u� ¼ x2 þ y2 þ 2; uþ ¼ 1� x2 � y2:

ð33Þ

Table 7 shows robust 2nd order convergence in L2 and 1st order in
H1-norm.
Table 8
1.8th order with k � kL2 , 0.8th order with k�k1,h and 0.98th order with k � kL1 .

Nx � Ny ku� uhkL2 Order ku � uhk1,h Order ku� uhkL1 Order

8 � 8 0.0988626 – 0.6765991 – 0.1062054 –
16 � 16 0.0250940 1.97 0.3402690 0.99 0.0356546 1.575
32 � 32 0.0063522 1.98 0.1719628 0.98 0.0117709 1.599
64 � 64 0.0016133 1.97 0.0879560 0.96 0.0046348 1.345
128 � 128 0.0004138 1.96 0.0459663 0.93 0.0023228 0.997
256 � 256 0.0001089 1.92 0.0248758 0.88 0.0011698 0.990
512 � 512 0.0000308 1.82 0.0141477 0.81 0.0005898 0.988

Table 7
(Interface edge (variable coefficient)) 2nd order with k � kL2 and 1st order with k�k1,h.

Nx � Ny ku� uhkL2 Order ku � uhk1,h Order

b� = x2 + 3,
b+ = x2 � y2 + 3

8 � 8 0.0408780 – 0.4079997 –
16 � 16 0.0102287 1.99 0.2040860 0.99
32 � 32 0.0025578 2.00 0.1020564 1.00
64 � 64 0.0006395 2.00 0.0510302 1.00
128 � 128 0.0001598 2.00 0.0255154 1.00
256 � 256 0.0000399 2.00 0.0127577 1.00
512 � 512 0.0000099 2.00 0.0063788 1.00
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Example 8. Finally, we solve a problem from [18] and compare the
results. The level-set function U(x), the coefficients b± and the
solution u± are given as follows:

UðxÞ ¼
y� 2x; if xþ y > 0;

yþ 1
2 x; if xþ y 6 0;

(
b� ¼ 2þ sinðxþ yÞ; bþ ¼ 1;

u� ¼ ðx2 þ y2Þ5=6 þ sinðxþ yÞ; uþ ¼ 8:

ð34Þ

In this example, we report L2, H1, L1 norm measured in the
whole domain in Table 8. Comparing the order 0.88 in L1-norm
measured away from interface available from [18], our scheme is
clearly superior (0.988 in the whole domain) (see Figs. 12 and 13).
Fig. 13. The examp

Fig. 12. An interface edge
Remark 4. Finally, we mention briefly on how our scheme can be
generalized to the case where the domain is partitioned into
rectangular elements. We first note that the immersed finite
element method for problems with no jumps was considered in
[3]. For problems with jumps, one can use an equation similar to
(22) to determine a bubble function which satisfies the jumps
across the interface. A detailed study will be reported elsewhere.
5. Conclusion

In this paper, we have introduced a new numerical method of
solving elliptic interface problems having jump discontinuity in
the solution and flux. The basic idea is to construct a piecewise lin-
ear function having small support near the interface which satisfies
le 18 in [18].

(variable coefficient).
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the jump conditions. Then, removing it from the original varia-
tional form, we obtain an interface problem with homogeneous
jumps. The equation is then solved with IFEM introduced in [2,3]
which is shown to be effective in many situations [1,24,25]. Hence
it is cheap to implement and very useful in a situation where one
has to solve the same problem with different jump conditions
many times. Moreover, to the authors’ knowledge, our scheme
is the first successful attempt to handle the case where the inter-
face meets with one or more vertices. Also, our scheme for the
interface vertices (edges) can be interpreted as the limit of interior
interface. Numerical experiments show exactly second-order in
L2-norm and first order in H1-norm, robust for all examples above.
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