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Abstract In this paper, we introduce the locally conservative enriched im-
mersed finite element method (EIFEM) to tackle the elliptic problem with
interface. The immersed finite element is useful for handling interface with
mesh unfit with the interface. However, all the currently available method un-
der IFEM framework may not be designed to consider the flux conservation.
We provide an efficient and effective remedy for this issue by introducing a lo-
cal piecewise constant enrichment, which provides the locally conservative flux.
We have also constructed and analyzed an auxiliary space preconditioner for
the resulting system based on the application of algebraic multigrid method.
The new observation in this work is that by imposing strong Dirichlet bound-
ary condition for the standard IFEM part of EIFEM, we are able to remove
the zero eigen-mode of the EIFEM system while still imposing the Dirichlet
boundary condition weakly assigned to the piecewise constant enrichment part
of EIFEM. A couple of issues relevant to the piecewise constant enrichment
given for the mesh unfit to the interface has been discussed and clarified as
well. Numerical tests are provided to confirm the theoretical development.
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1 Introduction

There are many problems in engineering areas whose governing equations are
described by a combined system of elliptic equations and transport equations.
When solving these problems numerically, accurately predicting flow variables
is as important as estimating displacements. One of the criteria for assessing
the stability of the numerically resolved flow is whether it has acquired a local
conservation. Without a local conservation in flow, the transport variable may
suffer a nonphysical result if there is a spurious source.

Various locally conservative schemes were developed in finite element method
(FEM) community, which include mixed finite element methods (MFEMs)
[36,6], CG flux [8,18,28,10], and some discontinuous Galerkin (DG) methods
combined with post-processing technique for resolving flows [2,13]. Recently,
a conservative method called enriched Galerkin (EG), similar to the DG, but
which has a much less DOF than that of DG, is introduced [38,29]. EG en-
riches the conforming finite element space with a piecewise constant. This can
produce a locally conservative flux effectively.

In the perspective of solving the discretized system, the data structure
becomes complicated if the nature of the medium underlying the governing
equation becomes discontinuous along some interfaces. This is because if there
is an interface, one has to use a fitted grid whose nodes are aligned on the
interface. Thus, one may ask if we can devise a conservative scheme which
is more efficient when solving a problem with an interface. Recently, various
structured grids based methods were developed, for example, extended finite
element methods [34,3,23,4,30], immersed finite element method (IFEM) [32,
31,9,25,33,24,22], etc.. See also an interesting contribution by Guzman et
al. for elliptic problems with interface with higher-order finite element meth-
ods [15]. Among many available methods, we consider to use IFEM, which
uses a strategy of modifying the basis along the interfaces. IFEM has the ad-
vantage that an extra degree of freedom is not required, and thus it can be
applied effectively for various equations, for examples elliptic equations [9,25,
33], two-phase flows in the porous media [20], elasticity equation [24,27,19],
and Poisson Bolzamann equation [26]. In addition, because of its simple data
structure, geometric multigrid algorithms have been efficiently applied to solve
the discretized system resulting from IFEM [20,21], while the performance of
algebraic version multigrid was reported in [14].

In this work, we propose a novel methodology to compute flows through
a nonhomogeneous media using IFEM. To use a structured grid, the P1-
conforming basis functions are modified so that the flux continuity condi-
tions are satisfied. Next, to keep the mass conservation, the modified space is
enriched by piecewise constant functions. Since the resulting space is discon-
tinuous across the edge, the bilinear form used to solve the elliptic equation
contains a term that compensates the difference in the normal flux from the
two adjacent elements along the edges. After the equation is solved for the
displacement variable, the flow variable can be obtained locally on each edge,
which is a similar technique used in EG. We name our method an enriched
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immersed finite element method (EIFEM). Also, we have developed and ana-
lyzed an auxiliary space preconditioner based on algebraic multigrid method
for solving the algebraic system arising from EIFEM.

The novelties in this work are that: 1) Both displacement and flow variables
can be approximated on a structured grid, regardless of interface, 2) The
data structure is simple, thus the effective solver based on subspace correction
method can be applied easily, 3) The pressure variable is obtained by solving
a symmetric problem by (preconditioned) conjugate gradient, while the flux
variable is computed locally, thus the whole implementation is simpler than
MFEM and CG-flux.

The rest of the paper is organized as follows. In Section 2, we write the
model problem and review the IFEM space. EIFEM is proposed in Section 3
the analysis of it is provided in Section 4. In Section 5, we present and analyze
an auxiliary space preconditioner based on algebraic multigrid method. The
numerical results are given in Section 6. Lastly, we offer concluding remarks
in Section 7.

Throughout the paper, we shall set C,Ct, C̃ will denote generic positive
constants independent of the mesh size h or functions involved, not necessarily
the same for each appearance. Oftentimes, we shall use the following notation:

∃ a generic constant C > 0 such that A < CB ⇔ A . B,

and

∃ a generic constant C > 0 such that A > CB ⇔ A & B.

2 Governing Equations

In this section, we shall introduce a couple of useful notation and present our
governing equations of interest.

We assume thatΩ is a convex polygonal domain in IR2 and it is decomposed
into the following form:

Ω = Ω1 ∪ Γ ∪Ω2, (2.1)

where Ω1 and Ω2 are subdomains of Ω with different elastic materials having
distinct Lamé constants, and Γ is the interface between these domains. For
any bounded subdomain D ⊂ Ω, its restriction onto Ω1 and Ω2, are denoted
by D1 and D2, respectively, i.e., D1 := D ∩Ω1 and D2 := D ∩Ω2.

We shall assume that Γ is C2 interface. Under this setting, the boundary
of Ω, denoted by ∂Ω is given as follows:

∂Ω = ∂Ω1 ∪ ∂Γ ∪ ∂Ω2, (2.2)

where ∂Ω1, ∂Γ and ∂Ω2 are boundaries of Ω1, Γ and Ω2, respectively. Let v
be a function defined on Ω.

We shall use standard function spaces. For a given subdomain D ⊂ Ω,
Cm(D) denotes the space of the first m-derivatives are continuous in D,



4 Gwanghyun Jo, Do Y. Kwak and Young-Ju Lee

Hm(D), H1
0 (D), Hm(∂D) are the ordinary Sobolev spaces of order m with

the norm || · ||m,D and the semi-norm | · |m,D. For m = 0, (·, ·)0,D denote a
L2-inner product on the domain D. In case D = Ω, the norm || · ||m,Ω and
the inner product (·, ·)m,Ω shall be denoted simply by || · ||m and (·, ·)m,Ω, re-

spectively. For m = 1, 2, we also introduce the broken Sobolev space H̃m(D)
defined as

H̃m(D) := {u ∈ Hm−1(D), |u|D1
∈ Hm(D1) and u|D2

∈ Hm(D2)},

equipped with the norm:

||u||2m̃,D := ||u||2m−1,D + ||u||2m,D1
+ ||u||2m,D2

.

