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1. Introduction

Mixed finite element methods (MFEM) for elliptic problems [1-11] have been developed for a more accurate approxi-
mation to some physical quantities, such as velocity of a fluid in the porous media equations or the stress in the elasticity
equations, etc. The derivation of mixed finite element method is based on the introduction of a new variable obeying physi-
cal law, for instance, Darcy’s law between pressure and velocity variables in porus media problems. Although introducing a
new variable in MFEM requires an additional equation which represents the physical law, it allows us to compute the new
physical variable and the primal variable simultaneously.

During the study of mixed finite element methods, one often observes an unexpectedly higher order convergence
than the optimal order, called a superconvergence. There are quite a few results in this direction [12-16]. For example,
a superconvergence between the finite element solution and the projection of exact solution is proved in [12,13,15]. The
error between the finite element solution and the exact solution is usually measured in discrete norm along Gauss lines and
shown in [12-14,16].

Recently we have introduced a new family of mixed finite elements on quadrilateral grids in [17], lying between
Raviart-Thomas (RT) [ 1] and Brezzi-Douglas-Fortin-Marini (BDFM) spaces. This new element shows optimal order O(h**1)
in the velocity variable and suboptimal order O(h¥) for a pressure variable when an essentially quadrilateral grid is used (of
course the pressure variable is also optimal if a rectangular grid is used) [ 18]. Thus we have used post-processing for pressure
to obtain an optimal order for pressure in the case of quadrilaterals. While there are many results on the superconvergence
of the vector variable, the superconvergence of the pressure variable is rare, see [14,16].

In this paper we shall prove the superconvergence of our mixed finite elements. Superconvergence for the velocity
variable easily follows as our space contains BDFM space. However, for the pressure variable, we need a new technique
to prove the superconvergence. When k = 1, our result shows one order higher than [19].
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The organization of this paper is as follows: In the next section, we present the basic materials necessary to study MFEM,
and briefly explain our elements. In Section 3, we present the post-processing scheme and the superconvergence. Finally,
numerical results are given in Section 4 which support our theory.

2. Mixed finite element

Let £2 be a bounded polygonal domain in R? with the boundary 3£2. We consider the following second-order elliptic
boundary value problem:

—div(xkVp) =f, in$2,

2.1
p=0, ondsg, (2.1)
where ¥k = «k(X) is a symmetric and uniformly positive definite matrix. Let us introduce a vector variable u = —« Vp and
reformulate the problem (2.1) in the mixed form
u+x«Vp=20, in$2,
divu=f, in$2, (2.2)

p=0, onoas.

For any domain £2, we let L?(£2) be the set of all square integrable functions on £2 equipped with the usual inner product
(-, ). Let H(£2) = W"2(£2) be the Sobolev spaces of orderi = 0, 1, . .., with obvious norms and let W = [?(£2). Now, let
H!(£2) be the space of vectors u = (u, v) each of whose component lies in H(£2), i = 0, 1, . ... For both of the spaces H(£2)
and H'(2), i =0, 1,2, ..., we shall denote the norms(semi-norms) by || - |li.2 (| - li.2), or || - ||; (| - |;) when no confusion
arises. Also, let V.= H(div; 2) = {v € (I>(£2))? : divv € [?(£2)} with norm ||v||,2,(div;m = ”V”Zz(m + ||divv||§2(m.Then
we have the following variational form for (2.2):

(k" 'u,v) — (p,divv) =0, WveV,

(divu,q) = (f,q), VYqeW. (2.3)

This problem has a unique solution pair (u,p) € V x W. Now we consider finite element methods. From now on, we
assume the domain can be partitioned into rectangles. For each h > 0, let % = {K} be a partition of the domain £2 into
closed rectangles whose side is bounded by h. Assume that we have some finite dimensional spaces V, C Vand W, C W
based on these grids. Then the corresponding finite dimensional problem becomes: Find (u;, py) € Vi, x W}, such that

(kk "ay, vp) — (py, divvy) =0, Vv, €V,

. (2.4)
(divup, qp) = (f. qn), VYqn € W
LetK = [—1, 1] x [—1, 1] be the reference element. We define V;(K) and W}, (K) as follows:
Vi(K) = {v= 20 : v e V)], (2.5)
Wi(K) ={g=qoF':q €WK}, (2.6)
where F : K — K is an affine map and &P : H(div; I?) — H(div; K) is the Piola transform defined by
. DF¢,.
V=PV = —KVOFK1
]K
Finally we define
Vi, = {veV:vg e ViK)}, (2.7)
Wi = {q € I*(22) : qlx € Wx(K)}. (2.8)

The most common example is RTj; given in [1], where

V(K) = Qi) X Quir1(K),  W(EK) = Qer(K).

