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Chapter 1

Finite Difference Method

1.1 2nd order linear p.d.e. in two variables
General 2nd order linear p.d.e. in two variables is given in the following form:
L[u] = Augy + 2Bugy + Cuyy + Duy + Euy + Fu = G in Q,

where () is an open set in R%. According to the relations between coefficients,

the p.d.e.s are classified into 3 categories, namely,

elliptic if AC—B? >0
hyperbolic if AC—-B? <0
parabolic if AC—B =0.

Furthermore, if the coefficients A, B and C' are constant, it can be written as

o 0.|A B| |
[—, —] gz + Duy + Fuy + Fu = G.

Auxiliary condition

B.C. Dirichlet, Neumann, Robin
I.C. for parabolic problem
Interface Cond

The condition u = gy on I'g C 0N is called the Dirichlet B.C., the condition

g—z = g1 on I'y C 9N is called the Neumann B.C., the condition ag—z +u =

1
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go on I's C 01 is called the Robin B.C. Here I'o UT'y UT's = 99 is a disjoint
union except measure zero set. If some of these conditions are mixed, we say

it is a mixed B.C.

Elliptic Problem

In general a 2nd order linear p.d.e. in R can be given in the following conve-

nient form:

Llu] = - Zij:l a%i <Gz‘j,§%> +cu=-V-AVu+cu= fin
4+ B.CsorIlC.s

(1.1)

Here A = (aij)ﬁ j—1 is the coefficient matrix. L is called a differential oper-
ator. The equation is called elliptic if A is positive definite, in which case a
typical B.C. is u = g on 0f). Here u may represent some physical quantities
such as electromagnetic potential, displacement of elastic membrane, temper-
ature, concentration of chemical component, or pressure of a fluid(in porous

media), etc.
e behavior near boundary

e Equation (1.1) holds in an open set €.

Notations

Let
C(Q),CHQ),C(Q),C*(Q), C(0NQ)

denote some functions spaces. Define

O Pu

6i‘u:maA:(all+“'add)

so that V : C1(Q) — (C(Q))% and V- : (C1(R2))? — C(Q) represent differential

operators via
Vu= (Ou,--- ,adu)T, V.-v =011+ + 0qvg.
We call A the Laplace operator and also write

A=V.-V=V?
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Definition 1.1.1 (Classical solution). Assume f € C(f2), g € C(0Q). A
function w is called a classical solution of (1.1) if w € C?(Q) N C(Q). If
f¢C() or g ¢ C(ON) then the solution u may not belong to C?(2) N C(Q).

Still the solution may exists in some sense, called a weak solution.

We say a pde is “well posed” if a unique solution exists and the solution
depends continuously on the data. There are basically three classes of method

to discretize it,
(1) Finite Difference method
(2) Finite Element method

(3) Finite Volume method

1.2 Finite Difference Method

Let u(x) be a function defined on 2 C R". Let U; ; be the function defined over
discrete domain {(x;,y;)} (such points are grid points) that may approximate
wi;j = u(x;,y;). Such functions are called grid functions.

Difference operator

otu; = M, forward difference
hiv1

o U, = %, backward difference

U, = M, central difference
hi + hiy1
+ _ —

’U; = M, central 2nd difference
hi + hiy1

Example 1.2.1. Note that

otyU; = % = 60Ui+1/2, central difference at ;15
i+1
Ui — Ui .
oU, = hil = 6OUZ~_1/2, central difference at z;_1 /5

i ; . U, 41/2—0°U;_
Exercise 1.2.2. (1) We can interpret 9?U; as a central difference 2 “’;/ihﬂ i1/2

Derive the truncation error.
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Example 1.2.3. Consider the following second order two point boundary
value problem :
—u"(z) = f(x),u(a) = c,u(b) = d.

Assume amesha =29 <1 < --- <2y =b,Ax; = 2,41 —x; = h. If u € C4,

we replace the derivative by a difference quotient, and obtain

C Uim1 = 2ui + Uig
72

—|—O(h2) = f(zi), i1=1,---N—-1u =c,uy =d

Dropping the error term, we obtain a system of linear equations in the ap-
proximate values U;:
Ui-1 —2Ui + Ui

- 12 = f(:t?l):fz, ’izl,-'-N—l,UOZC,UN:d.

This is an (N — 1) x (N — 1) matrix equations.

2 —1 Ui fi c
-1 2 -1 0
h? SN N e
-1 2 -1 . : 0
-1 2 Un-1 fn- d
Above equation can be written as LhUh = Fh, where UM = (U, ,Un-1)

and F" = (f;) + boundary terms. It is called a difference equation for the

given differential equation.

Exercise 1.2.4. Write down a matrix equation for the same problem with
second boundary condition changed to the Neumann condition at b, i.e, u/(b) =

d. If one uses first order difference for derivative, we lose accuracy.
We need an extra equation in this case. There are several choices:
(1) Use first order backward difference scheme

_Un—-Un—

d=u'(b) -

append it to the last equation. (first order accuracy)

(2) Assuming the D.E. holds at the boundary, form a central difference equa-
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tion at Uy by introducing a fictitious point Upyq :

Uy~ W+ U) = (1) (12)
%(UNJrl—UN,l) = d. (1.3)

Eliminating Uy from these egs., we have

Uv—-Un-1 _d  f(1)
NN S (1.4)

Append it as N-th equation. The matrix is still symmetric; Eq. (1.4)
can be viewed as centered difference approximation to u'(z, — %) and

rhs as the first two terms of Taylor expansion

h h
W (n = 5) = (n) = S () +

Approximate /(1) by higher order scheme such as

UN—9 — 4uN_1 + 3uN
2h

=d.

In this case one has second order truncation error (Show it) but the

matrix loses symmetry.

Exercise 1.2.5. (1) Solve the D.E. in Example 1.2.3 with f = 2 — 6z

so that w = x — 22 4+ 23 and the following BCs (with h = 1/n, n =
5,10,20,40, - ). Report the error |lu — up| p2=v/>; [(u — up)(x;)[? us-
ing a Table.

(a) u(0) =0,u(l) =1 (Dirichlet)
(b) u(0) = 0,4/(1) = 2 (Neumann) For this problem implement all

three method in the previous exercise (1), (2) and (3).

Write down the stiffness matrix of 2D problem with Neumann condition
at x = 1 on the unit square with 4 x 4 grid. Label the node x1, x2, 23, - -
from the bottom row.(excluding the boundary) There are two possibil-
ities to treat the Neumann condition: One is to use backward differ-
ence. Another is to assume fictitious values and use central difference,
then incorporate them into the five point stencil. In other words, use

Uy =21 = go(1, 1) and substitute into the stencil, the third equation
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T 2D 69 . o o 2] ano
g2
...... o
(171) (271) (3:1) z1 2 3 T4 Tg9
g1

Figure 1.1: Numbering and Grid for the Neumann problem

becomes
1 2 1. ¢
ﬁ(—ng +dug —ug) = (f + 592)(17 Z) T
Example 1.2.6 (Heat equation). We consider
U = OUpe, Tor0<ax<l, 0<t<T

u(t,0) = wu(t,1)=0

Let z; = ih,i = 0,--- ,N,Azx = 1/N and t,, = nAt,At = % Then we have

the following difference scheme

urtt—ur (UM, 200+ U
At 7 Aq? ’

fori=1,2,--- ,N—1landn=1,2,--- ,M — 1 where U = u(t;,z,). From

the boundary condition and initial condition we have

oAt
Uz‘nH:Uz‘n+—Ax2 Uiy — 20U + Uity -
In vector notation At
Ut = U - S22 AUy
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where A is the same matrix as in example 1. If n = 0, right hand side is

known. Thus

At
UfTLL = (I B JEA)TLG7 G= (g(xl)v U 7g(xN—1))T'

This is called forward Euler or explicit scheme. If we change the right
hand side to

urtt —ur U urtt —ourtt !

— +1
At Ax?
n+1 n , OAL 1 n+1 n+1
uptt = U +A—x2[Uij1 — 207 + U
At nymm T
(I+ O-EA) Uh = Ga G = (g(fﬂl), e )g(fol)) .

This is called backward Euler or implicit scheme.

1.2.1 Error of difference operator

For u € C?, use the Taylor expansion about ;

h2
Uip] = u(wz + hz) = u(:vl) + hzul(:vl) + éu"(f), € (.Ti,SCZ'Jrl)

(7 — Uy hl
L (@) = ().

