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Abstract In this work, we develop geometric multigrid algorithms for the immersed
finite element methods for elliptic problems with interface (Chou et al. Adv. Com-
put. Math. 33, 149–168 2010; Kwak and Lee, Int. J. Pure Appl. Math. 104, 471–494
2015; Li et al. Numer. Math. 96, 61–98 2003, 2004; Lin et al. SIAM J. Numer. Anal.
53, 1121–1144 2015). We need to design the transfer operators between levels care-
fully, since the residuals of finer grid problems do not satisfy the flux condition once
projected onto coarser grids. Hence, we have to modify the projected residuals so
that the flux conditions are satisfied. Similarly, the correction has to be modified
after prolongation. Two algorithms are suggested: one for finite element spaces hav-
ing vertex degrees of freedom and the other for edge average degrees of freedom. For
the second case, we use the idea of conforming subspace correction used for P1 non-
conforming case (Lee 1993). Numerical experiments show the optimal scalability in
terms of number of arithmetic operations, i.e., O(N) for V-cycle and CG algorithms
preconditioned with V-cycle. In V-cycle, we used only one Gauss-Seidel smoothing.
The CPU times are also reported.
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1 Introduction

Multigrid methods are efficient to solve linear systems arising from the discretiza-
tion of partial differential equations (see [18, 20, 34], for example). The optimal
scalability analyses of geometric multigrid methods for elliptic problems are well
developed in [4, 6, 7, 20] and references therein. However, geometric multigrid algo-
rithms have the limitation that the algorithms work only on structured grids. On the
other hand, there are many PDEs defined on non-rectangular domain or even on the
rectangular domain; coefficients may have discontinuity along some smooth inter-
face. For example, the permeability tensor may have jumps across different porous
media [17] and dielectric coefficient in Poisson-Boltzmann equations can be discon-
tinuous across the layer between the molecular cell and solvent [33]. To solve such
PDEs with finite element methods (FEMs), fitted grids which align the nodes along
the material discontinuity are used. Hence, it is hard to implement the geometric
multigrid algorithm for the interface problems when the interface has a non-trivial
shape.

Recently, immersed finite element methods (IFEMs) which use structured grids
were introduced by Li et al. [24, 26, 28, 29] to solve PDEs with interface. We refer to
[15, 24, 26, 28, 31] for the convergence analysis of various IFEM schemes. Unlike the
conventional FEMs, IFEM allows the interface to cut through the elements. Instead,
the basis functions are modified to satisfy the interface conditions along the inter-
face. As noted in [10], one of the biggest advantages of using structured grids is the
applicability of multigrid algorithms. A version of algebraic multigrid algorithms was
reported in [19], but the performance is not optimal in terms of computational com-
plexity. For example, the number of V -cycles seems to grow as the levels grows, even
if they used at least two smoothings on each level. On the other hand, a geometric
multigrid algorithm is not reported anywhere, except the Q1-non-conforming-based
IFEM case in [22] where the details are omitted.

In this work, we describe some effective implementations of geometric multigrid
algorithm to various IFEMs and report the performance of each algorithm. We con-
sider four different IFEM spaces and we design the multigrid for each of them. Two
IFEM spaces are P1 and Q1 Lagrangian-based spaces [29, 30] where functions are
defined by degrees of freedom (dof). The other IFEM spaces are Crouzeix-Raviart
(CR)- and Rannacher-Turek (RT)-based spaces [22, 26] where functions are defined
by edge average dof. We first describe the multigrid alrogithms for the Lagrangian-
based IFEM space. The difference from the conventional multigrid algorithms is
that the prolongation operator Ik : ̂Sk−1(�) → ̂Sk(�) has to be carefully designed
so that Iku satisfies the flux condition, while keeping the nodal values on coarser
grids. Other aspects of multigrid algorithms are similar to the standard cases [4,
20, 34]. We see that the performance of multigrid for Lagrangian-based IFEM is
optimal in scalability. However, we find that similar multigrid algorithms applied
to P1/Q1-non-conforming type IFEM are not optimal when the ratio of discontinu-
ity increases. To overcome the difficulty, we project the non-conforming fine grid
space (CR/RT) to the corresponding Lagrange-based P1/Q1 IFEMs. Then, we used
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the multigrid algorithm developed above. This algorithm is based on the idea of
conforming subspace correction, suggested by C. O. Lee [27].

The model problem in this paper is the following second-order elliptic interface
problem

− ∇ · β∇u = f in �, (1a)

[u]� = 0 (1b)
[

β
∂u

∂n

]

�

= 0 (1c)

u = 0 on ∂�, (1d)

where f ∈ L2(�), � is a convex polygonal domain in R
2, and � ⊂ � is a smooth

interface which divides the domain into two subdomains �+ and �−. The coefficient
β is discontinuous across the interface �, where β = β+ ∈ C1(�+) and β = β− ∈
C1(�−).

We introduce some function spaces and notations. For any bounded domain D, let
Hm(D) be the usual Sobolev space of order m with the norm denoted by || · ||m,D .
Let us denote a L2(�) inner product by (·, ·). The space ˜Hm(D) for m = 1, 2, 3 is
defined as

˜Hm(D) := {v ∈ Hp(m)(D) : v|D∩�s ∈ Hm(D ∩ �s), s = +, −}
with the norm

||v||2
˜Hm(D)

:= ||v||2
Hp(m)(D)

+ ||v||2
Hm(D∩�+)

+ ||v||2
Hm(D∩�−)

, ∀v ∈ ˜Hm(D)

where p(m) = 0 when m = 1 and p(m) = 1 when m = 2, 3. The set of functions in
˜H 2(D) which satisfy the homogeneous jump conditions is denoted by

˜H 2
�(D) := {v ∈ H 1(D) : v ∈ H 2(D ∩ �s), s = +, −,

[

β
∂v

∂n

]

�

= 0}.

Integration by parts gives the variational problem for the model problem (1): find
u ∈ H 1

0 (�) such that
∫

�

β∇u · ∇v dx =
∫

�

f v dx (2)

for all v ∈ H 1
0 (�). The regularity of solution u for the model problem (1) is well-

known [2, 14, 37].

Proposition 1 Let f ∈ L2(�). Then, there exists a unique solution u ∈ ˜H 2(�) of
problem (2) which satisfies

||u||
˜H 2(�) ≤ C||f ||0,�, (3)

where C is some positive constant.

The rest of the paper is organized as follows. In Section 2, we review the IFE
spaces and review some of the properties. In Section 3, we define our version of
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multigrid algorithms. In Section 4, we provide an analysis of the Lagrangian-based
multigrid algorithm. The numerical results are given in Section 5 and the conclusion
follows in Section 6.

