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Chapter 1

Finite Difference Method

1.1 2nd order linear p.d.e. in two variables

General 2nd order linear p.d.e. in two variables is given in the following form:

L[u] = Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G in Ω,

where Ω is an open set in R
2. According to the relations between coefficients,

the p.d.e.s are classified into 3 categories, namely,

elliptic if AC −B2 > 0

hyperbolic if AC −B2 < 0

parabolic if AC −B = 0.

Furthermore, if the coefficients A,B and C are constant, it can be written as

[
∂

∂x
,
∂

∂y
]

[

A B

B C

][

∂u
∂x
∂u
∂y

]

+Dux + Euy + Fu = G.

Auxiliary condition



















B.C. Dirichlet, Neumann, Robin

I.C. for parabolic problem

Interface Cond

The condition u = g0 on Γ0 ⊂ ∂Ω is called the Dirichlet B.C., the condition
∂u
∂n = g1 on Γ1 ⊂ ∂Ω is called the Neumann B.C., the condition α∂u

∂n + u =

1
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g2 on Γ2 ⊂ ∂Ω is called the Robin B.C. Here Γ0 ∪ Γ1 ∪ Γ2 = ∂Ω is a disjoint

union except measure zero set. If some of these conditions are mixed, we say

it is a mixed B.C.

Elliptic Problem

In general a 2nd order linear p.d.e. in R
d can be given in the following conve-

nient form:

L[u] = −∑d
i,j=1

∂
∂xi

(

aij
∂u
∂xj

)

+ cu = −∇ · A∇u+ cu = f in Ω

+ B.C.s or I.C.s

(1.1)

Here A = (aij)
d
i,j=1 is the coefficient matrix. L is called a differential oper-

ator. The equation is called elliptic if A is positive definite, in which case a

typical B.C. is u = g on ∂Ω. Here u may represent some physical quantities

such as electromagnetic potential, displacement of elastic membrane, temper-

ature, concentration of chemical component, or pressure of a fluid(in porous

media), etc.

• behavior near boundary

• Equation (1.1) holds in an open set Ω.

Notations

Let

C(Ω), C1(Ω), C(Ω̄), Ck(Ω̄), C(∂Ω)

denote some functions spaces. Define

∂iu =
∂u

∂xi
, ∂iju =

∂2u

∂xj∂xi
,∆ = (∂11 + · · · ∂dd)

so that ∇ : C1(Ω) → (C(Ω))d and ∇· : (C1(Ω))d → C(Ω) represent differential

operators via

∇u = (∂1u, · · · , ∂du)T , ∇ · v = ∂1v1 + · · · + ∂dvd.

We call ∆ the Laplace operator and also write

∆ = ∇ · ∇ = ∇2
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Definition 1.1.1 (Classical solution). Assume f ∈ C(Ω), g ∈ C(∂Ω). A

function u is called a classical solution of (1.1) if u ∈ C2(Ω) ∩ C(Ω̄). If

f /∈ C(Ω) or g /∈ C(∂Ω) then the solution u may not belong to C2(Ω)∩C(Ω̄).

Still the solution may exists in some sense, called a weak solution.

We say a pde is “well posed” if a unique solution exists and the solution

depends continuously on the data. There are basically three classes of method

to discretize it,

(1) Finite Difference method

(2) Finite Element method

(3) Finite Volume method

1.2 Finite Difference Method

Let u(x) be a function defined on Ω ⊂ R
n. Let Ui,j be the function defined over

discrete domain {(xi, yj)} (such points are grid points) that may approximate

ui,j = u(xi, yj). Such functions are called grid functions.

Difference operator

∂+Ui =
Ui+1 − Ui

hi+1
, forward difference

∂−Ui =
Ui − Ui−1

hi
, backward difference

∂0Ui =
Ui+1 − Ui−1

hi + hi+1
, central difference

∂2Ui =
2(∂+ − ∂−)
hi + hi+1

, central 2nd difference

Example 1.2.1. Note that

∂+Ui =
Ui+1 − Ui

hi+1
= ∂0Ui+1/2, central difference at xi+1/2

∂−Ui =
Ui − Ui−1

hi
= ∂0Ui−1/2, central difference at xi−1/2

Exercise 1.2.2. (1) We can interpret ∂2Ui as a central difference 2
∂0Ui+1/2−∂0Ui−1/2

hi+hi+1
.

Derive the truncation error.
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Example 1.2.3. Consider the following second order two point boundary

value problem :

−u′′(x) = f(x), u(a) = c, u(b) = d.

Assume a mesh a = x0 < x1 < · · · < xN = b,∆xi = xi+1 − xi = h. If u ∈ C4,

we replace the derivative by a difference quotient, and obtain

−ui−1 − 2ui + ui+1

h2
+O(h2) = f(xi), i = 1, · · ·N − 1, u0 = c, uN = d

Dropping the error term, we obtain a system of linear equations in the ap-

proximate values Ui:

−Ui−1 − 2Ui + Ui+1

h2
= f(xi) := fi, i = 1, · · ·N − 1, U0 = c, UN = d.

This is an (N − 1)× (N − 1) matrix equations.

h−2



















2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2





































U1

·
...

·
UN−1



















=



















f1

·
...

·
fN−1



















+ h−2



















c

0
...

0

d



















Above equation can be written as LhU
h = F h, where Uh = (U1, · · · , UN−1)

and F h = (fi) + boundary terms. It is called a difference equation for the

given differential equation.

Exercise 1.2.4. Write down a matrix equation for the same problem with

second boundary condition changed to the Neumann condition at b, i.e, u′(b) =

d. If one uses first order difference for derivative, we lose accuracy.

We need an extra equation in this case. There are several choices:

(1) Use first order backward difference scheme

d = u′(b) ≈ UN − UN−1

h

append it to the last equation. (first order accuracy)

(2) Assuming the D.E. holds at the boundary, form a central difference equa-
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tion at UN by introducing a fictitious point UN+1 :

− 1

h2
(UN−1 − 2UN + UN+1) = f(1) (1.2)

1

2h
(UN+1 − UN−1) = d. (1.3)

Eliminating UN+1 from these eqs., we have

UN − UN−1

h2
=

d

h
+

f(1)

2
. (1.4)

Append it as N -th equation. The matrix is still symmetric; Eq. (1.4)

can be viewed as centered difference approximation to u′(xn − h
2 ) and

rhs as the first two terms of Taylor expansion

u′(xn − h

2
) = u′(xn)−

h

2
u′′(xn) + · · ·

(3) Approximate u′(1) by higher order scheme such as

uN−2 − 4uN−1 + 3uN
2h

= d.

In this case one has second order truncation error (Show it) but the

matrix loses symmetry.

Exercise 1.2.5. (1) Solve the D.E. in Example 1.2.3 with f = 2 − 6x

so that u = x − x2 + x3 and the following BCs (with h = 1/n, n =

5, 10, 20, 40, · · · ). Report the error ‖u− uh‖L2=̇
√
∑

i |(u− uh)(xi)|2 us-

ing a Table.

(a) u(0) = 0, u(1) = 1 (Dirichlet)

(b) u(0) = 0, u′(1) = 2 (Neumann) For this problem implement all

three method in the previous exercise (1), (2) and (3).

(2) Write down the stiffness matrix of 2D problem with Neumann condition

at x = 1 on the unit square with 4×4 grid. Label the node x1, x2, x3, · · ·
from the bottom row.(excluding the boundary) There are two possibil-

ities to treat the Neumann condition: One is to use backward differ-

ence. Another is to assume fictitious values and use central difference,

then incorporate them into the five point stencil. In other words, use

ux=̇
u9−u3
2h = g2(1,

1
4) and substitute into the stencil, the third equation
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b b b

b b b

(1, 1) (2, 1) (3, 1)

(1, 2) (2, 2) (3, 2)

g1

g2

x1 x2 x3 x4

x5 x6 x7 x8

x9

x10

b b b b

b b b b

Figure 1.1: Numbering and Grid for the Neumann problem

becomes

1

h2
(−2u3 + 4u4 − u8) = (f +

2

h
g2)(1,

1

4
) +

g1
h2

.

Example 1.2.6 (Heat equation). We consider

ut = σuxx, for 0 < x < 1, 0 < t < T

u(t, 0) = u(t, 1) = 0

u(0, x) = g(x), g(0) = g(1) = 0

Let xi = ih, i = 0, · · · , N,∆x = 1/N and tn = n∆t,∆t = T
J . Then we have

the following difference scheme

Un+1
i − Un

i

∆t
= σ

[

Un
i−1 − 2Un

i + Un
i+1

∆x2

]

,

for i = 1, 2, · · · , N − 1 and n = 1, 2, · · · ,M − 1 where Un
i ≈ u(ti, xn). From

the boundary condition and initial condition we have

U0
i = g(xi), U

n
0 = 0, Un

N = 0.

Un+1
i = Un

i +
σ∆t

∆x2
[

Un
i−1 − 2Un

i + Un
i+1

]

.

In vector notation

Un+1
h = Un

h − σ∆t

∆x2
AUn

h
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where A is the same matrix as in example 1. If n = 0, right hand side is

known. Thus

Un
h = (I − σ

∆t

∆x2
A)nG, G = (g(x1), · · · , g(xN−1))

T .

This is called forward Euler or explicit scheme. If we change the right

hand side to

Un+1
i − Un

i

∆t
= σ

[

Un+1
i−1 − 2Un+1

i + Un+1
i+1

∆x2

]

Un+1
i = Un

i +
σ∆t

∆x2
[

Un+1
i−1 − 2Un+1

i + Un+1
i+1

]

.

(I + σ
∆t

∆x2
A)nUn

h = G, G = (g(x1), · · · , g(xN−1))
T .

This is called backward Euler or implicit scheme.

1.2.1 Error of difference operator

For u ∈ C2, use the Taylor expansion about xi

ui+1 = u(xi + hi) = u(xi) + hiu
′(xi) +

h2i
2
u′′(ξ), ξ ∈ (xi, xi+1)

∴

ui+1 − ui
hi

− u′(xi) =
hi
2
u′′(ξ).

Expanding u(xi) about xi+1,

u(xi) = u(xi+1)− hiu
′(xi+1) +

h2i
2
u′′(xi+1)−

h3i
6
u′′′(θ).