Expanding u(z;) about x;41,

2 3
u(ws) = ulwin) — i (visa) + ol (i) — Sou”(9)

These are first order accurate. To derive a second order scheme, expand about

Lit1/25
Uikl = Uiprje + Eul(xi+1/2) + 5(;)2?//(%41/2) + 5(5)%(3) €3
Wi = Uit1/2 = EU/(%H/z) + 5(;)2?//(%41/2) - 6(5)%(3) (&)

Subtracting, we obtain

2

= Ul($i+1/2) + ﬁu(g) (Tig1/2) + O(hy).

Uj+1 — U

h;
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Thus we obtain a second order approximation to u/(z;q /2). By translation,

we have
Uj41 — Uj—1
2h;

Assume h; = h;41 and we substitute the solution of differential equation

— u'(xl) = O(h?/fi) if hi = hi+1- (1.5)

into the difference equation. Using —u” = f we obtain

— Ui QUi — U

2

B 1 / h? " h? (3) K 4)

1 B2 13 hi

g (= bl = Sl = o = 5 (02) — f(w
h2
= —uj — f(x) ﬂ(“(4) (61) + u(62))
2

< 2—4 max [u(?)].

Thus we obtain a discrete equation
LyU, = F". (1.6)

We let 73, = Lpu — F" and call it the truncation error.

Definition 1.2.7. We say a difference scheme is consistent if the truncation
error approaches zero as h approaches zero, in other words, if Lyu — f — 0 in

some norm.

Truncation error measures how well the difference equation approximates
the differential equation. But it does not measure the actual error in the
solution. However, for a stable scheme, these two errors are equivalent.

Use of different quadrature for f. Instead of f(x;) we can use

=) + 2 p )

L f (i) 410 () + flaisn)] = °

12

where pof(z;) is the average of f which is f(z;) + O(h?).

Nonuniform grid(irregular mesh)

We use central difference scheme at x;1;/5 to get

Uit —Usg

Ui —Ui—1
hit1 :

hi

U (Tip1p2) = and u'(z;_1/2) ~



1.2. FINITE DIFFERENCE METHOD 9

Thus, it is natural to approximate as

hi + hit1
2

Uipl — Uy Uj — Ui
(i) o (ML L

hit1

). (1.7)

Definition 1.2.8. L} is said to be stable if there is a constant C' independent
of h such that
U]l < C||IF| for all h >0

where U” is the solution of the difference equation, L,U" = F". In other
word, Ly, is stable if and only if Lgl is bounded.

Definition 1.2.9. A finite difference scheme is said to converge if

U, —ul| =0 ash—0.

ep, = U, — u is called the discretization error.

Theorem 1.2.10 (Lax equivalence theorem). Given a consistent scheme, sta-

bility is equivalent to convergence.

Proof. Assume stability. From Lpu— f = 7", LU, — F" = 0, we have Ly, (u —
Up) = . Thus,

lu = Upll < CllL(u = Uph)|| = ClI7"|| — 0.

Hence the scheme converges and the error is bounded by truncation error.
Obviously a convergent scheme must be stable. From the theory of p.d.e, we
know [ju|| < C||f||. Hence

ORIl < |Un = ull + llull < O(") + CIfIl < ClIfII < CIF.

Exercise 1.2.11. (1) Derive a truncation error for (1.5) in case of irregular

mesh.(use weighted difference)

(2) Find truncation error for of difference scheme for —u”(z;) in (1.7) in case
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of nonuniform grid.

Lyu = 2[=hjuipr + (hi + hig1)u — higiwi—]/hihigi (hs + hig)
2

h3
bl = O(Y) + (b + by

h:
= 2N (uz + hz+1u +

6
hZQ :23 (3) 4
—hz‘+1( h u + 7 F +O h )) /h hz+1 h +hz+1)
1
= —u? 4 5 (i = hi)u; B L om2 +n2). (1.8)

(3) Use %[f(:cl) + f(zi+1) + f(zi—1)] for the right hand side. What is the

truncation error?

(4) Show for uniform grid, we have

—Ui—1 + 2u; — Ui— 1
- hf - :ﬁ[f(xz‘—l)+10f($z‘)+f(xi+1)]+0h4max]u(6)(x)\.

1.3 Elliptic equation in 2D

1.3.1 Basic finite difference method for elliptic equation

First consider the following elliptic problem:(Dirichlet problem)

—Au = finQ
u =g on 0

(1) Approx. D.E. —(ugs + uyy) = f by a finite difference at interior mesh
pts.

(2) The unknown function u is approximated by a grid function Uj. Assume
u € CH

In one dim case,

w@+h) = u(@) + htg(2) + B (2) + g, (@) + O(h%)
u(x—h) =...

Thus
u(x 4+ h) — 2u(x) + u(x — h)

hZ

= Uy (7) + O(R?)
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while in 2D case

u:m:(xa y) = [u(‘r + ha y) - 2u(m, y) + U(CC - h’ y)]/h2
uyy(z,y) = [u(z,y +h) = 2u(z,y) +u(z,y - h)]/h°

(z,y+h)

(iC—h7y) ( 7’!/) (x+h>y)

(x7y7h)

Figure 1.2: 5-point Stencil

11

This is called a & point Stencil or 5 point Star, etc. Approximating VZu =

Awu by 5-point stencil for each point (interior mesh pt), we obtain a linear

system of equations Ax = f in unknowns x = u;;. By Gershgorin disc theorem,

the matrix A is nonsingular. Lp[u] is called finite difference operator, e.g.,

Ly [u)(x, y)=[—4u(z,y) +u(z + h,y) + u(z — h,y) +u(z, y+h) +u(z,y — h)]/h>

Problems with variable coefficients

More generally,

o 97 o
Liu] = — [%’ G_y} Diag{ai1, a2} g_z

With uniform meshes, the central differences gives

u(x 4+ h) —u(x —h)

e = 2h
(uz)u(z) = “x($+%);uz(x_%)
uz(x+g) - U(:v+h})L_u(x)
A L (@) — ulz — )

2 h

+cu = —(anug)y — (a2uy)y + cu
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For a problem with variable coefficients a(x,y), we use central difference (1.10,
1.11)

(el = [(onm)(e+5) ~ (@)@ - 5))/h (1.13)
Loan(z+ BY(uw(z +h) —u(z)) — ann(z — )(u(z) — u(z —/11))4)
= 2 (4
u(x 4+ hy) = u(z)+ houg(x) + %%um + %u(g) +0 Xy
u(x —hy) = u(x)— hjug(x) + h;um - 2—?%3) e X ho
hiu(z + ha) — hou(z — hy)
= (hl - hz)u(SC) + 2h1h2uz(x) + fuhy (h2 - hl)uxaz 4+ ..
’U,m(.%') _ hlu(x + hg) — hgu(;'hl—hill) — (h1 — hg)u(.%') n O(h)

This is only first order accurate. To get a second order method multiply two
equations respectively by h?, h3 and subtract to get(i.e, eliminate ;)
hiu(x + he) — (b3 — h3)u(z) — hiu(z — hy)

h?h3  h2h3
= (hahi + hih3)ug(z) + < 16 2 4 26 1> max |u|.

Hence ) ) ) )
~ hiu(z + he) — (hf — h3)u(z) — hsu(z — hy)

Uy
hiha(hi + ha)

is seconder order accurate. Compare this with (1.5).

As a simple example, we consider a differential eq. of the form(with v > 0)

Liu] = —[ugy + uyy] +yu = f
whose discretized form
4+~h% -1 -1 0 U,
1 -1 4 h 0 -1 U-
LylU] = — 7 , 2l =F
h -1 0 44 ’)/h -1 U3
0 -1 -1 4 + ryh? Uy

satisfies
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(1) Lyu] = Llu] + O(h?) as h — 0. u is true solution.
(2) AU = F + Bdy, Au = [Au — yu + O(h?)] + Bdy
With abuse of notation, we write it as

LU —u) = O(h?) = 7.

Let A be the matrix representation of Lj then the discretization error U — u

has the form A~17,(depends on h) and satisfies
1T —wll < [[ATH] - Iall < AT O(R?).

If we put D = diagA = {a11,...,ann}, then D7YA(U — u) = D~ 17,. Write
D~ 'A =1 + B, where B is off diagonal. Then we know || B||s = ﬁ < 1if
7> 0. Thus (D~1A)~! = (I + B)~! exists and

2
1 <4—|—’yh

DilAiloo: I+Biloo§ >
D7) e = 17+ B) e < 77— < o7

Hence

1 v _ 4+~h® K2
IU—~ulloo < [(DTFA) oo D™ Tl <

< < .4+7h20(h2):0(h2)—>0.

Thus, we have proved the following result.

Theorem 1.3.1 (Convergence of FDM -special case). Assume
(1) ue CHQ)
(2) v>0
(3) uniform mesh

Then |U — ulso = O(h?) as h — 0.