Let β be the conductivity for a given domain Ω, i.e., the ratio between the
permeability and viscosity, which will be allowed to be discontinuous across
the interface Γ . We shall assume that β is bounded and uniformly positive in
Ω with β|Ω1

∈ C1(Ω1) and β|Ω2
∈ C1(Ω2). We let β and β be the lower and

upper bound of β, respectively, i.e.,

0 < β < β < β. (2.3)

We now introduce two additional Sobolev spaces for taking into account the
boundary and interface conditions.Namely,

H̃1
0 (Ω) := {u ∈ H̃1(Ω) |u = 0 on ∂Ω}, (2.4a)

H̃2
Γβ
(Ω) := {v ∈ H̃2(Ω) | [[β∇v]] = 0 on Γ}. (2.4b)

The second order elliptic interface model problem that we are aiming to
solve is that, given f ∈ L2(Ω), find p ∈ H̃1

0 (Ω) such that

divu = f , in Ω, (2.5a)

u = −β∇p, in Ω, (2.5b)

[[p]] = 0, on Γ, (2.5c)

[[β∇p]] = 0, on Γ, (2.5d)

p = 0, in ∂Ω, (2.5e)

where [[p]] and [[β∇p]] denote the jump of the function p and the jump of
(β∇p)·nΓ on Γ , respectively. Here nΓ is the normal to the interface Γ (further
discussion on this notation will be introduced below).

We note that for the sake of simplicity, the problem (2.5) imposes homoge-
neous boundary and interface conditions. However, non-homogeneous condi-
tions can also be considered with a simple modification. The weak formulation
of the model problem (2.5) is given as follows: find p ∈ H̃1

0 (Ω) such that
∫

Ω

β∇p · ∇v dx =

∫

Ω

fv dx (2.6)

for all v ∈ H1
0 (Ω). Note that while [[p]] = 0 on Γ and p = 0 on ∂Ω are essential

conditions, [[β∇p]] = 0 on Γ is the natural boundary condition.
Finally, we state the following regularity theorem [5,7,37] regarding the

model problem (2.18).
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Proposition 1 Let f ∈ L2(Ω). Then, there exist a unique solution p ∈ H̃1
0 (Ω)

of problem (2.5) such that

||p||H̃2(Ω) . ||f ||L2(Ω). (2.7)

2.1 Immersed finite element method for (2.18)

In this section, we review and discuss the classical immersed finite element
method to handle the problem (2.18). Let Th be a regular triangulation of
Ω. We note that the triangulation is provided in general for which nodes are
not necessarily aligned with the interface Γ . Under this setting, there are two
types of triangles in Th, i.e., an interface element T , which is characterized by
the fact that it is cut by the interface Γ and a non-interface element T which
is not. We shall denote Th,Γ ⊂ Th, by the set of interface triangles. We shall
let Eh be the set of edges of Th. Note that Eh = Eo

h ∪ E∂
h , where Eo

h is the set
of interior edges while E∂

h is the set of boundary edges.
The space Hs(Th)(s ∈ IR) is the set of element-wise H2 functions on Th,

and L2(Th) refers to the set of element-wise L2 functions. Following [1], for
any e ∈ Eh, we denote by |e| the length of the edges e. Now let e ∈ Eo

h, T
+

and T− denote two neighboring elements such that e = ∂T+ ∩ ∂T−. Let n+

and n− be the outward normal unit vectors to ∂T+ and ∂T−, respectively.
For any given function ξ and vector function ξ

∼

, defined on the triangulation

Th, we denote ξ± and ξ± by the restrictions of ξ and ξ to T±, respectively.
We define the average {{·}} as follows: for ζ ∈ L2(Th) and τ

∼
∈ L2(Th)d,

{{ζ}} :=
1

2

(
ζ+ + ζ−

)
and {{τ

∼
}} :=

1

2

(
τ
∼

+ + τ
∼

−
)

on e ∈ Eo
h. (2.8)

On the other hand, for e ∈ E∂
h , we set {{ζ}} := ζ and {{τ

∼
}} := τ

∼
. The jump

across the interior edge will be defined as usual:

[[ζ]] = ζ+n+ + ζ−n− and [[τ
∼
]] = τ

∼

+ · n+ + τ
∼

− · n− on e ∈ Eo
h. (2.9)

For e ∈ E∂
h , we set [[ζ]] = ζn. For any given edge e ∈ Eo

h, there are two choices
of the normal n to e and it is useful to fix one of them, for example, for an
appropriate definition of the flux. Such a fixed choice of the normal to e will
be denoted by ne.

For any T ∈ Th and an inner product (·, ·)m,T , the computation can be
done with the following decomposition:

(u, v)m,T = (u, v)m,T+ + (u, v)m,T− . (2.10)

We will let Pk(T ) denote the space of polynomials of degrees less than or
equal to k for a given T ∈ Th. Similarly, we also let Pk(e) denote the space of
polynomials of degree less than or equal to k for a given e ∈ Eh. Given a non-
interface element T , we shall recall that Sh(T ) = P1(T ) = span{λj}j=1,2,3,
where λj ’s are standard barycentric coordinates, i.e., λj(Ai) = δij , where
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Fig. 1: An interface element T cut by interface Γ .

Ai’s are nodes of T and δij is the standard Kronecker delta function. In

case T is an interface element, the space Sh(T ) will be modified as Ŝh(T ) =

span{λ̂j}j=1,2,3, so that λ̂j satisfies the interface condition as well as λ̂j(Ai) =
δij . More precisely, as described in Figure 2, given an interface element T , we
suppose the interface Γ cuts T through edges e1 and e3 of T at points E2 and
E1. This cut will divide T into T+ contained in Ω+ and T− contained in Ω−.

For j = 1, 2, 3, we modify λj ∈ Sh(T ) to a piecewise linear function λ̂j of
the following form:

λ̂j(X) :=

{
λ̂+j (X) = a+j + b+j x+ c+j y, X = (x, y) ∈ T+,

λ̂−j (X) = a−j + b−j x+ c−j y, X = (x, y) ∈ T−,
(2.11)

where the coefficients {a±j , b
±
j , c

±
j } are determined by the jump conditions and

vertex degrees of freedom:

λ̂j(Xi) = δij , and [[λ̂j ]] = [[β∇λ̂j ]] = 0 on Γ. (2.12)

It is well known that the aforementioned conditions (2.12) uniquely determine

λ̂j for j = 1, 2, 3, (see [9]). The vertex based piecewise linear immersed finite
element space (IFEM) for the problem (2.18) is then characterized by the

space Ŝh(Ω) defined as follows: for φ ∈ Ŝh(Ω), it holds

φ|T ∈ Sh(T ), if T ∈ Th/ Th,Γ , (2.13)

φ|T ∈ Ŝh(T ), if T ∈ Th,Γ , (2.14)

φ|T1
(X) = φ|T2

(X), if X ∈ T1 ∩ T2, (2.15)

φ(X) = 0, if X ∈ ∂Ω. (2.16)

The approximation property of the space Ŝh(Ω) is well known, [16,25,31].