These are first order accurate. To derive a second order scheme, expand about

xi+1/2,

ui+1 = ui+1/2 +
hi
2
u′(xi+1/2) +

1

2
(
hi
2
)2u′′(xi+1/2) +

1

6
(
hi
2
)3u(3)(ξ)

ui = ui+1/2 −
hi
2
u′(xi+1/2) +

1

2
(
hi
2
)2u′′(xi+1/2)−

1

6
(
hi
2
)3u(3)(ξ).

Subtracting, we obtain

ui+1 − ui
hi

= u′(xi+1/2) +
h2i
24

u(3)(xi+1/2) +O(h3i ).
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Thus we obtain a second order approximation to u′(xi+1/2). By translation,

we have
ui+1 − ui−1

2hi
− u′(xi) = O(h2i /6) if hi = hi+1. (1.5)

Assume hi = hi+1 and we substitute the solution of differential equation

into the difference equation. Using −u′′ = f we obtain

(−ui−1 + 2ui − ui+1)

h2
− f(xi) := Lhu− F h

=
1

h2
(−ui + hu′i −

h2

2
u′′i +

h3

6
u(3) − h4

24
u(4)(θ1) + 2ui)

+
1

h2
(−ui − hu′i −

h2

2
u′′i −

h3

6
u(3) − h4

24
u(4)(θ2))− f(xi)

= −u′′i − f(xi)−
h2

24
(u(4)(θ1) + u(4)(θ2))

≤ h2

24
max |u(4)|.

Thus we obtain a discrete equation

LhUh = F h. (1.6)

We let τh = Lhu− F h and call it the truncation error.

Definition 1.2.7. We say a difference scheme is consistent if the truncation

error approaches zero as h approaches zero, in other words, if Lhu− f → 0 in

some norm.

Truncation error measures how well the difference equation approximates

the differential equation. But it does not measure the actual error in the

solution. However, for a stable scheme, these two errors are equivalent.

Use of different quadrature for f . Instead of f(xi) we can use

1

12
[f(xi−1) + 10f(xi) + f(xi+1)] =

5

6
f(xi) +

µ0

6
f(xi)

where µ0f(xi) is the average of f which is f(xi) +O(h2).

Nonuniform grid(irregular mesh)

We use central difference scheme at xi±1/2 to get

u′(xi+1/2) ≈ ui+1−ui

hi+1
and u′(xi−1/2) ≈ ui−ui−1

hi
.
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Thus, it is natural to approximate as

u′′(xi) ≈ (
ui+1 − ui

hi+1
− ui − ui−1

hi
)/(

hi + hi+1

2
). (1.7)

Definition 1.2.8. Lh is said to be stable if there is a constant C independent

of h such that

‖Uh‖ ≤ C‖F h‖ for all h > 0

where Uh is the solution of the difference equation, LhU
h = F h. In other

word, Lh is stable if and only if L−1
h is bounded.

Definition 1.2.9. A finite difference scheme is said to converge if

‖Uh − u‖ → 0 as h → 0.

eh = Uh − u is called the discretization error.

Theorem 1.2.10 (Lax equivalence theorem). Given a consistent scheme, sta-

bility is equivalent to convergence.

Proof. Assume stability. From Lhu− f = τh, LhUh−F h = 0, we have Lh(u−
Uh) = τh. Thus,

‖u− Uh‖ ≤ C‖Lh(u− Uhh)‖ = C‖τh‖ → 0.

Hence the scheme converges and the error is bounded by truncation error.

Obviously a convergent scheme must be stable. From the theory of p.d.e, we

know ‖u‖ ≤ C‖f‖. Hence

‖Uh‖ ≤ ‖Uh − u‖+ ‖u‖ ≤ O(τh) + C‖f‖ ≤ C‖f‖ ≤ C‖F h‖.

Exercise 1.2.11. (1) Derive a truncation error for (1.5) in case of irregular

mesh.(use weighted difference)

(2) Find truncation error for of difference scheme for −u′′(xi) in (1.7) in case
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of nonuniform grid.

Lhu = 2[−hiui+1 + (hi + hi+1)ui − hi+1ui−1]/hihi+1(hi + hi+1)

= 2

[

−hi(ui + hi+1u
′
i +

h2i+1

2
u′′i +

h3i+1

6
u
(3)
i +O(h4)) + (hi + hi+1)ui

−hi+1(ui − hiu
′
i +

h2i
2
u′′i −

h3i
6
u
(3)
i +O(h4))

]

/hihi+1(hi + hi+1)

= −u
(2)
i +

1

3
(hi+1 − hi)u

(3)
i +O(h2i + h2i+1). (1.8)

(3) Use 1
3 [f(xi) + f(xi+1) + f(xi−1)] for the right hand side. What is the

truncation error?

(4) Show for uniform grid, we have

−ui−1 + 2ui − ui−1

h2
=

1

12
[f(xi−1)+10f(xi)+f(xi+1)]+Ch4max |u(6)(x)|.

1.3 Elliptic equation in 2D

1.3.1 Basic finite difference method for elliptic equation

First consider the following elliptic problem:(Dirichlet problem)

−∆u = f in Ω

u = g on ∂Ω

(1) Approx. D.E. −(uxx + uyy) = f by a finite difference at interior mesh

pts.

(2) The unknown function u is approximated by a grid function Uh. Assume

u ∈ C4.

In one dim case,

u(x+ h) = u(x) + hux(x) +
h2

2 uxx(x) +
h3

6 uxxx(x) +O(h4)

u(x− h) = . . .

Thus
u(x+ h)− 2u(x) + u(x− h)

h2
= uxx(x) +O(h2)
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while in 2D case

uxx(x, y)
.
= [u(x+ h, y)− 2u(x, y) + u(x− h, y)]/h2

uyy(x, y)
.
= [u(x, y + h)− 2u(x, y) + u(x, y − h)]/h2

××

×

×

(x− h, y) (x, y) (x+ h, y)

(x, y − h)

(x, y + h)

Figure 1.2: 5-point Stencil

This is called a 5 point Stencil or 5 point Star, etc. Approximating ∇2u =

∆u by 5-point stencil for each point (interior mesh pt), we obtain a linear

system of equations Ax = f in unknowns x = uij . By Gershgorin disc theorem,

the matrix A is nonsingular. Lh[u] is called finite difference operator, e.g.,

Lh[u](x, y)=̇[−4u(x, y)+u(x+h, y)+u(x−h, y)+u(x, y+h)+u(x, y−h)]/h2

Problems with variable coefficients

More generally,

L[u] = −
[

∂

∂x
,
∂

∂y

]

Diag{a11, a22}
[

∂u
∂x
∂u
∂y

]

+ cu = −(a11ux)x − (a22uy)y + cu

With uniform meshes, the central differences gives

ux(x)
.
=

u(x+ h)− u(x− h)

2h
(1.9)

(ux)x(x)
.
=

ux(x+ h
2 )− ux(x− h

2 )

h
(1.10)

ux(x+
h

2
) =̇

u(x+ h)− u(x)

h
(1.11)

ux(x− h

2
) =̇

u(x)− u(x− h)

h
(1.12)
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For a problem with variable coefficients a(x, y), we use central difference (1.10,

1.11)

(a11ux)x
.
= [(a11ux)(x+

h

2
)− (a11ux)(x− h

2
)]/h (1.13)

.
=

a11(x+ h
2 )(u(x+ h)− u(x))− a11(x− h

2 )(u(x)− u(x− h))

h2
(1.14)

u(x+ h2) = u(x) + h2ux(x) +
h2
2
2 uxx +

h3
2
3! u

(3) + · · · ×h1

u(x− h1) = u(x)− h1ux(x) +
h2
1
2 uxx −

h3
2
3! u

(3) · · · ×h2

h1u(x+ h2)− h2u(x− h1)

= (h1 − h2)u(x) + 2h1h2ux(x) +
h1h2
2

(h2 − h1)uxx + · · ·

∴ ux(x) =
h1u(x+ h2)− h2u(x− h1)− (h1 − h2)u(x)

2h1h2
+O(h)

This is only first order accurate. To get a second order method multiply two

equations respectively by h21, h
2
2 and subtract to get(i.e, eliminate uxx)

h21u(x+ h2)− (h21 − h22)u(x)− h22u(x− h1)

= (h2h
2
1 + h1h

2
2)ux(x) +

(

h21h
3
2

6
+

h22h
3
1

6

)

max |u′′′|.

Hence

ux ≈ h21u(x+ h2)− (h21 − h22)u(x)− h22u(x− h1)

h1h2(h1 + h2)

is seconder order accurate. Compare this with (1.5).

As a simple example, we consider a differential eq. of the form(with γ > 0)

L[u] ≡ −[uxx + uyy] + γu = f

whose discretized form

Lh[U ] =
1

h2













4 + γh2 −1 −1 0

−1 4 + γh 0 −1

−1 0 4 + γh2 −1

0 −1 −1 4 + rγh2

























U1

U2

U3

U4













= F

satisfies



1.3. ELLIPTIC EQUATION IN 2D 13

(1) Lh[u] = L[u] +O(h2) as h → 0. u is true solution.

(2) AU = F +Bdy, Au = [∆u− γu+O(h2)] +Bdy

With abuse of notation, we write it as

Lh(U − u) = O(h2) = τh.

Let A be the matrix representation of Lh then the discretization error U − u

has the form A−1τh(depends on h) and satisfies

‖U − u‖ ≤ ‖A−1‖ · ‖τh‖ ≤ ‖A−1‖O(h2).

If we put D = diagA = {a11, . . . , ann}, then D−1A(U − u) = D−1τh. Write

D−1A = I +B, where B is off diagonal. Then we know ‖B‖∞ = 4
4+γh2 < 1 if

γ > 0. Thus (D−1A)−1 = (I +B)−1 exists and

‖(D−1A)−1‖∞ = ‖(I +B)−1‖∞ ≤ 1

1− ‖B‖∞
≤ 4 + γh2

γh2
.

Hence

‖U−u‖∞ ≤ ‖(D−1A)−1‖∞·‖D−1τh‖∞ ≤ 4 + γh2

γh2
· h2

4 + γh2
O(h2) = O(h2) → 0.

Thus, we have proved the following result.

Theorem 1.3.1 (Convergence of FDM -special case). Assume

(1) u ∈ C4(Ω)

(2) γ > 0

(3) uniform mesh

Then ‖U − u‖∞ = O(h2) as h → 0.

