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Chapter 1

Mixed Method

1.1 Introduction

Consider an elliptic problem:

−∆p = f in Ω (1.1a)

p = 0 on Γ. (1.1b)

Let us introduce some notations: Given m ≥ 0 a nonnegative integer,

Hm(Ω) = {p ∈ L2(Ω) : ∂αp ∈ L2(Ω), |α| ≤ m}

is the usual Sobolev space of order m with the semi norm and norm

|p|m,Ω =


 ∑

|α|=m

∫

Ω
|∂αp|2dx




1/2

, ‖p‖m,Ω =


 ∑

|α|≤m

∫

Ω
|∂αp|2dx




1/2

.

Given a vector valued functions v ∈ (Hm(Ω))n set

|v|m,Ω =

(
n∑

i=1

|vi|2m,Ω

)1/2

, ‖v‖m,Ω =

(
n∑

i=1

‖vi‖2m,Ω

)1/2

.

Let Pk(K) denote the space of polynomials of total degree k and P̃k be the ho-
mogeneous polynomials of degree k. Let Qi,j(K) denote the space of polynomials
of degree ≤ i and ≤ j in each variable and let Qk = Qk,k. Let

Rk(∂K) = {φ ∈ L2(∂K), φei ∈ Pk(ei),∀ei}. (1.2)

1
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The dimension of Pk(K) is number of different terms in the expansion of (1+x+
y)k(or (1 + x+ y + z)k) which is

n+1Πk =n+k Ck =
(n+ k)!

k!n!
=

(k + n) · · · (k + 1)

n!
, n = 2, 3.

Hence

dimension of Pk(K) =

{
1
2(k + 1)(k + 2) for n = 2
1
6(k + 1)(k + 2)(k + 3) for n = 3.

Let

curlu =
∂v

∂x
− ∂u

∂y
, curl p = (

∂p

∂y
,−∂p

∂x
)

Theorem 1.1.1. (Stokes Theorem 2D and 3D)

∫

Ω
curlu · ξ dx =

∫

Ω
ucurl ξ dx+

∫

∂Ω
u · τξ ds (1.3)

∫

Ω
(∇× u) · v dx =

∫

Ω
u · (∇× v)dx+

∫

∂Ω
n× u · v dA (1.4)

1.2 Mixed Formulation

Introduce the space

H(div ; Ω) = {v ∈ (L2(Ω))n : divv ∈ L2(Ω)} (1.5)

with the norm equipped with

‖v‖H(div ;Ω) = {‖v‖20,Ω + ‖divv‖20,Ω}1/2. (1.6)

Given v ∈ H(div ; Ω) we can define its normal components v · n ∈ H−1/2(Γ)
where H−1/2(Γ) is the dual space of H1/2(Γ) and n is the unit outward normal
along Γ. Indeed by Green’s formula, we see

∫

Ω
(∇q · v + qdivv) dx =

∫

Γ
qv · n dγ, q ∈ H1(Ω). (1.7)

Then the line integral
∫
Γ represent the duality between the spaces H−1/2(Γ) and

H1/2(Γ), sometimes written as < v · n, q >Γ.

Define the dual problem (P)
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Definition 1.2.1. Find (u, p) in H(div ; Ω)× L2(Ω) such that

∫

Ω
u · v dx−

∫

Ω
pdivv dx = 0, ∀v ∈ H(div ; Ω) (1.8)

∫

Ω
q(divu− f) dx = 0, ∀q ∈ L2(Ω). (1.9)

Theorem 1.2.2. The problem (P) ha a unique solution (u, p) in H(div ; Ω) ×
L2(Ω). In addition p is the solution of (1.1) and we have

u = −∇p. (1.10)

Proof . Uniqueness: Assume f = 0 in (1.9). Then we see divu = 0. Taking

v = u, in (1.8) we obtain u = 0. Therefore

∫

Ω
pdivv dx = 0,∀v ∈ H(div ; Ω). (1.11)

Let w ∈ H1(Ω) be such that

∆w = p in Ω.

Then by choosing v = ∇w in (1.11), we get p = 0. To show existence, we use the
solution p of (1.1). In fact we show that the pair (u, p) = (−∇p, p) is a solution
of (P). We first check

divu− f = −∆p− f = 0.

Since p = 0 on boundary, we have by Green’s formula

−
∫

Ω
(u · v − pdivv) dx =

∫

Γ
pv · n dγ = 0

which is (1.8). Note by uniqueness, p automatically satisfies homog. B.C.

Remark 1.2.3. One can check that the solution of the problem (P) may be
characterized as the unique saddle point of the functional

L(v, q) =
1

2

∫

Ω
v · v dx+

∫

Ω
q(divv − f) dx

over the space H(div ; Ω)× L2(Ω), i.e.,

L(u, q) ≤ L(u, p) ≤ L(v, p),∀v ∈ H(div ; Ω), q ∈ L2(Ω).

Hence p is the Lagrange multiplier associated with the constraint divu− f = 0.
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First inequality implies

∫

Ω
(divv − f)(q − p) dx ≤ 0, ∀q ⇒

∫

Ω
(divv − f)q dx = 0, ∀q.

Second inequality implies:

DLu(u, p)·v =

∫
u·v−pdivv dx = 0, ∀v ⇒

∫

Ω
(u+∇p)·v dx = 0 ⇒ u = −∇p.

