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ABSTRACT

Two conditions are needed to solve numerical weather prediction models: initial condition and boundary

condition. The initial condition has an especially important bearing on the model performance. To get a good

initial condition, many data assimilation techniques have been developed for the meteorological and the

oceanographical fields. Currently, the most commonly used technique for operational applications is the

3 dimensional (3-D) or 4 dimensional variational data assimilation method. The numerical method used for

the cost function minimising process is usually an iterative method such as the conjugate gradient. In this

paper, we use the multigrid method based on the cell-centred finite difference on the variational data

assimilation to improve the performance of the minimisation procedure for 3D-Var data assimilation.

Keywords: numerical weather prediction, variational data assimilation, minimization procedure, multigrid

methods, cell centered finite difference
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1. Introduction

Numerical weather prediction models consist of equations

based on the laws of physics, fluidmotion and chemistry that

govern the atmospheric flow. Such a model is a very big and

complex system having various scale domains frommetre to

global areas. To solve this system, there are two necessary

conditions, initial and boundary condition. The initial

condition has an especially important bearing on the model

performance (Downton and Bell, 1998; Richardson, 1998).

If there is enough observational data provided by

observation of the true states, the initial field is given by

interpolating the observation data. However, in most cases

observational data are inhomogeneous and not sufficient,

so the problem is under-determined although it can be

over-determined locally in data-dense areas. In order to

overcome this problem, it is necessary to apply some

background information in the form of an a priori estimate

of the model state. Physical constraints are also a help.

The background information is usually obtained from the

model output at previous time steps. The initial conditions

are obtained by combining short model forecasts (called a

background field) with the observational data. This process

is called data assimilation, and the output field of data

assimilation is called an analysis field.

Many data assimilation techniques have been developed

for meteorology and oceanography. (Bouttier and Courtier,

2002; Zou et al., 1997) Currently, the most commonly used

techniques for operational applications are 3 or 4 dimen-

sional variational (3D-Var or 4D-Var) data assimilation

methods. The variational data assimilation methods consist

of the following processes: the generation of background

error covariance to determine the spatial spreading and

relation of variables of observational information; pre-

processing of observational data and the observation

operator (to interpolate the model value on the observation

position withmodel values on themodel grid position and to

transform the model variables to observational variables);

and minimising of the cost function. The last one, the cost

function minimising process, finds the maximum likelihood

point by using the error distributions of the observation field

and background field. Under the condition that the error

distributions are normal, the cost function has a quadratic

form. Then, the minimum of the cost function is found at a

stationary point where the gradient of the cost function

vanishes. The most popular numerical methods applied to

the cost function minimising process are usually iterative
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methods, such as the conjugate gradient (CG) method, the

Limited Memory BFGS (L-BFGS) method and so on.

The purpose of this paper is to improve the performance

of the iterative minimisation procedure. We begin with a

few considerations: The first thing is that the observational

data for data assimilation are rapidly increasing. Hence, a

faster minimisation procedure is needed. The second thing

is the convergence of long wave data. It is well-known that

relaxation methods such as Jacobi or Gauss-Seidel methods

have a smoothing property. The convergence speed of

general relaxation methods depends on long wavelength

error convergence because short wave length errors on a

fine grid decrease faster than wavelength errors (Briggs

et al., 2000). This phenomenon matches the fact that for

given observation systems, data-sparse regions provide long

wave information and data-dense regions provide both

long wave and short wave information. Thus, it would be

nice if one could design a method which can extract long

wave information over the data-sparse regions and short-

wave information over data-dense regions (Li et al., 2010),

which is a motivation of the multigrid method (MG).

MGs for solving linear system utilises the smoothing

property of the relaxation schemes, and using the nested

grids one can retrieve the long wave information without

much affecting shortwave information. In this paper, we

apply MGs based on cell-centred finite differences (CCFD)

on the Variational Data Assimilation to overcome above

problems in the iterative minimisation procedure.

MGs are well-known techniques for solving elliptic

partial differential equations (PDEs) (see Briggs et al.,

2000 and references therein), but it seems that their use for

data assimilation problems was first initiated in Li et al.