2 Immersed finite element methods

We describe several immersed finite element methods which have been introduced in
various papers. First, we define finite element spaces and their norms. Let Th be any
quasi-uniform triangulations of the domain � by triangles or rectangles which do not
necessarily align the interface, where h is the maximal diameter of elements. If the
interface cuts through some element, we call such an element an interface element.
The set of all interface elements in Th is denoted by T ∗

h . The rest of the elements in
Th \ T ∗

h are non-interface elements. We assume that the mesh size h is sufficiently
small so that the interface intersects the edge of an element at no more than two
points. If the interface passes through two vertices of an element, then we consider the
element is a non-interface element. Let �h be a piecewise linear approximation of �,
obtained by connecting the points of intersection between � and T ∈ T ∗

h . The inner
product and norm on an interface element T ∈ T γ,∗

h is understood as piecewise sums

(u, v)m,T = (u, v)m,T + + (u, v)m,T −, || · ||2m,T = || · ||2
m,T + + || · ||2

m,T −

for m = 0, 1.

2.1 Four immersed finite element spaces

We consider two kinds of IFEM spaces. First kind is Lagrangian-based IFEM
spaces: P1-conforming-based IFE space [29] and Q1-conforming-based IFEM space
[30]. Second is edge average-based IFEM spaces: P1-non-conforming Crouzeix-
Raviart-based IFEM space [26] and Q1-non-conforming Rannacher-Turek-based
IFEM space [22].

We define local spaces on T :

– SP
h (T ) is the space of P1 functions defined by vertex dof (Lagrange type)

– S
Q
h (T ) is the space of Q1 functions defined by vertex dof (Lagrange type)

– NP
h (T ) is a P1 non-conforming function [16] defined by edge average dof

– N
Q
h (T ) is a Q1 non-conforming function [36] defined by edge average dof

Lagrangian-based IFEM spaces First, assume T is a triangle element. For a non-
interface element T ∈ Th, we use standard linear Lagrange nodal base finite element
spaces SP

h (T ). For an interface element T ∈ T ∗
h (see Fig. 1), we modify basis

functions φ in SP
h (T ) so that the new functions ̂φ are piecewise linear functions

on T :

̂φ =
{

φ+ = a+ + b+x + c+y, (x, y) ∈ T +,

φ− = a− + b−x + c−y, (x, y) ∈ T −,
(4)
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Fig. 1 An interface element for triangle case (left) and rectangle case (right)

The coefficients in (4) are determined by nodal values and interface conditions (1b)
and (1c) as follows:

φ(Xi) = Gi, i = 1, 2, 3 (5a)

φ+(Ei) = φ−(Ei), i = 1, 2, (5b)
∫

E1E2

β+∇φ+ · n�h
=

∫

E1E2

β−∇φ− · n�h
, (5c)

where Gi , i = 1, 2, 3 are nodal values. The space of such modified basis functions ̂φ

is denoted by ̂SP
h (T ).

For rectangle elements, a similar process defines φ ∈ ̂S
Q
h (T ) where

̂φ =
{

φ+ = a+ + b+x + c+y + d+xy, (x, y) ∈ T +,

φ− = a− + b−x + c−y + d−xy, (x, y) ∈ T −,

is determined by (5a), (5b), and (5c) and an extra condition that d− = d+ (see [21,
28]). The global immersed finite element space ̂S

γ

h (�) (γ = P or Q) is defined as
follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

φ|T ∈ S
γ

h (T ) if T is a non-interface element,
φ|T ∈ ̂S

γ

h (T ) if T is an interface element,
φ|T1(X) = φ|T2(X) if T1 and T2 are adjacent elements

and X is a common node of T1 and T2,

φ(X) = 0 if X is a node on the boundary edges.

Edge average-based IFEM spaces As before, we first consider the triangle ele-
ment. We modify basis functions φ in NP

h (T ) for an interface element T ∈ T ∗
h so

that new functions ̂φ in (4) are determined by conditions similar to (5a)–(5c) where
(5a) is replaced by edge average dof [15],

∫

ei

φ = Gi, i = 1, 2, 3. (6)
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For rectangle elements, a similar process defines ̂φ ∈ ̂N
Q
h (T ) where

̂φ =
{

φ+ = a+ + b+x + c+y + d+(x2 − y2), (x, y) ∈ T +,

φ− = a− + b−x + c−y + d−(x2 − y2), (x, y) ∈ T −,

is determined by (6), (5b) and (5c), and an extra condition that d− = d+ [22].
The global immersed finite element space ̂N

γ

h (�) (γ = P or Q) is defined as
follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

φ|T ∈ N
γ

h (T ) if T is a non-interface element,
φ|T ∈ ̂N

γ

h (T ) if T is an interface element,
∫

e
φ|T1 = ∫

e
φ|T2 if T1 and T2 are adjacent elements

and e is a common edge of T1 and T2,
∫

e
φds = 0 if e is part of the boundary ∂�.

It suffices to consider the cases ̂Sh(�) = ̂SP
h (�) and ̂Nh(�) = ̂NP

h (�). The case

of ̂S
Q
h (�) or ̂N

Q
h (�) is almost the same.

Interpolation property We remark interpolation properties of IFEM spaces. Let
πh : ˜H 2

�(T ) → ̂Sh(�) (respectively, ̂Nh(�)) be the interpolation operator defined by

(πhu)(Xi) = u(Xi)
(

respectively
∫

ei
(πhu) = ∫

ei
u
)

, i = 1, 2, 3.

The operator πh is extended to u ∈ ˜H 2
�(�) by (πhu)|T = πh(u|T ) for each element

T . Then, the operator πh satisfies the following approximation property [21, 26, 28].

Proposition 2 There exists a constant C > 0 such that
∑

T ∈Th

(||u − πhu||0,T + h||u − πhu||1,T ) ≤ Ch2||u||
˜H 2(�). (7)

2.2 Two IFEM methods

Modified Lagrangian-based IFEM There are two versions of IFEM using
Lagrange nodal basis element functions [15, 24, 28, 29, 31]. The first kind of IFEM
[15, 28, 29] uses a naive variational form. Another kind of formulation [24, 31]
was introduced recently to compensate the consistency error by adding the interior
penalty terms. It turns out, the second version exhibits optimal order while the first
one does not [31, 32].