General Elliptic problems

Generally, A,B,C are not constant. In this case, we can still put the problem

into a conservative form as follows:

L[u] = Auxx + 2Buxy + Cuyy +Dux + Euy + Fu+G = 0

= ∇T ·
(

A B

B C

)

∇u− (Ax +By −D)ux − (Bx + Cy − E)uy + Fu+G,
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where∇ =
(

∂
∂x ,

∂
∂y

)

, so that∇u =

(

ux

uy

)

. If Ax+By−D = 0 and Bx+Cy−E,

it is self-adjoint.

Treating the cross term like uxy

Assume uxy = uyx, we approximate ∂
∂y

∂u
∂x by δ0yδ

0
xU

h where δ0xU
h(P ) = Uh(E)−Uh(W )

2∆x

is the central difference. Then from

δ0yU
h(P ) =

Uh(N)− Uh(S)

2∆y

and forward -backward difference formula we get

δ0yδ
0
xU

h =
1

2∆y

[

Uh(NE) − Uh(NW )

2∆x
− Uh(SE) − Uh(SW )

2∆x

]

Change of variable method to eliminate the cross term

One can transform the variable so that the resulting equation in new variable

does not have cross term.

Lemma 1.3.2. Let s = s(x, y), t = t(x, y) be a coordinate transform which is

locally one-to-one onto. Denote its derivative by ∂(s,t)
∂(x,y) = P , Jacobian matrix.

Then we have

∇(x,y)u =

[

ux

uy

]

=

[

ussx + uttx

ussy + utty

]

= P T ·
[

us

ut

]

= P T · ∇(s,t) · u

In other words,

∇(x,y) =

(

∂/∂x

∂/∂y

)

=

(

∂s
∂x · ∂

∂s +
∂t
∂x · ∂

∂t
∂s
∂y · ∂

∂s +
∂t
∂y · ∂

∂t

)

=

(

∂s
∂x

∂t
∂x

∂s
∂y

∂t
∂y

) (

∂/∂s

∂/∂t

)

= P T · ∇(s,t)

Remark 1.3.3. If we let (s, t) = F (x, y) then grad (x,y) = DF T grad (s,t).

Hence ∇T
(x,y) = ∇T

(s,t) · P and we see that

∇T
(x,y)A∇(x,y)u = ∇T

(s,t)PAP T∇(s,t)u.

If A is symmetric, there exists a P such that PAP T = diagonal = {d1, d2}.
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If we choose s(x, y), t(x, y) so that ∂(s,t)
∂(x,y) = P , then

∇T
(x,y)A∇(x,y)u =

∂

∂s

(

d1
∂u

∂s

)

+
∂

∂t

(

d2
∂u

∂t

)

.

Example 1.3.4. Transform the problem uxx+4uxy +uyy = 0 so that it does

not have cross term.

Since A =

(

1 2

2 1

)

, its eigenvalues are 3,−1 with corresponding eigenvec-

tors (1, 1) and (1,−1), we see that with P = 1√
2

(

1 1

1 −1

)

, we have

PAP T =

(

3 0

0 −1

)

.

Hence the transformed equation is

∂

∂s
(3
∂u

∂s
)− ∂

∂t
(
∂u

∂t
) = 0.

P = 1√
2

(

1 1

1 −1

)

=

(

∂s/∂x ∂s/∂y

∂t/∂x ∂t/∂y

)

. ∴

(

s

t

)

= P

(

x

y

)

.

If s = constant, ds = sx dx+sy dy = 0, so the line s = constant is described

in (x, y)-coordinate as
dy

dx
= −sx

sy
= −P11

P12
.

Likewise, if t = constant, dt = txdx + tydy = 0 ∴ so the line t = constant is

described as
dy

dx
= − tx

ty
= −P21

P22
.

When A is

[

a b

b c

]

, then, using the rotation of axis, we can take

P =

[

cos λ − sinλ

sinλ cos λ

]

,

(

s

t

)

=

(

cos λ − sinλ

sinλ cos λ

)(

x

y

)

where cot 2λ = c−a
2b .
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1.3.2 Treatment of irregular boundaries(Dirichlet boundary

conditions

×
×

×
◦
×

◦
×

◦

Figure 1.3: Ωh, ◦ regular, × irregular

Let Ω be a domain with grid. Let Ωh be the set of all grid points in Ω.

Definition 1.3.5. Two points P,Q on the grid are said to be properly ad-

jacent if they are adjacent and the line segment connecting P,Q belongs to

Ω. A grid point is called a regular point if all four adjacent points belong to

Ωh and and they are properly adjacent to P . Let Ωo
h be the set of all regular

points. Define the set Ω∗
h = Ωh−Ωo

h and the points in Ω∗
h are called irregular

points.

In the following, we let E be the east neighbor point of P in Ωh and let W

be the west neighborhood point of P in Ωh, etc.

First order derivatives are easy to approximate, i.e, use either forward or

backward difference. We can form the difference equation LhU
h = fh at all

regular points as before. We only consider the equation at irregular points.

Method 1

If P is an irregular point, we let Uh(P ) = g(Q). Here Q is a point of ∂Ω

closest to P . Here Uh(P ) is now known.

Method 2(Collatz-linear interpolation)

We form LhU
h = fh at all points of Ωh as follows: First we form LhU

h = fh

at all regular points of Ωh. If P ∈ ∂Ωh is an irregular point lying near west
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W W ′ P E

h1 h2

Figure 1.4: Near irregular boundary

part of ∂Ω, take the point of intersection W ′ of the line segment EP with ∂Ω.

Then we let

Uh(P ) =
h1

h1 + h2
Uh(E) +

h2
h1 + h2

u(W ′). (1.15)

Now append this equation to the difference equation. If E happens to belong

to ∂Ω also, then Uh(P ) is completely determined, hence we do not need to

append it to the difference equation.

Remark 1.3.6. The equation (1.15) has nothing to do with the differential

equation itself, thus it may break certain properties of matrix.

Method 3(Shortley-Weller)

For an irregular point P , we set (recall H.W. 4)

∂2u

∂x2
(P )

.
= 2

(

Uh(E)− Uh(P )

h2
− Uh(P )− u(W ′)

h1

)

/(h1 + h2), etc..

This is nothing but a difference formula for nonuniform grid (see earlier ex-

ample).

Advantage: This difference equation comes from the differential equa-

tion, thus preserves (hopefully) certain properties of the matrix (like positive

definiteness, banded structure, diagonal dominance). But usually symmetry

breaks down.
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Method 4(Fictitious point method)

Let P be an irregular point whose west neighbor W lies outside of Ωh. We

use extrapolation to get Uh(W ) = αUh(W ′)+βUh(P ), where W ′ is the point

of intersection of the line segment from P with ∂Ω. (α = h2
h1
, β = −h2−h1

h1
.

h2 = h and h1 is the distance from P to the boundary.) Finally we substitute

Uh(W ) into the difference equation at P . (It is called fictitious point method)

Neumann or Robin boundary condition(regular point)

P◦ ◦E

Figure 1.5: P : regular boundary point

Consider the boundary condition of type ∂u
∂n + γu = g on ∂Ω. Let P be a

regular boundary point(boundary point lying on the grids). If the boundary

is vertical line, then use one sided difference to get

Uh(P )− Uh(E)

h
+ γ(P )Uh(P ) = g(P )

and append it to the difference equation.

If P is an irregular boundary point(figure 1.4), use Uh(E)−Uh(W )
2h +γ(P )Uh(P ) =

g(P ). Now solve it for Uh(W ) and substitute it into the difference equation

at P to get a new equation.

1

h2
(−Uh(S)− Uh(W ) + 4Uh(P )− Uh(N)− Uh(E)) = f(P ).

If P is near corner do the same for north and south derivative.

Neumann or Robin boundary condition(irregular point)

We let C be a grid point not in ∂Ωh. Draw a normal line to ∂Ω and let C ′ be

the point of intersection with ∂Ω. Now treat C as a grid point. Extend CC ′
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C′

C B

A

A′

Figure 1.6: irregular boundary point

to the closest grid line consisting of AB, letting A′ denote the intersection of

extension and the segment AB. Use

∂u
∂n(C

′)
.
= Uh(C)−Uh(A′)

CA′

Uh(C ′)
.
= (1− σ)Uh(A′) + γUh(C)

⇒ Uh(C)−Uh(A′)

CA′
+ γ(C ′)Uh(C ′) = g(C ′),

where Uh(A′) is obtained by interpolation:

Uh(A′) = (1− α)Uh(A) + αUh(B).

This is an equation involving unknowns Uh(A), Uh(B) and Uh(C).

Example 1.3.7.

−∇2u+ (x2 + y2)u = 40(2 − x− y + 4xy)exy, 0 ≤ x, y ≤ 1

where u(x, y) = [10 − 20{(x − 1
2)

2 + (y − 1
2)

2}]exy. Use this as the boundary

function also. We have The error is O(h2).

Assuming the error is of the form ‖U − u‖∞ = Mhα, we see

‖Uh − u‖
‖Uh

2
− u‖ =

Mhα

M(h2 )
α
= 2α.
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hx grids ‖U − u‖∞ ratio
0.2 5× 5 0.0506

0.2× 2−1 10× 10 0.0140 3.6148
0.2× 2−2 20× 20 0.0035 4
0.2× 2−3 40× 40

Table 1.1: Example

These are computable with u replaced by Uhmin
and

α = log

[

‖Uh − u‖
‖Uh

2
− u‖

]

/

log 2

Theorem 1.3.8 (Maximum Principle). Assume A is positive definite sym-

metric, c ≥ 0. Let u is the solution of elliptic p.d.e. given by

L[u] = −
∑

i

∂

∂xi

[

∑

j

aij
∂u

∂xj

]

+ cu = −∇A∇u+ cu = 0 in Ω

u = g on ∂Ω

Then for (x, y) ∈ int Ω

|u(x, y)| ≤ max
(x,y)∈∂Ω

|u(x, y)| (1.16)

Proof. Assume c > 0. There exists orthogonal matrix P such that P TAP =

diag{d1, d2} where d1, d2 > 0. Suppose u has a positive maximum at some

interior point Q = (x∗, y∗) of Ω. Define

(

s

t

)

= P T (x∗, y∗)

(

x

y

)

so that L[u] = −∇(s,t)P
TAP∇(s,t)u + cu = 0. At Q, us(Q) = ut(Q) = 0,

uss(Q) ≤ 0 and utt(Q) ≤ 0. Hence

L[u] = −(d1us)s(Q)− (d2ut)t(Q) + c(Q)u(Q) = 0.