(2008) and Li et al. (2010). However, our work in this

study is different from them in a number of ways. First,

we interpret the data assimilation problem as an elliptic

(diffusion type) PDE discretised by the CCFD so that the

geometric data (observation point, velocity, temperature,

etc.) carry over to the model equation accurately. (The

CCFD is known to conserve mass locally, so it has higher

accuracy than the finite difference method which is based

on the point values.) Even though one cannot tell what

this PDE looks like, we can define the prolongation and

restriction operators by mimicking the diffusion process.

A homogenous boundary condition was assumed and the

necessary data near the boundary were obtained by reflec-

tion or extrapolation. Second, we explain why the Jacobi

relaxation can be implemented more efficiently than the

Gauss-Seidel (section 3.2.4). These are different from the

conventional MGs because in our minimisation problem,

the matrix entries are not explicitly given.

Furthermore, we describe the concrete data transfer

operator between a fine grid and a coarser grid, which is

based on the geometry (see Fig. 5).

Near the completion of our paper, we found that Gratton

et al. (2013) also used an MG, but they used it only to

perform the matrix vector product of the background

covariance matrix B by solving the related heat equation.

Hence, their procedure is quite different from ours.

This paper is organised as follows. In section 2, we

review the basic concept of MG methods and some basic

techniques. In section 3, we describe MG algorithms for

use in a minimisation process in incremental 3D-Var. In

section 4, we show some numerical comparisons of an

analysis produced by CG and by MG. Finally, section 5

gives our concluding remarks.

2. Brief introduction of MGs

Traditional relaxation methods, such as Jacobi, Gauss-

Seidel or SOR, have a common property called a ‘smoothing

property’. This property makes such methods very effective

at eliminating the high-frequency or oscillatory compo-

nents of the error, while leaving the low-frequency or less

oscillatory components relatively unchanged (Fig. 1). The

convergence speed of general iterative methods depends

mainly on the long wavelength error convergence, which

means that these methods have a correct solution from the

dense (short wavelength) structure but the convergence

depends on the coarse (long wavelength) structure. One

way to improve such a relaxation scheme, at least in the early

stages, is to use a good initial guess. However, it is not

straightforward to find a good initial guess for each problem.

We introduce an MG that is suitable for overcoming

the above problems. The MG is one of the most efficient

iterative methods for solving elliptic PDEs on structured

grids, and it is known to be effective in solving many other

algebraic equations. The method exploits the smoothing

property of traditional relaxation schemes together with

the hierarchy of grids. Sometimes multigrid indicates one

of the types of grid structures (also called ‘a nested grid’)

in which several grids of different sizes are nested in a

given domain, but in this paper we use the word ‘multigrid

method’ to indicate an iterative method.

Fig. 1. The smoothing property.

2 Y.-H. KANG ET AL.



2.1. Basic two grid algorithm

Let Au�f be a system of linear equations. We use u to

denote the exact solution of the system and v to denote

an approximation to the exact solution, which is generated

by some iterative methods. Then, the algebraic error is

given simply by e ¼ u� v and the residual is given as

follows.

residual : r ¼ Ae ¼ Aðu� vÞ ¼ f � Av

For the convenience of presentations, assume X ¼ ½0; 1��
½0; 1� and let hk ¼ 2�k; h :¼ h1. We assume X is partitioned

by uniform 2k�2k rectangular grids, denoted by Xhk . We

associate u and v with a particular grid, say Xh. In this case,

the notation uh and vh will be used. We first consider two

grids, Xh and X2h.

We have already mentioned that relaxation schemes

eliminate the error of smooth mode slowly. The MG is used

to overcome this phenomenon by projecting the smooth

mode error to a coarser grid(s) to approximate the long-

wave error components. (It is illustrated in section 3.) The

important point of using the coarser grids is that the

smooth mode on a fine grid looks less smooth on coarse

grids. Then, we use the following two strategies.

The first strategy incorporates the idea of using coarse

grids to obtain an initial guess cheaply (nested iteration).

The initial guess on the fine grid is the solution obtained by

relaxing of Au�f on the coarse grid.

The second strategy incorporates the idea of using the

residual equation to relax the error on the coarse grid. The

procedure is described as follows.

