Numerical PDE

D.Y. Kwak

September 6, 2007

Chapter 3

Mixed Method

3.1 Raviart Thomas Mixed Method

$$
\begin{align*}
-\Delta u & =f \quad \text { in } \Omega \tag{3.1a}\\
u & =0, \quad \text { in } \Gamma \tag{3.1b}
\end{align*}
$$

Thus we get (3.5) below.
Let us introduce some notations: Given $m \geq 0$ a nonnegative integer,

$$
H^{m}(\Omega)=\left\{v \in L^{2}(\Omega): \partial^{\alpha} v \in L^{2}(\Omega),|\alpha| \leq m\right\}
$$

is the usual Sobolev space of order m with the semi norm and norm

$$
|v|_{m, \Omega}=\left(\sum_{|\alpha|=m} \int_{\Omega}\left|\partial^{\alpha} v\right|^{2} d x\right)^{1 / 2}, \quad\|v\|_{m, \Omega}=\left(\sum_{|\alpha| \leq m} \int_{\Omega}\left|\partial^{\alpha} v\right|^{2} d x\right)^{1 / 2}
$$

Given a vector valued functions $\mathbf{q} \in\left(H^{m}(\Omega)\right)^{n}$ set

$$
|\mathbf{q}|_{m, \Omega}=\left(\sum_{i=1}^{n}\left|q_{i}\right|_{m, \Omega}^{2}\right)^{1 / 2}, \quad\|\mathbf{q}\|_{m, \Omega}=\left(\sum_{i=1}^{n}\left\|q_{i}\right\|_{m, \Omega}^{2}\right)^{1 / 2} .
$$

3.2 Mixed Formulation

Introduce the space

$$
\begin{equation*}
\mathbf{H}(\operatorname{div} ; \Omega)=\left\{\mathbf{q} \in\left(L^{2}(\Omega)\right)^{n}: \operatorname{div} \mathbf{q} \in L^{2}(\Omega)\right\} \tag{3.2}
\end{equation*}
$$

with the norm equipped with

$$
\begin{equation*}
\|\mathbf{q}\|_{H(\operatorname{div} ; \Omega)}=\left\{\|\mathbf{q}\|_{0, \Omega}^{2}+\|\operatorname{div} \mathbf{q}\|_{0, \Omega}^{2}\right\}^{1 / 2} \tag{3.3}
\end{equation*}
$$

Given $\mathbf{q} \in \mathbf{H}(\operatorname{div} ; \Omega)$ we can define its normal components $\mathbf{q} \cdot \nu \in H^{-1 / 2}(\Gamma)$ where $H^{-1 / 2}(\Gamma)$ is the dual space of $H^{1 / 2}(\Gamma)$ and ν is the unit outward normal along Γ. By Green's formula, we see

$$
\begin{equation*}
\int_{\Omega}(\nabla v \cdot \mathbf{q}+v \operatorname{div} \mathbf{q}) d x=\int_{\Gamma} v \mathbf{q} \cdot \nu d \gamma, \quad v \in H^{1}(\Omega) \tag{3.4}
\end{equation*}
$$

where the integral \int_{Γ} represent the duality between the spaces $H^{-1 / 2}(\Gamma)$ and $H^{1 / 2}(\Gamma)$.

Define the problem (\mathbf{P})
Definition 3.2.1. Find (\mathbf{p}, u) in $\mathbf{H}(\operatorname{div} ; \Omega) \times L^{2}(\Omega)$ such that

$$
\begin{array}{r}
\int_{\Omega} \mathbf{p} \cdot \mathbf{q} d x+\int_{\Omega} u \operatorname{div} \mathbf{q} d x=0, \forall \mathbf{q} \in \mathbf{H}(\operatorname{div} ; \Omega) \\
\int_{\Omega} v(\operatorname{div} \mathbf{p}+f) d x=0, \forall v \in L^{2}(\Omega) \tag{3.6}
\end{array}
$$