Here, Q;j(£2) for any domain §2 is the space of polynomials of degree i and j in each variable. For later use, we shall
denote by P (£2) the space of polynomials of total degree k on 2. For detailed descriptions of MFEM and other spaces like
Brezzi-Douglas-Marini (BDM), BDFM spaces [4,5]. For these spaces, the following results are well-known:

Theorem 2.1. Let u € H*"'1(£2) and p € H*"1(£2) be the solution of (2.3) and u; and py, be the solution of (2.4). Then

I —wpllo + [Ip — pallo + lldiv (u — wp) o < CHH (Juflisr + [ldivulesr). (2.9)
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2.1. A new mixed finite element spaces
In this subsection, we briefly describe the new mixed finite element spaces that we developed in [17]. First let &, be

a subspace of RTyy space of order k, where the two elements FF19k 0)T, (0, X9*+ 1T are replaced by the single element
&kH1Pk . —RkPHT Let Ry be the space of all polynomials in each varlable up to degree k + 1 except a constant multiple of

the term x’“rl 1. Then the mixed finite element we study for quadrilateral grids is based on the pair ($;, Ri_1) for k > 1.
Define
VK) =8,  WEK) = R (2.10)

as reference spaces for our element and define V, and W), through (2.7) and (2.8). For the unisolvence of this element,

let \I’k(K) be an subspace of Qg1 X Qik— 1(1() where (8*~'9%, 0) and (0, &)%) are replaced by the single element
(Rx=19k —&*9*=1). Then we have the following lemma [17]:

Lemma 2.2 (Unisolvence). For any G = (iI, ) € 4y, the conditions

/ﬁ ‘fgds, § e P, foreachedgeé of K, (2.11)

¢

[ﬁ-\?dﬁ, Ve W (K) (2.12)
K

uniquely determine Q.

These conditions also determine the projection 7, : H**1(£2) — V. For the mixed finite space (8, Ri_1) the following
estimates are proved in [17]:

Theorem 2.3. Let u € H*"'1(£2) and p € H*"1(£2) be the solution of (2.3) and u, and py, be the solution of (2.4). Then

lu —uyllo < CH*" M [ufliss, (2.13)

Ip — pallo < CHIIpllks1 (2.14)

where j = k + 1 for a rectangular grid and j = k for quadrilaterals.

These estimates show an optimal order of convergence for the vector variable u, but a loss of order for the scalar variable
p for quadrilaterals. To obtain the optimal order for p, we employ a local post-processing scheme. In the next section we
shall discuss the local post-processing scheme and prove its superconvergence.

3. Superconvergence

Basically there are two kinds of superconvergence results. One is the superconvergence between a certain projection
and a finite element solution. This is usually measured in L>-norm. Another type of superconvergence is between the true
solution and the finite element solution. This is usually measured in some discrete L?~(semi) norm such as measured along
Gauss lines. Most analyses are for vector variables and relatively few articles deal with the scalar variable.

We need two kinds of discrete inner products: one for scalar and the other for vector variable. For an element K =
[a, b] x [c, d], letxq, X2, ..., X¢and y1, ¥, . . ., Yk be the Gaussian points in [a, b] and [c, d], respectively. Define the discrete
inner product for H'*¢(K) (¢ > 0) by

k

(, v) g, = D wiwj(b — a)(d — ulxi, y)v(Xi, y)), (3.1)
ij=1
b
N = Z wi(d — ©) / u(x, yi)v(x, yi) dx, (3.2)
a
(u, v)Q = Zw (b— a)/ u(xi, y)v(xi, y) dy, (33)
where w;, i = 1, ..., k are the weights of the Gaussian quadrature rules. The corresponding norms are:
k
lullZ, =D wwi(b — a)(d — ©)Ju(xi, )| (3.4)

ij=1
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k b
IIullzm = wid - C)/ |u(x, yi)|* dx, (3.5)
k i=1 a
k d
||v||§<2) =Y wi(b— a)/ (i, y)I? dy. (36)
k i=1 ¢

For the vector variable u = (u, v) € (H'™¢(K))?, we define

2 2 2
ul|s = ||u + |lv . 3.7
lallg, =i IIgéu l ||gl§2) (3.7)

These notations naturally extend for functions defined on §2.