Since d1 > 0, d2 > 0, cu > 0, this is a contradiction. Thus either

0 ≤ u(x∗, y∗) ≤ max
(x,y)∈∂Ω

u(x, y)
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or u(x, y) ≤ u(x∗, y∗) < 0 for all (x, y). Similar argument shows that if u has

a negative minimum in the interior, we can show (1.16) holds.

Now if c ≥ 0 we consider a perturbation. Choose α so large that L[eαx] =

−(d1α
2 + d2α

2 − c)eαx < 0 and let v = u+ Eeαx.

L[v] = L[u] + EL[eαx] < 0 for all E > 0.

Suppose v has a pos. max. at an interior point Q of Ω. Then L[v] =

−d1vss(Q)− d2vtt(Q) + c(Q)v(Q) ≥ 0, a contradiction. Hence

0 ≤ u+ Eeαx ≤ max
∂Ω

{u+Eeαx}.

Let E → 0. Then

0 ≤ u(x, y) ≤ max
∂Ω

u.

Similar argument holds when v has a neg. min. at an interior point Q.

Remark 1.3.9. Examining above proof we can conclude L[u] = 0 can be

replaced by L[u] ≤ 0.

Applying maximum principle to u and −u, we see u cannot have negative

minimum, i.e,

u(x, y) ≥ min
∂Ω

u.

Thus, we obtain the result.

Corollary 1.3.10. If

L[u] = 0 in Ω

u = 0 on ∂Ω,

then u ≡ 0.

As a consequence we have uniqueness of solution.

Corollary 1.3.11. If u1, u2 satisfy

L[ui] = f in Ω

ui = g on ∂Ω,

then u1 = u2.
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Theorem 1.3.12 (Discrete max. principle). Let the grid function U satisfy

the finite difference equation Lh[U ] ≡
∑

QA(P,Q)U(Q) = 0, i.e,

A(P,P )U(P )+A(P,E)U(E)+A(P, S)U(S)+A(P,N)U(N)+A(P,W )U(W ) = 0

for each mesh point P , where coefficient A(P,Q) are generated by finite dif-

ference method and A is pos. def. weakly diagonally dominant.

Then

|U(P ∗)| ≤ max
P∈∂Ωh

|U(P )|, for all P∗ ∈ int Ωh. (1.17)

Proof. Solving for U(P ), we have

U(P ) = 1
A(P,P )

∑

Q 6=P

−A(P,Q)U(Q).

Since |A(P,P )| ≥
∑

Q 6=P

|A(P,Q| we have

|U(P )| ≤
∑

Q 6=P

∣

∣

∣

∣

A(P,Q)

A(P,P )

∣

∣

∣

∣

max
Q 6=P

|U(Q)| ≤ max
Q 6=P

|U(Q)|.

Repeat the same process until you hit the boundary.

Corollary 1.3.13 (Uniqueness of discrete solution).

LhU = 0 in Ω

U = 0 on ∂Ω

implies U = 0.

Remark 1.3.14. Examining the proof, one can notice a slightly weaker ver-

sion of Maximum principle holds if L(u) ≤ 0. Under the same condition as

previous theorem, except L(u) ≤ 0, we see u cannot have positive maximum

in the interior.

Theorem 1.3.15 (Discrete max. principle 2nd version). Suppose Lh[U ] ≤ 0

Then U cannot have a positive maximum unless U is constant. In other words,

0 < max
p∈Ω̄h

U(p) = max
∂Ωh

U(p)

or

max
p∈Ωh

U(p) < 0.
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Proof. Suppose there is a point P0 ∈ Ωh such that U(P0) is positive and

U(P0) ≥ U(P ) for all P ∈ Ωh. Then by similar argument as above,

U(P0) ≤
∑

Q 6=P0

∣

∣

∣

∣

A(P0, Q)

A(P0, P0)

∣

∣

∣

∣

max
Q 6=P0

U(Q) ≤ max
Q 6=P0

U(Q) ≤ U(P0).

Hence

U(Q) = U(P0)

for all Q in the nhd of P0. Repeating the argument for each Q in the nhd of

P0 until we hit the boundary, we see U must be constant. Thus we have the

desired result.

Note. Minimum principle is obtained when Lh[U ] ≥ 0. (See exercise.)

Theorem 1.3.16 (Convergence of FDM - More general case). Let u be the

solution of L[u] = −∇TA∇u+ cu = 0 in Ω and u = g on ∂Ω and let U be the

finite sequence of grid functions satisfying LhU = 0, where Lh(u) = O(hα),

α > 0(truncation error). If A is constant, diagonally dominant, positive defi-

nite, then ‖U − u‖∞ = O(hα) as h → 0.

Proof. Let w = U − u, then Lh[w] = Lh[U ] − Lh[u] = −Lh[u] and w = 0 on

∂Ωh. Let s(x, y) ≡ r2 − (x − x0)
2 − (y − y0)

2 with (x0, y0) ∈ int Ω, r chosen

so large that the circle s = 0 contains Ω. Then Lh[s] = L[s] because s is

quadratic. (compute it)

L[s] = −∇TA∇s+ cs = −a11sxx − (a12 + a21)sxy − a22syy + cs

= 2(a11 + a22) + cs ≥ 2(a11 + a22).

There exist M > 0 such that |Lh[u]| ≤ Mhα by the hypothesis Lh[u] = O(hα).

We see that

Lh

[

Mhαs(x, y)

2(a11 + a22)

]

≥ Mhα ≥ |Lh[u]|.

Also

Lh

[

±w − Mhαs(x, y)

2(a11 + a22)

]

= ±Lh[w]− Lh[ ] ≤ ∓Lh[u]−Mhα ≤ 0.

(Recall w = U − u and Lh[w] = −Lh[u] and w = 0 on ∂Ω)

Now by the discrete maximum principle-2nd version (where Lh(U) = 0 is
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replaced by Lh[U ] ≤ 0),

max
P∈Ωh

[

±w − Mhαs

2(a11 + a22)

]

≤ max
P∈∂Ωh

[

±w − Mhαs

2(a11 + a22)

]

= − Mhα

2(a11 + a22)
min
∂Ωh

s ≤ 0.

Thus |w| ≤ Mhαs
2(a11+a22)

and

‖u− U‖h,∞ = ‖w‖h,∞ ≤ Mhα

2(a11 + a22)
max
Ωh

s ≤ Mhαr2

2(a11 + a22)
.

Exercise 1.3.17. (1) Write down stencil for the fictitious point method and

determine if it is symmetric!

(2) State and prove a version of minimum principle.

1.3.3 Convection -diffusion equation

Consider another type of differential equation, namely a special case of con-

vection diffusion equation.

−ǫuxx + aux = f

with the BC. u(0) = u0, u(1) = u1 or Neumann condition u′(1) = 0 with

a(1) > 0. Here, we assume 0 < ǫ << 1. If we use the central difference scheme

for the first order derivative, we get

ǫ

(

−Uh
i−1 + 2Uh

i − Uh
i+1

h2

)

+ a
Uh
i+1 − Uh

i−1

2h
= fh

i (1.18)

−
( ǫ

h2
+

a

2h

)

Uh
i−1 +

2ǫ

h2
Uh
i −

( ǫ

h2
− a

2h

)

Uh
i+1 = fh

i (1.19)

Thus the sum of off diagonal elements is

∑

j 6=i

|aij| =
∣

∣

∣

ǫ

h2
+

a

2h

∣

∣

∣+
∣

∣

∣

ǫ

h2
− a

2h

∣

∣

∣ .

If a, h is fixed and ǫ → 0, it becomes a/h, while aii = 2ǫ/h2 → 0. Thus the

resulting matrix is not diagonally dominant and it causes a lot of problems. For

example, the resulting linear system is not positive definite and hence it may

be more difficult to solve. But, most importantly, the resulting discretization
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does not yield an accurate approximation to the problem. One way to fix this

situation is to keep the Peclet number : ah
ǫ < 2 so that the sum of off diagonal

elements is less than or equal to 2ǫ/h2 = aii. The disadvantage of this scheme

is that small h enlarges the size of discrete equation.

Numerical Difficulties

(1) The solution may exhibit oscillation which are physically unrealistic

(2) Taking small mesh size means large problem size which take more time

to solve.

(3) The iterative method may fail to converge

Upwind difference scheme

An alternative way to avoid this difficulty is to use backward difference for ux

for a > 0 and forward difference for ux for a < 0. This method of choosing

difference scheme is called upwind difference scheme. For a > 0

ǫ

(

−Uh
i−1 + 2Uh

i − Uh
i+1

h2

)

+ a
Uh
i − Uh

i−1

h
= fh

i

−
( ǫ

h2
+

a

h

)

Uh
i−1 +

(

2ǫ

h2
+

a

h

)

Uh
i −

( ǫ

h2

)

Uh
i+1 = fh

i

The resulting system is irreducibly diagonally dominant, thus it is an M -

matrix. Error analysis can be carried out to show optimal order of convergence.

Also, for the solver part, simple Jacobi method works.

Example 1.3.18. [boundary layer]

−ǫu′′ + u′ = 0 in (0, 1)

with u(0) = a, u(1) = b has the unique solution u(x) = C1e
x
ǫ + C2, where

C1 =
b−a

e1/ǫ−1
and C2 =

ae1/ǫ−b
e1/ǫ−1

.

The following examples are taken from (K.W. Morton-Numerical Solution

of convection-Diffusion problems, Chapman Hall, 1996)

Example 1.3.19.

−ǫ∆u+ b · ∇u = 0 on (0, 1) × (0, 1)
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1

1

1

1

Figure 1.7: u(x) = C1e
x/ǫ + C2, a = 1, b = 0 and a = 0, b = 1

◦
u = 0

u = 1

∂u
∂n

= 0

u = 0

u = 0

y = 1
2
+ x tan θ

Figure 1.8: internal and boundary layer

with

b = (cos θ, sin θ)

for 0 ≤ θ < π
2 and discontinuous inflow boundary condition

u(0, y) =

{

0, y ∈ [0, 12 )

1, y ∈ (12 , 1]

and ∂u
∂y = 0 on y = 1, and u = 0 on y = 0 or x = 1. This leads to an internal

layer along y = 1
2 + x tan θ and a boundary layer at x = 1 for y > 1

2 + tan θ

when tan θ < 1
2 . Draw the graph.

Example 1.3.20 (Heat equation).

∂u

∂t
+ b · ∇u = ǫ∆u on (−1, 1) × (−1, 1) × (0, T )

u(x, y, 0) = u0(x, y)
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where u0(x, y) is a circular cone type centered at (1, 0) with

b = b(wy,−wx)

with exact inflow boundary where needed.