1.2.1 More general coefficients, nonhomog. B.C.





u = −K∇p in Ω
div u = f in Ω

p = g on ∂Ω.
(1.12)

Its weak form is

(K−1u,v) − (p,div v) = − < g,v · n >∂Ω, v ∈ H(div ; Ω) (1.13)

(div u, q) = (f, q), q ∈ L2(Ω). (1.14)

Define

a(u,v) = (K−1u,v), v ∈ H(div ; Ω) (1.15)

b(v, q) = −( div u, q), q ∈ L2(Ω). (1.16)

Then the problem has the following abstract form

a(u,v) + b(v, p) = − < g,v · n >∂Ω, v ∈ H(div ; Ω) (1.17)

b(u, q) = −(f, q), q ∈ L2(Ω). (1.18)

1.2.2 FEM Discretization

Given two finite dimensional spaces Vh ⊂ H(div ; Ω) and Wh ⊂ L2(Ω), consider
the problem (Ph): Find the pair (uh, ph) satisfying

∫

Ω
uh · vh dx−

∫

Ω
phdivvh dx = 0, vh ∈ Vh, (1.19)

∫

Ω
divuhqh dx =

∫

Ω
fqh dx, qh ∈Wh. (1.20)

The following result is from Brezzi[3].
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Theorem 1.2.4. Assume
{
vh ∈ Vh∫
Ω qhdivvh dx = 0, ∀qh ∈Wh

⇒ divvh = 0. (1.21)

(This holds when divVh ⊂ Wh) and that there exists a constant c > 0 such that

inf
qh∈Wh

sup
vh∈Vh

∫
Ω qhdivvh dx

‖vh‖H(div ;Ω)‖qh‖0,Ω
≥ c. (1.22)

Then the problem (Ph) has a unique solution (uh, ph) ∈ Vh×Wh and there exists
a constant τ > 0 which depends only on c such that

‖u− uh‖H(div ;Ω) + ‖p− ph‖0,Ω ≤
τ
{
infvh∈Vh

‖u− vh‖H(div ;Ω) + infqh∈Wh
‖p− qh‖0,Ω

} (1.23)

(These are approximation properties of Vh and Wh)

Construction of Vh and Wh

Now we construct finite dimensional spaces Vh and Wh so that they satisfy a
good approximation property and stability conditions (1.21) and (1.22). Also we
need to ensure P0div = div hΠ. So we assume

divVh ⊂Wh.

From here and thereafter, we shall assume, for convenience, that a bounded
polygon and triangulation Th consists of triangles and parallelograms whose di-
ameters are ≤ h.

Remark 1.2.5. Define ∇h ∈ L(Wh,Vh) by
∫

Ω
∇hqh · vh dx = −

∫

Ω
qhdivvh dx, ∀qh ∈Wh,vh ∈ Vh. (1.24)

This operator ∇h is clearly an approximation of ∇. Now the function ph may be
characterized as the unique solution of the following problem:

∫

Ω
∇hph · ∇hqhdx =

∫

Ω
fqhdx,∀qh ∈Wh. (1.25)

Clearly (1.25) has a unique solution ph and the pair (−∇ph, ph) is the solution of
problem (Ph). In general, Wh 6⊂ H1

0 (Ω).
Exer. Construct explicit form of ∇h in case of rectangular(and triangular)

grid for k = 0. i.e, Let qh = 1 on one element, zero at the other. Construct
∇hqh ∈ Vh.
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Lemma 1.2.6. A function v ∈ (L2(Ω))2 belongs to H(div ; Ω) if and only if the
following conditions hold:

(i) for all K ∈ Th, the restriction v|K of v to the set K belongs to H(div ;K).

(ii) for any pair of adjacent elements K1,K2 ∈ Th, we have the following reci-
procity condition

v · nK1
+ v · nK2

= 0 on e = K1 ∩K2, (1.26)

where nKi
is the unit outward normal vector along the boundary of Ki, i = 1, 2.

Proof . Without loss of generality, we may assume Ω = K1 ∪ K2. Necessity is

trivial. For sufficiency, let v ∈ (L2(Ω))2 satisfy two conditions (i) and (ii). Then
for any q ∈ C∞

0 (Ω),
∫

K1

divvq dx+

∫

K2

divvq dx

=

∫

∂K1

v · nq ds+
∫

∂K2

v · nq ds−
∫

K1

v · ∇q dx−
∫

K2

v · ∇q dx

= −
∫

K1

v · ∇q dx−
∫

K2

v · ∇q dx = −
∫

Ω
v · ∇q dx.

This relation defines divv weakly(in the distribution sense). i.e, if we define

(divv)|Ki
= div (v|Ki

), i = 1, 2

then divv is defined a.e. and by taking a sequence qn → div (v|Ki
) on each i, we

see that divv is in L2(Ω).

Furthermore, we have by Green’s identity:
∫∫

Ω
(divu)q dx =

∑

K

∫∫

K
(divu) q dx (1.27)

=
∑

K

∫

∂K
u · νq ds −

∑

K

∫∫

K
u · ∇q dx, q ∈Wh. (1.28)

From this, it is easy to guess the degrees of freedom of the mixed finite element
space involves certain moments of normal component along edges and possibly
certain moments of vh. In particular, the basis functions must have continuous
normal component on edges.

Also, it is advised to have uh contains at least a polynomial of degree k ≥ 0.
The simplest possible element is obtained if we chooseVh = {uh·ν constant on edges}
and take Wh(Q) = P0(Q).
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b
b

b

b
b

Figure 1.1: Degrees of freedom for RT0, RT1, BDM1 and BDFM2

b b

bb

b

b

Figure 1.2: Degrees of freedom for RT0, RT1, BDM1 and BDFM2

1.2.3 Rectangular element

Assume the partition along x, y–axis,

0 = x0 < x1 < · · · < xn = 1, 0 = y0 < y1 < · · · < yn = 1.

We let
Vh(K) = Qk+1,k(K)×Qk,k+1(K), Wh|K = Qk(K)

on each rectangle K. The functions are determined by the following conditions:




∫

e
vh · nqk ds, ∀qk ∈ Pk(e), for each edge e of K

∫

K
vh · φk dx ∀φk ∈ Qk−1,k(K)×Qk,k−1(K), (k ≥ 1).

(1.29)

For k = 0, we have simplest element:
{

uh = (a+ bx, c+ dy) on K
ph = constant on K.