General Elliptic problems

Generally, A, B, C are not constant. In this case, we can still put the problem

into a conservative form as follows:
Llu] = Aty + 2Bugy + Cuyy + Dug + Euy + Fu+ G =0

A B
—vT. <B C) Vu—(Ay + By — D)uy — (By + Cy — E)uy + Fu+ G,
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where V = (£, 2,0 that Vu (““‘) If Ay+By—D = 0 and By+C,—E,
Uy

it is self-adjoint.

Treating the cross term like u,,

hem\_r7h
Assume uzy = uy,, we approximate 8%% by 0960U" where 50U" (P) = %Z(W)

is the central difference. Then from

UMN) —U"(S)
2Ay

Orrh
6, U"(P) =
and forward -backward difference formula we get

1 [UMNE)-U"NW) U"SE)-U"(SW)
2, 2Ax 2Ax

0s077h _
8960U" =

Change of variable method to eliminate the cross term

One can transform the variable so that the resulting equation in new variable

does not have cross term.

Lemma 1.3.2. Let s = s(z,y), t = t(x,y) be a coordinate transform which is
9(s,t)

locally one-to-one onto. Denote its derivative by Noy) = P, Jacobian matrix.
Then we have
t
Vigu = || = "0 T = P " = PTv
Uy, UsSy + Uty Ut
In other words,
0 o) 0 0 o) 0

Viey = <8/8x> = <$8_+8_5E> _ (ﬁ Fi) <8/85> = PT -V

z,y ol o) ot 0 ol ot S
Remark 1.3.3. If we let (s,t) = F(x,y) then grad ) = DFT grad (s.0)-

=V’

Hence V7T (5.t

- P and we see that
(z,y) )

vT VAV (g yyu = v{;,t)PAPTv(s,t)u.

(z,y

If A is symmetric, there exists a P such that PAPT = diagonal = {dy,d>}.
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If we choose s(x,y), t(x,y) so that iy — L then

0 ou 0 ou
T —
Vien AV eyt = 5 <d1g> + 5 <d2§> :

Example 1.3.4. Transform the problem u,; + 4uzy 4 1y, = 0 so that it does

not have cross term.

Since A = (2 1), its eigenvalues are 3, —1 with corresponding eigenvec-

1 1
1
= — , we have

P
PAPT = (3 0)
0 —1

Hence the transformed equation is

tors (1,1) and (1,—1), we see that with

[\

0  Ou 0 Ou
25525 " 2i'ar

a1 1\ [0s/0x Os/Oy\ | [s\ _ x
P=3 <1 —1> B <8t/8x at/ay>' N (t) -7 <y>

If s = constant, ds = s, dx+s, dy = 0, so the line s = constant is described

in (z,y)-coordinate as
dy _ se_ Pn

dx Sy N P12 '
Likewise, if t = constant, dt = t,dx +t,dy = 0 .". so the line ¢t = constant is

described as
dy _ ta_ P

dx_ ty__PQQ.

When A is ] , then, using the rotation of axis, we can take
c

P cos A —sin A s\ [cosA —sinA x

~lsinA cosA |’ t]  \sinA cos\ Y

where cot 2\ = % .
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1.3.2 Treatment of irregular boundaries(Dirichlet boundary
conditions

Figure 1.3: Qp, o regular, x irregular

Let 2 be a domain with grid. Let €} be the set of all grid points in €.

Definition 1.3.5. Two points P, on the grid are said to be properly ad-
jacent if they are adjacent and the line segment connecting P, Q) belongs to
Q. A grid point is called a regular point if all four adjacent points belong to
2, and and they are properly adjacent to P. Let €27 be the set of all regular
points. Define the set Q = (2, — 27 and the points in Q} are called irregular

points.

In the following, we let E be the east neighbor point of P in €2, and let W
be the west neighborhood point of P in €, etc.

First order derivatives are easy to approximate, i.e, use either forward or
backward difference. We can form the difference equation LyU" = f at all

regular points as before. We only consider the equation at irregular points.

Method 1

If P is an irregular point, we let U"(P) = ¢(Q). Here Q is a point of 69

closest to P. Here U"(P) is now known.

Method 2(Collatz-linear interpolation)

We form L,U" = f* at all points of Qj, as follows: First we form L,U" = f*
at all regular points of Q. If P € 09, is an irregular point lying near west
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| / ha

w/v' P E

Figure 1.4: Near irregular boundary

part of 9, take the point of intersection W' of the line segment EP with 0S.

Then we let
h1 ha

T hths hi + ha
Now append this equation to the difference equation. If £ happens to belong

Uh(p) UME) +

u(W'). (1.15)

to 99 also, then U h(P) is completely determined, hence we do not need to

append it to the difference equation.

Remark 1.3.6. The equation (1.15) has nothing to do with the differential

equation itself, thus it may break certain properties of matrix.

Method 3(Shortley-Weller)

For an irregular point P, we set (recall HW. 4)

2u h _pyh h — (W’
%(P)i2<U (E)hQU r) U (P)h1 (W))/(h1+h2), e

This is nothing but a difference formula for nonuniform grid (see earlier ex-
ample).

Advantage: This difference equation comes from the differential equa-
tion, thus preserves (hopefully) certain properties of the matrix (like positive

definiteness, banded structure, diagonal dominance). But usually symmetry

breaks down.
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Method 4(Fictitious point method)

Let P be an irregular point whose west neighbor W lies outside of ©j,. We
use extrapolation to get UM(W) = aU"(W') 4 BU"(P), where W' is the point
of intersection of the line segment from P with 9Q. (a = Z—f, 8 = —th;lhl.
he = h and h; is the distance from P to the boundary.) Finally we substitute

UMW) into the difference equation at P. (It is called fictitious point method)

Neumann or Robin boundary condition(regular point)

Figure 1.5: P: regular boundary point

Consider the boundary condition of type % +yu =g on 0. Let P be a
regular boundary point(boundary point lying on the grids). If the boundary

is vertical line, then use one sided difference to get

Uh(P) - UME)
h

+y(P)U"(P) = g(P)

and append it to the difference equation.
. . . uhE)-UW
If P is an irregular boundary point(figure 1.4), use %—i—’y(P)Uh(P) =
g(P). Now solve it for U"(W) and substitute it into the difference equation

at P to get a new equation.

S (-UR(S) UM (W) + 4UM(P) ~ UM(N) — U(E)) = £(P).

If P is near corner do the same for north and south derivative.

Neumann or Robin boundary condition(irregular point)

We let C be a grid point not in 9§2,. Draw a normal line to 92 and let C’ be
the point of intersection with 9Q. Now treat C' as a grid point. Extend C'C’
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A/

Figure 1.6: irregular boundary point

to the closest grid line consisting of AB, letting A’ denote the intersection of
extension and the segment AB. Use
u . Uh(C)—Uhr (A’
g_n(C/) - ( % (A1)
v = (1—o)UMA) +9UMC)

S UNOUNA) ey = g(C),

where U"(A’) is obtained by interpolation:
U4 = (1 —a)U"(A) 4+ aU"(B).

This is an equation involving unknowns U"(A), U"(B) and U"(C).

Example 1.3.7.
~V2u+ (2® +yHu =402 — x — y +day)e™, 0<z,y<1
where u(z,y) = [10 — 20{(z — 1)% + (y — 1)?}]e*¥. Use this as the boundary

function also. We have The error is O(h?).

Assuming the error is of the form |U — ul|c = M A%, we see

U —ull _ Mbe

10—l ~ 3%y

= 2°.
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hg grids | ||U —ulleo | ratio

0.2 5 x5 0.0506
02x2"1]10x10 0.0140 3.6148
0.2x272|20x20 0.0035 4
0.2 x 273 | 40 x 40

Table 1.1: Example

These are computable with u replaced by Uy . and

min

/log2

Theorem 1.3.8 (Maximum Principle). Assume A is positive definite sym-

[Un — |

:1 _—
T TL =yl
2

metric, ¢ > 0. Let u is the solution of elliptic p.d.e. given by

0 0

Llu] = —Za—xl[zaua—;ﬂ +cu=—-VAVu+cu =0 in Q

i J
u=g9 on JN

Then for (x,y) € int

) < ) 1.16
u(e.y) < max fu(r.y) (1.16)

Proof. Assume ¢ > 0. There exists orthogonal matrix P such that PTAP =
diag{di,ds} where dj,ds > 0. Suppose u has a positive maximum at some

interior point @ = (x*,y*) of Q. Define

()=o)

so that Llu] = =V nPTAPV pu+cu = 0. At Q, us(Q) = w(Q) = 0,
uss(@Q) < 0 and uy(Q) < 0. Hence

Llu] = —(dius)s(Q) — (d2ut)+(Q) + c(Q)u(Q) = 0.
Since d; > 0, dg > 0, cu > 0, this is a contradiction. Thus either

0 <u(z*,y") < max wu(w,
< uf y)_(WG99 (2,y)
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or u(z,y) < u(z*,y*) <0 for all (x,y). Similar argument shows that if v has
a negative minimum in the interior, we can show (1.16) holds.