Now, we describe the IFEM having the interior penalty terms. Let Eh be a set of
all edges of Th and let Hh(�) be the space defined by sum of H 1

0 (�) and ̂Sh(�),
equipped with the norm ||u||21,h := ∑

T ∈Th
||u||21,T . For an interior edge e ∈ Eh, we

associate with a unit normal vector ne at e whose direction we fix once and for all.
Let {v}e and [v]e denote the average and jump for v ∈ Hh(�) on an edge e ∈ Eh, i.e.,

{v}e(x) := 1

2
lim

δ→0+(v(x − δne) + v(x + δne)),

[v]e (x) := lim
δ→0+(v(x − δne) − v(x + δne)).
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Multiplying both sides of the (1) by v ∈ Hh(�) and applying Green’s theorem,
we have

∑

T ∈Th

∫

T

β∇u · ∇v dx −
∑

e∈Eh

∫

e

{β∇u · ne}e[v]e ds =
∫

�

f v dx. (8)

Since the solution u satisfies [u]e = 0 for every edge e ∈ Eh, we can rewrite (8) as

∑

T ∈Th

∫

T

β∇u · ∇v dx −
∑

e∈Eh

∫

e

{β∇u · ne}e[v]e ds

−
∑

e∈Eh

∫

e

{β∇v · ne}e[u]e ds +
∑

e∈Eh

∫

e

σ

h
[u]e[v]e ds =

∫

�

f v dx.

Here, σ > 0 is some parameter chosen so that ah(·, ·) becomes coercive on the
finite element space ̂Sh(�) (see [24, 31]). Let us define a bilinear form ah(·, ·) :
Hh(�) × Hh(�) → R by

ah(u, v) =
∑

T ∈Th

∫

T

β∇u · ∇v dx −
∑

e∈Eh

∫

e

{β∇u · ne}e[v]e ds

−
∑

e∈Eh

∫

e

{β∇v · ne}e[u]e ds +
∑

e∈Eh

∫

e

σ

h
[u]e[v]e ds. (9)

The form in (9) is motivated by Nitsche’s consistent scheme [35] and weak forms of
discontinuous Galerkin [1].

Then, the IFEM for the problem (1) is to find the solution uh ∈ ̂Sh(�) such that

ah(uh, v) = (f, v)h, ∀v ∈ ̂Sh(�), (10)

where the inner product (·, ·)h is the usual L2 inner product. We define the operator
Ah : uh ∈ ̂Sh(�) → ̂Sh(�) such that

ah(uh, v) = (Ahuh, v)h.

The optimal order of convergence for the solution of this IFEM is given in [31].

Proposition 3 Let u and uh be solutions of (1) and (10), respectively. Then, there
exists a constant C > 0 independent of u and h such that

||u − uh||0,� + h||u − uh||1,h ≤ Ch2||u||
˜H 3(�). (11)

Edge average degree of freedom-based IFEM The IFEM space based on the aver-
age dof for triangle (or rectangle) grids were introduced in [22, 26]: Find uh ∈ ̂Nh(�)

such that
∑

T ∈Th

∫

T

β∇u · ∇φ = (f, φ)h, ∀φ ∈ ̂Nh(�). (12)

Here, we denote the matrix arising system from (12) by An
h. The optimal order of

convergence for the solution of this IFEM is given in [26].
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Proposition 4 Let u and uh be solutions of (1) and (12), respectively. Then, there
exists a constant C > 0 independent of u and h such that

||u − uh||0,� + h||u − uh||1,h ≤ Ch2||u||
˜H 2(�).

3 Multigrid method for IFEM

In this section, we describe multigrid algorithms for two kinds of IFEM described
in Section 2.2. Let Thk

, k = 0, ..., J be hierarchical triangulations of � with mesh
size hk = 2−kh0, for some positive constant h0. The collection of nodes for tri-
angulation Thk

is denoted by Vhk
. An element in Thk

is constructed by connecting
the midpoints of the edges of the triangles in Thk−1 . For simplicity, we replace the
subscript hk simply by the subscript k when there is no worry of confusion. For
example,

Tk =Thk
, ak(·, ·)=ahk

(·, ·), ̂Sk(�)=̂Shk
(�), ̂Nk(�)= ̂Nhk

(�), (·, ·)k =(·, ·)hk
.

Firstly, we describe a multigrid algorithm for Lagrangian-based IFEM spaces. For
CR and RT types, we describe a multigrid algorithm using Lagrangian-type IFEM
subspace correction [22, 27].

3.1 Multigrid algorithm for Lagrangian-based IFEM spaces

To define multigrid algorithms we need a prolongation operator ̂Ik : ̂Sk−1(�) →
̂Sk(�), which is non-trivial when subspaces are not nested. If v ∈ ̂Sk−1(�), then
̂Ikv ∈ ̂Sk(�) is defined by

̂Ikv(X) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

v(X) if X ∈ Vk−1,

1
2

(

v(X)|T1 + v(X)|T2

)

if X is a midpoint of an edge e shared
by two trianglesT1, T2 ∈ Tk−1.

The operator ̂Ik on a non-interface element Tk−1 is the same as usual prolongation
for conforming FEM [20]. Now, we explain the prolongation of v ∈ ̂Sk−1(�) for
interface elements in detail. Referring to the left of Fig. 2, we consider two adjacent
elements T k−1

1 and T k−1
2 in T ∗

k−1. Note that the union of T k−1
1 and T k−1

2 is divided
by two regions �+ and �−. Assume that the node X3 belongs to �− and the nodes
X1, X2, and X4 belong to �+. Given a function v ∈ ̂Sk−1(�), let vi = v|

T k−1
i

,

i = 1, 2. Now consider the mid points of vertices X5, X6, . . . , X9 in the right of
Fig. 2. It suffices to consider a typical point, say X5. Since the node X5 belongs to
�−, ̂Ikv(X5) is defined as the average values:

̂Ikv(X5) = 1
2

(

v−
1 (X5) + v−

2 (X5)
)

,

where v−
1 = v1|T k−1,−

1
and v−

2 = v2|T k−1,−
2

.
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Fig. 2 Interface triangles in Tk−1 and Tk . The blue curve represents the interface �. The dashed lines
represent the approximated interfaces �k−1 and �k

The restriction operator P 0
k−1 is defined as the adjoint operators of ̂Ik with respect

to (·, ·)k , i.e., for u ∈ ̂Sk(�) and φ ∈ ̂Sk−1(�),

(P 0
k−1u, φ)k−1 = (u, ̂Ikφ)k.

Now, we describe multigrid operator LMGk from ̂Sk(�) to ̂Sk(�), (k =
1, 2, . . . , J ). Let

AJ x = gJ (13)
be the linear system obtained from (10) where gJ ∈ ̂SJ (�). Suppose Rk is a
smoothing operator such as Gauss-Seidel or Jacobi and let Rt

k be its adjoint.