Theorem 3.2.2. The problem (P) ha a unique solution (\mathbf{p}, u) in $\mathbf{H}(\operatorname{div} ; \Omega) \times$ $L^{2}(\Omega)$. In addition u is the solution of (3.1) and we have

$$
\begin{equation*}
\mathbf{p}=\nabla u \tag{3.7}
\end{equation*}
$$

Proof. Uniqueness: Assume $f=0$ in (3.6). Then we see $\operatorname{div} \mathbf{p}=0$. Taking $\mathbf{q}=\mathbf{p}$, in (3.5) we obtain $\mathbf{p}=0$. Therefore

$$
\begin{equation*}
\int_{\Omega} u \operatorname{div} \mathbf{q} d x=0, \forall \mathbf{q} \in \mathbf{H}(\operatorname{div} ; \Omega) \tag{3.8}
\end{equation*}
$$

Let $w \in H^{1}(\Omega)$ be such that

$$
\Delta w=u \text { in } \Omega
$$

Then by choosing $\mathbf{q}=\nabla w$ in (3.8), we get $u=0$. It remains to show that the pair $(\mathbf{p}, u)=(\nabla u, u)$ is a solution of (P). We see

$$
\operatorname{div} \mathbf{p}+f=\nabla u+f=0
$$

while, by Green's formula

$$
\int_{\Omega}(\mathbf{p} \cdot \mathbf{q}+u \operatorname{div} \mathbf{q}) d x=\int_{\Gamma} u \mathbf{q} \cdot \nu d \gamma=0
$$

which is (3.5).

Remark 3.2.3. One can check that the solution of the problem (P) may be characterized as the unique saddle point of the functional

$$
L(\mathbf{q}, v)=I(\mathbf{q})+\int_{\Omega} v(\operatorname{div} \mathbf{q}+f) d x
$$

over the space $\mathbf{H}(\operatorname{div} ; \Omega) \times L^{2}(\Omega)$, i.e.,

$$
L(\mathbf{p}, v) \leq L(\mathbf{p}, u) \leq L(\mathbf{q}, u), \forall \mathbf{q} \in \mathbf{H}(\operatorname{div} ; \Omega), v \in L^{2}(\Omega)
$$

Hence u is the Lagrange multiplier associated with the constraint $\operatorname{div} \mathbf{p}+f=0$.
First inequality:

$$
\int_{\Omega}(\operatorname{div} \mathbf{q}+f)(v-u) d x \leq 0, \quad \forall v \Rightarrow \int_{\Omega}(\operatorname{div} \mathbf{q}+f) d x v=0
$$

Second inequality:
$D L(\mathbf{p}, u) \cdot \mathbf{q}=\int \mathbf{p} \cdot \mathbf{q}+u \operatorname{div} \mathbf{q} d x=0 \quad \forall \mathbf{q} \Rightarrow \int_{\Omega}(\mathbf{p}-\nabla u) \cdot \mathbf{q} d x=0 \Rightarrow \mathbf{p}=\nabla u$

Discretization

Given two finite dimensional spaces \mathbf{Q}_{h} and V_{h} such that

$$
\begin{gather*}
\mathbf{Q}_{h} \subset \mathbf{H}(\operatorname{div} ; \Omega), V_{h} \subset L^{2}(\Omega) \tag{3.9}\\
\int_{\Omega}\left(\mathbf{p}_{h} \cdot \mathbf{q}_{h}+u_{h} \operatorname{div} \mathbf{q}_{h}\right) d x=0, \quad \mathbf{q}_{h} \in \mathbf{Q}_{h} \tag{3.10}\\
\int_{\Omega} v_{h}\left(\operatorname{div} \mathbf{p}_{h}+f\right) d x=0, \quad v_{h} \in V_{h} \tag{3.11}
\end{gather*}
$$

The following result is from $\operatorname{Brezzi}([3])$.
Theorem 3.2.4. Assume

$$
\left\{\begin{array}{l}
\mathbf{q}_{h} \in \mathbf{Q}_{h} \tag{3.12}\\
\int_{\Omega} v_{h} \operatorname{div} \mathbf{q}_{h} d x=0, \quad \forall v_{h} \in V_{h}
\end{array} \Rightarrow \operatorname{div} \mathbf{q}_{h}=0\right.
$$

and that there exists a constant $c>0$ such that

$$
\begin{equation*}
\inf _{v_{h} \in V_{h}} \sup _{\mathbf{q}_{h} \in \mathbf{Q}_{h}} \frac{\int_{\Omega} v_{h} \operatorname{div} \mathbf{q}_{h} d x}{\left\|\mathbf{q}_{h}\right\|_{\mathbf{H}(\operatorname{div} ; \Omega)}} \geq c\left\|v_{h}\right\|_{0, \Omega} \tag{3.13}
\end{equation*}
$$