Now if ¢ > 0 we consider a perturbation. Choose « so large that L[e®*] =
—(d10® + daa® — ¢)e®® < 0 and let v = u + Ee?.

L[v] = Lju] + EL[e**] <0 forall E >0.

Suppose v has a pos. max. at an interior point @ of . Then L[v] =
—d1v55(Q) — davu (Q) + ¢(Q)v(Q) > 0, a contradiction. Hence

0<u+ Fe* < r%%x{u + Ee**}.

0 < < .

Similar argument holds when v has a neg. min. at an interior point Q. U

Remark 1.3.9. Examining above proof we can conclude L[u] = 0 can be
replaced by Lfu] < 0.

Applying maximum principle to u and —u, we see u cannot have negative
minimum, i.e,

u\x, > min u.
( y) o0
Thus, we obtain the result.

Corollary 1.3.10. If

Lu] = 0 in Q
u = 0 on 0f,

then uw = 0.
As a consequence we have uniqueness of solution.

Corollary 1.3.11. If uy, uo satisfy

Llu] = f in Q
U = g on 0f,

then u1 = us.
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Theorem 1.3.12 (Discrete max. principle). Let the grid function U satisfy
the finite difference equation Ly[U] =3 o A(P,Q)U(Q) =0, i.e,

A(P, P)U(P)+A(P, E)U(E)+A(P, S)U(S)+A(P, N)U(N)+A(P,W)U(W) = 0

for each mesh point P, where coefficient A(P,Q) are generated by finite dif-
ference method and A is pos. def. weakly diagonally dominant.
Then

|U(P*)| < max |[U(P)|, for all Px € int Q. (1.17)
PEO,

Proof. Solving for U(P), we have

UP) = aikm 3 ~AP.QUQ).
Q#P

Since |A(P,P)| > ) |A(P,Q| we have
Q#P

uP) <y
Q7P

max[U(Q)] < max V(@)

A(P,Q) '
A(P, P)

Repeat the same process until you hit the boundary. O

Corollary 1.3.13 (Uniqueness of discrete solution).

LhU =0 mn
U =0 on 0N)

implies U = 0.

Remark 1.3.14. Examining the proof, one can notice a slightly weaker ver-
sion of Maximum principle holds if L(u) < 0. Under the same condition as
previous theorem, except L(u) < 0, we see u cannot have positive maximum

in the interior.

Theorem 1.3.15 (Discrete max. principle 2nd version). Suppose Lj[U] < 0

Then U cannot have a positive mazimum unless U is constant. In other words,

0 <maxU = max U
max () e ()

or

U(p) < 0.
max (p)
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Proof. Suppose there is a point Py € € such that U(F) is positive and
U(Py) > U(P) for all P € . Then by similar argument as above,

APy, Q)

200D e 01Q) < s U(Q) < U(R),

Q#P T Q#P

UP)< Y

Q#P

Hence
U(Q) =U(P)

for all @ in the nhd of Py. Repeating the argument for each @ in the nhd of
Py until we hit the boundary, we see U must be constant. Thus we have the
desired result. O

Note. Minimum principle is obtained when L;[U] > 0. (See exercise.)

Theorem 1.3.16 (Convergence of FDM - More general case). Let u be the
solution of Liu] = —VTAVu+cu =0 in Q and u = g on 0Q and let U be the
finite sequence of grid functions satisfying LobU = 0, where Lp(u) = O(h%),
a > O(truncation error). If A is constant, diagonally dominant, positive defi-
nite, then ||U — ul|cc = O(R%) as h — 0.

Proof. Let w = U — u, then Lyjw] = Ly[U] — Ly[u] = —Lp[u] and w = 0 on
0. Let s(z,y) =12 — (v — 20)? — (y — yo)? with (20,%0) € int 2, r chosen
so large that the circle s = 0 contains Q. Then Lj[s| = L[s] because s is

quadratic. (compute it)

L[s] =—VTAVs+cs = —a11520 — (a12 + a21) 80y — a228yy + C5
= 2(a11 + ag2) + ¢s > 2(a11 + aze).

There exist M > 0 such that |Lp[u]| < Mh® by the hypothesis Ly [u] = O(h®).
We see that

Mhe
S| > han > gl
2(a11 + a22)
Also
Mhas(x,y)}
Ly |w— =2SEY N p o L 1< FLyfu] — MR < 0.
0 e eyl - L 1< FLalul - M <

(Recall w =U — v and Lp[w] = —Ly[u] and w = 0 on 0f2)

Now by the discrete maximum principle-2nd version (where Lj,(U) = 0 is
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replaced by Ly[U] < 0),

Mh%s Mh®%s Mhp“ .
max [ — ——| < max | ————-| = ——————mins < 0.
PeQy, 2(&11 + agg) Peofy, 2(a11 + agg) 2(&11 + agg) o0y,
Thus |w| < % and
= Uloo = ol < 5l < M
u — = |[|Ww —  INax s P —
00 hoo = 2(a1n +a) 2 ~ 2(ai; + a)

O

Exercise 1.3.17. (1) Write down stencil for the fictitious point method and

determine if it is symmetric!

(2) State and prove a version of minimum principle.

1.3.3 Convection -diffusion equation
Consider another type of differential equation, namely a special case of con-
vection diffusion equation.

—€Ugy + auy = f

with the BC. w(0) = ug, u(l) = uy; or Neumann condition «/(1) = 0 with
a(l) > 0. Here, we assume 0 < € << 1. If we use the central difference scheme

for the first order derivative, we get

~Ul | 42U - UL Uk, - Uk
6( i—1 h2z i+1 +a z+12h i—1 — fzh (118)
€ a h 2€ 4 € a h h
() U+ v = (G 5) Ul = (1.19)
Thus the sum of off diagonal elements is
Z‘ | = i+ﬂ‘+ i_ﬂ‘
2NN = 52 T op | T ke T 2l
J#i

If a,h is fixed and € — 0, it becomes a/h, while a; = 2¢/h? — 0. Thus the
resulting matrix is not diagonally dominant and it causes a lot of problems. For
example, the resulting linear system is not positive definite and hence it may

be more difficult to solve. But, most importantly, the resulting discretization
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does not yield an accurate approximation to the problem. One way to fix this
situation is to keep the Peclet number : % < 2 so that the sum of off diagonal
elements is less than or equal to 2¢/ h? = a;;. The disadvantage of this scheme
is that small h enlarges the size of discrete equation.

Numerical Difficulties

(1) The solution may exhibit oscillation which are physically unrealistic

(2) Taking small mesh size means large problem size which take more time

to solve.

(3) The iterative method may fail to converge

Upwind difference scheme

An alternative way to avoid this difficulty is to use backward difference for u,
for a > 0 and forward difference for u, for a < 0. This method of choosing

difference scheme is called upwind difference scheme. For a > 0

~Uj, +2U0! - U} Uh —uh
6( i—1 7 i+1 +a 7 -1

hZ

(ot (Fevs) ot - () vt =t

The resulting system is irreducibly diagonally dominant, thus it is an M-
matrix. Error analysis can be carried out to show optimal order of convergence.

Also, for the solver part, simple Jacobi method works.

Example 1.3.18. [boundary layer]
—eu” + 4 =01in (0,1)

with (0 ) = a,u(1) = b has the unique solution u(z) = Cie + Cy, where

_ b= _ael/e—p
Cl = / and CQ ol/e—1 -

The following examples are taken from (K.W. Morton-Numerical Solution

of convection-Diffusion problems, Chapman Hall, 1996)

Example 1.3.19.

—eAu+b-Vu=0on (0,1) x (0,1)
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Figure 1.7: u(z) = C1e*/* + Co,a=1,b=0and a = 0,b = 1

du __
87_0

Figure 1.8: internal and boundary layer

with
b = (cosf,sin0)

for 0 < 6 < 5 and discontinuous inflow boundary condition

0, yelod)
U(O,y)—{ 1’ yE( ’21]

[N

and g—; =0ony=1,and u=0o0n y =0 or x = 1. This leads to an internal
layer along y = % + xtand and a boundary layer at x = 1 for y > % + tan 6
when tan 6 < % Draw the graph.