(1.30)

Of course, we have to impose the continuity condition of uh · n on each edge e.

Explicit Form of B in Case of Rectangular grid, k = 0

Let B be the matrix representation of b(·, ·) form by

(Bvh, q) = b(vh, q), vh ∈ Vh, q ∈Wh.
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b
b
b +6

+6 +12

Figure 1.3: Degrees of freedom for BDM2, RT2, for triangle/rectangle

b b b b b

b b b b b

v0 v1 v2 v3 v4

v5 v9

b velocity

pressure

Figure 1.4: Nodes for velocity and pressure

For rectangular grid, we see

(Bvh, p) = −( div vh, ph) = −
∫

Ω
p div vh

= −h2[p1(v1 − v0) + p2(v2 − v1) + · · ·+ pn−1(vn−1 − vn−2) + pn(vn − vn−1)]

(+y direction )

= −h2[v0(−p1) + v1(p1 − p2) + · · ·+ vn−1(pn−1 − pn) + vnpn](+y direction )

= h2[v1(p2 − p1) + · · ·+ vn−1(pn − pn−1)]

= (vh, B
tp)

since v0 = vn = 0. So the action of B and Bt are given by above.(In fact, B is
discrete −div and Bt is discrete gradient).

1.2.4 Iterative Methods

Eliminate u and get a SPD system for p

In matrix form, we have

{
AU +BtP = −G

BU = −F (1.31)
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Ax 0 Bt

x

0 Ay Bt
y

Bx By 0





Ux

Uy

P


 =




−Gx

−Gy

−F




This system is symmetric, but indefinite. So cg cannot be used directly here.
Instead, eliminate U from the first equation: U = −A−1(G+BtP ) and substitute
in the second equation to get

BA−1BtP = F −BA−1G.

Use conjugate gradient to solve for P and then get U = −A−1(G +BtP ).

Standard Uzawa

Let p0h given. With small ǫ > 0, Solve

a(um+1,v) + b(v, pmh ) = − < g,v · n >∂Ω v ∈ Vh

(pm+1 − pm, q) = ǫ[b(um+1, q) + (f, q)], q ∈Wh.

Stop if ‖pm+1 − pm‖ is sufficiently small. In CFD note by Verfuth, they take
ǫ = 1.5 for Stokes equation.

1.2.5 Triangular Element

Assume K is a triangle. Define V(K) ⊂ H(div ;K) by

V(K) = Pk(K)⊕ Span(xP̃k(K)),

where P̃k(K) is the homogeneous polynomial of degree k. The dimension is

dimRTk(K) =

{
(k + 1)(k + 3) for n = 2
1
2(k + 1)(k + 2)(k + 4) for n = 3.

(1.32)

Proposition 1.2.7. For k ≥ 0 and for any v ∈ RTk(K) the following relations
imply v = 0.

∫

∂K
v · npk ds = 0, ∀pk ∈ Rk(∂K), moments up to k on ∂K (1.33)

∫

K
v · pk−1 dx = 0, ∀pk−1 ∈ (Pk−1(K))n moments up to k − 1 on K(1.34)

Also

V0 := RT 0
k = {v ∈ V(K), divv = 0} ⊂ (Pk(K))2. (1.35)
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Proof . The number conditions for n = 2 is

dim(V(K)) = 3(k + 1) + 2×3 Πk+1 = 2×k+1 Ck−1 = (k + 1)(k + 3). (1.36)

The number of conditions is equal to the dimension of V(K). Let vh ∈ V(K)
satisfy (1.33), (1.34). We shall show that vh = 0. Since

v · n = v0 · n+ p̃kx · n, v0 ∈ (Pk(K))2

and an edge is determined by a linear equation n·(x−x0) = 0. Hence v·n belongs
to Pk(e) on that side. So v · n|∂K ∈ Rk(∂K) and (1.33) implies v · n|∂K = 0. So

∫

K
divv · pk =

∫

∂K
v · npkds−

∫

K
v · grad pk dx = 0,∀pk ∈ Pk(K).

Hence divv = 0 and since v = v0 + xp̃k,

0 = divv0 + divxp̃k + x · grad p̃k = divv0 + (n+ k)p̃k (1.37)

which implies divv0 = 0 and (n+ k)p̃k = 0. Hence there exists w ∈ Pk+1(unique
up to an additive constant) such that

vh = curlw = (
∂w

∂y
,−∂w

∂x
).

Since ∂w
∂τ = vh ·n = 0 on ∂K, w is constant on ∂K, which we may assume 0 and

we can set

w = λ1λ2λ3z, z ∈ Pk−2(z = 0, if k ≤ 1).

Again by (1.34), we have for any r ∈ (Pk−1)
2

0 =

∫

K
vh · r dx =

∫

K
curlw · r dx =

∫

K
wcurl r dx =

∫

K
λ1λ2λ3zcurl r dx,

where curl r = ∂r2
∂x − ∂r1

∂y ∈ Pk−2. We can choose r so that z = curl r and then

∫

K
λ1λ2λ3z

2 dx = 0.

Therefore z = 0 and w = 0, vh = curlw = 0. Finally using (1.37), one can show
that (1.35) holds.
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e1

e2

e3

K1

K2

Figure 1.5: Fix normal vectors once and for all

Basis functions on reference element for k = 0

For computation, one need to fix the unit normal vector ne for each edge once
and for all. We compute φ1 on K1, half of [0, 1]

2. Let

φ1 = (a1 + b1x, c1 + b1y).

We need solve
∫

ei

φj · nds = δij , i = 1, 2, 3.

Hence for j = 1, we have

∫

e1

φ1 · nds =

∫

e1

(a+ bx, c+ by) · (0,−1)ds = −c = 1

∫

e2

φ1 · nds =

∫

e2

(a+ bx, c+ by) · 1√
2
(1, 1)ds = (a+ c+ b(x+ y))|( 1

2
, 1
2
) = 0

∫

e3

φ1 · nds =

∫

e3

(a+ bx, c+ by) · (−1, 0)ds = −a = 0.