Namely, let ℓh : H2(T ) → Ŝh(T ) be the standard local nodal interpolation
operator defined by, for v ∈ H2(T ),

ℓh(v)(Ai) = v(Ai) i = 1, 2, 3. (2.17)

We then let Ih : H̃2(Ω) → Ŝh(Ω) be the extension of ℓh defined by Ih(v)|T =
ℓh(v|T ). The following has been established:
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Lemma 1 There exists a constant C > 0 such that
∑

T∈Th

(||φ − Ihφ||0,T + h||φ− Ihφ||1,T ) ≤ Ch2||φ||H̃2(Ω),

for all φ ∈ H̃2
Γβ

(Ω).

The classic IFEM construct a finite element solution to the problem (2.18),

by solving the following discrete weak formulation: find ph ∈ Ŝh(Ω) such that
∫

Ω

β∇ph · ∇vh dx =

∫

Ω

fvh dx, ∀vh ∈ Ŝh(Ω). (2.18)

Recently, it is observed that the partially penalized IFEM is of optimal con-
vergence in the energy norm [33], which will be adopted in our paper (see
Section 3 for detailed description). To clarify the proposed conservative IFEM
formulation, we state the definition of local and global conservation.

Definition 1 (Local Conservation) Given a triangulation Th, we say that
the discrete flux uh is conservative if the following holds true:

∫

∂T

uh · n ds =

∫

T

f dx, ∀T ∈ Th, (2.19)

where n is the unit outward normal vector to ∂T . The corresponding global
conservation is with T replaced by Ω in the equation, (2.19).

We would like to remark that the conservation is dependent on the choice of
triangulations, Th. The issue with the conservation has drawn a lot of attention
in literatures (see [38,29] and references cited therein). Due to the absence of
the piecewise constant in the IFEM space, the standard and its variant IFEMs
are not locally or globally conservative.

3 Enriched immersed finite element method (EIFEM)

In this section, we introduce the enriched immersed finite element method by
the piecewise constant functions, that induces the local and global conserva-
tion.

3.1 Enriched immersed finite element and its approximation property

We enrich the standard IFEM space Ŝ(Ω) by piecewise constant functions.
The idea has been introduced at [38,29]. However, both of works are limited
to the case when the mesh fits in the interface. This is the first attempt to
introduce the enrichment for the interface problem where the interface is not
necessarily aligned with the mesh. We shall denote by Eh, the enriched IFEM
space, i.e., we define

Eh(Ω) := Ŝh(Ω) + Ch(Ω), (3.1)
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where

Ch(Ω) := {ψ ∈ L2(Ω) |ψ|T ∈ P0(T )}.

To clarify the EIFEM formulation, we shall set the fixed unit normal vector for
any given edge e ∈ Eh, which will be denoted by n. Note that the dimension of
the space Ŝh(Ω) is the number of interior nodes for the triangulation Th, which
will be denoted by N0 while the dimension of the space Ch is the number of
elements, which will be denoted by Ne. We first, consider the space Hh(Ω) :=

H̃1(Ω) + Eh(Ω) and equip it with a broken H1-norm:

|||φ|||h :=
∑

T∈Th

||φ||21,T +
∑

e∈Eh

1

|e|

∫

e

[[φ]]2 ds, ∀φ ∈ Hh(Ω). (3.2)

We introduce the scalar L2 projection, Q0
e : H1/2(e) 7→ P0(e) and the vector

L2 projection, Q0
e : (H1/2(e))2 7→ (P0(e))2, defined, respectively by

Q0
e(v) =

1

|e|

∫

e

{{v}} ds and Q0
e(v) =

1

|e|

∫

e

{{v
∼
}} ds. (3.3)

We note that Q0
h : L2(Ω) 7→ Ch denotes the standard L2 projection onto Ch. In

this section, we shall establish the optimal approximation property for EIFEM,
both in the primal and flux variables. We begin with the EIFEM interpolation.
Motivated by Lee et. al [29], we introduce the EIFEM-interpolation operator

Πh : H̃2(Ω) 7→ Eh as follows:

Πhv = Ihv +Q0
h(v − Ihv). (3.4)

Lemma 2 There holds the following estimate:

|||φ −Πhφ|||h . h||φ||H̃2(Ω), (3.5)

for all φ ∈ H̃2
Γβ

.

Proof We recall that

|||φ − Ihφ|||
2
h =

∑

T∈Th

||∇(φ− Ihφ)||
2
0,T +

∑

e∈Eh

1

|e|

∫

e

[[φ− Ihφ]]
2 ds.

Since the estimate of the first term has been shown in Lemma 1, we only need
to investigate the second term. Invoking the standard trace inequality for H1

function, we see that for e ∈ Eh, let T+ and T− be elements sharing e,

1

|e|

∫

e

[[φ− Ihφ]]
2
e ds .

1

|e|

(∫

e

(
(φ − Ihφ)|

T+

)2
ds+

∫

e

(
(φ− Ihφ)|

T−

)2
ds

)

.

(
1

h2
||φ− Ihφ||

2
0,T+∪T− + |φ− Ihφ|

2
1,T+∪T−

)
.

Finally, for the remainder part, we first apply the standard inverse inequality
on T and trace theorem for the piecewise constant function, and then use the
approximation property of Ih to arrive at the conclusion. This completes the
proof.
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3.2 EIFEM formulation and its well-posedness

We define the bilinear form ah(·, ·) : Hh(Ω) ×Hh(Ω) 7→ IR by, for all v, w ∈
Hh(Ω),

ah(v, w) =
∑

T∈Th

∫

T

β∇v · ∇w dx−
∑

e∈Eh

∫

e

{{β∇v}}[[w]] ds

+θ
∑

e∈Eo
h

∫

e

{{β∇w}}[[v]] ds+ θ
∑

e∈E∂
h

∫

e

{{β∇w}}[[Q0
e(v)]] ds

+
∑

e∈Eo
h

1

|e|

∫

e

σ(β)[[v]][[w]] ds +
∑

e∈E∂
h

1

|e|

∫

e

σ(β)[[Q0
e(v)]][[Q

0
e(w)]] ds,

where |e| is the measure of e, the symbol θ will be discussed below, and the
symbol σ(β) is to indicate that σ, the stabilization parameter is chosen depend-
ing on β in each edge e ∈ Eh. Theoretically, at the interface edge, σ = κβ/β
for some κ > 0 gives sufficient stabilization.

We are now in a position to state the enriched immersed finite element
to solve (2.5). The enriched IFEM can then be formulated as follows: find
ph ∈ Eh such that

ah(ph, wh) = (f, wh)0, ∀wh ∈ Eh. (3.6)

The bilinear form, here is the one that corresponds to interior penalty DG
method, introduced in [39]. The symbol θ is the tuning parameter, which
determines the type of interior penalty method, i.e., θ = −1, 0 and 1 result in
NIPG, IIPG and SIPG, respectively [38,29].

Remark 1 The Dirichlet boundary condition has been imposed strongly for
the space Ŝh(Ω). As such, the weak formulation (3.6) still results in weakly
imposed zero boundary condition for the space Ch.

We shall now list couple of simple but important observations for the problem
(3.6). We begin with the consistency.

Lemma 3 Suppose p is the solution of (2.5) and ph is the solution of (3.6)
Then, we have

ah(p− ph, wh) = 0, ∀wh ∈ Eh. (3.7)

Proof This follows from the definition of the ah(·, ·) form. This completes the
proof.