Then the problem $\left(P_{h}\right)$ has a unique solution $\left(\mathbf{p}_{h}, u_{h}\right) \in \mathbf{Q}_{h} \times V_{h}$ and there exists a constant $\tau>0$ which depends only on c such that

$$
\left\{\begin{array}{l}
\left\|\mathbf{p}-\mathbf{p}_{h}\right\|_{\mathbf{H}(d i v ; \Omega)}+\left\|u-u_{h}\right\|_{0, \Omega} \leq \tag{3.14}\\
\tau\left\{\inf _{\mathbf{q}_{h} \in \mathbf{Q}_{h}}\left\|\mathbf{p}-\mathbf{q}_{h}\right\|_{\mathbf{H}(d i v ; \Omega)}+\inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{0, \Omega}\right\}
\end{array}\right.
$$

Remark 3.2.5. Define $\nabla_{h} \in L\left(V_{h}, \mathbf{Q}_{h}\right)$ by

$$
\begin{equation*}
\int_{\Omega} \nabla_{h} v_{h} \cdot \mathbf{q}_{h} d x=-\int_{\Omega} v_{h} \operatorname{div} \mathbf{q}_{h} d x, \quad \forall v_{h} \in V_{h}, \mathbf{q}_{h} \in \mathbf{Q}_{h} \tag{3.15}
\end{equation*}
$$

This operator ∇_{h} is clearly an approximation of ∇. Now the function u_{h} may be characterized as the unique solution of the following problem:

$$
\begin{equation*}
\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h} d x=\int_{\Omega} f v_{h} d x, \forall v_{h} \in V_{h} . \tag{3.16}
\end{equation*}
$$

Clearly (3.16) has a unique solution u_{h} and the pair $\left(\nabla u_{h}, u_{h}\right)$ is the solution of problem $\left(P_{h}\right)$. In general, $V_{h} \not \subset H_{0}^{1}(\Omega)$.

It remains to construct finite dimensional spaces \mathbf{Q}_{h} and V_{h} so that they satisfy a good approximation property and compatibility conditions (3.12) and (3.13).

From here and thereafter, we shall assume, for convenience, that a bounded polygon and triangulation \mathcal{T}_{h} consists of triangles and parallelograms whose diameters are $\leq h$.

Lemma 3.2.6. A function $\mathbf{q} \in\left(L^{2}(\Omega)\right)^{2}$ belongs to $\mathbf{H}($ div $; \Omega)$ if and only if the following conditions hold:
(i) for all $K \in \mathcal{T}_{h}$, the restriction $\left.\mathbf{q}\right|_{K}$ of \mathbf{q} to the set K belongs to $\mathbf{H}($ div $; K)$.
(ii) for any pair of adjacent elements $K_{1}, K_{2} \in \mathcal{T}_{h}$, we have the following reciprocity condition

$$
\begin{equation*}
\mathbf{q} \cdot \nu_{K_{1}}+\mathbf{q} \cdot \nu_{K_{2}}=0 \quad \text { on } e=K_{1} \cap K_{2} \tag{3.17}
\end{equation*}
$$

where $\nu_{K_{i}}$ is the unit outward normal vector along the boundary of $K_{i}, i=1,2$.
Proof. Without loss of generality, we may assume $\Omega=K_{1} \cup K_{2}$. Necessity is trivial. For sufficiency, let $\mathbf{q} \in\left(L^{2}(\Omega)\right)^{2}$ satisfy two conditions (i) and (ii). Then for any $v \in C_{0}^{\infty}(\Omega)$,

$$
\begin{aligned}
\int_{K_{1}} \operatorname{div} \mathbf{q} v d x+\int_{K_{2}} \operatorname{div} \mathbf{q} v d x= & \int_{\partial K_{1}} \mathbf{q} \cdot \nu v d s+\int_{\partial K_{2}} \mathbf{q} \cdot \nu v d x \\
& -\int_{K_{1}} \mathbf{q} \cdot \nabla v d s-\int_{K_{2}} \mathbf{q} \nabla v d x \\
= & \int_{\partial \Omega} \mathbf{q} \cdot \nu v d s-\int_{\Omega} \mathbf{q} \nabla v d x
\end{aligned}
$$

$$
=-\int_{\Omega} \mathbf{q} \nabla v d x
$$

where Green's theorem and (ii) were used and this equality defines $\operatorname{div} \mathbf{q}$ weakly(in the distribution sense). i.e, define

$$
\left.(\operatorname{div} \mathbf{q})\right|_{K_{i}}=\operatorname{div}\left(\left.\mathbf{q}\right|_{K_{i}}\right), \quad i=1,2
$$

then $\operatorname{div} \mathbf{q}$ is defined a.e. and by taking a sequence $v_{n} \rightarrow \operatorname{div}\left(\left.\mathbf{q}\right|_{K_{i}}\right)$ on each i, we see that $\operatorname{div} \mathbf{q}$ is in $L^{2}(\Omega)$.