From this, we get

φ1 = (x,−1 + y)

Triangle element by affine mapping

Let V̂ be any mixed fem space defined on a reference element K̂. Consider any
triangle K in the plane whose vertices are denoted by ai, i = 1, · · · , 3. Set

hK = diam K (1.38)

ρK = diameter of inscribed circle in K. (1.39)
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Let FK : x̂ → FK(x̂) = BK x̂ + bK , BK ∈ L(R2),bK ∈ R2 be the unique affine
invertible mapping such that

FK(âi) = ai, i = 1, 2, 3.

If φ̂ is any scalar function defined over K̂(∂K̂), we associate a function on K(pull
back) by

φ = φ̂ ◦ F−1
K . (1.40)

On the other hand, for any vector valued function v̂ = (q̂1, q̂2) we associate v by

v =
1

JK
BK v̂ ◦ F−1

K , (1.41)

where JK = det (BK). Now for each K, we associate the space

V(K) = {v ∈ H(div ;K); v̂ ∈ V̂}. (1.42)

Lemma 1.2.8. For any v̂ ∈ (H1(K̂))2, we have
∫

K̂
φ̂div v̂ dx̂ =

∫

K
φdivv dx, φ̂ ∈ L2(K̂) (1.43)

∫

∂K̂
φ̂v̂ · n̂ dŝ =

∫

∂K
φv · n ds, φ̂ ∈ L2(∂K̂). (1.44)

Lemma 1.2.9. For any nonnegative integer ℓ

|φ̂|ℓ,K̂ ≤ ‖BK‖ℓ|JK |−1/2|φ|ℓ,K , φ̂ ∈ Hℓ(K̂) (1.45)

|v̂|ℓ,K̂ ≤ ‖BK‖ℓ‖BK‖−1|JK |1/2|v|ℓ,K , v̂ ∈ (Hℓ(K̂))2. (1.46)

1.3 Error Estimates

Let k ≥ 0. The (local) Raviart-Thomas spaces for for triangles are

RT[k] = {Pk(K)⊕ Span(xP̃k(K)}, dim =

{
(k + 1)(k + 3), n = 2
1
2(k + 1)(k + 2)(k + 4), n = 3.

(1.47)

For rectangles we have V(K) = RT[k] = {Qk(K)⊕ Span(xQ̃k,k(K)}, i.e.,

RT[k] =

{
Qk+1,k ×Qk,k+1, dim = 2(k + 1)(k + 2) n = 2

Qk+1,k,k ×Qk,k+1,k ×Qk,k+1,k, dim = 3(k + 1)2(k + 2) n = 3,

(1.48)
These spaces have been defined in order to have divv|K ∈ Qk(K) and

{
v · n|ei ∈ Pk(ei) for n = 2

v · n|fi ∈ Qk(fi) for n = 3.
(1.49)
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Lemma 1.3.1. For n = 2 if q ∈ RT 0
[k](K̂)(div free), there exists ψ ∈ Qk+1(K̂)

such that q = curlψ. Its dimension is (k + 1)(k + 3).

Let us define

Ψk(K) =

{
Qk−1,k(K)×Qk,k−1(K) for n = 2

Qk−1,k,k(K)×Qk,k−1,k(K)×Qk,k,k−1(K) for n = 3.
(1.50)

Proposition 1.3.2. For any v ∈ RT[k](K̂), the relations(when n = 2)

∫

ei

v · nφds = 0, ∀φ ∈ Pk(ei) (1.51)

∫

K̂
v · φ dx = 0, ∀φ ∈ Ψk(K̂) (1.52)

imply v = 0. For n = 3, ei must be replaced by a face fi and Pk(ei) is replaced
by Q(fi).

1.3.1 H(div ) interpolation

Let

Vh = {v ∈ H(div ; Ω),v|K ∈ V(K),K ∈ Th}
Wh = {w ∈ L2(Ω) : wK ∈W (K),K ∈ Th}

be any stable pair of mixed spaces so that divVh(K) ⊂ Wh(K) holds. Then
there exists a mapping Πh = Πk

h : H1(K) → V(K)1 such that

{∫
∂K(v −Πhv) · npk ds = 0, ∀pk ∈ Rk(∂K),∫
K(v −Πhv) · φk−1 dx = 0, ∀φk−1 ∈ (Pk−1(K))2, (k ≥ 1)

(1.53)

for triangles and for rectangles

{∫
∂K(v −Πhv) · npk ds = 0, ∀pk ∈ Rk(∂K),∫
K(v −Πhv) · φk dx = 0, ∀φk ∈ Qk−1,k(K)×Qk,k−1(K), (k ≥ 1).

(1.54)

The proofs are standard as long as the following commuting diagram holds:

1This requires more regularity than H(div ;K), i.e., W = {v : divv ∈ Ls(K), s > 2} is
enough, see p.125 Brezzi book.
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div

divV(K) L2(K)

Vk
h(K) W k−1

h (K)

Πk
h P k−1

h

In fact, for q ∈ divVh(K) ⊂Wh(K) we have

∫

K
divΠhu q dx =

∫

∂K
Πhu · n q ds −

∫

K
Πhu · ∇q dx

=

∫

∂K
u · n q ds −

∫

K
u · ∇q dx (1.55)

=

∫

K
divu q dx =

∫

K
Phdivu q dx.

Thus

divΠk
h = P k−1

h div .

Lemma 1.3.3. This projection Πh has the following properties:

‖v −Πhv‖L2(K) ≤ Chk+1
K |v|k+1,K (1.56)

‖div (v −Πhv)‖L2(K) ≤ Chk+1
K |divv|k+1,K. (1.57)

Proof . By Bramble Hilbert lemma(vector form) [13]

‖v̂ − Π̂hv̂‖0,K̂ ≤ C|v̂|k+1,K̂ . (1.58)

On the other hand, by Green’s formula one can verify

(div (Π̂hv̂), φ̂) = (P0div v̂, φ̂), φ̂ ∈ Pk.