We state known superconvergent results in mixed finite elements. First we consider the vector variable. The following
results are known in [12,13,15,20]. In fact, they were originally shown for RTjy;, but later generalized to BDFM;41; element
in [12]. Since our space contains BDFMy.1}, they hold for our spaces with minor modifications.

Theorem 3.1. If p € H**2(§2) and u € H**2(§2) are the solutions of (2.2) and if (wy, py) are the solutions of (2.4) with
RT1y, BDFM[417 or our space 8y, then we have

k+2
[u—wyllg, .0 < Ch|alp (3.8)

lup, — Myullo.o < CRP[ulys,. (3.9)
We now present some results for the scalar variable. First let @}, be the L?>-projection onto the space Wj,.

Theorem 3.2. If p € H*(£2) and u € H*2(£2) are the solutions of (2.2), and if (uy, py) are the solutions of (2.4) for RTyy
space, then we have

Iph — Prpllo < CH*2{ulis2 (3.10)
Ip — Phllge,, < CH**[plisa. (3.11)

Proof. The first result is given in [12,15] and the second one isin [20]. O

Remark 3.1. Since our pressure space Ry_; contains the pressure space Wj, of BDFMy 1}, the proof in [12] carries over to
our space and the result (3.10) also holds for our space with a minor modification. But the result of type (3.11) holds only
for RTjy space.

3.1. Post-processing

This post processing technique is similar to [19] and is primarily intended to improve the suboptimal convergence of
scalar variable for the quadrilateral case. But for the case of a rectangular element, we obtain superconvergence. (One order
higher than the result in [19] for k = 1.)

Given the solution (up, p) of (2.4), we define a new pressure solution, p} € W, locally on each element K € 7 as
follows:

/KVpﬁ-qux= —/uh~qux, Vg € Wy(K), (3.12)
K K
/p?de=/phdx (3.13)
K K
where

i QK fork=1,
WaO) = {Pk+1(1<) for k > 2.

Remark 3.2. We could have used Py, 1(K) in the definition of W, (K) for all k > 1. But since the smaller space Q1.1(K) (&
P,(K)) works for the optimal order when k = 1, we replaced it by the smaller space Q; 1 (K). Instead, the proof requires a
special treatment, which we present separately below.

Now we prove superconvergence of p*,f at Gauss points. Let @, denote the L2-projection onto W;,(K) for all k > 1. In

particular, when k = 1, &k is the same as @, the [2-projection onto Q1,1(K). In general, &y is the [%-projection onto
Py41(K). Then we have
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Lemma3.3. If p e H*(K) and ¢ € Q1,1(K), then we have

[(V (@D = D), Vg, | < CH? VY llg, IPlis3 ) - (3.14)

Proof. Let K = [—1, 1] x [—1, 1] be the reference element. For a fixed ¢ € Ql_l(k) define a linear functional on, say
HM1(K) by

for@) = (V(@pp = D). V), - (3.15)
Then it is clear that the norm of this functional satisfies
Ify I < Clyrl, ¢ (3.16)

We show that this functional vanishes for p € P, (12). Since @ preserves functions in QM(IA(), it suffices to assume
p e {¥,7?). First we assume p = *°. The case when p = y? can be handled exactly the same way. Since the Legendre
polynomials on [—1, 1] are

1 /3. /5(,{2 .
— =R =B, ...,
V2V 2 4

we see @; (x%) = ¢, for some constant and hence V(®; (%)) = 0. Thus
(V(®pd — D), V), = (=VD, Vi),
Now we claim
{(—=VD, V), =0. (3.17)

Since Vp = (2%, 0)" and the first component of Vi is a linear function of § when v € Q1. Thus (3.17) vanishes as an
integral of an odd function on a symmetric interval. Now the Bramble-Hilbert lemma shows

1y B < Iy 11515 4.

Now transform back to K and use (3.16) to obtain the appropriate order:

fy )| < Ch?[Ify [*Iplsx < CR? VY ligIplsk. O

Lemma 3.4. We have that for k > 2,
IV(@rp) — Vpllox < CHplisa. (3.18)

The same result also holds when the L?>-norm is replaced by Gauss norm || - || i1

Proof. First we consider the following functional on a reference element K: Define
FB) = IV(Pxh) — Vbl &-

Then this functional vanishes on Py, 1. Hence by the Bramble-Hilbert lemma [1,21], we have that

IV(@kD) = VBllg g < ClDliyni-

Now we apply the scaling argument.