3.2.1 Mixed Triangular Element

In this subsection all $K=\hat{K}$ (reference element) and functions \mathbf{q}, ϕ are $\hat{\mathbf{q}}, \hat{\phi}$, etc. Let

$$
\begin{equation*}
R_{k}(\partial K)=\left\{\phi \in L^{2}(\partial K), \phi_{e_{i}} \in P_{k}\left(e_{i}\right), \forall e_{i}\right\} \tag{3.18}
\end{equation*}
$$

Assume K is a triangle. Define $\mathbf{Q} \subset \mathbf{H}(\operatorname{div} ; K)$ so that

$$
\begin{array}{r}
\left(P_{k}\right)^{2} \subset \mathbf{Q} \\
\operatorname{dim}(\mathbf{Q})=(k+1)(k+3) \\
\operatorname{div} \mathbf{q} \in P_{k} \\
\mathbf{q} \cdot \nu \in R_{k}(\partial K) \\
\mathbf{Q}_{0}=\{\mathbf{q} \in \mathbf{Q}, \operatorname{div} \mathbf{q}=0\} \subset\left(P_{k}\right)^{2} \tag{3.23}
\end{array}
$$

Lemma 3.2.7. Assume the condition (3.19)- (3.23) hold. Then a function $\mathbf{q} \in \mathbf{Q}$ is uniquely determined by
(a) $\int_{e} \mathbf{q} \cdot \nu p d s$ for all $p \in P_{k}(e)$ on each side e of K. (Equivalently, the values of $\mathbf{q} \cdot \nu$ at $k+1$ points of each side e of K.
(b) The moments of order less than equal to $k-1$ of \mathbf{q}, i.e,

$$
\int_{K} \mathbf{q} \cdot \mathbf{p} d x, \quad \mathbf{p} \in\left(P_{k-1}\right)^{n}
$$

Proof. By (3.20), the number of degrees of freedom of (a), (b) is equal to the dimension of \mathbf{Q}_{K}. It suffices to show that the conditions in (a), (b) are indeed independent, Let $\mathbf{q} \in \mathbf{Q}_{K}$ satisfy $(a)=0,(b)=0$. We shall show that $\mathbf{q}=0$.

The conditions (3.22) and (a) imply $\mathbf{q} \cdot \nu=0$ on ∂K. Use Green's formula and (b) to see that for all $\phi \in P_{k}$

$$
\int_{K} \phi \operatorname{div} \mathbf{q} d x=-\int_{K} \nabla \phi \cdot \mathbf{q} d x+\int_{\partial K} \phi \mathbf{q} \cdot \nu d s=0
$$

Since $\operatorname{div} \mathbf{q} \in P_{k}$, we get $\operatorname{div} \mathbf{q}=0$ and hence $\mathbf{q} \in \mathbf{Q}_{0}$.
From (3.23) there exists $w \in P_{k+1}$ (unique up to an additive constant) such that

$$
\mathbf{q}=\operatorname{curl} w=\left(\frac{\partial w}{\partial \eta},-\frac{\partial w}{\partial \xi}\right)
$$

Note that $\mathbf{q} \cdot \nu=\frac{\partial w}{\partial \tau}=0$ on ∂K, we may assume $w=0$ on ∂K and write

$$
w=\lambda_{1} \lambda_{2} \lambda_{3} z, \quad z \in P_{k-2}(z=0, \text { if } k \leq 1)
$$