Hence

(div v̂ − div (Π̂hv̂), φ̂) = ((I − P0)div v̂, φ̂), φ̂ ∈ Pk.

Hence again by BH lemma

‖div (v̂ − Π̂hv̂)‖0,K̂ ≤ C|divv|k+1,K̂ . (1.59)

Define Πh by

Π̂hv = Π̂hv̂, v ∈ (H1(K))2.
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Now use scaling argument and the fact that

div v̂ = JK d̂ivv

and

‖BK‖ ≤ hK

ρK̂
, ‖B−1

K ‖ ≤ hK̂
ρK

. (1.60)

This will give the desired result (1.56).(fill in gaps)

Theorem 1.3.4. Let (u, p) be the solution pair of (1.13) and (uh, ph) be the
solution pair of (1.19). Then we have

‖u− uh‖0 ≤ Chk+1|u|k+1,

‖div (u− uh)‖0 ≤ Chk+1|divu|k+1,

‖p− ph‖0 ≤ Chk+1‖u‖k+1.

Proof . Subtracting (1.13) from (1.19), we have

(K−1(u− uh),vh)− (p− ph,divvh) = 0, ∀vh ∈ Vh, (1.61)

(div (u− uh), qh) = 0, ∀qh ∈Wh. (1.62)

Hence,

c‖u− uh‖20 ≤ (K−1(u− uh),u− uh)

= (K−1(u− uh),Πhu− uh) + (K−1(u− uh),u−Πhu)

= (Php− ph,div (Πhu− uh)) + (K−1(u− uh),u−Πhu) (1.63)

= (K−1(u− uh),u−Πhu)

≤ C‖u− uh‖0‖u−Πhu‖0,

where c and C are independent of h and u. Therefore, we have from (1.56)

‖u− uh‖0 ≤ c‖u−Πhu‖0 ≤ Chk+1|u|k+1. (1.64)

Since div (u− uh) = div (u−Πhu), we have from (1.56)

‖div (u− uh)‖0 ≤ Chk+1|divu|k+1. (1.65)

Using the inf-sup condition (1.22), we have following

‖Php− ph‖0 ≤ C sup
vh∈Vh

(Php− ph,divvh)

‖vh‖H(div )
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= C sup
vh∈Vh

(κ−1(u− uh),vh)

‖vh‖H(div )

≤ C‖u− uh‖0.

Hence we obtain

‖p − ph‖0 ≤ ‖p − Php‖0 + ‖Php− ph‖0
≤ Chk+1(‖p‖k+1 + ‖u‖k+1) ≤ Chk+1‖u‖k+1.

1.4 Auxiliary Spaces

Mixed-HybridBrezz-HybridBrezziBook.tex file in -Education-Graduate mixed folder.
Some notations:

Rk(∂K) = {φ ∈ L2(∂K), φ|e ∈ Pk(e) for each edge e of ∂K}, (1.66)

Tk(∂K) = {φ ∈ Rk(∂K) ∩ C0(∂K)}, (1.67)

For any subspace Sk(K) of Pk(K), we define

Ls(Sk,Th) = {v ∈ Hs(Ω), v|K ∈ Sk(K)}. (1.68)

Ls
k = Ls(Pk,Th), Ls

[k] = Ls(Qk,Th) (1.69)

Also we define bubbles.

B(Sk) = L0
k(Sk,Th) = L1(Sk,Th). (1.70)

1.5 Nonconforming methods

It is sometimes called an external approximation since we consider the prob-
lem in a larger space S ⊃ V and extend the variational form to S. Consider a
variational problem

a(u, v) =< f, v >V ′×V , ∀v ∈ V. (1.71)

Let ã be a canonical extension to S × S satisfying

ã(u, v) = a(u, v), ∀u, v ∈ V. (1.72)
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Moreover let Vh ⊂ S be a family of f.d. space such that

v = lim
h→0

vh ⇒ v ∈ V. (1.73)

Using standard coerciveness and continuity argument, we get Strang Lemma

‖u− uh‖S ≤ C inf
vh∈Vh

‖u− vh‖S + sup
vh∈Vh

|ã(u, vh)− (f̃ , vh)|
‖vh‖S

. (1.74)

The second term is called consistency error.

Patch Test or Céa-Test

If a nonconforming space contains Pk(K), the first term give an optimal order.
Now we have to study the second term. A rule to have an optimal order ap-
proximation is the moment up to degree k − 1 of uh on any interface must be
continuous, that is, ∫

e
uhpk−1 ds, pk−1 ∈ Pk−1(e) (1.75)

is continuous across e(edge in 2D).

Example 1.5.1.

L1,nc
k = {vh ∈ L2(Ω), vh|K ∈ Pk(K),

∑

K

∫

∂K
uhφds = 0,∀φ ∈ Rk−1(∂K)}

(1.76)
Show that if a function in L1,nc

k is continuous at k Gauss-Legnedre points of each

side, then it passes the patch test: If
∑k

i=1 wiψ(gi) is the Gauss quadrature, then
for φ ∈ Pk−1

∫

∂K
(u+h + u−h )φds =

k∑

i=1

wi(u
+
h + u−h )φ(gi) = 0

since uh is continuous at k Gauss-Legnedre points and the quadrature is exact
up to order 2k − 1. Thus we have the patch test.

1.6 BDM space

Let

BDMk(K) = (Pk(K))n (1.77)
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dimBDMk(K) = dim (Pk(K))n =

{
(k + 1)(k + 2) for n = 2
1
2 (k + 1)(k + 2)(k + 3) for n = 3.