Algorithm 1 LMGk

Set LMG0g0 = A−1
0 g0. Suppose LMGk−1 is defined. We define LMGkgk for gk ∈

̂Sk(�) in recursive way.
1. Set x0 = 0 and z0 = 0
2. Define xi for i = 1, ..., m by

xi = xi−1 + Rk(gk − Akx
i−1)

3. Define ym by ym = xm + ̂Ikz
p where zj for j = 1, ..., p is defined by

zj = zj−1 + LMGk−1[P 0
k−1(gk − Akx

m) − Ak−1z
j−1]

4. Define yi for i = m + 1, ..., 2m by

yi = yi−1 + Rt
k(gk − Aky

i−1)

5. Set LMGkgk = y2m.

Note that the LMGk is a symmetric operator. The cases of p = 1 and p = 2
correspond to V and W cycle, respectively. In particular, when p = 1, we will use
notation V(m, m) for the algorithm, i.e., u = V(m, m)gJ .
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3.2 Multigrid algorithm for edge average dof-based IFEM spaces

Now, we describe the multigrid algorithms for edge average-based IFEM spaces. The
multigrid algorithms using P1/Q1-non-conforming space for non-interface problems
are considered in [8, 11–13]. The difference between these and from Lagrange type
is to use the edge average dof. It is well known that the performance of multigrid
for CR and RT is not as good as the case of Lagrange. Still, the behavior is accept-
able (see [11–13]). However, for the interface problem, the situation is worse: we
found through extensive numerical experiments that the convergence is too slow to
use when the ratio β+/β− becomes large (or small). This is because the discontinu-
ity of basis in ̂Nk(�) across the edges tends to be large as the jump of β increases.
Hence, the necessity for an efficient and robust algorithms has emerged. It turns out
that the idea of subspace correction by Lagrangian-type FEM introduced by C. Lee
[27] works well for the interface problem, which we describe briefly below.

As is usual with multigrid algorithm, we apply a few presmoothings on the fine
space ̂NJ (�). Then, the residuals are transferred to Lagrangian-type IFEM ̂SJ (�).
Next, LMG is applied on ̂SJ (�). Finally, the result is added to ̂NJ (�) for update fol-
lowed by postsmoothings. Figure 3 shows one cycle of subspace correction multigrid
algorithm.

For this purpose, we need to define the transfer operators between ̂SJ (�) and
̂NJ (�). Let Qn

c and Qc
n stand for the transfer operators between them. Firstly, Qn

c :
uc ∈ ̂SJ (�) → ̂NJ (�) is defined in such a way that Qn

cuc has the same edge average
with uc on every element, i.e.,

∫

e

Qn
cuc =

∫

e

uc, (14)

for all edges e. For real implementation of (14), we compute
∫

e

Qn
cuc = 1

2

(∫

e

uc|T1 +
∫

e

uc|T2

)

,

where e ∈ ∂T1 ∩ ∂T2.
On the other hand, Qc

n is defined as the transpose of Qn
c , i.e.,

(Qc
nun, uc)k = (un,Qn

cuc)k.

Fig. 3 Non-conforming-conforming V-cycle



Numer Algor

Since Qn
cuc in the (14) is computed elementwise, it is very cheap to compute.

We show the computation of Qn
cuc on typical interface element T with three nodes

X1(0, 0), X2(1, 0), and X3(0, 1) where the interface cuts through edges at E1(0, b),
B2(a, 0) (see the left of Fig. 1). Let ̂φj (j = 1, 2, 3) be basis functions of ̂Sh(T )

associated with Xi , i.e., ̂φj (Xi) = δij . Then, ̂φj (j = 1, 2, 3) have the following
form

̂φ1 =
{

l1 + c12l2 + c13l3, in T −,

c11l1, in T +,
̂φ2 =

{

c22l2 + c23l3, in T −,

c21l1 + l2, in T +,

̂φ3 =
{

c32l2 + c33l3, in T −,

c31l1 + l3, in T +,
(15)

where l1, l2, and l3 are linear Lagrange nodal basis functions associated with the
vertices Xj (j = 1, 2, 3), i.e., lj (Xi) = δij . The coefficients cij in (15) are explicitly
described in [10]. Let ̂ψj (j = 1, 2, 3) be basis functions of ̂Nh(T ) associated with ei ,
i.e., 1

|e|
∫

ei

̂ψj = δij . Suppose ̂φ = t1̂φ1+t2̂φ2+t3̂φ3, then Qn
c
̂φ = r1̂ψ1+r2̂ψ2+r3̂ψ3,

where the relation of coefficients ti and ri are given as follows:
⎡

⎣

r1
r2
r3

⎤

⎦ =
⎡

⎣

q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤

⎦

⎡

⎣

t1
t2
t3

⎤

⎦ .

We note that qij = 1
|ei |

∫

ei

̂φj . For example,

q11 =
∫

e1

̂φ1dx =
∫ a

0
(1 − x) + xc12dx +

∫ 1

a

c11(1 − x)dx

= a − a2

2
+ a2c12

2
+

(

1

2
− a + a2

2

)

c11.

We summarize the algorithm to solve

An
J x = gn

J ,

where gn
J ∈ ̂NJ (�).

Algorithm 2 NcMG

1. Set x0 = 0 and z0 = 0
2. Define xi for i = 1, ..., m by

xi = xi−1 + Rk(g
n
J − An

J xi−1)

3. Define ym by ym = xm + Qn
c z where z = LMGJQc

n(g
n
J − An

J xm)

4. Define yi for i = m + 1, ..., 2m by

yi = yi−1 + Rt
k(g

n
J − An

J yi−1)

5. Set NcMGgn
J = y2m.

Note that the NcMG is a symmetric operator. We used V(mc, mc) as the inner
multigrid cycle LMGJ . For this case, we use notation Nm(mc, mc).
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4 Convergence analysis of LMG

In this section, we give analysis for LMG for space ̂SP
k . The analyses for the rect-

angular case (̂SQ
k ) are similar. A main difficulty in the analysis of the multigrid

algorithm for the IFEM is that the underlying spaces are not nested, i.e., ̂S0(�) �

̂S1(�) � . . . � ̂SJ (�) because of the interface. We will follow the framework pro-
vided in [7], where the convergence of multigrid algorithm for non-nested spaces is
given. We first state some assumptions.

(A.1) Smoothing property. There exists a constant CR > 0 such that for all u ∈
̂Sk(�),

||u||2k
λk

≤ CR(R̃ku, u)k,

where R̃k = (I − K∗
k Kk)A

−1
k , Kk = I − RkAk and K∗

k = I − Rt
kAk .