Example 1.3.20 (Heat equation).

% +b-Vu = €Auon (—-1,1) x (—=1,1) x (0,7

U(SC,y, 0) = UO(‘T’y)
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where ug(z,y) is a circular cone type centered at (1,0) with

b = b(wy, —wx)
with exact inflow boundary where needed.

Example 1.3.21. (1) A 2-D example exhibiting some (boundary) layer.

(2) The fundamental solution (shifted) of the heat equation:

22

e 4G+1)

dn(t+1)
It is nonseparable.

Example 1.3.22 (Jeon Y.). ! We consider a convection dominated diffusion

equation:
—eAu+b-Vu = 0on (0,1)2
with
1, =0
u(r) =41, y=0and 0<zx<1/3
0, elsewhere
Here ¢ = 107° and b = (1,3)/4/10. This problem has both interior and

boundary layer.

The same equation with different boundary condition.

1, z=0
u(z) =41, y=0

0, elsewhere

Example 1.3.23 (R. Lin-Numer 09-DGLSFEM for singularly perturbed prob-

lems with nonsmooth data). We consider a convection dominated diffusion

! Analysis of the cell boundary element methods for convection dominated convection-
diffusion equations, / JCAM 234 (2010)
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equation:

—EAu+c(z)u = f(z)on (0,1)
u(0) = u(1) = 0, where

1, <05
c(x) =

2—x, x>05

and with exact sol.
671/54_6(2171)/(25)
-1+ B VCONE r < 0.5

1 e(zfl)/e_,’_e(lsz)/(Qe)
- e—l/(2€)+1

u(z) =
x> 0.5

u has boundary layers at x = 0 and x = 1, and an interior layer at x = 0.5
when € << 1. Use e = 107°

Example 1.3.24 (R. Lin 2.). We consider

—Au(z,y) +c(z,y)u = f(z,y) on (0,1)
u = 0 on 02

with exact sol
u(z) = iu*(x,y)(sin drx+2) (1 — e*x/e) (1 — e(mfl)/ﬁ) (1 _ e*y/e) (1 _ e(yfl)/e)

where

2, y<0.5

1, y>0.5

c(z,y) =

3—e=D/C) 4 <05
u*(z,y) =
1+e1-20/C9 4> 05
Q; = (0,1) x (0,0.5) and Qy = (0,1) x (0.5,1), and Ty = (0,1) x {0.5}.

Example 1.3.25 (R. Lin 3. L-shaped domain). We consider a convection

dominated diffusion equation:

—Au+u = fon (—1,1)%\[-1,0?
u = 0on Jf
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with exact sol

u(z) = a(r,0) (1 _ e(z—l)/e) (1 _ 6—(z+1>/e) (1 _ 6(y—l)/e) (1 _ e—(y+1>/e)

a(r,0) = r*/*sin (20 +7r>

Let Ty = {(z,y) : -1 <2 <0}and y=0or z =0 and -1 <y <0 and
I'o =T —T'y. The solution has a corner singularity at the origin. When when

€ << 1, the solution has boundary layers near I's..

Exercise 1.3.26. (1) Show that if h is chosen so that the Peclet num-
ber (ah/e < 2), the scheme (1.19) results in a positive definite sys-

tem (irreuducibly Diagonally dominant)

(2) Solve the PDE in Example 1.3.18 with ¢ = 1072, ... BC changed to
u(0) = 1,u(l) = 0 by a) central difference, b) upwind scheme, h =
27k k =4,5,6,.... Draw graph.

(3) Solve the PDE in Example 1.3.19 with ¢ = 1072, ... by upwind scheme,
h=x2"%k=4,56... Draw graph.

1.4 Parabolic p.d.e’s

Consider a heat equation on a bar.

U = Uz, 0<z <1, 0<t<T, plusIC., BC..

9(t) Q h(t)

f(=)

Figure 1.9: Domain
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Theorem 1.4.1 (Maximum principle). If u satisfies the heat equation for
0<t<T, then

min ht=m< min u < max u < M = max h
a0 {f,9:h} T 0<2<1,0<t<T 0<z<1,0<t<T a0 {f,9:h}

Proof. Put v=u+ E2? E >0

v v

If v attains a maximum at @) € int (), then

Ut(Q) =0,

Thus (vt —v4¢)(Q) > 0, a contradiction. Hence v has maximum at a boundary
point of Q. For any (z,t) € Q

u(z,t) <v(x,t) < maxv(x,t) < M+ E.

Since E was arbitrary, the proof is complete. For minimum, use —F instead
of E. O

More general parabolic p.d.e.
Uy = Augy + Dugz + Fu+ G

Explicit - - - write down the values of grid function
F.D.M

Implicit - - - variables implicitly representing the value

Let the grid be given by

0 = p<z1<a2<---<zxNy1=1, x;=1h, uniform grid

0 = o<ty <+, tj:jk‘
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Explicit method

Uij+1=Uij
W

Uit1,;—2U; j+U; 1,5 u
h2 - T

Uijt1 = NUi—1; + (1 = 2\)U; j + AUj11

where \ = k/h?.

Recall: Stability means solution remains bounded as time goes on.

Theorem 1.4.2. If u is sufficiently smooth, then

" u(z + h,t) — 2u(z,t) +u(z — hyt)
Tr h2

'zom% as h—0

and

U —

=0(k) as k—0

Mat+@—u@Jw

Theorem 1.4.3. Suppose u is sufficiently smooth, and satisfies

Ut = Uy O<z<l, t>0
u(@,0) = f(x)
u(0,) = g(t
u(l,t) = h(t).

If U; ; is the solution of the explicit finite difference scheme, then for 0 < A <

1
2

max ’uz‘,j — Ui,j‘ = O(h2 + k) as h,k— 0,
%

i.e, finite difference solution converges to the true solution.

u=g1(y) u = g2(y)

h__bh 3n lh
u = f(z)

Figure 1.10:
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Proof. Put u;; = u(z;,t;). Then from

(1) ST =y +O(k)

s ._2uA,+u._ .
(2) —H =gl = gy + O(1)

we get

k
Ujj+1 = Ui j + ﬁ(uﬂrlvj — QUZ‘J + ui,Lj) + k‘(O(k‘) + O(hz))

Hence
Uj j+1 = )‘uifl,j + (1 — 2)\)’[1,@'7]' + )\uz‘J’,l’j + Ck?(k‘ + h2)

Let the discretization error be w; ; = u;; — U;; so that
Wi j+1 = )\wi_l,j + (1 — 2)\)’[1)1'7]' + )\wHLj + O(k2 + k‘hQ).

Since 0 < A < %, 0 <1-—2X\< 1, three coefficient are positive and their sum

is 1. (convex combination) We see
|wi,j+1| < )\|wi,17j|+(1—2)\)|wi7j|+)\|wi+17j|+M(k2+kh2) for some M > 0.
If we define HU)JH = MaX]<;<N |wz’,j|’ then

Jwirall < llwjl| + M(k* + kh?)
< w1 + 2M (k* + kh?) < -+ < |lwo|| + (§ + 1) M (k? + kh?).

Since ||lwp|| = 0,
lwia]l < G+ 1D)EM(k+R%) <TM(k+h%), (j+1)k<T.

In fact,

(% uge] + = [ttaszal)
= a p— N .
ogzgnll, bsicp gt T g [Mazea

Remark 1.4.4. If A > %, the solution may not converge.
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Exercise 1.4.5. Prove the formula is unstable for A > % Let

€, T=

0, x#

u(z,0) = with g=h=0

NI—= D=

Uij+1 = AUim1j+ (1 = 20U j + AUita 5, A=k/h?
Ui j+1l = MUi—1,5] + X = D|Us j| + AUig1,4], 1<i<N -1

Here the equality holds because the sign of U; alternates, so the three terms

have the same sign. Hence

N—-1 N—-1 N—-1 N—-1
S Uil =AY Uil + A= 1) D [Uigl + A (Uil
=1 i=1 =1 i=1

Since U(x;,t) = 0,4 =1, N, we can add them and

N—-1 N-2 N-1 N
Do Uigrl =AY Uiyl +@A=1) Y [Uigl + A |Uigl-
i=1 i=0 =1 =2

Let S(t;) = SN, |U(i,7)|. Then since the number of nonzero U; ; for each
J is 2j + 1(Check the numerical scheme, you will see solution is alternating
along x-direction dispersing both direction), U(1,7) = 0,U(N —1,5) = 0 for
27+ 1< N, we see

S(tis1) = (A=1)S(t;) = (A—1)28(tj 1) = - = (AA—1)715(0) = (AA—1)7*1e.