Again by (b), we have for any $\mathbf{r} \in\left(P_{k-1}\right)^{2}$

$$
0=\int_{K} \mathbf{q} \cdot \mathbf{r} d x=\int_{K} \operatorname{curl} w \cdot \mathbf{r} d x=\int_{K} w \operatorname{curl} d x=\int_{K} \lambda_{1} \lambda_{2} \lambda_{3} z \operatorname{curl} \mathbf{r} d x
$$

where curl $\mathbf{r}=\frac{\partial r_{2}}{\partial \xi}-\frac{\partial r_{1}}{\partial \eta} \in P_{k-2}$. We can choose \mathbf{r} so that $z=\operatorname{curl} \mathbf{r}$ and then

$$
\int_{K} \lambda_{1} \lambda_{2} \lambda_{3} z d x=0
$$

Therefore $z=0$ and $w=0, \mathbf{q}=\operatorname{curl} w=0$.
Remark 3.2.8. The number of above conditions is $3(k+1)+2 \times{ }_{3} \Pi_{k+1}=$ $2 \times_{k+1} C_{k-1}=(k+1)(k+3)$. There is an alternative way of defining degrees of freedom:

$$
\mathbf{P}_{k}(K) \oplus \operatorname{Span}\left(\mathbf{x} \tilde{P}_{k}(K)\right)
$$

where $\tilde{P}_{k}(K)$ is the homogeneous polynomial of degree k.

Triangle element by linear mapping

Consider ny triangle K in the plane whose vertices are denoted by $a_{i}, i=1, \cdots, 3$. Set

$$
\begin{align*}
h_{K} & =\operatorname{diam} K \tag{3.24}\\
\rho_{K} & =\text { diameter of inscribed circle in } K \tag{3.25}
\end{align*}
$$

Let $F_{K}: \hat{\mathbf{x}} \rightarrow F_{K}(\hat{\mathbf{x}})=B_{K} \hat{\mathbf{x}}+\mathbf{b}_{K}, B_{K} \in L\left(\mathbb{R}^{2}\right), \mathbf{b}_{K} \in \mathbb{R}^{2}$ be the unique affine invertible mapping such that

$$
F_{K}\left(\hat{a}_{i}\right)=a_{i}, i=1,2,3 .
$$

If $\hat{\phi}$ is any scalar function defined over $\hat{K}(\partial \hat{K})$, we associate a function on K (pull back) by

$$
\begin{equation*}
\phi=\hat{\phi} \circ F_{K}^{-1} \tag{3.26}
\end{equation*}
$$

On the other hand, for any vector valued function $\hat{\mathbf{q}}=\left(\hat{q}_{1}, \hat{q}_{2}\right)$ we associate \mathbf{q} by

$$
\begin{equation*}
\mathbf{q}=\frac{1}{J_{K}} B_{K} \hat{\mathbf{q}} \circ F_{K}^{-1} \tag{3.27}
\end{equation*}
$$

where $J_{K}=\operatorname{det}\left(B_{K}\right)$.
Lemma 3.2.9. For any $\hat{\mathbf{q}} \in\left(H^{1}(\hat{K})\right)^{2}$, we have

$$
\begin{align*}
\int_{\hat{K}} \hat{\phi} d i v \hat{\mathbf{q}} d \hat{x} & =\int_{K} \phi d i v \mathbf{q} d x, & \hat{\phi} \in L^{2}(\hat{K}) \tag{3.28}\\
\int_{\partial \hat{K}} \hat{\phi} \hat{\mathbf{q}} \cdot \hat{\nu} d \hat{s} & =\int_{\partial K} \phi \mathbf{q} \cdot \nu d s, & \hat{\phi} \in L^{2}(\partial \hat{K}) \tag{3.29}
\end{align*}
$$

Lemma 3.2.10. For any nonnegative integer ℓ

$$
\begin{align*}
|\hat{\phi}|_{\ell, \hat{K}} & \leq\left\|B_{K}\right\|^{\ell}\left|J_{K}\right|^{-1 / 2}|\phi|_{\ell, K}, \quad \hat{\phi} \in H^{\ell}(\hat{K}) \tag{3.30}\\
|\hat{\mathbf{q}}|_{\ell, \hat{K}} & \leq\left\|B_{K}\right\|^{\ell}\left\|B_{K}\right\|^{-1}\left|J_{K}\right|^{1 / 2}|\mathbf{q}|_{\ell, K}, \hat{\mathbf{q}} \in\left(H^{\ell}(\hat{K})\right)^{2} \tag{3.31}
\end{align*}
$$