(A.2) There exists a constant C∗, such that

Ak(̂Iku, ̂Iku) ≤ C∗Ak−1(u, u), ∀u ∈ ̂Sk−1(�).

(A.3) Regularity and approximation For some 0 < α ≤ 1, there exists a constant
Cα > 0 such that

|ak((I − ̂IkPk−1)u, u)| ≤ Cα

(

||Aku||2k
λk

)α

ak(u, u)1−α.

for all u ∈ ̂Sk(�).

Then, by the framework in [7], we can conclude the following result.

Theorem 1 Suppose p = 2 and m(k) = m for all k in the algorithm. Assume (A.1),
(A.2), and (A.3) hold. If “m is sufficiently large,” then we have

|ak((I − LMGkAk)u, u)| ≤ δak(u, u) ∀u ∈ ̂Sk(�),

where

δ = M

M + mα
.

We now examine the assumptions (A.1)–(A.3). It is clear that Ak is symmetric
positive definite and sparse matrix. For example, each row of Ak has less than 13
non-zero entries if uniform grids are used on rectangular domain. Therefore, stan-
dard smoothing operators such as Gauss-Seidel (GS) and Jacobi satisfy (see [5]).
Therefore, it suffices to verify (A.2) and (A.3).

We introduce an energy-like norm for the analysis, |||uk|||k = √
Ak(uk, uk). We

define Pk−1 : ̂Sk(�) → ̂Sk−1(�) as adjoint operator of ̂Ik , i.e., Pk−1 satisfies

ak−1(Pk−1u, v) = ak(u, ̂Ikv),

for all u ∈ ̂Sk(�) and v ∈ ̂Sk−1(�). We need the following approximation property of
the prolongation ̂Ik : ̂Sk−1(�) → ̂Sk(�), which we verify numerically (see Table 1).



Numer Algor

Table 1 ||̂Ikπk−1w − w||1,hk

and ||Pk−1πkw − w||1,hk
for

problem (25)

k ||̂Ikπk−1w − w||1,hk
order ||Pk−1πkw − w||1,hk

order

2 2.828E0 5.468E0

3 1.510E0 0.905 1.510E0 1.856

4 7.538E-1 1.002 8.223E-1 0.877

5 3.855E-1 0.968 3.857E-1 1.093

6 1.931E-1 0.997 1.930E-1 0.999

7 9.675E-2 0.997 9.690E-2 0.994

8 4.840E-2 0.999 4.841E-2 1.002

9 2.421E-2 1.000 2.421E-2 1.000

(A.4) There exists a constant C > 0 such that for all w ∈ ˜H 2
�(�),

|||̂Ikπk−1w − w|||k + |||Pk−1πkw − w|||k−1 ≤ Chk||w||
˜H 2(�). (16)

We have the following spectral property of Ah.

Lemma 1 (Spectral property of Ah) Let λh be the largest eigenvalue of ah(·, ·), i.e.,
λh = sup

u∈Ŝh(�)
ah(u,u)
(u,u)h

. Then,

λh ≤ Ch−2, (17)

where C is a positive constant.

Proof This follows from the inverse inequality, discrete Poincare inequality in ([9,
15, 38]), and the equivalence of ||| · |||h and || · ||1,h.

To prove the assumption (A.2), we need the following Lemma.

Lemma 2 For all φ ∈ ̂Sk and for T ∈ Tk , we have

1

C
hk

3
∑

i=1

|φ(xi)| ≤ ||φ||0,T ≤ Chk

3
∑

i=1

|φ(xi)|.

for some C > 0 independent of k where xi (i = 1, 2, 3) are nodes of T .

Proof We note that when φ ∈ Sk , this equivalence is trivial. Suppose T is cut by �

where y1 and y2 are intersections of � and edges of Tk (see Fig. 4). We first show

||φ||0,T ≤ Chk

3
∑

i=1

|φ(xi)|. (18)

Since β−, β+ > 0, the values of φ at y1 and y2 are intermediate values of φ(xi). For
example,

min{φ(x1), φ(x2)} < φ(y1) < max{φ(x1), φ(x2)}. (19)

Since φ|T − is linear on T − and by Taylor expansion, we have

φ(x) = φ(x1) + ∇φ− · (x − x1), (x, y) ∈ T −.
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Fig. 4 Interface elements on
level k and k − 1

This implies that

||φ(x)||2T − ≤C|T −|
(

(|φ(x1)|2+|φ(y1)|2+|φ(y2)|2)+|T −|·|∇φ−|2
)

,

≤C|T −|
(

|φ(x1)|2+|φ(y1)|2+|φ(y2)|2
)

,(by φ is linear on T −). (20)

Similary, we have,

||φ(x)||2
T + ≤ C|T +|

(

|φ(x2)|2 + |φ(x3)|2 + |φ(y1)|2 + |φ(y2)|2
)

. (21)

Thus, by (19), (20), and (21) and by the fact that |T −|, |T +| ≤ h2
k , we have (18).

To prove the converse, we define γ : ̂Sk(T ) → Sk(T ) by γφ(xi) = φ(xi). One of
the authors of this paper proved that operator γ is bounded by some constant C (see
[15]). Thus,

hk

3
∑

i=1

|φ(xi)| = hk

3
∑

i=1

|γφ(xi)| ≤ C||γφ||0,T ≤ C||φ||0,T .

Proposition 5 There exists a constant C > 0 such that

||̂Iku||L2(�) ≤ C||u||L2(�). (22)

for u ∈ ̂Sk−1(�).

Proof Suppose x1, x2, and x3 are nodes of triangle T and m1, m2, and m3 are mid
points of xi (i = 1, 2, 3) (see Fig. 4). Then, by definition of ̂Ik , we have φ(xi) =
̂Ikφ(xi), i = 1, 2, 3. Also, the values of φ at mi are intermediate values of φ(xi) and
φ(xi+1). By Lemma 2, we have

||̂Ikφ(x)||0,T ≤ Ch

3
∑

i=1

|φ(xi)| + Ch

3
∑

i=1

|φ(mi)| ≤ Ch

3
∑

i=1

|φ(xi)| ≤ C||φ(x)||0,T .

By summing over all elements T ∈ Tk , we have the conclusion.
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We are ready to prove assumption (A.2).

Theorem 2 There exists a constant C∗ > 0 such that that does not depend on the
location of �, β such that |||̂Iku|||k ≤ C∗|||u|||k−1.

Proof Define w ∈ H̃ 2(�):
{ −∇ · β∇w = Ak−1u

w = 0

By definition of w and Ak−1, for all φk−1 ∈ ̂Sk−1,

ak−1(w − u, φk−1) = (Ak−1u, φk−1).