For the coercivity of the bilinear form ah(·, ·), we state and prove a simple,
but important lemma:

Lemma 4 The following holds for all φ ∈ Eh(Ω) and T ∈ Th and edges e of
T .

||β∇φ · ne||
2
0,e ≤ Cth

−1||β∇φ||20,T .
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Proof We decompose ∇φ as

∇φ = (∇φ · nΓ )nΓ + (∇φ · tΓ )tΓ := w + z,

where nΓ and tΓ are the unit normal and tangent vector to the interface
Γ . Since the functions in Ŝh(T ) satisfies the flux continuity condition, βw ∈
H1(T ). Also, ∇φ has well defined trace on Γ , z is in H1(T ). Thus, we have
that

||βw · n||0,e ≤ Ch−1/2||βw||0,T (3.8)

||z · n||0,e ≤ Ch−1/2||z||0,T . (3.9)

By the triangular inequality and inequalities (3.8) and (3.9), we have

||β∇φ · ne||0,e ≤ ||βw · ne||0,e + ||βz · ne||0,e

≤ ||βw · ne||0,e + β||z · ne||0,e

≤ Ch−1/2(||βw||0,T + β||z||0,T )

≤ Ch−1/2

(
1 +

β

β

)
||β∇φ||0,T . ✷

We are in a position to establish the coercivity of the bilinear form ah(·, ·).

Lemma 5 There exists some σ0 > 0 such that the following holds whenever
σ > σ0,

Cα|||φh|||
2
h ≤ ah(φh, φh), ∀φh ∈ Eh(Ω), (3.10)

for some α > 0.

Proof Using the Cauchy’s inequality, we have that

∑

e∈Eh

∫

e

|{{β∇φh · ne}}[[φh]]| ds

≤

(
h
∑

e∈Eh

||{{β∇φh · ne}}||
2
0,e

) 1
2
(
h−1

∑

e∈Eh

||[[φh]]||
2
0,e

) 1
2

.

Let T+ and T− be neighboring elements of the edge e. By applying the Lemma
4 and using the fact that there are at most finite number of neighboring ele-
ments for any given element of the mesh, we have that

h
∑

e∈Eh

||{{β∇φh · ne}}||
2
0,e . h

∑

e∈Eh

(
||(β∇φh)|

T+
· ne||

2
0,e + ||(β∇φh)|

T−
· ne||

2
0,e

)

.
∑

e∈Eh

||β∇φh||
2
0,T+∪T− . β

∑

T∈Th

||∇φh||
2
0,T .
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Invoking Young’s inequality, for δ > 0, we have that

(1− θ)
∑

e∈Eh

∫

e

|{{β∇φh · ne}}[[φh]]| ds

.
δ

2

∑

T∈Th

||∇φh||
2
0,T +

(1− θ)2β

2δ

∑

e∈Eh

1

|e|
||[[φh]]||

2
0,e.

Thus, we have

ah(φh, φh) =
∑

T∈Th

∫

T

β∇φh · ∇φh dx

−(1− θ)
∑

e∈Eh

∫

e

{{β∇φh · ne}}[[φh]] ds+
∑

e∈Eh

1

|e|

∫

e

σ(β)[[φh]]
2 ds

&

(
β −

δ

2

) ∑

T∈Th

||∇φh||
2
0,T +

(
C min

e∈Eh

σ(β) −
(1− θ)2β

2δ

) ∑

e∈Eh

1

|e|
||[[φh]]||

2
0,e,

for some generic constant C > 0. By choosing δ = β and mine∈Eh
σ(β) large

enough, we obtain the desired result. This completes the proof.

The continuity of the bilinear form ah(·, ·) can be proven by the same
techniques used in the proof of Lemma 5.

Lemma 6 There exists some Cb such that the following holds when σ > 0,

ah(φh, ψh) ≤ Cb|||φh|||h|||ψh|||h, ∀φh, ψh ∈ Eh(Ω). (3.11)

We now state and prove the error estimate for the primary variable in
||| · |||h-norm.

Theorem 1 Let p be the solution of (2.5) and ph be the solution of (3.6).
Then there exists some C > 0 such that following holds.

|||p− ph|||h ≤ Ch||f ||L2(Ω). (3.12)

Proof By triangular inequality, we have

|||p− ph|||h ≤ |||ph −Πhp|||h + |||p−Πhp|||h. (3.13)

From inequalities (3.10), (3.11) and Ceá’s Lemma, it follows that

|||ph −Πhp|||h ≤
Cb

Cα
||p−Πhp||h. (3.14)

By (3.5), (3.13), (3.14) and (2.7) we have,

|||p− ph|||h ≤

(
1 +

Cb

Cα

)
CIh||p||H̃2(Ω)

≤ Ch||f ||L2(Ω). ✷
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Finally, we state the error estimate in L2-norm.

Theorem 2 Let p be the solution of (2.5) and ph be the solution of (3.6).
Suppose θ = −1 in (3.6). Then there exists some C > 0 such that following
holds.

||p− ph||L2(Ω) ≤ Ch||f ||L2(Ω). (3.15)

Proof This can be proven by the standard duality argument together with
(3.12). This completes the proof.

4 Conservative flux reconstruction and its error analysis

In this section, we discuss the flux reconstruction. Unlike the prior works
[38,29] (see also H(div)-flux reconstruction of DG developed and analyzed
in e.g., [13]), the jump discontinuity over Γ that are not necessarily aligned
with the grid requires to carefully define the flux along the edge to preserve
the conservation as well as to produce certain accuracy. More precisely, The
EG-flux reconstruction introduced in [38,29] was given as follows:

uh · ne = −{{β∇ph · ne}}+
σ(β)

|e|
[[ph]].

On the other hand, for the case when the discontinuity is allowed within an
element, we modify this as follows, which will be coined as “EIFEM-flux recov-
ery”. We shall define uh so that it belongs to the lowest order Raviart-Thomas
(RT) space [36] by assigning its degree of freedom in each edge e ∈ Eh as fol-
lows:

uh · ne :=
1

|e|

∫

e

(
−{{β∇ph · ne}}+

σ(β)

|e|
[[ph]]

)
ds, (4.1)

We now show that the EIFEM-flux recovery possesses the local and global
conservation property:

Proposition 2 The flux uh defined through (4.1) satisfies the local and global
conservation, namely,

∫

∂T

uh · n ds =

∫

T

f dx, ∀T ∈ Th, (4.2)

where n is the unit outward normal to ∂T , and

∫

∂Ω

uh · n ds =

∫

Ω

f dx,

where n is the unit outward normal to ∂Ω.
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Proof Let T+ ∈ Th be given. By taking the test function wh = 1 on T+ and 0
elsewhere, for the equation (3.6), we have that

−
∑

e⊂∂T+

∫

e

{{β∇ph · ne}}e ds+
∑

e⊂∂T+

1

|e|

∫

e

σ(β)(ph|T+ − ph|T−) ds =

∫

T+

f dx,

where T− is an element adjacent to T+, sharing e as a common edge. By the
definition of uh in (4.1) and by the above identity, we see that

∫

∂T+

uh · n dx =

∫

∂T+

(uh · ne)(ne · n) ds = −
∑

e⊂∂T+

∫

e

{{β∇ph · n}} ds

+
∑

e⊂∂T+

1

|e|

∫

e

σ(β)(ph|T+ − ph|T−) ds =

∫

T+

f dx.