Example 1.3.21. (1) A 2-D example exhibiting some (boundary) layer.

u = (e
x
ǫ − 1)(e

y
ǫ − 1)

(2) The fundamental solution (shifted) of the heat equation:

u =
1

√

4π(t+ 1)
e
− x2

4(t+1) .

It is nonseparable.

Example 1.3.22 (Jeon Y.). 1 We consider a convection dominated diffusion

equation:

−ǫ∆u+ b · ∇u = 0 on (0, 1)2

with

u(x) =



















1, x = 0

1, y = 0 and 0 ≤ x ≤ 1/3

0, elsewhere

Here ǫ = 10−9 and b = (1, 3)/
√
10. This problem has both interior and

boundary layer.

The same equation with different boundary condition.

u(x) =



















1, x = 0

1, y = 0

0, elsewhere

Example 1.3.23 (R. Lin-Numer 09-DGLSFEM for singularly perturbed prob-

lems with nonsmooth data). We consider a convection dominated diffusion

1Analysis of the cell boundary element methods for convection dominated convection-
diffusion equations, / JCAM 234 (2010)
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equation:

−ǫ2∆u+ c(x)u = f(x) on (0, 1)

u(0) = u(1) = 0, where

c(x) =







1, x < 0.5

2− x, x > 0.5

and with exact sol.

u(x) =







−1 + e−x/ǫ+e(2x−1)/(2ǫ)

e−1/(2ǫ)+1
x < 0.5

1− e(x−1)/ǫ+e(1−2x)/(2ǫ)

e−1/(2ǫ)+1
x > 0.5

u has boundary layers at x = 0 and x = 1, and an interior layer at x = 0.5

when ǫ << 1. Use ǫ = 10−5

Example 1.3.24 (R. Lin 2.). We consider

−ǫ2∆u(x, y) + c(x, y)u = f(x, y) on (0, 1)2

u = 0 on ∂Ω

with exact sol

u(x) =
1

4
u∗(x, y)(sin 4πx+2)

(

1− e−x/ǫ
)(

1− e(x−1)/ǫ
)(

1− e−y/ǫ
)(

1− e(y−1)/ǫ
)

where

c(x, y) =







2, y < 0.5

1, y > 0.5

u∗(x, y) =







3− e(2y−1)/(2ǫ), y < 0.5

1 + e(1−2y)/(2ǫ), y > 0.5

Ω1 = (0, 1) × (0, 0.5) and Ω2 = (0, 1) × (0.5, 1), and Γ0 = (0, 1) × {0.5}.

Example 1.3.25 (R. Lin 3. L-shaped domain). We consider a convection

dominated diffusion equation:

−ǫ2∆u+ u = f on (−1, 1)2\[−1, 0]2

u = 0 on ∂Ω
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with exact sol

u(x) = ũ(r, θ)
(

1− e(x−1)/ǫ
)(

1− e−(x+1)/ǫ
)(

1− e(y−1)/ǫ
)(

1− e−(y+1)/ǫ
)

ũ(r, θ) = r2/3 sin

(

2θ + π

3

)

Let Γ1 = {(x, y) : −1 ≤ x ≤ 0} and y = 0 or x = 0 and −1 ≤ y ≤ 0 and

Γ2 = Γ− Γ1. The solution has a corner singularity at the origin. When when

ǫ << 1, the solution has boundary layers near Γ2..

Exercise 1.3.26. (1) Show that if h is chosen so that the Peclet num-

ber (ah/ǫ < 2), the scheme (1.19) results in a positive definite sys-

tem(irreuducibly Diagonally dominant)

(2) Solve the PDE in Example 1.3.18 with ǫ = 10−2, ... BC changed to

u(0) = 1, u(1) = 0 by a) central difference, b) upwind scheme, h =

2−k, k = 4, 5, 6, .... Draw graph.

(3) Solve the PDE in Example 1.3.19 with ǫ = 10−2, ... by upwind scheme,

h = ×2−k, k = 4, 5, 6.... Draw graph.

1.4 Parabolic p.d.e’s

Consider a heat equation on a bar.

ut = uxx, 0 < x < 1, 0 < t ≤ T, plus IC., BC..

1
f(x)

g(t) h(t)

T

Ω

Figure 1.9: Domain
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Theorem 1.4.1 (Maximum principle). If u satisfies the heat equation for

0 < t ≤ T , then

min
∂Ω

{f, g, h} = m ≤ min
0≤x≤1,0≤t≤T

u ≤ max
0≤x≤1,0≤t≤T

u ≤ M = max
∂Ω

{f, g, h}

Proof. Put v = u+ Ex2, E > 0

∂v

∂t
− ∂2v

∂x2
= −2E < 0.

If v attains a maximum at Q ∈ int Ω, then

vt(Q) = 0,

vxx(Q) ≤ 0.

Thus (vt−vxx)(Q) ≥ 0, a contradiction. Hence v has maximum at a boundary

point of Ω. For any (x, t) ∈ Ω

u(x, t) ≤ v(x, t) ≤ max v(x, t) ≤ M +E.

Since E was arbitrary, the proof is complete. For minimum, use −E instead

of E.

More general parabolic p.d.e.

ut = Auxx +Dux + Fu+G

F.D.M







Explicit · · ·write down the values of grid function

Implicit · · · variables implicitly representing the value

Let the grid be given by

0 = x0 < x1 < x2 < · · · < xN+1 = 1, xi = ih, uniform grid

0 = t0 < t1 < · · · , tj = jk
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Explicit method







Ui,j+1−Ui,j

k
.
= ut

Ui+1,j−2Ui,j+Ui−1,j

h2

.
= uxx

∴ Ui,j+1 = λUi−1,j + (1− 2λ)Ui,j + λUi+1,j

where λ = k/h2.

Recall: Stability means solution remains bounded as time goes on.

Theorem 1.4.2. If u is sufficiently smooth, then

∣

∣

∣

∣

uxx −
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2

∣

∣

∣

∣

= O(h2) as h → 0

and
∣

∣

∣

∣

ut −
u(x, t+ k)− u(x, t)

k

∣

∣

∣

∣

= O(k) as k → 0

Theorem 1.4.3. Suppose u is sufficiently smooth, and satisfies

ut = uxx 0 < x < 1, t > 0

u(x, 0) = f(x)

u(0, t) = g(t)

u(1, t) = h(t).

If Ui,j is the solution of the explicit finite difference scheme, then for 0 < λ ≤
1
2 ,

max
i, j

|ui,j − Ui,j | .
= O(h2 + k) as h, k → 0,

i.e, finite difference solution converges to the true solution.

h 2h 3h 4h

u = g1(y) u = g2(y)

u = f(x)

Figure 1.10:
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Proof. Put uij ≡ u(xi, tj). Then from

(1)
ui,j+1 − ui,j

k
= ut +O(k)

(2)
ui+1,j − 2ui,j + ui−1,j

h2
= uxx +O(h2)

we get

ui,j+1 = ui,j +
k

h2
(ui+1,j − 2ui,j + ui−1,j) + k(O(k) +O(h2)).

Hence

ui,j+1 = λui−1,j + (1− 2λ)ui,j + λui+1,j + Ck(k + h2).

Let the discretization error be wi,j = uij − Uij so that

wi,j+1 = λwi−1,j + (1− 2λ)wi,j + λwi+1,j +O(k2 + kh2).

Since 0 < λ ≤ 1
2 , 0 ≤ 1 − 2λ < 1, three coefficient are positive and their sum

is 1. (convex combination) We see

|wi,j+1| ≤ λ|wi−1,j |+(1−2λ)|wi,j |+λ|wi+1,j |+M(k2+kh2) for some M > 0.

If we define ‖wj‖ = max1≤i≤N |wi,j|, then

‖wj+1‖ ≤ ‖wj‖+M(k2 + kh2)

≤ ‖wj−1‖+ 2M(k2 + kh2) ≤ · · · ≤ ‖w0‖+ (j + 1)M(k2 + kh2).

Since ‖w0‖ = 0,

‖wj+1‖ ≤ (j + 1)kM(k + h2) ≤ TM(k + h2), (j + 1)k ≤ T.

In fact,

M = max
0≤x≤1, 0≤t≤T

(
1

2
|utt|+

1

12
|uxxxx|).

Remark 1.4.4. If λ > 1
2 , the solution may not converge.
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Exercise 1.4.5. Prove the formula is unstable for λ > 1
2 . Let

u(x, 0) =







ε, x = 1
2

0, x 6= 1
2

with g = h = 0

Ui,j+1 = λUi−1,j + (1− 2λ)Ui,j + λUi+1,j, λ = k/h2

|Ui,j+1| = λ|Ui−1,j |+ (2λ− 1)|Ui,j |+ λ|Ui+1, j|, 1 ≤ i ≤ N − 1.

Here the equality holds because the sign of Ui alternates, so the three terms

have the same sign. Hence

N−1
∑

i=1

|Ui,j+1| = λ
N−1
∑

i=1

|Ui−1,j |+ (2λ− 1)
N−1
∑

i=1

|Ui,j |+ λ
N−1
∑

i=1

|Ui+1,j|.

Since U(xi, t) = 0, i = 1, N , we can add them and

N−1
∑

i=1

|Ui,j+1| = λ

N−2
∑

i=0

|Ui,j |+ (2λ− 1)

N−1
∑

i=1

|Ui,j |+ λ

N
∑

i=2

|Ui,j|.

Let S(tj) =
∑N

i=1 |U(i, j)|. Then since the number of nonzero Ui,j for each

j is 2j + 1(Check the numerical scheme, you will see solution is alternating

along x-direction dispersing both direction), U(1, j) = 0, U(N − 1, j) = 0 for

2j + 1 < N , we see

S(tj+1) = (4λ−1)S(tj) = (4λ−1)2S(tj−1) = · · · = (4λ−1)j+1S(0) = (4λ−1)j+1ε.

By the same reason, there is a point (xp, tj) such that

|U(xp, tj)| ≥
1

2j + 1
S(tj) =

1

2j + 1
(4λ− 1)j · ε

0 ǫ 0
∗ ∗ ∗∗

∗ ∗∗ ∗ ∗

Figure 1.11: Nonzero point
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which diverges as j → ∞ since 4λ− 1 > 1.

Considering the alternating sign, one can see the solution alternates: For

j = 1, we see

Ui,1 = (1− 2λ)ǫ, Ui−1,1 = λǫ, Ui+1,1 = λǫ

Ui,2 = 2λ2ǫ+ (1− 2λ)2ǫ, Ui−1,2 = (1− 2λ)ǫ+ (1− 2λ)ǫ = 3λǫ(1− 2λ) < 0.