This implies that (see [24]),

||w − u||0 ≤ h2
k||w||

H̃ 2(�)
. (23)

By (11), (17), (22), (23), and (16)

|||̂Iku|||k ≤ |||̂Iku − ̂Ikπk−1w|||k + |||̂Ikπk−1w − πkw|||k + |||πkw − w|||k + |||w|||k
≤ h−1

k ||̂Iku − ̂Ikπk−1w||0 + hk||w||
H̃ 2(�)

+ |||u|||k−1

≤ h−1
k ||u − πk−1w||0 + hk||w||

H̃ 2(�)
+ |||u|||k−1

≤ hk||w||
H̃ 2(�)

+ |||u|||k−1 ≤ h||Ak−1u||0 + |||u|||k−1 ≤ C|||u|||k−1.

Corollary 1 For u ∈ ̂Sk(�), it holds that

|||Pk−1u|||k−1 ≤ C∗|||u|||k, (24)

where a constant C∗ is the same as in Theorem 2.

Finally, we show assumption (A.3) holds with α = 1/2.

Theorem 3 For u ∈ ̂Sk(�), there exists a constant C > 0 such that

|ak((I − ̂IkPk−1)u, u)| ≤ C

(

||Aku||2k
λk

) 1
2

ak(u, u)
1
2 .

Proof By definition of ̂Ik ,

ak((I − ̂IkPk−1)u, u) = ak(u, u) − ak−1(Pk−1u, Pk−1u)

= ak(u − πkw, u)

+ak−1(πk−1w − Pk−1u, Pk−1u)

+ak(πkw, u) − ak−1(πk−1w, Pk−1u)

:= �1 + �2 + �3,

where w is a solution of
⎧

⎨

⎩

−∇ · (β∇w) = Aku in �,

[w]� = [

β ∂w
∂n

]

�
= 0

w = 0 on ∂�.
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By the similar techniques used in Theorem 2 (see [3, 23, 25]) and by Lemma 1,
Proposition 5, Corollary 1, we can bound �1, �2, and �3.

Finally, we verify (A.4) numerically. We let

w =
{

(x2 + y2)
3
2 /β− in �−,

(x2 + y2)
3
2 /β+ +

(

1
β− − 1

β+
)

r3
0 in �+.

(25)

on the domain � = [−1, 1]2, where subregion �− is inside of the circle x2+y2 = r2
0

and �+ = � − �−. Here, (β−, β+) = (1000, 1) and r0 = 0.64. Let Tk be the
sequence of uniform hierarchical triangulations of � by right triangles with size hk =
22−k . Since || · ||1,hk

and ||| · |||k are equivalent norms, we report ||̂Ikπk−1w−w||1,hk
and

||Pk−1πkw − w||1,hk
in Table 1. We observe that they are of O(h), which coincides

with (A.4). For other choices of w, we obtain similar results.

5 Numerical results

In this section, we demonstrate the performance of LMG and NcMG for IFEM
discretization of (1). We tested them to various interface problems including non-
convex interfaces. We report the number of iterations and convergence rates of LMG
with one smoothing and multigrid-preconditioned conjugate gradient (MG-PCG) in
Tables 2, 5, 8, and 10. We report the number of iterations and convergence rates of
NcMG in Table 13. Here, convergence rates of the solvers are defined as usual. For
example, a convergence rate of MG solver is measured by

( ||(I − MGJ AJ )�gJ ||
||gJ ||

)1/�

,

where MG = LMG or NcMG, gJ is a load vector and � is number of iterations.
For LMG, we used V(1, 1) and for NcMG, we used N7(1, 1). In the MG-PCG, V-
cycle with one smoothing is used as a preconditioner of the CG. For the first two
examples, we report the performance of MG for the case of β+/β− = 1000 and
1/1000. However, for the third example, we report the performance of MG with
various cases of β+/β− (see Tables 8 and 15). The number of cycles of multigrids
tends to increase as the ratio of β jumps increases, i.e., β+/β− = 1, 10, 100, 1000.
Still, for all the cases, the number of cycles remain bounded as level J increases.

Table 2 The number of
iterations and convergence rates
of V(1, 1)-cycle and MG-PCG
for ̂SP

J (�) for Example 1

V(1, 1)-cycle MG-PCG

1/hJ Iter. Ratio Iter. Ratio

32 38 0.693 14 0.367

64 39 0.701 15 0.394

128 27 0.598 14 0.346

256 25 0.575 12 0.313
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We present condition number of AJ for all the examples (see Tables 4, 7, 9, 12, and
16). The condition number of AJ seems to grow more than O(h−2), when β+/β− =
1000 for Lagrangian-based IFEM scheme. On the other hand, the condition number
grows like O(h−2) for edge average-based IFEM scheme. However, the multigrid
behaviors are robust for all the problems. For the first example, we present condition
numbers of LMGJ AJ to verify the effectiveness of the preconditioning in Table 4.

We also compare the CPU time of multigrid solvers with that of diagonally pre-
conditioned conjugate gradient methods (D-PCG) in Tables 3, 6, 11, and 17. Both
the LMG and NcMG show optimal scalability in all examples. The CPU time of
multigrid solvers grows like O(N) while the CPU time of CG (or PCG) grows like
O(N3/2). All experiments were conducted on PC with an Intel(R) Core(TM) i7-3770
CPU @ 3.40 GHz processor.

We let the domain � = [−1, 1]2 and we use uniform hierarchical triangulations
with the mesh size hk = 2−kh0 (k = 0, 1, . . . , J ) where h0 is the mesh size of the
coarsest level. Figure 5 depicts the interfaces and triangulations of the domain by
triangles. We use one step (m = 1) of Gauss-Seidel for smoothing in all of multigrid
algorithms. For all of the solvers, the stopping criteria ||g − AJ x||/||g|| < 10−6 was
used. We choose σ as σ = κβ for some κ > 0.

5.1 Examples for LMG

We test three different interface problems. In each example, we show the performance
of LMG for ̂SP

J (�). The performance of LMG for the case of ̂S
Q
h (�) is reported for

Example 1 only (see Tables 10 and 11).

Example 1 The interface is given by � = {(x, y) : y−3x(x−0.3)(x−0.8)−0.38 =
0} and the coefficient is β− = 1, β+ = 1000. The exact solution u(x, y) is

u(x, y) =
⎧

⎨

⎩

(y − 3x(x − 0.3)(x − 0.8) − 0.38)/β− if (x, y) ∈ �−,

(y − 3x(x − 0.3)(x − 0.8) − 0.38)/β+ if (x, y) ∈ �+.