This establishes the local conservation. Now, by taking wh = 1, globally on Ω,
i.e., by summing over T ∈ Th, we are led to

∫

∂Ω

uh · n ds =

∫

Ω

f dx.

This completes the proof.

We are now in a position to state and prove the error estimates of the
flux recovery for the EIFEM. The error estimate will be provided for both
‖u− uh‖0 and ‖div(u− uh)‖0.

Theorem 3 Let u be the solution of (2.5) and uh be the EIFEM-flux com-
puted by (4.1). If u ∈ (H1(Ω))2, then the following holds.

||u− uh||L2(Ω) ≤ Ch||f ||L2(Ω).

Proof For any given e ∈ Eo
h, we consider the triangle that shares it as a common

edge, say T+ and T−. We observe that from the definition of uh and by the
fact that p ∈ H̃2(Ω) and u ∈ H1(Ω), we have that

(uh +Q0
e(β∇ph)) · ne =

1

|e|

∫

e

[[β∇ph · ne]] ds+
1

|e|

∫

e

σ(β)[[ph]] ds

=
1

|e|

∫

e

[[β∇(ph − p) · ne]] ds+
1

|e|

∫

e

σ(β)[[ph − p]] ds,

Thus,
∫

e

(uh +Q0
e(β∇ph) · ne)

2 ds =

∫

e

[[β∇(ph − p) · ne]](uh +Q0
e(β∇ph))) · ne ds

+
1

|e|

∫

e

σ(β)[[ph − p]](uh +Q0
e(β∇ph)) · ne ds.

Applying the Cauchy Schwarz and triangule inequality, we have

||((uh +Q0
e(β∇ph)) · ne||0,e . ||[[β∇(ph − p) · ne]]||0,e +

1

|e|
||[[ph − p]]||0,e.
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By the estimates for p − ph in (3.12) and (3.15) together with the trace in-
equality, we have

||(uh +Q0
e(β∇ph)) · ne||0,e . h1/2||p||H̃2(T+∪T−). (4.3)

Furthermore, we note that since u = −β∇p ∈ (H1(Ω))2,

||(β∇ph −Q0
e(β∇ph)) · ne||0,e . ||(β∇ph − β∇p) · ne||0,e

+||(β∇p−Q0
e(β∇ph)) · ne||0,e

+||Q0
e(β∇p− β∇ph) · ne||0,e

. h1/2||p||H̃2(T+∪T−) + ||(β∇p− β∇ph) · ne||0,e

. h1/2||p||H̃2(T+∪T−).

These result in

||(uh + β∇ph) · ne||0,e . h1/2||p||H̃2(T+∪T−).

For a given T ∈ Th, we apply the scaling argument to obtain that

||uh + β∇ph||0,T . h1/2
∑

e∈∂T

||(uh + β∇ph) · ne||0,e

. h||p||H̃2(Mh)
,

where Mh = {Tk ∈ Th : Tk ∩ T 6= ∅}. Finally, by applying the triangle
inequality, (4.4) and (3.12), we obtain that

||uh − u||0,Ω .
∑

T∈Th

(||uh + β∇ph||0,T + ||β∇ph − β∇p||0,T ) . h||p||H̃2(Ω).

We obtain the desired inequality by (2.7). This completes the proof.

We now establish the error estimate of u− uh in H(div)-norm.

Theorem 4 Let u be the solution of (2.5) and uh be the EIFEM-flux. Assume
that f ∈ H1(Ω), then it holds that

∑

T∈Th

||div(u− uh)||0,T . h||f ||1,Ω.

Proof Let T ∈ Th. By the divergence theorem and the local mass conservation
in (4.2), we have

∫

T

divuh dx =

∫

∂T

uh · n ds =

∫

T

f dx.

Namely, we see that divuh is a local average of f on T . Thus, by the Bramble-
Hilbert Lemma,

||div(u− uh)||0,T = ||f −Q0
h(f)||0,T . h||f ||1,T .

By summing over all elements T , and by (2.7), we have the desired inequality.
This completes the proof.
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5 Auxiliary space preconditioner for EIFEM

In this section, we give a description of preconditioning techniques based on
fictitious or auxiliary spaces as pioneered in [35,40]. We then establish that
the abstract framework can be applied for designing the auxiliary space pre-
conditioner for EIFEM.

5.1 Auxiliary space preconditioner

Let V be a real Hilbert space with inner product a(·, ·) and energy norm ‖·‖A.
The fictitious space method solves the following linear system: find u ∈ V for

a(u, v) = f(v), ∀v ∈ V. (5.1)

The main building blocks are

– a fictitious space V , i.e., another real Hilbert space equipped with the inner
product a(·, ·), which induces the norm ‖ · ‖A.

– a continuous and surjective linear transfer operator Π : V 7→ V .

We tag dual spaces by ′, adjoint operators by ∗, and use angle brackets for

duality pairings and write A : V 7→ V ′ and A : V 7→ V
′
for operator form of

bilinear map a(·, ·) and a(·, ·), respectively. The fictitious space preconditioner
is then given by

B = Π ◦A
−1

◦Π∗ : V ′ 7→ V. (5.2)

It is well-known that the aforementioned operator B is actually positive def-
inite (Lemma 2.1, [17]). We state the fictitious space lemma and provide the
elementary proof [35].

Theorem 5 (Fictitious Space Lemma) Assume that Π is surjective, and

∃c0 > 0 such that ∀v ∈ V, ∃v ∈ V with v = Πv and ‖v‖A ≤ c0‖v‖A (5.3a)

∃c1 > 0 such that ‖Πv‖A ≤ c1‖v‖A, ∀v ∈ V . (5.3b)

Then, we have

c−2
0 ‖v‖2A ≤ a(BAv, v) ≤ c21‖v‖

2
A, v ∈ V. (5.4)

This will immediately lead to an estimate for the spectral condition number
of the operator BA as follows:

κ(BA) =
λmax(BA)

λmin(BA)
≤ (c0c1)

2. (5.5)

The auxiliary space method is a general preconditioning approach based on
a relaxation scheme and an auxiliary space pioneered by Xu [40]. The feature
of the auxiliary space approach lies in the choice of the following auxiliary
space:

V := V ×W1 × · · · ×WJ , (5.6)
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where V as a component of V is equipped with an inner product s(·, ·), different
from the originally given bilinear form a(·, ·), and W1, · · · ,WJ are Hilbert
spaces endowed with inner products aj(·, ·) for j = 1, · · · , J . The operator
S : V 7→ V ′ induced by s(·, ·) on V is typically called the smoother. Under
this setting, the auxiliary space method adopts the fictitious space approach
with the inner product: ∀v = (v, v1, · · · , vj), w = (w,w1, · · · , wj) ∈ V ,

a(v, w) := s(v, w) +
J∑

j=1

aj(vj , wj). (5.7)