By the same reason, there is a point (x,,t;) such that

1 1

) = 4\ — 1) -
7 S) (A=1) e

U t:)| >
’ (xp, J)‘— 25 + 1

3

D B¢
=
D B

Figure 1.11: Nonzero point



34 CHAPTER 1. FINITE DIFFERENCE METHOD

which diverges as j — oo since 4\ — 1 > 1.

Considering the alternating sign, one can see the solution alternates: For

7 =1, we see
Ui71 = (1 — 2)\)6, Ui_171 = )\6, Ui+171 = X

Uia =2\ + (1 =202, Ui_1a=(1—2\)e+ (1 —2\)e =3Xe(1—2)) < 0.

Stability of linear system

1=20 A ... 0 9(t;)
Vi Ao1-24 U "
. — ° . +
0 A
UN-1j+1 Un-1; 0
A 1-2) )
j

In vector form, Ujy 1 = AUj; + Gj. Assume G; =0, j = 1,2,.... Let p be
an eigenvalue of A. Then by G-disk theorem,

1—2XA—p| < 2x

=2) < 1-=-22—pu <2
—2A < —142XA+pu<2)
1—-4x < p<l

fo< A< %, then —1 < p < 1, hence stable. If \ > %, then |u| > 1 is

possible. So the scheme may be unstable. The following example show it is

actually unstable.
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Example 1.4.6 (Issacson, Keller). Let v(x,t) = Re(e!**~ %) = cos ax - e~ %t

o .ov(x,t+ At) —v(x,t)  v(z+ Ax,t) — 2v(z,t) +v(x — Az, t)
t — Ugx — -

At Az?

- <e‘wm - 1> _ cos(ax + aAz) — 2cos ax + cos (ax — aAx)

At Ax?
- e*wm—l_Qcosan—2
- N At Ax?
1
= vz, t)Kt{e_wAt — [(1 = 2X) + 2X cos aAz]}

1 A
= v(m,t)ﬂ [ewAt - <1 — 4)\sin® 04236)]

Thus v is a solution of the difference equation provided w and « satify e~
1 — 4)\sin? 252,

wAt _

With I.C. v(x,0) = cos auz, solution becomes

Az Bt
v(x,t) = cos axe ! = cos ax (1 — 4\ sin? a2 x>

Clearly, |v(z,t)] < 1, for all A < % However, if A > %, then we have
|1 — 4\ sin? %‘ﬂ > 1, for some Az. So wv(z,t) becomes arbitrarily large for
sufficiently large ¢/At. Since every even function has a cosine series, we may
express any even function f(z) in the form f(x) =), a, cos(anz) to get an

unstable problem.(See book for details)

Implicit Finite Difference Method.

Given a heat equation

u(0,t) = g(t), t>0
u(l,t) = h(¢)
u(z,0) = f(zx), 0<z<L

We discretize it by implicit difference method. Fix a time level j. Then we
have
Uijr1 = Uij _ Uiprj01 = 2Uij1 + Vi1

= ,=1,...
At N PT e

efwt
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Multiply by At, then with A = At/Ax?, we have

Uij+1 = Uij = AUit1,j+1 — 2AU; j+1 + AUi-1,j+1
Uiy =Mt — (14 20Ui 41 + AUizy g

This yields a system of equations in N — 1 unknowns {U; j 11} ' :

AUjJr]_ = Uj + Gj, (1.20)
where
[ —\Up.it1 |
(14+2)) -\ AR
ULJ' 0
A (1420 -
A=- U= | =]
ST o .
0 =X (1+2)) N=Lg AU
L J T

Theorem 1.4.7. The implicit finite difference scheme is stable for all A =
At/Az?. (The solution remains bounded).

Proof. Fix a j and let Uy ;) ; be chosen so that [Uy¢;) ;| > [Ui;l,i=1,...,N—
1. We choose ig = k(j + 1) in the following relation.

Uijir = Uij + MUit1,j41 = 2Ui 1 + Uiy}

Then
(1 + 20U j+1 = Uigj + MUigt1,5+1 + Uig—1,j4+1}-

Taking absolute values,
(1 +20)[Uig,j+1| < |Uig 5l + AUig41,5+1] + Uig—1,5411) < [Uig | + 2A[Usg j11-

Thus Uiy j+1] < [Uig,j| < [Ug(y,j| and hence [U; j11| < |[Uigj1| < [Upgy) 4 for
1 <i < N — 1. Repeat the same procedure until j = 0.

Ui js1l < Ukl < - < | Uko) ol £ M =max(f,g,h), for1<i<N-—1

This relation also holds for ¢ = 0 or IV also. O
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Matrix formulation

We check the eigenvalues of the system
AUj+1 = Uj + Gj.

Eigenvalue of A satisfies |u + (1 + 2))| < 2\ by G-disk theorem. From this,
we see || > 1 and hence the eigenvalues of A~! is less than one in absolute

value. Thus

Uji1 = A Y (Uj+Gj) = - = AT "Ug+A T Go+AT72Gy+ - - +ATIG;.
U 1]l < A7 [ Uo| + [ A1 - %max 1G]
L—[lA )

remain bounded.

Note. A does not have —1 as eigenvalues and all the eigenvalues are

positive real.

Theorem 1.4.8. For sufficiently smooth u, we have

luij — Uijl = O(h* + k) as h and k — 0 (for all \).

Proof. Let u;j = u(x;,t;) be the true solution. Then we have

Uiyj 1 — Uiy

1
’ — ﬁ{ui+1,j+1 — 2 g1+ Uim1 1)+ (’)(h2 + k).

Let w; ; = u; j — U; ; be the discretization error. Then

wijr1 = Wij+ Mwip1 41 — 2w j41 + wi—1j+1} + O(kh? + k?)
(1+ 2)\)’11)@'7]'_,_1 = Wi ; + AWip1,j+1 + AWwi—1 41 + O(kh2 + kQ).
Let [Jw;|| = max; |w; ;|. Then for all 4

(1 20w ] < [fwgl] + 27 Jwj | + Ok + 1)

and so
(L4 22w || < ooy} + 2M]wa || + O(kH? 4+ £2).
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Wi j1 Wim1j41 Uil Uitd,j41

Ui—1, i, Uit Ui,j

Figure 1.12: Stencil for forward, backward Euler method

Thus
lwjtall < lwyll + C(kR* + k%)
< o < lwoll + CG + Dk(k + h?)
< lwo|l + CT(k 4 h?) = CT(k + h?)
fort=(+1)k<T. O

1.4.1 Discretization of parabolic p.d.e, General Case

Consider

Ou 0, Ou 0, Ou :
I.C. w(z,y,0) = h(z,y)in

B.C. u(x,y,t) = g(z,y,t) for (z,y) € ON.

where ¢, p,~, f are functions of z,y and ¢t. Assume

0<po <pr,y,t)<m
0  <yxyt)<vy
0<eo §C(:C,y,t)§cl.

Use central difference for pu, at (i & 1/2,5) and pu, at (i,j & 1/2). With
UZT}] = U(x27yj7tn) we let
— 1
MUY = Rz P?+1/2,jUﬁLj +P?71/2,jUﬁ1,j - (pl’-ﬁrl/% +p?71/27j)Ui77Lj

1
t oap

|

P2V TP Ul = Wl 4P UD ) = 05U

n
Z?J
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Wim1,541 Uil Uitlj4l

t=j4+1
t=j+1/2
t=j
Ui—1,; i, j Uiy,

Figure 1.13: Stencil for Crank-Nicolson method

Now we consider explicit and implicit scheme at one stroke. For 0 < 6 < 1,
we let

’rLﬂ»l n

n+1 n ij  ij _ n+1 n n+1 n

For 6 = 0, we have

CZT” = MypU"; + fj; forward Euler

n+1 n
Uij - U

For 8 = 1, we have

+1 _
cn+1 Ui,j Uz,J

" = = MhUZ??;Fl + f;}“ backward Euler

For 6 = %, we have Crank-Nicolson.

Matrix formulations

el it
) T - M i+l j n ﬁn
(%)= oe = (%) ore

Cij 1 - ;i 1 = 1, .
Y I —ZM n+1: g M n Z(F"™ Fn+1
(( t> 2 h>U Ar M) U E )

where ¢;; = %(cn-“ + ).

For 6 =1,

Exercise 1.4.9. (1) Show the Crank-Nicholson scheme is stable for all \.