Stability of linear system









U1,j+1

...

UN−1,j+1









=















1− 2λ λ . . . 0

λ 1− 2λ
. . .

0
. . . λ

λ 1− 2λ























U1,j

...

UN−1,j









+



















g(tj)

0
...

0

h(tj)



















In vector form, Uj+1 = AUj +Gj. Assume Gj = 0, j = 1, 2, . . . . Let µ be

an eigenvalue of A. Then by G-disk theorem,

|1− 2λ− µ| ≤ 2λ

−2λ ≤ 1− 2λ− µ ≤ 2λ

−2λ ≤ −1 + 2λ+ µ ≤ 2λ

1− 4λ ≤ µ ≤ 1.

If 0 < λ ≤ 1
2 , then −1 ≤ µ ≤ 1, hence stable. If λ > 1

2 , then |µ| > 1 is

possible. So the scheme may be unstable. The following example show it is

actually unstable.
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Example 1.4.6 (Issacson, Keller). Let v(x, t) = Re(eiαx−wt) = cosαx · e−wt.

vt − vxx
.
=

v(x, t+∆t)− v(x, t)

∆t
− v(x+∆x, t)− 2v(x, t) + v(x−∆x, t)

∆x2

= v(x, t)

(

e−w∆t − 1

∆t

)

− cos(αx+ α∆x)− 2 cosαx+ cos (αx− α∆x)

∆x2
e−wt

= v(x, t)

(

e−w∆t − 1

∆t
− 2 cosα∆x− 2

∆x2

)

= v(x, t)
1

∆t
{e−w∆t − [(1− 2λ) + 2λ cosα∆x]}

= v(x, t)
1

∆t

[

e−w∆t −
(

1− 4λ sin2
α∆x

2

)]

Thus v is a solution of the difference equation provided w and α satify e−w∆t =

1− 4λ sin2 α∆x
2 .

With I.C. v(x, 0) = cosαx, solution becomes

v(x, t) = cosαxe−wt = cosαx

(

1− 4λ sin2
α∆x

2

)
t

∆t

Clearly, |v(x, t)| ≤ 1, for all λ ≤ 1
2 . However, if λ > 1

2 , then we have
∣

∣1− 4λ sin2 α∆x
2

∣

∣ > 1, for some ∆x. So v(x, t) becomes arbitrarily large for

sufficiently large t/∆t. Since every even function has a cosine series, we may

express any even function f(x) in the form f(x) =
∑

n αn cos(απx) to get an

unstable problem.(See book for details)

Implicit Finite Difference Method.

Given a heat equation

ut = uxx

u(0, t) = g(t), t > 0

u(1, t) = h(t)

u(x, 0) = f(x), 0 ≤ x ≤ 1.

We discretize it by implicit difference method. Fix a time level j. Then we

have

Ui,j+1 − Ui,j

∆t
=

Ui+1,j+1 − 2Ui,j+1 + Ui−1,j+1

∆x2
i = 1, . . . , N − 1.
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Multiply by ∆t, then with λ = ∆t/∆x2, we have

Ui,j+1 − Ui,j = λUi+1,j+1 − 2λUi,j+1 + λUi−1,j+1

−Ui,j = λUi+1,j+1 − (1 + 2λ)Ui,j+1 + λUi−1,j+1.

This yields a system of equations in N − 1 unknowns {Ui,j+1}N−1
i=1 :

AUj+1 = Uj +Gj, (1.20)

where

A = −













(1 + 2λ) −λ

−λ (1 + 2λ) −λ
. . .

. . . −λ

0 −λ (1 + 2λ)













,Uj =









U1,j

...

UN−1,j









, Gj =



















−λU0,j+1

0
...

0

−λUN,j+1



















Theorem 1.4.7. The implicit finite difference scheme is stable for all λ =

∆t/∆x2. (The solution remains bounded).

Proof. Fix a j and let Uk(j),j be chosen so that |Uk(j),j| ≥ |Ui,j|, i = 1, . . . , N−
1. We choose i0 = k(j + 1) in the following relation.

Ui,j+1 = Ui,j + λ{Ui+1,j+1 − 2Ui,j+1 + Ui−1,j+1}.

Then

(1 + 2λ)Ui0,j+1 = Ui0,j + λ{Ui0+1,j+1 + Ui0−1,j+1}.

Taking absolute values,

(1 + 2λ)|Ui0,j+1| ≤ |Ui0,j|+ λ(|Ui0+1,j+1|+ |Ui0−1,j+1|) ≤ |Ui0,j|+ 2λ|Ui0,j+1|.

Thus |Ui0,j+1| ≤ |Ui0,j| ≤ |Uk(j),j| and hence |Ui,j+1| ≤ |Ui0,j+1| ≤ |Uk(j),j| for
1 ≤ i ≤ N − 1. Repeat the same procedure until j = 0.

|Ui,j+1| ≤ |Uk(j),j| ≤ · · · ≤ |Uk(0),0| ≤ M = max(f, g, h), for 1 ≤ i ≤ N − 1.

This relation also holds for i = 0 or N also.
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Matrix formulation

We check the eigenvalues of the system

AUj+1 = Uj +Gj.

Eigenvalue of A satisfies |µ + (1 + 2λ)| ≤ 2λ by G-disk theorem. From this,

we see |µ| ≥ 1 and hence the eigenvalues of A−1 is less than one in absolute

value. Thus

Uj+1 = A−1(Uj+Gj) = · · · = A−j−1U0+A−j−1G0+A−j−2G1+· · ·+A−1Gj.

‖Uj+1‖ ≤ ‖A−j−1‖ ‖U0‖+ ‖A−1‖ · 1

1− ‖A−1‖ max
j

‖Gj‖

remain bounded.

Note. A does not have −1 as eigenvalues and all the eigenvalues are

positive real.

Theorem 1.4.8. For sufficiently smooth u, we have

|uij − Uij | = O(h2 + k) as h and k → 0 (for all λ).

Proof. Let uij = u(xi, tj) be the true solution. Then we have

ui,j+1 − ui,j
k

=
1

h2
{ui+1,j+1 − 2ui,j+1 + ui−1,j+1}+O(h2 + k).

Let wi,j = ui,j − Ui,j be the discretization error. Then

wi,j+1 = wi,j + λ{wi+1,j+1 − 2wi,j+1 + wi−1,j+1}+O(kh2 + k2)

(1 + 2λ)wi,j+1 = wi,j + λwi+1,j+1 + λwi−1,j+1 +O(kh2 + k2).

Let ‖wj‖ = maxi |wi,j |. Then for all i

(1 + 2λ)|wi,j+1| ≤ ‖wj‖+ 2λ‖wj+1‖+O(kh2 + k2)

and so

(1 + 2λ)‖wj+1‖ ≤ ‖wj‖+ 2λ‖wj+1‖+O(kh2 + k2).
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�
�
�
�❅

❅
❅
❅t = j

t = j + 1

❝

ui−1,j

❝

ui,j

❝

ui+1,j

❝

ui,j+1

❅
❅
❅
❅�

�
�
�

❝

ui−1,j+1

❝

ui,j+1

❝

ui+1,j+1

❝

ui,j

Figure 1.12: Stencil for forward, backward Euler method

Thus

‖wj+1‖ ≤ ‖wj‖+ C(kh2 + k2)

≤ · · · ≤ ‖w0‖+ C(j + 1)k(k + h2)

≤ ‖w0‖+ CT (k + h2) = CT (k + h2)

for t = (j + 1)k ≤ T .

1.4.1 Discretization of parabolic p.d.e, General Case

Consider

c
∂u

∂t
=

∂

∂x
(p

∂u

∂x
) +

∂

∂y
(p

∂u

∂y
)− γu+ f in Ω× (0, T ]

I.C. u(x, y, 0) = h(x, y) in Ω

B.C. u(x, y, t) = g(x, y, t) for (x, y) ∈ ∂Ω.

where c, p, γ, f are functions of x, y and t. Assume

0 < p0 ≤ p(x, y, t) ≤ p1

0 ≤ γ(x, y, t) ≤ γ

0 < c0 ≤ c(x, y, t) ≤ c1.

Use central difference for pux at (i ± 1/2, j) and puy at (i, j ± 1/2). With

Un
i,j = U(xi, yj, tn) we let

MhU
n
i,j := 1

∆x2

(

pni+1/2,jU
n
i+1,j + pni−1/2,jU

n
i−1,j − (pni+1/2,j + pni−1/2,j)U

n
i,j

)

+ 1
∆y2

(

pni,j+1/2U
n
i,j+1 + pni,j−1/2U

n
i,j−1 − (pni,j+1/2 + pni,j−1/2)U

n
i,j

)

− γni,jU
n
i,j
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❅
❅t = j

t = j + 1/2

t = j + 1

❝

ui−1,j

❝

ui,j

❝

ui+1,j

❝

❅
❅
❅
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ui−1,j+1

❝
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❝
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❝

Figure 1.13: Stencil for Crank-Nicolson method

Now we consider explicit and implicit scheme at one stroke. For 0 ≤ θ ≤ 1,

we let

[θcn+1
ij +(1−θ)cnij ]

Un+1
i,j − Un

i,j

∆t
= θMhU

n+1
i,j +(1−θ)MhU

n
i,j+θfn+1

ij +(1−θ)fn
ij

For θ = 0, we have

cnij
Un+1
i,j − Un

i,j

∆t
= MhU

n
i,j + fn

ij forward Euler

For θ = 1, we have

cn+1
ij

Un+1
i,j − Un

i,j

∆t
= MhU

n+1
i,j + fn+1

ij backward Euler

For θ = 1
2 , we have Crank-Nicolson.

Matrix formulations

For θ = 1,
((

cn+1
ij

∆t

)

I −Mh

)

~Un+1 =

(

cn+1
ij

∆t

)

~Un + ~Fn

For θ = 1
2 ,

((

c̄ij
∆t

)

I − 1

2
Mh

)

~Un+1 =

(

c̄ij
∆t

+
1

2
Mh

)

~Un +
1

2
(~Fn + ~Fn+1),

where c̄ij =
1
2(c

n+1
ij + cnij).

Exercise 1.4.9. (1) Show the Crank-Nicholson scheme is stable for all λ.