Furthermore, we introduce a linear transfer operator Πj : Wj 7→ V , for each
Wj , with Π0 = I, from which we build the surjective transfer operator:

Π := Π0 ×Π1 × · · · ×ΠJ : V 7→ V, (5.8)

whose action is given as follows:

Πv = Π(v, w1, w2, · · · , wJ) = v +

J∑

j=1

Πjwj ∈ V. (5.9)

This will lead to the construction of the auxiliary space preconditioner given
as follows:

B := S−1 +

J∑

j=1

Πj ◦A
−1
j ◦Π∗

j , (5.10)

where Aj ’s are operators that correspond to the bilinear form aj(·, ·) for j =
1, · · · , J . The verification of the assumption of the Theorem 5 boils down to
the following three steps:

Theorem 6 Assume that there hold:

– there exists cj > 0 for norms of the transfer operators Πj:

‖Πjwj‖
2
A ≤ cjaj(wj , wj), ∀wj ∈Wj , (5.11a)

– the boundedness of S−1, i.e., there exists cS > 0 such that

‖v‖2A . cS‖v‖
2
S , ∀v ∈ V, (5.12a)

– for every v ∈ V , there are v0 ∈ V and wj ∈ Wj such that v = v0 +∑J
j=1Πjwj and for some c0 > 0

s(v0, v0) +

J∑

j=1

aj(wj , wj) ≤ c20‖v‖
2
A. (5.13a)

Then it holds true that

κ(BA) ≤ c20(c
2
S + c21 + · · ·+ c2J ). (5.14)

Remark 2 The aforementioned Theorem 6 can be shown to hold even if the
bilinear forms aj on the auxiliary space Wj are replaced by any spectrally
equivalent bilinear forms, bj, namely, we can use the preconditioner for the
operator Aj .
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5.2 Auxiliary space preconditioner for solving EIFEM

We let

V = Eh (5.15a)

W1 = Ŝh(Ω) = span{φj}
N0

j=1 (5.15b)

W2 = Ch(Ω) = span{ψj}
Ne

j=1, (5.15c)

where φj is a nodal linear basis for the IFEM and ψj is the element-wise
constant function defined by ψh|Tℓ

= δjℓ. Here, N0 is the number of nodes in
Th and Ne is the number of elements in Th. The system arising from EIFEM
(3.6) is written in N by N (N = N0 +Ne) system

A
≈

u
∼
= f

∼

(5.16)

where the matrix can be written as

A
≈

=

(
A
≈11

A
≈12

A
≈21

A
≈22

)
. (5.17)

The submatrices are

A
≈11

(i, j) =
∑

T∈Th

∫

T

β∇φj · ∇φidx−
∑

e∈Eo
h

∫

e

{{β∇φi · ne}}[[φj ]] ds

+θ
∑

e∈Eo
h

∫

e

{{β∇φj · ne}}[[φi]] ds+
1

|e|

∑

e∈Eo
h

∫

e

σ(β)[[φj ]][[φi]] ds

A
≈12

(i, j) = θ
∑

e

∫

e

{{β∇φj · ne}}[[ψi]] ds,

A
≈21

(i, j) = −
∑

e∈Eo
h

∫

e

{{β∇ψi · ne}}[[φj ]]e ds,

A
≈22

(i, j) =
1

|e|

∑

e

∫

e

σ(β)[[ψj ]][[ψi]] ds.

We note that the Dirichlet boundary condition is imposed strongly for linear
piecewise element space. We provide a remark on its effect.

Remark 3 If we impose the Dirichlet boundary condition weakly for the space
Eh, then due to the redundancy of the constant function from both spacesW1

and W2, a degeneracy occurs, i.e.,

W1 ∩W2 = span{1}.

This results in the system matrix singular. In our formulation, the strong
Dirichlet boundary condition has been imposed on Ŝh(Ω), while the zero
Dirichlet boundary is imposed weakly for Ch. As such, the resulting system
becomes nonsingular.
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We shall consider the following auxiliary space decomposition:

V = V ×W1 ×W2. (5.18)

We use the notation x
∼
= x

∼1
+x

∼2
where x

∼1
belongs to W1, the vector represen-

tation ofW1 and x
∼2 belongs to W2, the vector representation ofW2. Therefore,

the corresponding auxiliary space preconditioner we propose in this paper, con-
sists of the following three steps: step i) pre-smoothing step ii) solving each
diagonal block system, A

≈11
and A

≈22
, which are the restrictions of A

≈

toW1 and
W2, respectively, and step iii) post-smoothing (for symmetrization).

Algorithm 51 (Preconditioner) We apply the following in each iteration:

1. Gauss Seidel NGS.
2. Compute Residual. R

∼
= R

∼1
+R

∼2
.

3. Precondition for each submatrix A
≈11

and A
≈22

: z
∼1

= AMG(A
≈11

)R
∼ 1

and
z
∼2 = AMG(A

≈22
)R
∼ 2.

4. Update corrections: x
∼
= (x

∼1
+ z

∼1
) + (x

∼2
+ z

∼2
).

5. Backward Gauss-Seidel NGS.

We equip three spaces, V,W1 andW2 with inner products as follows. Start-
ing at W1 and W2, we introduce aj(·, ·) : Wj ×Wj 7→ IR as the restriction of
a(·, ·) onto Wj for j = 1, 2, respectively. Note that since Wj ⊂ V , it holds that
for j = 1, 2,

aj(vj , wj) = a(vj , wj), ∀vj , wj ∈ Wj . (5.19)

For the space V , let D
≈

be the diagonal part of the matrix A
≈

. We then define
the operator s(·, ·) : V × V 7→ IR by the following relation:

s(v, w) = v
∼

TD
≈

w
∼

∀v, w ∈ V, (5.20)

where v
∼
and w

∼
are the representation of v and w in IRN . We now equip the

space V with the inner product defined as follows:

a(v, v) := s(v0, v0) + a1(v1, v1) + a2(v2, v2), ∀v = (v0, v1, v2) ∈ V . (5.21)

For i = 1, 2, we introduce an operator Π∗
i : V 7→ Wi defined as simple injec-

tions, i.e., Π∗
i v = vi, ∀v = v1+v2 ∈ V , with vi ∈Wi for i = 1, 2, and inclusion

maps, Πi :Wi 7→ V . Π : V 7→ V can be defined by

Πv = v0 +Π1v1 +Π2v2, ∀v = (v0, v1, v2) ∈ V . (5.22)

We remark that Π1 and Π2 are simply the identity which are simpler than
those for DG. The preconditioner can be stated as follows:

B = S−1 +Π1 ◦A
−1
1 ◦Π∗

1 +Π2 ◦A
−1
2 ◦Π∗

2 , (5.23)

To establish the quality of the preconditioner B, we shall need to establish the
estimate (5.11), but this is trivial. Secondly, we shall prove

Lemma 7 For any v ∈ V , we have that

‖v‖2A . cS‖v‖
2
S. (5.24)
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Proof We note that ‖v‖2A := A(v, v), ‖v‖2S := S(v, v). This inequality (5.24) is
due to the Cauchy-Schwarz and inverse inequality. This completes the proof.