(2) Show that with 6 = 1/2, the truncation error is O(At? + Ax?).
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(3) Consider a heat equation

Ut = KlUgg O<x<l, t>0
u(z,0) = f(z)
u(0,t) = g(t)
u(l,t) = h(t),
where k£ > 0 is constant, say £ = 1. If f(z) = cosmz, g(t) = e ™",  h(t) =
—e~™ 5t it has solution u = e~ % cos . (For nonseparable example,

just add linear function in z or use (shifted) fundamental solution of
heat equation) Use the following method to compute numerical solution
up to T'=1.0. Check ||lu — U||z (or ||u — Ul|s)-

(a) Explicit FDM with h = 1—10, %, 4—10, -+, Choose time step At so that
A =k/h? = 0.4 and 0.6.
(b) Imphclt FDM with h = 10, 210, 410, -+-. Choose time step At so that

=k/h?=0.4, 0.6, 0.8 and 1.6 .
(c¢) Crank-Nicholson scheme with k = Ch,C =1,2,3,---10.

You can use either Gauss-Seidel type of iteration method or LU-decomposition

to solve the system of equations arising in the implicit method.

Truncation error - 1 D.

1) then we get

Assume ¢ = 1. If we use central difference at (z;,t i+l
2

Wij+1 — Uij 2
% = w(wi,ty 1)+ OK). (1.21)

and
k
Mpu; j41 = gz (24, tj11) + O(h?) = ug[;g[;(avi,thr 1)+ 2umt(acl, 4+ 1) 4+ O(k?* + h?)

k
Ut (Tir 1) + O(K* + h?)

Mhui,j = Uzz(xivtj) + O(hQ) = umm(xivtj-i-%) 5

we see

HMhui,j—f—l + (1 - H)Mhui,j (1.22)

k
= uwx(xi,tj+%) + 5(20 — Dugge(z4,t i+l D)+ O0(k*+h%)  (1.23)
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By (1.21), (1.22) we have

w — OMpu; j — (1 — 0)Mpu; j 1 (1.24)
k
k
= =520 = Duga(wi, ty, 1) + O(k* + 17) (1.25)

Hence the truncation error satisfies
k 2 2
T(z,t) = 5(2(9 - 1)umt(xi,tj+%) + O(k* + h?), (1.26)

where O = O(uy, Ugzrz)-

1.5 Finite element method for parabolic problems

Let I = (0,T).
% —Au = finQxI (1.27)
u = 0inI'x1 (1.28)
u(z,0) = u’in Q. (1.29)

We shall study two methods: Semi-discretization(discretization in space only)

and Full-discretization(discretization in time and space).

1.5.1 One dimensional model problem

du_ 20 f, (zt)e(0,L) x I (1.30)

5~ Y a2 . (=, ,L) x :
u(0,t) = wu(mt)=0, tel (1.31)
u(z,0) = u’(z), z¢€(0,L). (1.32)

For simplicity, assume o = 1, L = 7 and f = 0. Using the periodic B.C., let

us express u in terms of its Fourier sine series:

o0

u(z,t) = Z cje_j2t sin(jx),

j=1
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2

s
where ¢; =/ — / u®(z) sin(jz) dz. Generally, the solution is given by
0

™

o0 .
u(z,t) = che_jQW‘Qt/L sin (%) ,

J=1

[2 L j
cj = Z/ uo(:c) sin (%) dxr. We see that v is a linear combination of
0

sine waves with amplitude cje_th If j2t is large, eI ~ 0,(i.e, high frequency

component quickly damps out and u(x,t) becomes smoother) which happens

if j is large or ¢ is large. This phenomena is consistent with the nature of

diffusion process such as heat conduction. However, when ¢ is close to 0, u is

not smooth. It is known that

[ullL2(0,m) = O).

The nature is like this: The smoother the initial function is, the more rapidly

c; decays as j — oo. An initial phase when w is large, is called an initial

transient. This will affect on choosing the time step size. Basic Stability.

lu(- O < el t el

: C
Ju(- ) < ?HuOH,tEI.

1.6 Semi discretization in space

Let V = H}(Q). Multiply the equation by v

Let Vj, = Span{¢1,--- ,¢n}. Then the finite element formulation is

(u.h(t)’v) + a(uh(t)’v) = (f(t)’v)
(up(0),v) = (uo,v), v € V.

(1.33)
(1.34)
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With up (2, t) = 30, &i(t)¢i(x),

D_&i0(6i,05) +Z@ a(¢i @) = (f(t),¢;)

| Zs (6ir05) = (@W¢5), j=1,---,N.

In matrix form

BE() + A1) = F(t)
B0) = U°

where B = (bi;), A = (aij), F = (Fj) € = (&),U° = (U}). bij = (¢5,¢:) ,
Aij = a(e;, ¢i)), ete.

Mass matrix B and stiffness matrix A is SPD. x(B) = O(1), k(4) =
O(h~2). With Cholesky decomposition B = LTL, n = L¢, we can reduce it as

i An) = gt (139)
n0) = 7° (1.40)

where A = L™TAL™! is also SPD. g = L~TF, n° = L=TU°. The solution is
given by

¢
— oAt 0 e~ At=5) (s ds.
t) = e+ [ e A0
Stability: Take v = up(x,t) := up(t) in (1.37) with f =0
(un(t), un(t)) + alun(t),un(t)) = 0

=L un I + alun(®) un(0) = 0

lun ()] +2/0 a(un(t), un(t)) = [lun(0)* < [[u’[|*.

In particular,
lun @) < Jlun (O] < [[u’ll, ¢ >0,

Theorem 1.6.1. ¢ There is a constant C such that

max llu(t) —un(t)| < C <1 +1In h2> maxh lw()|| g2- (1.41)
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1.7 Fully discrete Scheme

We shall now discretize the scheme in time also. Here, we use finite difference
method to discretize along time while we maintain finite element discretization

along space. First consider a related problem (1.37).

To see the behavior of n(t), we write

N

n(t) =Y (1, xa)e " X,

i=1

where {y;} is an orthonormal eigenvectors of A,
p <<, o =0(1),  pa = O(h?).

This again has an initial transient. For accuracy, we need to take small time

step, or use implicit method.

O=to<ty, - ,<tn=T, At,=1t,—th_1.

Forward Euler method:

uttt —
—h hoy +aup,v) = (f(tp),v), veEVL,n=12--
Atn—f—l

(u%,v) = (u’,v).

Backward Euler method:

“ZH —uy n+1
——=v | +alu, ,v) = (f(thgr),v), veEVy,n=12-(142)
Athrl

(up,v) = (u,0).
Discretization error is O(At,). Let upy(z,t) = 3™ &(t)éi(x). Then taking
v = ¢j

<Zf?+1¢j,¢j)+Atn+1a<Z§?+l¢j,¢j> = (Zsm»,¢j>+Atn+1<f<tn+1),¢j>
Z Z Z (1.43)
Or

(B + Aty 1 A" = BE" + Aty 1 Ftny1). (1.44)
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For stability with f = 0, take v = uZ“ in (1.42)
(UZH, UZH) — (uZJrl, up) + Atn+1a(uz+1, uZJrl) =0.
Using arithmetic-geometric inequality (u,v) < 3(e||ul|> + ”%”)
SR = [uRIP) + Atrae ™ uf ) <0
Summing up
g P+ 28t g a(uy ™ up ™ < g1 < [l

In particular
i U] < gl < u®ll,n = 1,2 (1.45)

Now Crank-Nicholson. We use combination of forward and backward Euler

scheme.

n+1 n n+1 n
up Uy up  tuy () + f(t)
<7Atn+1 ,v) +a <72 ,v) = ( 5 0], (1.46)

(wv) = (W), veVy,n=12---
Discetization error is O(At,?)

Taking v = (u}™ + u}')/2 we obtain the stability as before. In matrix

form

(B N At;HA) et _ (B B At”“A) g,UrAthF(th) + F(ty) (1.47)

2 2

As in (1.39) we use n = L& associated with Cholesky-decomposition, then the

transformed equation becomes

n+1 n

n —77+

At %A(W"HJFW") = %(g(tn+1)+g(tn)). (1.48)

In case g = 0, we have

1 - 1 -
(I + EAtTl'FlA) ’I]n+1 = <I - §Atn+1A> 7]”
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1 AN\ 1 _
‘ <I + 5Atn+1A> (I — §Atn+1A>

Thus the scheme is stable for all time step At, (unconditionally stable) How-

and

<1

= max T
j 1+ QAtn-i-l)\j

' 11— 1AL, 1]

ever, for backward-Euler or Crank-Nicholson method, one has to solve a system
of linear equation for each time step, which is costly.

n+1

For the forward Euler method, one can compute 7 directly without

solving any system, but for stability, one has to take small time step. In fact,

one can show that
0"t = (I = At A"

and
11— Aty Al = max |1 — Aty < 1
J

only if At, 1Ay < 2 or At, 1 = O(h?) (conditionally stable). Hence for the
forward Euler method the stability is guaranteed only when time step is very

small even for moderate h.