Algorithm 1: A two-grid algorithm

1. Relax Ahvh ¼ f h by Jacobi or Gauss-Seidel method

2. Calculate residual rh ¼ f h � Ahvh on the fine grid Xh

3. Restrict ðI2h
h : Xh ! X2hÞ: Ah, rh onto the coarser

grid X2h

4. Solve the error equation: A2he2h ¼ r2h on X2h

5. Interpolate e2h: ðIh
2h : X2h ! XhÞ:

6. Correct the fine grid approximation: uh ¼ vh þ Ih
2he2h

The relaxation scheme reduces the Fourier components of

short wavelength errors. The effect of a relaxation scheme

depends on the boundary conditions and geometry of

the grids, so there is no standard method. Typical relaxa-

tion schemes used to solve elliptic PDEs on a rectangular

domain are Gauss-Seidel and Jacobi methods. A linear/

bilinear interpolation is used for the prolongation, and the

restriction operator is usually the transpose of a prolonga-

tion but a different operator can be used.

2.2. A multigrid algorithm

The two grid algorithm above can be extended to the

multigrid case using several nested grids and repeating the

correction processes on coarser grids until a direct solution

of the residual equation is feasible. As we can infer from the

two grid algorithm, basic elements of the multigrid algo-

rithm are as follows.

� Nested iteration: Use several nested grids

� Relaxation: Use efficient methods to eliminate an

oscillatory error on each grid

� Residual equation: Compute the errors on nested

grids using the residual only

� Prolongation and Restriction: Data communications

from a coarse grid to the finer grid and vice versa.

The simplest multigrid algorithm is a V-cycle which is

described in Algorithm 2. For simplicity, we write uk, vk, f k,

Xk, and so on for uhk , vhk , f hk and Xhk .

Algorithm 2: V-cycle recursive algorithm uk  V kðuk; f kÞ

1. Relax Akuk ¼ f k a1 times with an initial guess uk.

2. If k�1 (the coarsest grid), then solve Akuk ¼ f k.

Else, f k�1  Ik�1
k ðf k � AkukÞ

vk�1  0

vk�1  V k�1ðvk�1; f k�1Þ ð�Þ
3. Correct uk  vk þ Ik

k�1vk�1.

4. Relax Akuk ¼ f k a2 times.

If the (*) part in step 2 of Algorithm 2 is computed twice,

it is called a W-cycle. If the cycle starts from the coarsest

grid to compute an initial guess and perform the V-cycle

again with this initial guess, it is called the full multigrid V-

cycle (FMV-cycle) (Fig. 2). For most problems, a1 ¼ a2 ¼ 1

suffices. In the application of the MG with several nested

grids, the coarsest grid has to be reasonably fine so that it

can match the boundary conditions, that is, if the grid is

too coarse, the computational boundary and the real

boundary may be too far apart. In this case, the approx-

imate solution converges slowly.

3. MGs for the minimisation process in

increment 3D-Var

In section 1, we already mentioned that the minimisation

procedure of the 3D-Var finds the stationary point where

Fig. 2. Schedule of grids for (a) V-cycle, (b) W-cycle and (c)

FMV-cycle.
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the gradient of the cost function equals zero. In this study,

we use the 3D-Var as the data assimilation technique.

Then, the cost function J of the observational data and

background data is defined as follows (Baker et al., 2003;

Baker and Xiao et al., 2003).

J ¼ 1

2
ðx� xbÞT B�1ðx� xbÞ

þ 1

2
ðyo �HðxÞÞT R�1ðyo �HðxÞÞ

(1)

Here, the superscript b denotes the background value and

superscript o denotes the observational data. T denotes the

transpose matrix of a given matrix. B is a covariance matrix

of background errors and R is a covariance matrix of

observation errors, H is an observation operator. Usually,

the model space and observation space are different and the

variables are not the same. Hence, the operator H plays

the role of interpolation and variable transform to compare

the background values and observation values.

In many operational data assimilation systems, the

incremental 3D-Var form is used instead of eq. (1).