We now state and prove the last step:

Lemma 8 For all v ∈ V , there exist v0 ∈ V , v1 ∈W1 and v2 ∈W2 such that
v = v0 + v1 + v2 and

s(v0, v0) + ‖v1‖
2
A + ‖v2‖

2
A ≤ c20‖v‖

2
A. (5.25)

Proof Given v ∈ V , we define vj ∈ Wj for j = 1, 2, by the solution to the
following equation:

(vj , wj)A = (v, wj)A, ∀wj ∈Wj . (5.26)

Then, it is immediate that ‖vj‖A . ‖v‖A for j = 1, 2. We now define v0 by

v0 = v − v1 − v2 ∈ V, (5.27)

then, it is enough to show that

‖v0‖S . ‖v‖A.

We note that

‖v0‖S = ‖v − v1 − v2‖S . ‖v − v1‖S + ‖v2‖S . ‖v − v1‖S + ‖v‖A.

Therefore, we shall show that ‖v − v1‖S . ‖v‖A. Let χE
be a characteristic

function, which is one on any subset E ⊂ Ω and zero elsewhere. We then
consider the adjoint problem to find ψ ∈ H̃1

0 (Ω) such that with βT = β|T for
any T ∈ Th,

−∇ · β∇ψ = Dh(v − v1) in Ω, (5.28)

subject to the interface conditions and homogeneous boundary condition on
∂Ω. Here Dh : V 7→ V is the positive operator that satisfies the following
relation:

(Dhv, v)0 = (D
1/2
h v,D

1/2
h v)0 = h2s(v, v), ∀v ∈ V.

Then we have that for all µ ∈W1,

‖D
1/2
h (v − v1)‖

2
0 = (v − v1, ψ)A

= (v − v1, ψ − µ)A,

. ‖v − v1‖A‖ψ − µ‖A

. h‖v − v1‖A‖D
1/2
h (v − v1)‖0,

where the last inequality is due to the elliptic regularity stated in Proposition
1. This gives that

‖v − v1‖
2
S = h−2‖D

1/2
h (v − v1)‖

2
0 . ‖v − v1‖

2
A.

This completes the proof.
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In the remaining section, we show that the block matrix A
≈22

can be easily
solved by a classical algebraic multigrid method. We recall that a matrixM

∼
=

(Mij) is an M-matrix if it is irreducible, i.e., the graph corresponding to C is
connected and the following conditions hold:

Mjj > 0, ∀1 ≤ j ≤ n, (5.29a)

Mij ≤ 0, ∀i, j : i 6= j, (5.29b)

Mjj ≥
n∑

i=1: 6=j

|Mij |, ∀1 ≤ j ≤ n, (5.29c)

Mjj >
n∑

i=1: 6=j

|Mij |, for at least one j. (5.29d)

The following Lemma indicates that the block matrix A
≈22

can be easily
handled by a classical algebraic multigrid method.

Lemma 9 The matrix A
≈22

is M-matrix and weakly diagonally dominant.

Proof It is immediate to see that the time derivative term restricted on W2 is
positive diagonal and

A
≈22

(i, i) =
∑

e∈Eh

1

|e|

∫

e

σ(β)[[ψi]][[ψi]] ds > 0. (5.30)

On the other hand, for i 6= j, A
≈22

(i, j) =
∑

e∈Eh

1
|e|

∫
e
σ(β)[[ψj ]][[ψi]] ds < 0.

Furthermore, we have
∑Ne

j=1,j 6=i |Aij | ≤ Aii, ∀i ≥ 1 and the strict inequal-
ity can be achieved when the triangle Ti ∈ Th has at least one edge that is
not shared by a neighbor triangle. This shows that the matrix A

≈22
is weakly

diagonally dominant. This completes the proof.

6 Numerical experiments

In this section, we present some numerical experiments to confirm the theo-
retical developments. We shall report the numerical error estimate of EIFEM
as well as the efficiency of auxiliary space preconditioner.

We consider a model equation on Ω = (−1, 1)2 with a circle-shaped inter-
face x2 + y2 = 0.42. The analytic solution is well-known to be given as

p =

{
r3/β− in Ω−,

r3/β+ +
(

1
β−

− 1
β+

)
0.43 in Ω+,

where a number of jump discontinuities of β, i.e., β+ and β− have been at-
tempted. Note that the numerical solutions were conducted on a uniform trian-
gulation Th by rectangles whose size is h. We report the results with the various
contrast of β+ and β− across the interface, i.e., β−/β+ = 1, 10, 100, 1000. The
graphs of numerical solution of primary and velocity variable for the case of
(β−, β+) = (100, 1) are reported in Figure 2.
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1/h ||p− ph||0,Ω Order ||p− ph||1,h Order

16 2.242 E-3 x 2.044 E-1 x
32 5.850 E-4 1.938 1.021 E-1 1.002
64 1.493 E-4 1.970 5.102 E-2 1.001
128 3.773 E-5 1.985 2.550 E-2 1.001
256 9.480 E-6 1.993 1.275 E-2 1.000
512 2.376 E-6 1.996 6.373 E-3 1.000

Table 1: Potential Error Behavior in L2 and Energy norm for (β−, β+) = (1, 1).

6.1 Numerical error analysis of EIFEM

We report the L2 and H1-errors of the primary variable p, in Table 1, 3, 5, 7,
and L2, H(div) and local conservation errors of the velocity variable in Table
2, 4, 6, 8. Note that the local conservation error is defined by

‖∇ · uh − f‖L∞(Th) := max
T∈Th

||∇ · uh − f ||L∞(T ).

The coefficients contrast are: β−/β+ = 1 for Table 1 - 2, β−/β+ = 10 for
Table 3-4, β−/β+ = 100 for Table 5-6 and β−/β+ = 1000 for Table 7-8. In
all cases, we observe the optimal convergency for both the variables in terms
of L2, H1 and H(div) for different ratio of the contrast in β as predicted by
the theory. The local conservation errors are also observed to be below E− 11
when h < 1/64, showing that our scheme is indeed locally conservative.
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Fig. 2: Numerical solution for pressure and velocity for (β−, β+) = (100, 1).

6.2 Performance of auxiliary space preconditioner for EIFEM

In this subsection, we demonstrate the performance of auxiliary space precon-
ditioner for EIFEM introduced and analyzed in Section 5. Note that AMG is
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1/h ||u− uh||0,Ω Order ||∇ · (u− uh)||0,Ω Order ‖∇ · uh − f‖L∞(Th)

16 7.360 E-2 x 2.651 E-1 x 4.244 E-08
32 3.655 E-2 1.010 1.326 E-1 1.000 1.675 E-09
64 1.823 E-2 1.004 6.629 E-2 1.000 6.179 E-11
128 9.106 E-3 1.002 3.315 E-2 1.000 3.768 E-12
256 4.551 E-3 1.001 1.657 E-2 1.000 5.439 E-12
512 2.275 E-3 1.000 8.269 E-3 1.000 3.727 E-12

Table 2: Flux Error Behavior in L2, H(div, Ω) and Local conservation for
(β−, β+) = (1, 1).