1.8 Hyperbolic Equation
Consider a first order system of hyperbolic equations:

Uy + a1y + a12v, = by (1.49)

Vg + a91Uy + a2ov; = by

where a; ; and u, v and function of (z,1t).

v(z,0) = g(x), —oco<z<o0.
Let u = [u,v]T, b= [b1,b2]?, A= (a;;). Then the D.E. is of the form
u; + Au, = b.

Equation (1.49) is called hyperbolic, if there exist a P such that P~1AP =
diag{\1, Ao} where \;(x,t) are real and distinct. Let z = [z, 22]” be defined
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by u = Pz, then

Pz + Pz + A(P,z+ Pz,) = b
Pz, + APz, = b— (P + AP,)z
zi+ P 1APz, = P Yb— (P, + AP,)z} = f(x,t,2).

Componentwise,
(zi)t + Ni(zi)z = Biy  i=1,2.
Let z;(t),i = 1,2 be the solution of the o.d.e.

dx i
dt

= \i(x;,t) such that xz;(t") = a™.

Let z(t) = zi(xi(t),t) be defined along the curve d;ti = Xi(z;,t) (called char-

acteristics). Then

621‘ 6ZZ A
% + E - /Bl(xutvz)

dz; 0z dx 0z

% - % . E + E = )\i(xi(t),t)

Thus z;(x;(t),t) solve the o.d.e (p.d.e on the characterstics) with

ZZ(O) = ZZ(SCZ(O), 0) = (P_IU)Z(IEZ(O), 0)

I I T I I
F1|(331,t) Py(Z2,t) €z ! P*(z*,t%) €z

dom. of dependence dom. of influence

Figure 1.14: Domain of depend/influence

The shaded part is called the “Domain of dependence” of (z*,t*) and its
base is called the “interval of dependence”.

A necessary condition for convergence: The numerical domain of depen-
dence must contain the analytic domain of dependence. If the grid point is

only in the inner region of the domain of dependence, then changing f by
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f+0, g by d+ ¢ near the boundary yields the same (numerical) solution.

Example 1.8.1. Plucked string of wave

Ut = CUy
UVt = Cly
u(z,0) = f(z)

v(z,0) =1[7G(o)do = g(x)

Upt — CQUM =0

u(z,0) = f(x)
ug(x,0) = cvg(x,0) = G(z)

t

1 1
Eigenvalues of A are +c. Corresponding to the eigenvector < 1) , <1> There-

1 1
fore, P = .
1 -1
piap= (¢ Y) ama pPl=
0 —c 1 1

If u= Pz (u=(u(z,t),v(z,t)), z = (21(z,t), 22(x,t))), then

N | —

82’1 8z1

- +c7—=0
c 0 _ ot Ox
Zt+<0 —C)Zm_():%_%_o
ot ox
We check the total derivative D’ along dxl = ¢, and ddif = —c. For
example,
Dz 0z dx oz d
— = — =0 al = 1.50
dt ot i 0w - romew = ¢ (1.50)
Dzo 0z dx 622 d
= - = =0 along ©2 — ¢, 1.51
dt ot a0z | Mome ¢ (1.51)

Thus if the curve passes a point (z*,t*) in figure 1.14, then solving the charac.
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equations (1.50) and (1.51) with I.C. z(¢*) = 2*, we obtain the characteristics
x1(t) = ct+ax* —ct* and xo(t) = —ct+a*+ct*. Hence along x1(t) = ct+x* —ct*

z1(x(t),t) = z1(ct + 2™ — ct™,t) = 2z (x" — ct*,0) since z; is constant along x1(t)
Similarly along zo(t) = —ct + x* + ct*

zo(x(t),t) = zo(—ct + x* + ct™,;t) = zo(x™ + ct™,0) since 2o is constant along xa(t).

pag L1 -1\ (u
7z = = —
2\1 1 v

za,t) = Slule,t) —v(@,t)] = S[f(@" —ct’) — g(a™ — ct”)]

N~ N~
N~ N~

zo(x,t) = =[u(z,t) +v(x,t)] = =[f(x" +ct™) + g(x* + ct¥)]

Here the points (x,t) lies on the characteristics passing (z*,¢*). Hence
u P L1 1| flat = et) = g(at — ct?)
— 7= =
V] (o 1) 21=1 1| | fla* 4 et*) + g(a* + ct*)
*

1 flz* —ct*) — g(a* — ct*) + f(x* + ct*) + g(z* + ct*)
2|l — ct) + gl — ct) + F@ + ) + gla* + i)

These are called D’Alembert solutions.

1.8.1 Method of Characteristics

Numerical procedure “See R.S. Varga” or “Y. Gregory” Chl6.

Assume we have equations for the characteristics and obtained transformed

the pde along the characteristics:

L = Bi(w,t, 21, 22) along Lt = N\(w;,t), i=1,2.

Assume z;(t, z) is known at ¢t-th level at all points (say by interpolation).

1st step: Find Pl(.’il,t), Pg(jz,t) by

r — I

At

= N\(z*,t%), i=1,2 (Backward)
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2nd step:

zi(P*) — zi(5)

At = Bi(Pi, z1(P;), 22(P;)) (Forward)

solve for z;(P*), i =1,2.

Figure 1.15: Find 71, ¥ using characteristics

1.8.2 FDM for Hyperbolic equations

Given pure initial value problem

Uy = Uge,  u(z,0) = f(2),u(z,0) = g(x).

For j =0,1,---
Uij—1 —2Uij + Uijp1 _ Uic1,j —2Usj + Uigr4 ,
: VBRI ’ : —1,...,N—1
INE Az? TR
kAt
Uijrr =m* (Ui +Uipr3) + 200 =m*)Uij = Uijr, m =3 = (152)

I.C. First condition is easy to implement, U; o = f(x;). For second condition,

use . U
9(z;) = utlt=0 = uthq +O(k?) (1.53)
Thus
UZ'71 - Ui7,1 = Qkigl'. (154)
For j =0

Uin =m*(Ui—10 + Uis10) +2(1 = m*) U0 — Ui —1.
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Replacing U; 1 = U; 1 — 2kg;, we have

U1 = %mz(fi—1 + fir1) + (L= m?) fi + kg;. (1.55)

Discussion of convergence

We first consider stability. From the consideration of characteristics, we have

to assume |m| < 1.(Slope of char.) Let z; ; = u;; — U; j. Then
zij1 = m(zim1j + zip14) +2(1 —m?)zi j — 2 j—1 + O(k*) + O(k*h?). (1.56)
If we use (1.53) in the first time step,
zi1 = O(k%). (1.57)

To investigate stability, we try to see thew effect of a single term exp(y/—15z).
1.C becomes

zi0 = exp(vV —1p1h). (1.58)
Attempt a solution by separation of variables
z; ; = exp(ajk) exp(v/—15ih). (1.59)
Substituting into (1.56) and dropping the truncation error,
ak —ak 2 12 1
e + e " =2 — 4m*sin (iﬁh)

which is 1
(e%)2 — 2(1 — 2m? sin2(§6h))eak +1=0. (1.60)

To avoid increasing solution as j — oo, it is necessary that |e®*| < 1 for all
real 5. But the product of two solution of the quadratic equation is 1, hence
one of the solution must exceed 1 unless both are equal to 1 in magnitude.

Thus discriminant must be less than 0,
2. 2.1 2
(1 —2m*sin (iﬁh)) <1

1
m2<7

~ sin?(38h)
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This is always true if
m = At/Ax < 1. (1.61)

A more careful analysis shows(Assume m = 1)

, ..
251l < 3BR® + 53(5 = 1) AbY, (1.62)
where ||z;]| = max; |2; ;|. Since t = jh
1
|2;]| < tBh* + §t2Ah2. (1.63)

where

1.8.3 Implicit method for second order hyperbolic equations

Use average of two second central differences:

Uiji1 = 2Uij+Uij1 = 5m* {(Uiy1j01 — 2Ui 11 + Uis1jy1)

(1.64)
_|_ (UZ+1,_]_1 — 2U17]_1 + Ui—l,j—l}

2 2 2
—m U141+ 2(1 = m?)U; j1 — m*Ui—1 j11

: ; : (1.65)
=4U; ; + m°Ujq1j-1 — 20+ m*)U; j—1 + m°U;—1 j—1

Note that this method is applicable for problems with finite domain only.