(2) Show that with θ = 1/2, the truncation error is O(∆t2 +∆x2).
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(3) Consider a heat equation

ut = κuxx 0 < x < 1, t > 0

u(x, 0) = f(x)

u(0, t) = g(t)

u(1, t) = h(t),

where κ > 0 is constant, say κ = 1. If f(x) = cos πx, g(t) = e−π2κt, h(t) =

−e−π2κt it has solution u = e−π2κt cos πx. (For nonseparable example,

just add linear function in x or use (shifted) fundamental solution of

heat equation) Use the following method to compute numerical solution

up to T = 1.0. Check ‖u− U‖2 (or ‖u− U‖∞).

(a) Explicit FDM with h = 1
10 ,

1
20 ,

1
40 , · · · . Choose time step ∆t so that

λ = k/h2 = 0.4 and 0.6.

(b) Implicit FDM with h = 1
10 ,

1
20 ,

1
40 , · · · . Choose time step ∆t so that

λ = k/h2 = 0.4, 0.6, 0.8 and 1.6 .

(c) Crank-Nicholson scheme with k = Ch,C = 1, 2, 3, · · · 10.

You can use either Gauss-Seidel type of iteration method or LU-decomposition

to solve the system of equations arising in the implicit method.

Truncation error - 1 D.

Assume c = 1. If we use central difference at (xi, tj+ 1
2
) then we get

ui,j+1 − ui,j
k

= ut(xi, tj+ 1
2
) +O(k2). (1.21)

and

Mhui,j+1 = uxx(xi, tj+1) +O(h2) = uxx(xi, tj+ 1
2
) +

k

2
uxxt(xi, tj+ 1

2
) +O(k2 + h2)

Mhui,j = uxx(xi, tj) +O(h2) = uxx(xi, tj+ 1
2
)− k

2
uxxt(xi, tj+ 1

2
) +O(k2 + h2)

we see

θMhui,j+1 + (1− θ)Mhui,j (1.22)

= uxx(xi, tj+ 1
2
) +

k

2
(2θ − 1)uxxt(xi, tj+ 1

2
) +O(k2 + h2) (1.23)
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By (1.21), (1.22) we have

ui,j+1 − ui,j
k

− θMhui,j − (1− θ)Mhui,j+1 (1.24)

= ut(xi, tj+ 1
2
)− uxx(xi, tj+ 1

2
)− k

2
(2θ − 1)uxxt(xi, tj+ 1

2
) +O(k2 + h2)

= −k

2
(2θ − 1)uxxt(xi, tj+ 1

2
) +O(k2 + h2) (1.25)

Hence the truncation error satisfies

τ(x, t) =
k

2
(2θ − 1)uxxt(xi, tj+ 1

2
) +O(k2 + h2), (1.26)

where O = O(utt, uxxxx).

1.5 Finite element method for parabolic problems

Let I = (0, T ).

∂u

∂t
−∆u = f in Ω× I (1.27)

u = 0 in Γ× I (1.28)

u(x, 0) = u0 in Ω. (1.29)

We shall study two methods: Semi-discretization(discretization in space only)

and Full-discretization(discretization in time and space).

1.5.1 One dimensional model problem

∂u

∂t
− α2 ∂

2u

∂x2
= f, (x, t) ∈ (0, L)× I (1.30)

u(0, t) = u(π, t) = 0, t ∈ I (1.31)

u(x, 0) = u0(x), x ∈ (0, L). (1.32)

For simplicity, assume α = 1, L = π and f = 0. Using the periodic B.C., let

us express u in terms of its Fourier sine series:

u(x, t) =
∞
∑

j=1

cje
−j2t sin(jx),
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where cj =

√

2

π

∫ π

0
u0(x) sin(jx) dx. Generally, the solution is given by

u(x, t) =
∞
∑

j=1

cje
−j2πα2t/L sin

(

jπx

L

)

,

cj =

√

2

L

∫ L

0
u0(x) sin

(

jπx

L

)

dx. We see that u is a linear combination of

sine waves with amplitude cje
−j2t If j2t is large, e−j2t ≈ 0,(i.e, high frequency

component quickly damps out and u(x, t) becomes smoother) which happens

if j is large or t is large. This phenomena is consistent with the nature of

diffusion process such as heat conduction. However, when t is close to 0, u is

not smooth. It is known that

‖ ·
u‖L2(0,π) = O(t−s).

The nature is like this: The smoother the initial function is, the more rapidly

cj decays as j → ∞. An initial phase when
·
u is large, is called an initial

transient. This will affect on choosing the time step size. Basic Stability.

‖u(·, t)‖ ≤ ‖u0‖, t ∈ I (1.33)

‖ ·
u(·, t)‖ ≤ C

t
‖u0‖, t ∈ I. (1.34)

1.6 Semi discretization in space

Let V = H1
0 (Ω). Multiply the equation by v

(
·
u(t), v) + a(u(t), v) = (f(t), v), v ∈ V (1.35)

(u(0), v) = (u0, v). (1.36)

Let Vh = Span{φ1, · · · , φN}. Then the finite element formulation is

(
·
uh(t), v) + a(uh(t), v) = (f(t), v) (1.37)

(uh(0), v) = (u0, v), v ∈ Vh. (1.38)
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With uh(x, t) =
∑N

i=1 ξi(t)φi(x),

∑

i

ξ′i(t)(φi, φj) +
∑

i

ξi(t)a(φi, φj) = (f(t), φj)

∑

i

ξ(0)(φi, φj) = (u0, φj), j = 1, · · · , N.

In matrix form

B
.
ξ(t) +Aξ(t) = F (t)

Bξ(0) = U0

where B = (bij), A = (aij), F = (Fj) ξ = (ξi), U
0 = (U0

j ). bij = (φj , φi) ,

Aij = a(φj , φi)), etc.

Mass matrix B and stiffness matrix A is SPD. κ(B) = O(1), κ(A) =

O(h−2). With Cholesky decomposition B = LTL, η = Lξ, we can reduce it as

.
η + Āη(t) = g(t) (1.39)

η(0) = η0 (1.40)

where Ā = L−TAL−1 is also SPD. g = L−TF , η0 = L−TU0. The solution is

given by

η(t) = e−Ātη0 +

∫ t

0
e−Ā(t−s)g(s)ds.

Stability: Take v = uh(x, t) := uh(t) in (1.37) with f = 0

(
·
uh(t), uh(t)) + a(uh(t), uh(t)) = 0

1

2

d

dt
‖uh(t)‖2 + a(uh(t), uh(t)) = 0

‖uh(t)‖2 + 2

∫ 1

0
a(uh(t), uh(t)) = ‖uh(0)‖2 ≤ ‖u0‖2.

In particular,

‖uh(t)‖ ≤ ‖uh(0)‖ ≤ ‖u0‖, t > 0.

Theorem 1.6.1. c There is a constant C such that

max
t∈I

‖u(t)− uh(t)‖ ≤ C

(

1 + ln
T

h2

)

max
t∈I

h2‖u(t)‖H2 . (1.41)
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1.7 Fully discrete Scheme

We shall now discretize the scheme in time also. Here, we use finite difference

method to discretize along time while we maintain finite element discretization

along space. First consider a related problem (1.37).

To see the behavior of η(t), we write

η(t) =
N
∑

i=1

(η0, χi)e
−µntχi,

where {χi} is an orthonormal eigenvectors of Ā,

µ1 ≤ · · · ≤ µM , µ1 = O(1), µM = O(h−2).

This again has an initial transient. For accuracy, we need to take small time

step, or use implicit method.

0 = t0 < t1, · · · , < tN = T, ∆tn = tn − tn−1.

Forward Euler method:

(

un+1
h − unh
∆tn+1

, v

)

+ a(unh, v) = (f(tn), v), v ∈ Vh, n = 1, 2, · · ·

(u0h, v) = (u0, v).

Backward Euler method:

(

un+1
h − unh
∆tn+1

, v

)

+ a(un+1
h , v) = (f(tn+1), v), v ∈ Vh, n = 1, 2, · · ·(1.42)

(u0h, v) = (u0, v).

Discretization error is O(∆tn). Let uh(x, t) =
∑M

i=1 ξi(t)φi(x). Then taking

v = φj

(
∑

i

ξn+1
i φj , φj)+∆tn+1a(

∑

i

ξn+1
i φj , φj) = (

∑

i

ξni φj, φj)+∆tn+1(f(tn+1), φj)

(1.43)

Or

(B +∆tn+1A)ξ
n+1 = Bξn +∆tn+1F (tn+1). (1.44)
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For stability with f = 0, take v = un+1
h in (1.42)

(un+1
h , un+1

h )− (un+1
h , unh) + ∆tn+1a(u

n+1
h , un+1

h ) = 0.

Using arithmetic-geometric inequality (u, v) ≤ 1
2(ǫ‖u‖2 +

‖v‖
ǫ )

1

2
(‖un+1

h ‖2 − ‖unh‖2) + ∆tn+1a(u
n+1
h , un+1

h ) ≤ 0.

Summing up

‖un+1
h ‖2 + 2∆tn+1a(u

n+1
h , un+1

h ) ≤ ‖u0h‖2 ≤ ‖u0‖2.

In particular

‖un+1
h ‖ ≤ ‖u0h‖ ≤ ‖u0‖, n = 1, 2 · · · (1.45)

Now Crank-Nicholson. We use combination of forward and backward Euler

scheme.

(

un+1
h − unh
∆tn+1

, v

)

+ a

(

un+1
h + unh

2
, v

)

=

(

f(tn+1) + f(tn)

2
, v

)

, (1.46)

(u0h, v) = (u0, v), v ∈ Vh, n = 1, 2, · · ·

Discetization error is O(∆tn
2)

Taking v = (un+1
h + unh)/2 we obtain the stability as before. In matrix

form

(

B +
∆tn+1

2
A

)

ξn+1 =

(

B − ∆tn+1

2
A

)

ξn +∆tn+1
F̄ (tn+1) + F̄ (tn)

2
(1.47)

As in (1.39) we use η = Lξ associated with Cholesky-decomposition, then the

transformed equation becomes

ηn+1 − ηn

∆tn+1
+

1

2
Ā(ηn+1 + ηn) =

1

2
(g(tn+1) + g(tn)). (1.48)

In case g = 0, we have

(

I +
1

2
∆tn+1Ā

)

ηn+1 =

(

I − 1

2
∆tn+1Ā

)

ηn.
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and

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

I +
1

2
∆tn+1Ā

)−1(

I − 1

2
∆tn+1Ā

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= max
j

|1− 1
2∆tn+1λj|

1 + 1
2∆tn+1λj

< 1.