(1.78)
For v ∈ BDMk(K), we have divv ∈ Pk−1(K) and v·n on ∂K belongs to Rk(∂K).
In order to have v ∈ H(div ; Ω) it is necessary to ensure continuity of v ·n on the
interfaces. The following shows that three conditions are enough to determine v

locally:

Proposition 1.6.1. Let Φk := {φ ∈ (Pk)
n; divφk = 0, φk ·n|∂K = 0}. For k ≥ 1

and v ∈ BDMk the following imply v = 0.
∫

∂K
v · npk ds = 0, 3(k + 1), ∀pk ∈ Rk(∂K), (1.79)

∫

K
v · grad pk−1 dx = 0,

1

2
(k2 + k − 2), ∀pk−1 ∈ Pk−1(K), (1.80)

∫

K
v · φk dx = 0,

1

2
(k − 1)k, ∀φk ∈ Φk. (1.81)

By counting

dimRk(∂K) + dimPk−1(K)− 1 ={
3(k + 1) + 1

2k(k + 1)− 1 = 1
2(k

2 + 7k + 4) for n = 2

41
2 (k + 1)(k + 2) + 1

6k(k + 1)(k + 2)− 1 = 1
6(k

3 + 15k2 + 38k + 18) for n = 3.

From this we can deduce by linear algebra

dimΦk =

{
1
2k(k − 1) = dimPk−2(K), n = 2, k ≥ 2
1
2(k

3 − k2)− (k−2)(k−1)k
6 = dimP 3

k−2(K)− dimPk−3(K), n = 3.

In two dimensional case, the space Φk has simple characterization.

Φk = {φk|φk = curl bKpk−2, pk−2 ∈ Pk−2(K)}, (1.82)

where bK = λ1λ2λ3 ∈ B3(K) is the bubble function.
Now to use above three conditions as dof, it is necessary to check these con-

ditions are linearly independent, in fact, we have

Proposition 1.6.2. Let g ∈ Rk(∂K) and f ∈ Pk−1(K) such that
∫

∂K
gv · n ds+

∫

K
v · grad f dx = 0, ∀v ∈ BDMk(∂K). (1.83)

Then g = 0 and f is constant.
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BDFM Space

Back to BDM. One can check the by restricting v·n to R1(∂K) instead of R2(∂K)
in the definition of BDM2, Proposition 1.6.1 still holds with the same Φk. Thus
we get another space called BDFM2 which has same approximation property
but lying between BDM1 and RT2. The dimension is 9.

1.6.1 BDM - Rectangular case

In this case, the use of reference element is essential. So let K̂ = [−1, 1]n and we
build spaces on K̂.

Let us consider for n = 2

BDM [k] = {v|v = pk + rcurl (xk+1y) + scurl (xyk+1),pk ∈ (Pk)
2}, (1.84)

for n = 3 we can consider similarly. Those have been designed so that the
following hold.

{
divv ∈ Pk−1,

v · n|ei ∈ Pk(ei).
(1.85)

For dof we have

Proposition 1.6.3. For any v ∈ BDM[k](K̂), the relations(when n = 2)

∫

ei

v · nφk ds = 0, ∀φk ∈ Pk(ei) (1.86)

∫

K̂
v · φk−2 dx = 0, ∀φk−2 ∈ (Pk−2)

n (1.87)

imply v = 0. For n = 3, ei must be replaced by a face fi.

Remark 1.6.4. Note that these spaces have the same number of degrees on the
sides or faces as RT[k] and still contains (Pk(K))n so that we have the same order
of approximation.

BDFM for rectangular case

As in the triangular case, one can restrict v ·n, v ∈ BDM[k+1] to belong to Pk(ei)
instead of Pk+1(ei), we obtain BDFM[k+1]. We have (for n = 2)

BDFM[k+1] = (Pk+1)
2\
(

0
xk+1

)
\
(
yk+1

0

)
(1.88)
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Compare with

BDM[k+1] = (Pk+1)
2 + rcurl (xk+2y) + scurl (xyk+2). (1.89)

The difference is 4(one each side). Try to do same thing for n = 3.

1.7 Interpolation operator and error estimate

We can use the degrees of freedom in each of the mixed finite element space to
define the interpolation operator.(see p.125 Brezzi book.) To define the interpo-
lation operator, we need a slightly more regularity than H(div ; Ω).(It is known
that v · n ∈ H−1/2(∂K) if v ∈ H(div ; Ω).) In fact, we need the moment v · n
up to certain order. Since Rk(∂K) is not a subspace of H1/2(∂K),(Even if it is
polynomial on each edge, it does not have continuity at vertices), the dof

∫

ei

v · nφk ds, φk ∈ Rk(∂K)

does not make sense. For it to make sense, we have to assure v · n ∈ H1/2(∂K).
Indeed it is possible if v ∈W (K) defined by

W (K) = {v ∈ (Ls(K))n|divv ∈ L2(Ω)}, (1.90)

for some s > 2. Thus, we define ΠK on W (K) → Mk(K), where Mk(K) is any
one of the spaces.

Proposition 1.7.1. Let K be affine element(i.e, the image of K̂ under an affine
map Ax+b). Then for 1 ≤ m ≤ k+1, and s = 0, 1 and for any v ∈ (Hm(K))n,
we have(C dependent only on k and shape of K)

‖v −ΠKv‖s,K ≤ Chm−s
K |v|m,K . (1.91)

For the error analysis, we need the divergence of each space:

div (BDMk(K)) = div (BDM[k](K)) = Pk−1(K)

div (BDFMk+1(K)) = div (BDFM[k+1](K)) = Pk(K)

div (RT[k](K)) = Pk(K)

div (RT[k](K)) = F(Qk(K)),

where F(v) = v̂ ◦F−1.
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Proposition 1.7.2. Let K be affine element and let P 0
K be the L2 projection on

Wk(K) = div (Vk). Then for v ∈ Vk(K)

div (ΠKv) = P0
Kdivv. (1.92)

In other words,

(div (ΠKv), φ) = (div v, φ), ∀φ ∈ Wk(K).