We report the performance of the V-cycle and MG-PCG in terms of the number of
iterations and convergence rates in Table 2. We observe the number of iterations are
bounded independent of the levels for both the algorithms.

Table 3 shows the CPU time of the V-cycle, MG-PCG, D-PCG, and CG. The CPU
time of V-cycle and MG-PCG outperforms that of D-PCG and CG. The multigrid
solvers and MG-PCG show optimal scalability, i.e., the CPU time increases linearly

Table 3 CPU time of various
solvers for ̂SP

J (�) for Example 1 1/hJ V(1, 1) cycle MG-PCG CG D-PCG

32 0.748 0.367 4.977 0.296

64 1.763 0.698 58.874 2.247

128 3.370 1.944 455.399 17.581

256 10.857 5.996 3628.578 132.616



Numer Algor

-1 -0.5 0 0.5 1
X

-1

-0.5

0

0.5

1
Y

-1 -0.5 0 0.5 1
X

-1

-0.5

0

0.5

1

Y
-1 -0.5 0 0.5 1

X

-1

-0.5

0

0.5

1

Y

Fig. 5 Uniform meshes with a curved interface of Example 1 (left) and a circular interface of Example 2
(mid) and a heart-shaped interface of Example 3 (right)

Table 4 Condition numbers of
AJ and V(1, 1)AJ for ̂SP

J (�)

for Example 1
1/hJ κ(AJ ) κ(V(1, 1)AJ )

32 2.063E+6 6.529

64 9.808E+6 10.612

128 3.932E+7 6.826

256 1.720E+8 5.279

Table 5 The number of
iterations and convergence rates
of V-cycle and MG-PCG for
̂SP

J (�) for Example 2

V(1, 1) cycle MG-PCG

1/hJ Iter. Ratio Iter. Ratio

32 30 0.625 14 0.336

64 44 0.723 15 0.395

128 41 0.712 17 0.443

256 33 0.658 16 0.408

Table 6 CPU time of various
solvers for ̂SP

J (�) for Example 2 1/hJ V(1, 1) cycle MG-PCG CG D-PCG

32 0.568 0.296 3.381 0.921

64 1.911 0.717 34.707 2.398

128 5.259 2.356 290.474 15.865

256 14.676 7.816 2639.282 62.665

Table 7 Condition numbers of
AJ for ̂SP

J (�) for Example 2 1/hJ κ(AJ )

32 2.957E+6

64 1.714E+7

128 8.221E+7

256 7.130E+8
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as the number of unknowns increases while the CPU time of CG or D-PCG grows
like O(N3/2). Among the solvers, MG-PCG gives the best performance.

Next, we report the condition numbers of LMGJ AJ and AJ for Example 1 in
Table 4. This demonstrates that the condition numbers of LMGJ AJ are uniformly
bounded. Thus, LMGJ can be used effectively as a preconditioner.

Example 2 (from [28]) The interface is given by � = {(x, y) : x2 + y2 = r2
0 } where

r0 = 0.64 and the coefficient is β− = 1000, β+ = 1. The exact solution u(x, y) is

u =
{

r3/β− in �−,

r3/β+ +
(

1
β− − 1

β+
)

r3
0 in �+.

We report the performance of the V-cycle and MG-PCG in terms of the number of
iterations and convergence rates in Table 5. We observe that all of the solvers have

Table 8 The number of iterations and convergence rates of V-cycle and MG-PCG for ̂SP
J (�) for Example

3 with different β jumps

Case 1. V(1, 1) cycle MG-PCG

1/hJ Iter. Ratio Iter. Ratio

32 9 0.193 6 0.074

64 9 0.191 6 0.074

128 9 0.187 6 0.072

256 9 0.183 6 0.070

Case 2. V(1, 1) cycle MG-PCG

1/hJ Iter. Ratio Iter. Ratio

32 9 0.201 6 0.083

64 9 0.198 6 0.080

128 9 0.194 6 0.077

256 9 0.191 6 0.074

Case 3. V(1, 1) cycle MG-PCG

1/hJ Iter. Ratio Iter. Ratio

32 11 0.277 8 0.151

64 10 0.233 7 0.129

128 9 0.205 7 0.113

256 9 0.195 7 0.109

Case 4. V(1, 1) cycle MG-PCG

1/hJ Iter. Ratio Iter. Ratio

32 74 0.829 16 0.406

64 38 0.694 15 0.384

128 29 0.630 13 0.334

256 38 0.694 13 0.341

Case 1., Case 2., Case 3., and Case 4. correspond to (β−, β+) = (1, 1), (β−, β+) = (1, 10), (β−, β+) =
(1, 100), and (β−, β+) = (1, 1000), respectively
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Table 9 Condition numbers of
AJ for ̂SP

J (�) for Example 3
with different β jumps

Case 1.

1/hJ κ(AJ )

32 1.666E+3

64 6.666E+3

128 2.656E+4

256 1.062E+5

Case 2.

32 2.313E+3

64 9.237E+3

128 3.723E+4

256 1.482E+5

Case 3.

32 3.189E+4

64 1.181E+5

128 6.687E+5

256 2.634E+6

Case 4.

32 4.702E+5

64 1.847E+6

128 1.326E+7

256 1.197E+8

Case 1., Case 2., Case 3., and
Case 4. correspond to
(β−, β+) = (1, 1),
(β−, β+) = (1, 10),
(β−, β+) = (1, 100), and
(β−, β+) = (1, 1000),

respectively

Table 10 The number of
iterations and convergence rates
of V(1, 1) cycle and MG-PCG
for ̂S

Q
J (�) for Example 1

V(1, 1) cycle MG-PCG

1/hJ Iter. Ratio Iter. Ratio

32 52 0.765 17 0.436

64 53 0.769 17 0.440

128 42 0.717 15 0.380

256 38 0.692 13 0.340

Table 11 CPU time of various
solvers for ̂S

Q
J (�) for Example 1 1/hJ V(1, 1) cycle MG-PCG CG D-PCG

32 1.233 0.406 2.929 0.249

64 2.043 0.889 27.672 2.341

128 5.722 2.246 213.112 18.247

256 17.066 6.645 1674.743 118.155
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Table 12 Condition numbers of
AJ for ̂S

Q
J (�) for Example 1 1/hJ κ(AJ )

32 3.614E+05

64 1.447E+06

128 5.787E+06

256 2.315E+07

optimal scalability. Table 6 compares the CPU time of the four algorithms above.
Again, the multigrid-related algorithms are optimal, while CG-type algorithms are
not. We report the condition number of stiffness matrix AJ in Table 7.