1/h ||p− ph||0,Ω Order ||p− ph||1,h Order
16 2.381 E-3 x 2.029 E-1 x
32 6.174 E-4 1.947 1.013 E-1 1.002
64 1.581 E-4 1.966 5.063 E-2 1.001
128 3.996 E-5 1.984 2.531 E-2 1.000
256 1.005 E-5 1.992 1.265 E-2 1.000
512 2.516 E-6 1.998 6.325 E-3 1.000

Table 3: Potential Error Behavior in L2 and Energy norm for (β−, β+) =
(10, 1).

1/h ||u− uh||L2(Ω) order ||∇ · (u − uh)||0,Ω order ‖∇ · uh − f‖L∞(Th)

16 9.714 E-2 x 2.651 E-1 x 4.244 E-08
32 6.210 E-2 1.003 1.326 E-1 1.000 1.675 E-09
64 2.186 E-2 1.030 6.629 E-2 1.000 6.186 E-11
128 9.591 E-3 1.010 3.315 E-2 1.000 4.131 E-12
256 4.685 E-3 1.003 1.657 E-2 1.000 5.669 E-12
512 2.278 E-3 1.001 8.286 E-3 1.000 3.018 E-12

Table 4: Flux Error Behavior in L2, H(div, Ω) and Local conservation for
(β−, β+) = (10, 1).

1/h ||p− ph||0,Ω Order ||p− ph||1,h Order
16 2.357 E-3 x 2.031 E-1 x
32 6.059 E-4 1.960 1.014 E-1 1.003
64 1.578 E-4 1.941 5.064 E-2 1.001
128 4.021 E-5 1.973 2.531 E-2 1.001
256 1.011 E-5 1.991 1.265 E-2 1.000
512 2.534 E-6 1.997 6.325 E-3 1.000

Table 5: Potential Error Behavior in L2 and Energy norm for (β−, β+) =
(100, 1).
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1/h ||u− uh||L2(Ω) order ||∇ · (u − uh)||0,Ω order ‖∇ · uh − f‖L∞(Th)

16 9.714 E-2 x 2.651 E-1 x 4.244 E-08
32 6.210 E-2 0.646 1.326 E-1 1.000 1.675 E-09
64 2.186 E-2 1.506 6.629 E-2 1.000 6.459 E-11
128 9.591 E-3 1.189 3.315 E-2 1.000 4.409 E-12
256 4.685 E-3 1.034 1.657 E-2 1.000 1.587 E-11
512 2.358 E-3 0.991 8.286 E-3 1.000 4.989 E-12

Table 6: Flux Error Behavior in L2, H(div, Ω) and Local conservation for
(β−, β+) = (100, 1).

1/h ||p− ph||L2(Ω) Order ||p− ph||1,h Order

16 2.372 E-3 x 2.037 E-1 x
32 6.283 E-4 1.917 1.017 E-1 1.002
64 1.569 E-4 2.002 5.069 E-2 1.005
128 3.991 E-5 1.974 2.531 E-2 1.002
256 1.009 E-5 1.984 1.265 E-2 1.000
512 2.531 E-6 1.995 6.326 E-3 1.000

Table 7: Potential Error Behavior in L2 and Energy norm for (β−, β+) =
(1000, 1).

1/h ||u− uh||L2(Ω) Order ||∇ · (u − uh)||0,Ω Order ‖∇ · uh − f‖L∞(Th)

16 7.338 E-1 x 2.651 E-1 x 4.244 E-08
32 2.401 E-1 1.612 1.326 E-1 1.000 1.675 E-09
64 7.518 E-2 1.675 6.629 E-2 1.000 6.325 E-11
128 2.547 E-2 1.562 3.315 E-2 1.000 1.068 E-11
256 8.785 E-3 1.535 1.657 E-2 1.000 6.325 E-11
512 2.358 E-3 1.897 8.286 E-3 1.000 5.825 E-12

Table 8: Flux Error Behavior in L2, H(div, Ω) and Local conservation for
(β−, β+) = (1000, 1).

used as a preconditioner for A
≈11

and A
≈22

. For the implementation of AMG pre-
conditioner, we employed the c++ open software library AMGCL developed
by Demidov [11,12]. All experiments were conducted on PC with an Intel(R)
Core(TM) i7-3770 CPU @ 3.40GHz processor. Stopping criteria were given
as a relative residual less than 10−7. In each auxiliary space preconditioner,
maximum number of AMG iterations for A

≈11
and A

≈22
was set at the fixed

number 5. Namely, we use here the approximate A
≈11

and A
≈22

.

The PCG iteration number and total CPU time are reported in Table 9-
10. We use only one Gauss-Seidel smoothing as a part of the auxiliary space
preconditioning. The corresponding result is reported in Table 9. Note that
the case when no smoothing is used is also attempted and this is reported in
Table 10. Our observation is that with the addition of smoothing, the auxiliary
space solver works as robust solver as theory predicted. The PCG iteration
numbers are bounded as h gets smaller. Thus, the computational costs for
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PCG preconditioned by Algorithm 5.1. is justified to be of O(N), where N is
the number of unknowns. We would like to note that Algorithm 5.1. with no
smoothing works fine for some special case when the contrast ratio of β is not
too large as reported in Table 10.

Case 1. PCG it CPU time
1/h
32 11 0.447
64 11 0.803

128 11 3.235
256 11 14.587
512 11 46.262

Case 2. PCG it CPU time
1/h
32 11 0.529
64 11 0.912

128 11 2.893
256 11 14.115
512 11 51.709

Case 3. PCG it CPU time
1/h
32 12 0.43
64 13 1.16

128 11 3.202
256 11 11.956
512 11 53.461

Case 4. PCG it CPU time
1/h
32 14 0.52
64 18 1.481

128 20 5.615
256 22 23.983
512 21 96.468

Table 9: Performance of auxiliary space preconditioner-PCG with nGS=1.
Case 1., Case 2., Case 3. and Case 4. correspond to (β−, β+) = (1, 1),
(β−, β+) = (1, 10), (β−, β+) = (1, 100) and (β−, β+) = (1, 1000) respectively.

Case 1. PCG it CPU time
1/h
32 11 0.375
64 11 0.742

128 11 2.55
256 11 10.094
512 11 49.019

Case 2. PCG it CPU time
1/h
32 13 0.505
64 13 0.801

128 13 2.646
256 13 10.994
512 13 72.935

Case 3. PCG it CPU time
1/h
32 12 0.587
64 13 1.134

128 11 3.688
256 11 15.95
512 18 86.001

Case 4. PCG it CPU time
1/h
32 23 0.906
64 43 2.889

128 83 18.6089
256 51 41.001
512 29 124.116

Table 10: Performance of auxiliary space preconditioner - PCG with nGS=0.
Case 1., Case 2., Case 3. and Case 4. correspond to (β−, β+) = (1, 1),
(β−, β+) = (1, 10), (β−, β+) = (1, 100) and (β−, β+) = (1, 1000) respectively.

7 Concluding remarks

In this paper, we have developed the locally conservative immersed finite ele-
ment as well as a fast solver based on auxiliary space preconditioning. In our



Locally conservative IFEM for elliptic interface problems 25

future work, we shall extend this method for coupled flow and transports as
well as elasticity with interface.
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