J ¼ 1

2
ðdxÞT B�1ðdxÞ

þ 1

2
ðyo �HðxbÞ �HdxÞT R�1ðyo �HðxbÞ �HdxÞ;

(2)

where d denotes an increment of the variable, H denotes

a linearised operator of the non-linear operator H and

ðyo �HðxbÞÞ is called an innovation vector. The gradient of

the cost function [eq. (2)] is given as follows:

rJ ¼ B�1ðdxÞ �HT R�1ðyo �HðxbÞ �HdxÞ: (3)

In the data assimilation system, a covariance matrix of

background errors B is needed to determine the spatial

spreading of observational information. However it is well

known that an analysis field at different locations may have

different correlation scales, which are difficult to estimate.

Therefore, a traditional 3D-Var uses either correlation

scales or recursive filters for representing B as follows (Xie

et al., 2010).

B ¼ UUT with U ¼ UpUvUh: (4)

Here, Uh denotes a horizontal transform via recursive

filters (or power spectrum) when the forecast area is a

regional (or global) area. Uv denotes a vertical transform

via empirical orthogonal function and Up denotes a

physical transform depending on the choice of the analysis

control variable. Then by eq. (4), eq. (2) and (3) are written

as follows. Let dx ¼ Uv. By substituting eq. (4) into eq. (2)

and eq. (3), we get the following.

JðdxÞ ¼ 1

2
ðdxÞT B�1ðdxÞ

þ 1

2
ðyo �HðxbÞ �HdxÞT R�1ðyo �HðxbÞ �HdxÞ

¼ 1

2
ðvT UT ÞðUUT Þ�1ðUvÞ

þ 1

2
ðyo�HðxbÞ�HðUvÞÞT R�1ðyo�HðxbÞ�HðUvÞÞ

¼ 1

2
ðvT vÞ

þ 1

2
ðyo�HðxbÞ�HðUvÞÞT R�1ðyo�HðxbÞ�HðUvÞÞ

(5)

rJðdxÞ ¼ v�UT HT R�1ðyo �HðxbÞ �HðUvÞÞ (6)

The data assimilation procedure of 3D-Var using the

above cost function is as follows. The first step computes

the differences between observations and the observation-

equivalent values of background with the aid of the obser-

vation operator H to transform the model space to the

observation space. The second step finds analysis incre-

ments that minimise the cost function based on the iterative

minimisation algorithm. The analysis increments are up-

dated at each iteration called the inner loop, and the

analysis increments of the final iteration are added to the

background to obtain the analysis field (Fig. 3).

3.1. MGs for the minimisation process

The numerical methods to calculate the minimum value of

the cost function in the inner loop stage are usually iterative

methods since the system is large and sparse. For example,

the CG method is used in the KMA WRF model. To apply

the multigrid as an iterative minimisation method of the

inner loop, we solve the following equation on the uniform

grid with data located at the cell centre (Fig. 4b).

rJ ¼ 0 (7)

) v�UT HT R�1ðyo �HðxbÞ �HðUvÞÞ ¼ 0 (8)

) ðI þUT HT R�1HUÞv ¼ UT HT R�1ðyo �HðxbÞÞ: (9)

Then this system can be put in the following form:

Av ¼ f ; (10)

where

A ¼ ðI þUT HT R�1HUÞ
f ¼ UT HT R�1ðyo �HðxbÞÞ:

Equation (10) is defined on the grid of a data assimilation

system. Unlike other iterative methods, the MG requires

4 Y.-H. KANG ET AL.



A and f defined on each of the coarser grids. (In particular,

explicit entries or at least diagonals of A are needed.) These

entries can be generated using a sequence of nested grids as

follows:

Let Xhkdenote a grid with a 2k�2k (or its multiple)

rectangular grids. Then, A and f are defined as follows on

each grid of level k.

Ak ¼ ðIk þ ðUkÞT HkT ðRkÞ�1HkUkÞ (11)

f k ¼ UkT HkT Rk�1ðyok �HkðxbkÞÞ: (12)

Here the observation data, background data, background

error covariance and observation error covariance are

determined on each grid level. The details are described

in section 3.2.

3.2. Basic components of the multigrid algorithm

In this subsection, we construct the MG for incremental

3D-Var based on CCFD. To do this, we consider the grid

structure of the data assimilation system first. After deter-

mining the grid structure, the next step constructs the

prolongation and restriction, relaxation and data proces-

sing in nested iteration, and so on.