Thus the scheme is stable for all time step ∆tn(unconditionally stable) How-

ever, for backward-Euler or Crank-Nicholson method, one has to solve a system

of linear equation for each time step, which is costly.

For the forward Euler method, one can compute ηn+1 directly without

solving any system, but for stability, one has to take small time step. In fact,

one can show that

ηn+1 = (I −∆tn+1Ā)η
n

and

‖I −∆tn+1Ā‖ = max
j

|1−∆tn+1λj| ≤ 1

only if ∆tn+1λM ≤ 2 or ∆tn+1 = O(h2) (conditionally stable). Hence for the

forward Euler method the stability is guaranteed only when time step is very

small even for moderate h.

1.8 Hyperbolic Equation

Consider a first order system of hyperbolic equations:







ut + a11ux + a12vx = b1

vt + a21ux + a22vx = b2
(1.49)

where ai,j and u, v and function of (x, t).

u(x, 0) = f(x)

v(x, 0) = g(x), −∞ < x < ∞.

Let u = [u, v]T , b = [b1, b2]
T , A = (aij). Then the D.E. is of the form

ut +Aux = b.

Equation (1.49) is called hyperbolic, if there exist a P such that P−1AP =

diag{λ1, λ2} where λi(x, t) are real and distinct. Let z = [z1, z2]
T be defined
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by u = Pz, then

Ptz+ Pzt +A(Pxz+ Pzx) = b

Pzt +APzx = b− (Pt +APx)z

∴ zt + P−1APzx = P−1{b− (Pt +APx)z} = β(x, t, z).

Componentwise,

(zi)t + λi(zi)x = βi, i = 1, 2.

Let xi(t), i = 1, 2 be the solution of the o.d.e.

dxi
dt

= λi(xi, t) such that xi(t
∗) = x∗.

Let zi(t) ≡ zi(xi(t), t) be defined along the curve dxi
dt = λi(xi, t) (called char-

acteristics). Then

dzi
dt

=
∂zi
∂x

· dx
dt

+
∂zi
∂t

= λi(xi(t), t)
∂zi
∂x

+
∂zi
∂t

= βi(xi, t, z)

Thus zi(xi(t), t) solve the o.d.e (p.d.e on the characterstics) with

zi(0) = zi(xi(0), 0) = (P−1u)i(xi(0), 0).

x

P ∗(x∗, t∗)

P1(x̃1, t) P2(x̃2, t)

t∗

t

dom. of dependence

x

t

P ∗(x∗, t∗)

dom. of influence

Figure 1.14: Domain of depend/influence

The shaded part is called the “Domain of dependence” of (x∗, t∗) and its

base is called the “interval of dependence”.

A necessary condition for convergence: The numerical domain of depen-

dence must contain the analytic domain of dependence. If the grid point is

only in the inner region of the domain of dependence, then changing f by
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f + δ, g by d+ δ near the boundary yields the same (numerical) solution.

Example 1.8.1. Plucked string of wave







ut = cvx

vt = cux

u(x, 0) = f(x)

v(x, 0) = 1
c

∫ x
0 G(σ) dσ = g(x)



















utt − c2uxx = 0

u(x, 0) = f(x)

ut(x, 0) = cvx(x, 0) = G(x)

[

u

v

]

t

+

[

0 −c

−c 0

] [

u

v

]

x

=

[

0

0

]

.

Eigenvalues of A are ±c. Corresponding to the eigenvector

(

1

−1

)

,

(

1

1

)

There-

fore, P =

(

1 1

−1 1

)

.

P−1AP =

(

c 0

0 −c

)

and P−1 =
1

2

(

1 −1

1 1

)

If u = Pz (u = (u(x, t), v(x, t)), z = (z1(x, t), z2(x, t))), then

zt +

(

c 0

0 −c

)

zx = 0 ⇒
∂z1
∂t

+ c
∂z1
∂x

= 0

∂z2
∂t

− c
∂z2
∂x

= 0

We check the total derivative Dzi
Dt along dx1

dt = c, and dx2
dt = −c. For

example,

Dz1
dt

=
∂z1
∂t

+
dx

dt

∂z1
∂x

= 0 along dx1
dt = c (1.50)

Dz2
dt

=
∂z2
∂t

+
dx

dt

∂z2
∂x

= 0 along dx2
dt = −c. (1.51)

Thus if the curve passes a point (x∗, t∗) in figure 1.14, then solving the charac.
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equations (1.50) and (1.51) with I.C. x(t∗) = x∗, we obtain the characteristics

x1(t) = ct+x∗−ct∗ and x2(t) = −ct+x∗+ct∗. Hence along x1(t) = ct+x∗−ct∗

z1(x(t), t) = z1(ct+ x∗ − ct∗, t) = z1(x
∗ − ct∗, 0) since z1 is constant along x1(t)

Similarly along x2(t) = −ct+ x∗ + ct∗

z2(x(t), t) = z2(−ct+ x∗ + ct∗, t) = z2(x
∗ + ct∗, 0) since z2 is constant along x2(t).

z = P−1u =
1

2

(

1 −1

1 1

)(

u

v

)

z1(x, t) =
1

2
[u(x, t)− v(x, t)] =

1

2
[f(x∗ − ct∗)− g(x∗ − ct∗)]

z2(x, t) =
1

2
[u(x, t) + v(x, t)] =

1

2
[f(x∗ + ct∗) + g(x∗ + ct∗)]

Here the points (x, t) lies on the characteristics passing (x∗, t∗). Hence

[

u

v

]

(x∗,t∗)

= P · z = 1
2

[

1 1

−1 1

] [

f(x∗ − ct∗)− g(x∗ − ct∗)

f(x∗ + ct∗) + g(x∗ + ct∗)

]

= 1
2

[

f(x∗ − ct∗)− g(x∗ − ct∗) + f(x∗ + ct∗) + g(x∗ + ct∗)

−f(x∗ − ct∗) + g(x∗ − ct∗) + f(x∗ + ct∗) + g(x∗ + ct∗)

]

These are called D’Alembert solutions.

1.8.1 Method of Characteristics

Numerical procedure “See R.S. Varga” or “Y. Gregory” Ch16.

Assume we have equations for the characteristics and obtained transformed

the pde along the characteristics:

dzi
dt = βi(xi, t, z1, z2) along

dxi
dt = λi(xi, t), i = 1, 2.

Assume zi(t, x) is known at t-th level at all points (say by interpolation).

1st step: Find P1(x̃1, t), P2(x̃2, t) by

x∗ − x̃i
∆t

= λi(x
∗, t∗), i = 1, 2 (Backward)
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2nd step:

zi(P
∗)− zi(Pi)

∆t
= βi(Pi, z1(Pi), z2(Pi)) (Forward)

solve for zi(P
∗), i = 1, 2.

x

t

P ∗(x∗, t∗)

P1(x̃1, t) P2(x̃2, t)
t

t∗

Figure 1.15: Find x̃1, x̃2 using characteristics

1.8.2 FDM for Hyperbolic equations

Given pure initial value problem

uxx = utt, u(x, 0) = f(x), ut(x, 0) = g(x).

For j = 0, 1, · · ·

Ui,j−1 − 2Ui,j + Ui,j+1

∆t2
=

Ui−1,j − 2Ui,j + Ui+1,j

∆x2
i = 1, . . . , N − 1.

Ui,j+1 = m2(Ui−1,j +Ui+1,j)+ 2(1−m2)Ui,j −Ui,j−1, m =
k

h
=

∆t

∆x
(1.52)

I.C. First condition is easy to implement, Ui,0 = f(xi). For second condition,

use

g(xi) = ut|t=0 =
Ui,1 − Ui,−1

2∆t
+O(k2) (1.53)

Thus

Ui,1 − Ui,−1 = 2kgi. (1.54)

For j = 0

Ui,1 = m2(Ui−1,0 + Ui+1,0) + 2(1 −m2)Ui,0 − Ui,−1.
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Replacing Ui,−1 = Ui,1 − 2kgi, we have

Ui,1 =
1

2
m2(fi−1 + fi+1) + (1−m2)fi + kgi. (1.55)

Discussion of convergence

We first consider stability. From the consideration of characteristics, we have

to assume |m| ≤ 1.(Slope of char.) Let zi,j = ui,j − Ui,j. Then

zi,j+1 = m2(zi−1,j + zi+1,j)+ 2(1−m2)zi,j − zi,j−1+O(k4)+O(k2h2). (1.56)

If we use (1.53) in the first time step,

zi,1 = O(k3). (1.57)

To investigate stability, we try to see thew effect of a single term exp(
√
−1βx).

I.C becomes

zi,0 = exp(
√
−1βih). (1.58)

Attempt a solution by separation of variables

zi,j = exp(αjk) exp(
√
−1βih). (1.59)

Substituting into (1.56) and dropping the truncation error,

eαk + e−αk = 2− 4m2 sin2(
1

2
βh)

which is

(eαk)2 − 2(1− 2m2 sin2(
1

2
βh))eαk + 1 = 0. (1.60)

To avoid increasing solution as j → ∞, it is necessary that |eαk| ≤ 1 for all

real β. But the product of two solution of the quadratic equation is 1, hence

one of the solution must exceed 1 unless both are equal to 1 in magnitude.

Thus discriminant must be less than 0,

(1− 2m2 sin2(
1

2
βh))2 ≤ 1.

m2 ≤ 1

sin2(12βh)
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This is always true if

m = ∆t/∆x ≤ 1. (1.61)

A more careful analysis shows(Assume m = 1)

‖zj‖ ≤ jBh3 +
1

2
j(j − 1)Ah4, (1.62)

where ‖zj‖ = maxi |zi,j |. Since t = jh

‖zj‖ ≤ tBh2 +
1

2
t2Ah2. (1.63)

where

1.8.3 Implicit method for second order hyperbolic equations

Use average of two second central differences:

Ui,j+1 − 2Ui,j + Ui,j−1 =
1
2m

2 {(Ui+1,j+1 − 2Ui,j+1 + Ui−1,j+1)

+ (Ui+1,j−1 − 2Ui,j−1 + Ui−1,j−1}
(1.64)

−m2Ui+1,j+1 + 2(1−m2)Ui,j+1 −m2Ui−1,j+1

= 4Ui,j +m2Ui+1,j−1 − 2(1 +m2)Ui,j−1 +m2Ui−1,j−1

(1.65)

Note that this method is applicable for problems with finite domain only.