Now for each K, we associate the space

$$
\begin{equation*}
\mathbf{Q}_{K}=\{\mathbf{q} \in H(\operatorname{div} ; K) ; \hat{\mathbf{q}} \in \hat{\mathbf{Q}}\} \tag{3.32}
\end{equation*}
$$

3.3 Raviart-Thomas Projection

In this section we consider slightly more general equation:

$$
\begin{align*}
-\nabla \cdot \mathbf{a} \nabla u & =f & & \text { in } \Omega \tag{3.33a}\\
u & =0, & & \text { in } \Gamma \tag{3.33b}
\end{align*}
$$

Let $P_{k}(K)$ denote the space of polynomials of total degree k.

$$
\text { dimension of } P_{k}(K)=\left\{\begin{array}{l}
\frac{1}{2}(k+1)(k+2) \text { for } n=2 \\
\frac{1}{6}(k+1)(k+2)(k+3) \text { for } n=3
\end{array}\right.
$$

$\left({ }_{n+1} \Pi_{k}={ }_{n+k} C_{k}={ }_{n+k} C_{n}\right)$ and let $Q_{i, j}(K)\left(\operatorname{dim} Q_{i, j}=(i+1) \times(j+1)\right)$ denote the space of polynomials of degree $\leq i$ and $\leq j$ in each variable and let $Q_{k}=Q_{k, k}$
and \tilde{Q}_{k} be the homogeneous polynomials of degree k. Define the (local) RaviartThomas spaces are ($k \geq 0$)

$$
\begin{equation*}
\mathbf{V}(K)=\left\{\mathbf{P}_{k}(K) \oplus \operatorname{Span}\left(\mathbf{x} \tilde{P}_{k}(K)\right\}, W(K)=P_{k}(K)\right. \tag{3.34}
\end{equation*}
$$

for triangle and

$$
\mathbf{V}(K)=Q_{k+1, k}(K) \times Q_{k, k+1}(K), \quad Q_{k}(K)
$$

for rectangle(parallelogram). Let

$$
\begin{gather*}
R_{k}(\partial K)=\left\{\phi \in L^{2}(\partial K), \phi_{e_{i}} \in P_{k}\left(e_{i}\right), \forall e_{i}\right\} \tag{3.35}\\
K_{k}(\partial K)=R_{k}(\partial K) \cap C^{0}(\partial K) \tag{3.36}
\end{gather*}
$$

Let

$$
\begin{aligned}
\mathbf{V}_{h} & =\left\{\mathbf{v} \in \mathbf{H}(\operatorname{div} ; \Omega), \mathbf{v} \mid K \in \mathbf{V}(K), K \in \mathcal{T}_{h}\right\} \\
W_{h} & =\left\{w \in L^{2}(\Omega): w_{K} \in W(K), K \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

There exists a mapping $\Pi_{h}: \mathbf{H}^{k+1}(\operatorname{div} ; K) \rightarrow \mathbf{V}$ such that (Degrees of freedom for local spaces are as follows(Brezzi and Fortin[6] p.126))

$$
\begin{cases}\int_{\partial K}\left(\mathbf{q}-\Pi_{h} \mathbf{q}\right) \cdot \nu p_{k} d s=0, & \forall p_{k} \in R_{k}(\partial K) \tag{3.37}\\ \int_{K}\left(\mathbf{q}-\Pi_{h} \mathbf{q}\right) \cdot \boldsymbol{\phi}_{k-1} d x=0, & \forall \phi_{k-1} \in\left(P_{k-1}(K)\right)^{2},(k \geq 1)\end{cases}
$$

for triangles and for rectangles

$$
\begin{cases}\int_{\partial K}\left(\mathbf{q}-\Pi_{h} \mathbf{q}\right) \cdot \nu p_{k} d s=0, & \forall p_{k} \in R_{k}(\partial K), \tag{3.38}\\ \int_{K}\left(\mathbf{q}-\Pi_{h} \mathbf{q}\right) \cdot \phi_{k} d x=0, & \forall \phi_{k} \in Q_{k-1, k}(K) \times Q_{k, k-1}(K),(k \geq 1)\end{cases}
$$

Define

$$
\begin{equation*}
\mathbf{Q}_{h}=\left\{\mathbf{q}_{h} \in \mathbf{H}(\operatorname{div} ; \Omega),\left.\mathbf{q}_{h}\right|_{K} \in \mathbf{Q}_{K}, \forall K\right\} \tag{3.39}
\end{equation*}
$$