IV(®kp) — Vpllox < CH*"'|plisak- (3.19)

Therefore, the proof is complete. 0O

Lemma 3.5. Let ¢ = $p — pﬁ. Then we have for k > 1.

lqlik = 1Vallg,, < Ch* (plisai + hlulisa k). (3.20)
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Proof. We have
a3 = IVal2,, = (V(@kp — p}). Va),, .
5 #
= (V(®kp = p), Vg, + (VO =Dp). V),
= (V(®xp — D), Va)g,,, + (k'Y —pi), V),
= (V(@kp =), Va)g,, + ((—u+ ),k ' Va), . (321)
When k = 1 we have, by (3.8), (3.14),
IVall;, < CR?lIplisx [ Vallg, + Ch*luls|Vqllg,.
while for k > 1 we obtain by (3.8) and (3.18).

IValy,,, < Ch UpllsziIVallg,, + hlulaklVallg,,)-
This completes the proof. O
Theorem 3.6. We have for k > 1
Ip = Pjllgesy < CHP2(IPlis2 + l1allis2)- (3.22)

Proof. By the triangle inequality we have

Ip = Pjllgess < P — Pkp llgess + 19xP — Pji llgiss- (3.23)

We estimate q = &xp — pf with g = qdx. Since (pf, 1)k = (pn, 1)k, we have

1
Area(K) j;(

- 1 -
Gl = ®yp — pHdx| = ®rp — pp)dx
g1l oo ‘Area(m 1<( kP — Dp) ‘Area(m/l{( kP — Dn)
< Ch™ || ®kp — pullo-
Hence
1llgesy < ChllGlloo < ClIPkP — Pllok- (3.24)

By the Poincaré inequality, we have by Lemma 3.5

Iqllges: < 114 — Qllgys + 1Gllge
< Chigli.x + 1qllge,

CH*"2(Iplis2 + [ulis2) + Cl|Pkp — Prllo - (3.25)
Now by (3.10), (3.23)-(3.25), the proof is complete. O

IA

4. Numerical experiment

In this section we present some numerical experiments when k = 1. Throughout the numerical computations we solve
problem (2.4) on the unit square 2 = [0, 1] x [0, 1].
As a first example, we let ¥ = I, the identity matrix, and for the second we let

(14 10x+y 0
= 0 1+ 10x+y)"

In these two examples, p(x, y) = (x—x?)(y —y?) is the exact solution. As a third example, we choose a (scalar) discontinuous
coefficient:

. — {1000, forx,y > 0.5

(4.1)

1, otherwise, (4.2)

with the exact solution p(x, y) = (x — 1) (v — 1) sin (27x) cos 27y + 17) /k.

In each table, the first two columns show the results of pressure and velocity of our scheme without post-processing,
while the third column is the result of the scalar variable after post-processing.

The numerical results for the case k = I, are shown in Table 4.1. For this particular example, we got the solution exact up
to machine accuracy. Table 4.2 show an excellent agreement with the theory while Table 4.3 shows the result for a problem
with discontinuous coefficients, in which case the result also matches with the theory.
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Table 4.1
The result with « = Iy.
n Ip — pnllg, lu —wylg, e — pfllg,
Error Order Error Order  Error Order
4  1.03097e—03 4.74286e—09 1.05865e—13
8 2.70631e—04  1.939 4.80646e—09  x 474964e—13
16 6.84632e—05 1.982 4.34370e—09 % 4.25500e—13 %
32 1.71661e—05 1.995 4.37379e—09 % 3.51110e—12
64  4.29468e—06 1.998  7.39267e—09 8.18826e—11  x*
Table 4.2
The results of convergence with « in (4.1).
n lp — pnllg, lu—wyllg, e — pille,
Error Order  Error Order  Error Order
4  1.03088e—03 1.66751e—03 1.87073e—04

8  2.70624e—04 1.929  2.39969e—04 2796  2.54441e—05 2.878
16 6.84629e—05 1982  3.16883e—05 2.920 3.27311e—06  2.958
32 1.71661e—05 1.995  4.03274e—06 2974  4.12549e—07  2.988
64  4.29468e—06 1.998  5.08067e—07 2.988  5.16852e—08  2.996

Table 4.3
The results of convergence order with « in (4.2).
n Ip — pnllg, flu — g, P — g,
Error Order  Error Order  Error Order
4  3.48900e—03 2.59183e—02 1.57773e—03

8 1.25417e—03 1476  2.95180e—03 3.134  2.27154e—04 2.796
16 3.32170e—04 1916 3.14327e—04  3.231 2.63734e—05 3.106
32 8.42043e—-05 1979 3.69582e—05  3.088 3.16894e—06  3.057
64  2.11242e—05 1.994  4.54093e—06 3.024 3.91351e—07 3.017
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