3.2.1. Grid composition. From here and thereafter we

apply the MG on the 2-dimensional (2-D) horizontal space

with the exception of the vertical direction. We assume that

the shape of the horizontal domain is a square with the

same grid spacing along the x-axis and y-axis. We also

assume that the horizontal grid is an unstaggered Arakawa

A-grid in which we assume all the variables are at the cell-

centres, and the spatial discretisation method is the cell-

centred finite difference method. Under these assumptions,

we apply the MG for CCFD suggested in Kwak (1999).

3.2.2. Prolongation and restriction. To move vectors

from the coarse grid to the fine grid, and from the fine

grid to the coarse grid, we need so-called ‘intergrid transfer

functions’. These are called a prolongation operator and a

restriction operator in the multigrid community. In this

paper, we use two types of operators as a prolongation

operator, a simple prolongation (Fig. 5a) introduced by

Bramble et al. (1996) and a weighted prolongation (Fig. 5b)

introduced by Kwak (1999). A restriction is the transpose

of each prolongation. The theoretical convergence of each

scheme was verified by Bramble et al. (1996) and Kwak

(1999).

3.2.3. Nested iteration. A nested iteration is a process

that repeatedly computes and transfers data among geo-

metrically nested grids. To define this process, we need a

fixed ratio between a fine grid and a coarse grid. Usually,

the ratio stands 1:2; the coarsest grid depends on the scale

of a given model and a boundary condition. For instance,

in the WRF regional model, one must have at least 20�20

horizontal grid points to predict an East-Asia area.

The data necessary to carry out the nested iterations on

multiple grids are collected as follows:

� Observation data: Use the same data as the fine grid

on every grid level.

� Background values: Use a bilinear interpolation to

generate data on each level.

� Background error covariance (B): Generate it using

the normal distribution on each grid level.

� Observation error covariance (R): Assume that R is a

diagonal matrix having the same diagonal elements

on every level grid.

Fig. 3. The minimisation procedure of the incremental 3D-Var.

Fig. 4. The horizontal grid structures of WRF. (a) WRF model:

Arakawa C-grid staggering, (b) WRF-Var: unstaggered Arakawa

A-grid.

Fig. 5. (a) Non-weighted prolongation for CCFD, (b) weighted

prolongation for CCFD.
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3.2.4. Relaxation. The relaxation scheme is one of the

most important ingredients of the MG. The relaxation

scheme is used on each grid to smooth the error by reduc-

ing the high-wavenumber error components. The relaxa-

tion scheme is a problem-dependent part of the MG and

has the largest impact on overall efficiency. Some simple

relaxation schemes are iterative methods such as the Jacobi

method, Gauss-Seidel method or Richardson method.

It is well known that for the Poisson problem, the Gauss-

Seidel method is more efficient than the Jacobi method, as

the Gauss-Seidel method replaces the old value by a new

value immediately after calculation. Thus, Gauss-Seidel

converges faster to the solution than Jacobi as a single

solver for the Poisson problem. However, the matrix

arising from the minimisation problem of data assimilation

is not explicitly given; instead it is given as the product of

several matrices. Thus, it is hard to apply the Gauss-Seidel,

since we have to know the individual entries of the total

matrix. Therefore, we use the Jacobi (or damped Jacobi)

method described below as a relaxation scheme for the

minimising process.

xnþ1 ¼ xD�1ðf � AxnÞ þ xn; 0 Bx � 1

The damped Jacobi method with a proper damping factor

converges faster than the Jacobi method. Here, D is a

diagonal matrix of A which can be easily computed by the

formula:

(1) Compute vi ¼ Uei, where ei ¼ ð0; � � � ; 1; � � � ; 0Þ
T

is

the standard basis vector

(2) Compute wi ¼ Hvi

(3) Set ðDÞii ¼ wT
i R�1wi þ 1

In this relaxation process, parallel processing could be

easily applied, which is another advantage of Jacobi.

Remark

(1) In this application of multigrid algorithms, we as-

sumed that the domain is partitioned into 2k�2k

squares, but our MG can be applied to any rectan-

gular region as long as we design an appropriate

restriction and prolongation.

(2) In this study, so far we used the MG only for the

efficient computation in the inner loop. However, we

can use a similar technique for different resolutions in

the outer loop. Some nontrivial work will be necessary

because, in general, the outer loop is nonlinear. This is

left for our future research.