Since $\left(\operatorname{div} \mathbf{q}_{h}\right)_{K} \in P_{k}$, a natural choice of V_{h} is

$$
\begin{equation*}
V_{h}=\left\{v_{h} \in L^{2}(\Omega),\left.v_{h}\right|_{K} \in P_{k}, \forall K\right\} \tag{3.40}
\end{equation*}
$$

and (3.12) is automatically satisfied.

inf-sup condition (3.13)

In fact we shall show for any function $v_{h} \in V_{h}$, there exists a function $\mathbf{q}_{h} \in \mathbf{Q}_{h}$ such that

$$
\begin{equation*}
\operatorname{div} \mathbf{q}_{h}=v_{h} \tag{3.41}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\mathbf{q}_{h}\right\|_{\mathbf{H}(\operatorname{div} ; \Omega)} \leq C\left\|v_{h}\right\|_{0, \Omega} \tag{3.42}
\end{equation*}
$$

Next introduce a edge space:

$$
\begin{equation*}
M_{h}=\left\{\mu_{h} \in \Pi_{K} S_{k}(\partial K) ;\left.\nu_{h}\right|_{\partial K_{1}}+\left.\nu_{h}\right|_{\partial K_{2}}=0 \text { on } K_{1} \cap K_{2}\right\} \tag{3.43}
\end{equation*}
$$

Theorem 3.3.1. For any $v_{h} \in V_{h}$ there is $\mathbf{q}_{h} \in \mathbf{Q}_{h}$ which satisfies (3.41) and (3.42). Hence the inf-sup condition holds.

Main result.

3.4 Global estimates

Now we consider Dirichlet problem with nonhomogeneous boundary condition $p=-g$ on $\partial \Omega$. Let $\alpha=\mathbf{a}^{-1}$. Then our mixed method is defined by determining $\left(\mathbf{u}_{h}, p_{h}\right)$ such that

$$
\begin{align*}
\left(\alpha \mathbf{u}_{h}, \mathbf{v}\right)-\left(\operatorname{div} \mathbf{v}, p_{h}\right) & =<g, \mathbf{v} \cdot \nu>, \forall \mathbf{v} \in \mathbf{V}_{h} \tag{3.44a}\\
\left(\operatorname{div} \mathbf{u}_{h}, w\right) & =(f, w), \forall w \in W_{h} \tag{3.44b}
\end{align*}
$$

We shall show p_{h} and \mathbf{u}_{h} are of optimal order in L^{2} and H^{-s} for $s \leq k+1$ provided the domain and the solution p is sufficiently smooth. Indeed we shall prove

$$
\begin{align*}
&\left\|p-p_{h}\right\| \leq C h^{k+1}\|p\|_{k+1}, \quad\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{0} \leq C h^{k+1}\|p\|_{k+2} \tag{3.45a}\\
&\left\|p-p_{h}\right\|_{-k-1}+\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{-k-1} \leq C h^{2 k+2}\|p\|_{k+3} \tag{3.45b}\\
&\left\|\operatorname{div}\left(\mathbf{u}-\mathbf{u}_{h}\right)\right\|_{0} \leq C h^{r}\|p\|_{r+2}, 0 \leq r \leq k+1 \tag{3.45c}
\end{align*}
$$

(PRESENT FALK and Osborns's abstract theory and provide some details) Here triangle includes rectangle also and

$$
\begin{equation*}
\operatorname{div} \mathbf{V}_{h}=W_{h} \tag{3.46}
\end{equation*}
$$

holds. RT projection is

$$
\begin{equation*}
\Pi_{h}: \mathbf{V} \rightarrow \mathbf{V}_{h} \tag{3.47}
\end{equation*}
$$

such that
(i) P_{h} is $L^{2}(\Omega)$ projection
(ii) the following diagram commutes:

$$
\begin{array}{cc}
\mathbf{V} \xrightarrow{\text { div }} & W \\
\Pi_{h} \downarrow & \downarrow P_{h} \\
\mathbf{V}_{h} \xrightarrow{\text { div }} & W_{h} \rightarrow 0
\end{array}
$$

i,e., $\operatorname{div} \Pi_{h}=P_{h} \operatorname{div}: \mathrm{V}^{\text {onto }} W_{h}$.
(iii) The following approximation properties holds

$$
\begin{array}{r}
\left\|\mathbf{u}-\Pi_{h} \mathbf{u}\right\|_{0} \leq C h^{r}\|\mathbf{u}\|_{r},(1 \leq r \leq k+1) \\
\left\|\operatorname{div}\left(\mathbf{u}-\Pi_{h} \mathbf{u}\right)\right\|_{-s} \leq C h^{r+s}\|\operatorname{div} \mathbf{u}\|_{r},(0 \leq r, s \leq k+1) \\
\left\|p-P_{h} p\right\|_{-s} \leq C h^{r+s}\|p\|_{r},(0 \leq r, s \leq k+1) \tag{3.48c}
\end{array}
$$