Example 3 The interface is given by � = {(x, y) : (3x2 + 3y2 − x)2 − (x2 + y2) +
0.03 = 0} and the coefficient is β− = 1, β+ = 1000. The exact solution u(x, y) is

u =
{

x
(

(3x2 + 3y2 − x)2 − (x2 + y2) + 0.03
)

/β− in�−,

x
(

(3x2 + 3y2 − x)2 − (x2 + y2) + 0.03
)

/β+ in�+.

We report the performance of the V-cycle and MG-PCG with various coefficient
jumps ((β−, β+) = (1, 1), (1, 10), (1, 100), (1, 1000) ) in Table 8 and the condi-
tion number of stiffness matrix AJ for each case in Table 9. We note that when
β− = β+, V-cycle corresponds to the usual multigrid algorithms for P1-conforming
case. The number of required V-cycle is 9. We observe that the number of V(1, 1)-
cycle increases as the ratio β+/β− increases (see Table 8). This is natural since the
condition number of AJ increases as the ratio β+/β− increases (see Table 9). As for
the fixed ratio of β−/β+, the numbers of V(1, 1)-cycle are uniformly bounded as
level J increases.

Finally, we report the performance of rectangular case (̂SQ
J (�)) in Tables 10

and 11 (for Example 1). The condition number of AJ for this case is reported in
Table 12.

Table 13 The number of
iterations and convergence rates
of NcMG for Example 1;
Example 2, for the spaces
̂NP

J (�) and ̂N
Q
J (�)

Example 1 NcMG (̂NP
J (�)) NcMG (̂NQ

J �))

1/hJ Iter. Ratio Iter. Ratio

32 49 0.751 36 0.680

64 52 0.766 28 0.606

128 42 0.719 27 0.592

256 40 0.706 25 0.572

Example 2

32 45 0.732 23 0.540

64 51 0.763 23 0.542

128 46 0.741 23 0.541

256 44 0.728 23 0.547
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Table 14 Condition numbers of
AJ for Example 1 and Example
2 for the spaces ̂NP

J (�) and
̂NP

J (�)

Example 1 ̂NP
J (�) ̂N

Q
J (�)

1/hJ κ(AJ ) κ(AJ )

32 3.242E+06 2.168E+06

64 1.302E+07 8.679E+06

128 5.209E+07 3.472E+07

256 2.084E+08 1.389E+08

Example 2

32 5.986E+06 3.988E+06

64 2.395E+07 1.596E+07

128 9.581E+07 6.387E+07

256 3.832E+08 2.555E+08

5.2 The case of NcMG

We now test NcMG for the Examples in Section 5.1. The left side of Table 13
shows the performance for CR-type IFEM and the right side shows that of the RT-type
IFEM for Example 1 and Example 2. We report the condition number of AJ for each

Table 15 The number of
iterations and convergence rates
of NcMG for Example 3 with
different β jumps

Case 1. NcMG (̂NP
J (�)) NcMG (̂NQ

J �))

1/hJ Iter. Ratio Iter. Ratio

32 13 0.305 5 0.044

64 13 0.318 5 0.050

128 13 0.321 5 0.054

256 13 0.319 5 0.057

Case 2.

32 13 0.310 5 0.044

64 13 0.319 5 0.050

128 13 0.321 5 0.054

256 13 0.319 5 0.057

Case 3.

32 13 0.325 5 0.051

64 13 0.334 5 0.053

128 13 0.332 5 0.055

256 13 0.327 5 0.057

Case 4.

32 39 0.701 22 0.528

64 31 0.637 20 0.498

128 27 0.595 18 0.481

256 25 0.575 18 0.463

Case 1., Case 2., Case 3., and
Case 4. correspond to
(β−, β+) = (1, 1),
(β−, β+) = (1, 10),
(β−, β+) = (1, 100), and
(β−, β+) = (1, 1000),
respectively
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Table 16 Condition numbers of
AJ for ̂NP

J (�) and ̂N
Q
J (�) for

Example 3 with different β

jumps

Case 1. ̂NP
J (�) ̂N

Q
J (�)

1/hJ κ(AJ ) κ(AJ )

32 7.470E+3 4.979E+03

64 2.988E+4 1.992E+04

128 1.195E+5 7.968E+04

256 4.781E+5 3.187E+05

Case 2.

32 1.041E+4 6.926E+03

64 4.161E+4 2.771E+04

128 1.664E+5 1.109E+05

256 6.653E+5 4.434E+05

Case 3.

32 6.204E+04 4.128E+04

64 2.476E+05 1.650E+05

128 9.900E+05 6.599E+05

256 3.959E+06 2.639E+06

Case 4.

32 6.004E+05 3.996E+05

64 2.397E+06 1.597E+06

128 9.585E+06 6.389E+06

256 3.834E+07 2.556E+07

Case 1., Case 2., Case 3., and
Case 4. correspond to
(β−, β+) = (1, 1),
(β−, β+) = (1, 10),
(β−, β+) = (1, 100), and
(β−, β+) = (1, 1000),

respectively

case in Table 14. We report the performance of NcMG for various cases of β+/β−
for Example 3 in Table 15. Table 16 reports the condition number of AJ for each case.

For the ratio β+/β− = 1, 10, 100, 1000, the NcMG for both the CR-type IFEM
and RT-type IFEM requires relatively small number of iterations to reach the stopping
criteria. For the fixed ratio β+/β−, the number of cycles of NcMG is uniformly
bounded as J increases.

We note that NcMG converges when m is sufficiently large. We note that for any
m ≥ 7, the solver Nm(1, 1) converges uniformly for all examples. In this work,
N7(1, 1) was used for NcMG.

Table 17 CPU time of NcMG,
CG, and D-PCG solvers for
Example 3 in ̂N

Q
J (�)

1/hJ NcMG CG D-PCG

32 1.562 3.659 0.748

64 2.484 31.029 6.451

128 15.209 248.811 48.060

256 57.137 1832.172 364.563
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Table 17 shows the CPU time of NcMG, CG, and D-PCG (for Example 3) when
(β−, β+) = (1, 1000). We observe that our version of multigrid solvers is optimal,
i.e., the CPU time grows like O(N).

6 Conclusion

In this work, we designed and tested multigrid algorithms for two kinds of IFEMs,
one for Lagrangian-based IFEM (LMG) and the other for edge average dof-based
IFEM (NcMG). For NcMG, we used the idea of projecting onto Lagrangian IFEM
correction space. The numerical experiments show that LMG is optimal in scalability
with only one smoothing. The NcMG multigrid solver with the inner cycle V(1, 1)

is also optimal in scalability. The CPU time comparison with PCG or CG algorithms
shows the effectiveness of our multigrid algorithms for IFEM.
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