Proof . For any φ ∈Wk(K)

∫

K
φdiv (ΠKv−v)dx = −

∫

K
(v−ΠKv)·grad φdx+

∫

∂K
(v−ΠKv)·nφds. (1.93)

The right hand side vanishes by the definition of the interpolation operator.

1.7.1 Global estimate- Duality for RT

Theorem 1.7.3. We have

‖p− ph‖0 ≤
{
Ch‖p‖2, k = 0

Chr‖p‖r, k ≥ 1, 2 ≤ r ≤ k + 1
(1.94)

‖u− uh‖0 ≤ Chr‖p‖r+1, 1 ≤ r ≤ k + 1 (1.95)

‖div (u− uh)‖0 ≤ Chr‖p‖r+2, 0 ≤ r ≤ k + 1. (1.96)

1.8 BDM-Two family

1.8.1 Duality argument-Brezzi-Douglas-Marini

We start from error equations

(αeh,v)− (divv, z) = 0, v ∈ Vh = (Pk)
2, k ≥ 1 (1.97a)

(div eh, w) = 0, w ∈Wh = Pk−1 (1.97b)

where eh = u− uh, σh = Πhu− uh, z = Php− ph, ρ = p− Php.

Lemma 1.8.1. We have

‖z‖0 ≤ Ch‖eh‖0 + chmin(2,k)‖div eh‖0 (1.98)

Proof . Let φ be the sol. of dual problem L∗φ = ψ. Then with α = K−1,

(z, ψ) = (αeh,Kgrad φ−ΠhKgrad φ) + (div eh, φ− Phφ)

≤ Ch‖eh‖0‖ψ‖0 + Chmin(2,k)‖div eh‖0‖φ‖2.

Dividing by ‖ψ‖0 and take supremum, we get the result.
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Theorem 1.8.2. We have(subtle difference between BDM and RT-See Roberts.)

‖p− ph‖0 ≤ Chr‖f‖r−2, 2 ≤ r ≤ k + 1 (1.99)

‖u− uh‖0 ≤ Chr‖f‖r−1, 1 ≤ r ≤ k + 1 (1.100)

‖div (u− uh)‖0 ≤ Chr‖f‖r, 0 ≤ r ≤ k. (1.101)

Proof . Take v = σh = Πhu− uh in the error equation. Note

σh = Πhu− uh = u− uh − (u−Πhu) = eh − (u−Πhu).

Then by (1.97)

(ασh,σh) = (αeh,σh)− (α(u −Πhu),σh) = −(α(u−Πhu),σh).

Hence ‖σh‖ ≤ C‖u−Πhu‖ and so

‖u− uh‖ ≤ ‖u−Πhu‖+ ‖Πhu− uh‖ ≤ Chr‖u‖r for 1 ≤ r ≤ k + 1. (1.102)

Meanwhile(since divσh = 0 replace eh by σh in (1.97))

‖div eh‖0 = ‖div (u−Πhu)‖0 ≤ Chr‖divu‖r, 1 ≤ r ≤ k.

From Lemma 1.8.1 and (1.102)

‖p− ph‖0 ≤ ‖Php− ph‖0 + ‖p − Php‖0
≤ Ch‖eh‖0 + Chmin(r,k)+min(2,k)‖div eh‖0 + Chmin(r,k)‖p‖r
≤ Ch1+min(r,k)‖u‖r + Chr+min(2,k)‖divu‖r + Chmin(r,k)‖p‖r
≤ Chr(‖f‖r−2 + |g|r−1/2)

for 2 ≤ r ≤ k + 1. Simplifying the result, we get (1.99). In BDM we lose one
order for pressure than RT (See Robert for RT).

1.9 Hybrid form of mixed methods

The solution of algebraic system associated with mixed formulation can be sim-
plified by the introduction of a Lagrange multiplier to enforce the continuity of
normal component of u across the interelement boundaries. Let

Mh = {m : me ∈ Pk(e) if e ⊂ Ω,me = 0 if e ⊂ ∂Ω}. (1.103)

Following Fraejis de Veubeke, our problem is to seek {uh, ph,mh} ∈ Vk
h×W k

h×Mk
h

such that

(αuh,v)−
∑

T

(divv, ph) +
∑

T

< v · nT ,mh >∂T =< v · n, g >,v ∈ Vk
h,

(1.104a)
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∑

T

(divuh, w)T = (f,w), w ∈W k
h (1.104b)

∑

T

(uh, q)∂T = 0, q ∈Mk
h . (1.104c)

We introduce some norms

|mh|20,h =
∑

e

‖mh‖20,e (1.105a)

|mh|2−1/2,h =
∑

e

|e|‖mh‖20,e. (1.105b)

Lemma 1.9.1. If {uh, ph,mh} ∈ Vk
h ×W k

h ×Mk
h is the solution of (1.104) then

‖mh −Qk
hp‖0,e ≤ C{h1/2‖u− uh‖0,T + h−1/2‖Php− ph‖0,T }. (1.106)

Proof . Let e ⊂ Ω ∩ T and define v on T by requiring

v · ne = mh −Qhp on e (1.107a)

v · nT = 0 on ∂T\e (1.107b)

(v,φk−1)T = 0,∀φk−1 ∈ (Pk−1(K))2. (1.107c)

The existence and uniqueness is given by the mixed finite element(RT) construc-
tion. A scaling argument gives(Ok, use Piolar transform v = 1

JBv̂ ◦ F−1)

h‖v‖1,T + ‖v‖0,T ≤ Ch1/2‖mk −Qk
hp‖0,e. (1.108)

Take v as test function in (1.104)

(αuh,v)T − (divv, ph)T+ < mh,mh −Qhp >e= 0.