4. Numerical example

4.1. Experiment 1

In the first idealised experiment, 2-D (surface) temperature

data fields were constructed, and the temperature data are

Fig. 6. (a) The observation data, (b) the contour of observation data, (c) the analysis field of 3D-Var with the conjugate gradient method

and (d) the analysis field of 3D-Var with the multigrid method.

6 Y.-H. KANG ET AL.



plotted in Fig. 6 with randomly distributed 179 surface

temperature data items. The assumptions for this experi-

ment are as follows. The background error covariance B is

a normal distribution, and the observation error covariance

R is an identity matrix. The given domain scale is 10 km�
10 km with a maximum grid level 4(16�16) and minimum

grid level 2(4�4) and we use the V-cycle MG. The obser-

vation operator is the composite of bi-linear interpolation

and identity function.

Under these conditions, we compare the iteration num-

bers of the CG method and that of the multigrid V-cycle

with one pre-smoothing and one post-smoothing. For

both algorithms, we stopped the iteration when the residual

was less than 10�8. We see that the multigrid (V-cycle)

converges to the approximate solution with fewer iterations

than the CG method (Table 1). However, we see that the

analysis fields of 3D-Var obtained by the MG is just the

same as the analysis fields obtained by the CG method

(Fig. 6).

4.2. Experiment 2

For the second experiment, again 2-D (surface) tempera-

ture data fields were used as plotted in Fig. 7 with

randomly distributed 179 surface temperature data items.

In this experiment the data had more diverse wave-lengths

than in the first experiment. The other conditions were the

same as in the first experiment. Again, the multigrid (V-

cycle) converged to the approximate solution with fewer

iterations than the CG method (Table 2). We see that the

analysis fields of 3D-Var by both methods are almost the

same after the residual fell below the tolerance (Fig. 8).

However, there were differences in some areas during the

iterations (see Fig. 8a and 8d). The one V-cycle multigrid

iteration already shows correct field on the right top corner

where the data are sparsely observed while the CG method

needed seven iterations.

Table 1. The result of numerical experiment 1

Number of

iteration

CG

9J
Number of

iteration

MG

9J

0 30.62536518 0 30.62536518

1 1.13541607 1 0.09419015

2 0.12427868 2 0.00038469

3 0.01349091 3 0.00000164

4 0.00160986 4 0.00000001

5 0.00020118 5 0.00000000

6 0.00002659

7 0.00000337

8 0.00000042

9 0.00000005

10 0.00000001

11 0.00000000

Fig. 7. (a) The true state of temperature, (b) the contour of true data, (c) the observation data and (d) the contour of observation data.
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Now let us compare the performances of the methods.

The computation was performed on a window based note-

book PC. No parallelisation was used. Let us count the

total computational costs. One iteration of the V-cycle

multigrid algorithm requires one pre-smoothing, one matrix-

vector multiplication, one post-smoothing and two vector

addition/subtraction. Finally, there is data transfer between

grids. Altogether, it costs (roughly) three matrix-vector

multiplication, two vector addition/subtraction and data

transfer between grids.

Each iteration of the CG method requires (roughly) one

matrix-vector multiplication, four inner product of vectors,

two addition/subtraction. A rough comparison shows one

multigrid V-cycle takes about two to three iterations of the

CG method. Our numerical experiment shows that the

V-cycle multigrid takes four iterations while the CG takes

10�12 iterations. Thus the total cost of the MG seems

comparable with that of CG. However, there is some room

to improve the MG; for example, using different smoothers

or changing damping factors. There are also other varia-

tions, such as a W-cycle and FMV, which is known to be

slightly better in practice. Still, a fair comparison would not

be easy. It would be interesting if someone could imple-

ment the multigrid algorithm to solve real-life problems on

parallel machines with various smoothers.

5. Conclusion

In this study, we introduced the MG for the minimisation

process in data assimilation by interpreting the minimisa-

tion process as a numerical PDE discretised by the CCFD.

We designed the prolongation and restriction operators

based on this observation. We performed some numerical

experiments and compared them with the CG method. We

see that the MG has fewer iterations than the CG method

and converges faster on the data-sparse area. A general-

isation of our multigrid algorithm for other data such as

wind field in 3-D space is left for our future research.
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