Since
(αu,v)T − (divv, p)T+ < u,mh −Qhp >e= 0,

we have

‖mh −Qhu‖20,e =< mh − p,mh −Qhp >e= (α(u − uh),v)T − (divv, zh)T

and the result follows from (1.108)
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1.10 Trace estimate

Lemma 1.10.1. Let v ∈W 1
p (Ω). Then

‖v‖Lp(∂Ω) ≤ C‖v‖1−1/p
Lp(Ω)‖v‖

1/p
W 1

p (Ω)
.

See Brenner-Scott’s book.

Corollary 1.10.2. On the reference element,

‖v̂‖2
L2(∂Ω̂)

≤ C‖v̂‖L2(Ω̂)(‖v̂‖L2(Ω̂) + |v̂|H1(Ω̂)).

On a finite element K of diameter h, we can show

‖v‖L2(K) ≈ Ch‖v̂‖L2(K̂), |v|H1(K) ≈ |v̂|H1(K̂), |v|L2(∂K) ≈ Ch1/2|v̂|L2(∂K̂).

Transfer to the shape regular finite element(no quasi uniformity necessary), we
have for all v ∈ H1(Ω)

‖v‖2L2(∂K) ≤ C(h−1‖v‖2L2(K) + ‖v‖L2(K)|v|H1(K)).



Bibliography

[1] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite ele-
ment methods : implementation, postprocessing and error estimates, RAIRO
Model. Math. Anal. Numer. 19 (1985), pp. 7–32.

[2] S. C. Brenner, An optimal order multigrid for P1 nonconforming finite
elements, Math. Comp. 52 (1989), pp. 1–15.

[3] F. Brezzi, On the existence, uniqueness and approximation of saddle-point
problems arising from Lagrangian multipiers, RAIRO, 1974, 2, pp. 129–151.

[4] F. Brezzi, J. Douglas, M. Fortin and L. Marini, Efficient rectangu-
lar mixed finite elements in two and three variables, RAIRO Model. Math.
Numer. Anal. 21 (1987), pp. 581–604.

[5] F. Brezzi, J. Douglas, and L. Marini, Two families of mixed finite
elements for second order elliptic problems, Numer. Math. 47 (1985), pp.
217–235.

[6] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods,
Springer-Verlag, New-York, (1991).

[7] Z. Chen, Analysis of mixed methods using conforming and nonconforming
finite element methods, RAIRO Model. Math. Anal. Numer. 27 (1993), pp.
9–34.

[8] Z. Chen, Multigrid algorithms for mixed methods for second order elliptic
problems, IMA Preprint Series #1218, March 1994.

[9] Z. Chen and P. Oswald, Multigrid and multilevel methods for noncon-
forming Q1 elements, Math. Comp. 67 (1998), pp. 667-693.

[10] S. H. Chou and D. Y. Kwak, Mixed covolume methods on rectangular
grids for elliptic problems, SIAM J. Numer. Anal. 37, No. 3 (2000). pp.
758–771.

25



26 BIBLIOGRAPHY

[11] S. H. Chou, D. Y. Kwak and P. Vassilevski, Mixed covolume methods
for elliptic problems on triangular grids, SIAM J. Numer. Anal. 35, No. 5
(1998). pp. 1850–1861.

[12] S. H. Chou, D. Y. Kwak and K. Y. Kim, A general framework for con-
structing and analyzing mixed finite volume methods on quadrilateral grids:
the overlapping covolume case, accepted for publication in SIAM J. Numer.
Anal. (2001).

[13] P. G. Ciarlet and P. A. Raviart, General Lagrange and Hermite In-
terpolation in Rn with Application to Finite Element Methods, Arch. Rat.
Mech. Anal, V46, (1972), pp. 177-199.

[14] S. H. Chou and S. Tang, Conservative P1 conforming and nonconforming
Galerkin FEMs: effective flux evaluation via a nonmixed method approach,
SIAM J. Numer. Anal. 38 (2000). pp. 660–680.

[15] J. Douglas, Jr. and J. E. Roberts, Global estimates for mixed methods
for second order elliptic equations, Math. Comp. 44 (1985), pp. 39–52.

[16] R. Falk and J. Osborn, Error estimates for mixed methods, RAIRO Anal.
Numér. 14 (1980), pp. 249-277.

[17] M. Fortin, An analysis of the convergence of mixed finite element methods,
RAIRO Anal. Numér. 11 (1977), pp. 341–354.

[18] Fraeijis de Veubeke B., Displacement and equilibrium models in the finite
element method, in Stress Analysis (O.C. Zienkiewicz and G. Holister, eds),
John Wiley and Sons, New York(1965).

[19] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes
equations, Theory and Algorithms, Springer-Verlag, Berlin, 1986.

[20] C. Johnson and V. Thomee, Error estimates for some mixed finite ele-
ment methods for parabolic type problems, RAIRO Anal. Numér 15 (1981),
pp. 41–78.

[21] L. D. Marini and P. Pietra, An abstract theory for mixed approximations
of second order elliptic problems, Mat. Aplic. Comp. 8 (1989), pp. 219-239.

[22] J. T. Oden, Generalized conjugate functions for mixed finite element Ap-
proximations of boundary value problem f in the Mathematical Foundations
of the elliptic finite element methods... Babuska, Aziz eds. 629-670 (1972).
AFOSR Report F44620-69-C-0124, 1972.



BIBLIOGRAPHY 27

[23] M. Ohlberger, Convergence of a mixed finite elements-finite volume
method for the two phase flow in porous media, East-West J. Numer. Math.
5 (1997), pp.183–210.

[24] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes
element, Numer. Methods in Partial Diff. Eqns. 8 (1992), pp. 97–111.

[25] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd
order elliptic problems, in Proc. Conf. on Mathematical Aspects of Finite
Element Methods, Lecture Notes in Math., Vol. 606, Springer-Verlag, Berlin,
1977, pp. 292–315.

[26] P. A. Raviart and J. M. Thomas, Primal hybrid finite element method
for 2nd order elliptic equations, Math. Comp. 31 (1977), pp. 391–413.