Note the following also holds

$$
\begin{array}{r}
\left(\operatorname{div}\left(\mathbf{u}-\Pi_{h} \mathbf{u}\right), w_{h}\right)=0, \\
\quad w_{h} \in W_{h} \tag{3.49b}\\
\left.\quad \operatorname{div} \mathbf{v}_{h}, p-P_{h} p\right)=0,
\end{array} \mathbf{v}_{h} \in \mathbf{V}_{h} .
$$

Let

$$
\begin{array}{r}
\mathbf{e}_{h}=\mathbf{u}-\mathbf{u}_{h}, \quad \boldsymbol{\sigma}_{h}=\Pi_{h} \mathbf{u}-\mathbf{u}_{h} \\
\eta=p-p_{h}, \quad \tau=P_{h}-p_{h}, \quad \rho=p-P_{h} p(\rho+\tau=\eta) \tag{3.50b}
\end{array}
$$

Then we have error equations

$$
\begin{array}{rr}
\left(\alpha \mathbf{e}_{h}, \mathbf{v}\right)-(\operatorname{div} \mathbf{v}, \eta)=0, & \mathbf{v} \in \mathbf{V}_{h} \\
\left(\operatorname{div} \mathbf{e}_{h}, w\right)=0, & w \in W_{h} \tag{3.51b}
\end{array}
$$

3.4.1 Duality argument-Brezzi-Douglas-Marini for RT element

We start from error equations

$$
\begin{align*}
\left(\alpha \mathbf{e}_{h}, \mathbf{v}\right)-(\operatorname{div} \mathbf{v}, z) & =0, & \mathbf{v} \in \mathbf{V}_{h}=R T_{k}, k \geq 1 \tag{3.52a}\\
\left(\operatorname{div} \mathbf{e}_{h}, w\right) & =0, & w \in W_{h}=P_{k} \tag{3.52b}
\end{align*}
$$

where $z=P_{h} p-p_{h}, \mathbf{e}_{h}=\mathbf{u}-\mathbf{u}_{h}$.

Lemma 3.4.1. For $s \geq 0$,

$$
\begin{equation*}
\|z\|_{-s} \leq C h^{\min (s+1, k+1)}\left\|\mathbf{e}_{h}\right\|_{0}+c h^{\min (s+2, k+1)}\left\|\operatorname{div} \mathbf{e}_{h}\right\|_{0} \tag{3.53}
\end{equation*}
$$

Proof. Let $\phi \in H^{s+2}$ be the solution of dual problem $L^{*} \phi=\psi$. Then as in Doug-Roberts

$$
\begin{aligned}
(z, \psi) & =\left(\alpha \mathbf{e}_{h}, \mathbf{a} \operatorname{grad} \phi-\Pi_{h} \mathbf{a} \operatorname{grad} \phi\right)+\left(\operatorname{div} \mathbf{e}_{h}, \phi-P_{h} \phi\right) \\
& \leq C h^{\min (s+1, k+1)}\left\|\mathbf{e}_{h}\right\|_{0}\|\psi\|_{s}+C h^{\min (s+2, k+1)}\left\|\operatorname{div} \mathbf{e}_{h}\right\|_{0}\|\phi\|_{s+2}
\end{aligned}
$$

Lemma 3.4.2. For $s \geq 0$

$$
\left\|\operatorname{div} \mathbf{e}_{h}\right\|_{-s} \leq C h^{\min (s, k+1)}\left\|\operatorname{div} \mathbf{e}_{h}\right\|_{0}
$$

Proof. Let $\phi \in H^{s}(\Omega)$. Then

$$
\left(\operatorname{div} \mathbf{e}_{h}, \phi\right)=\left(\operatorname{div} \mathbf{e}_{h}, \phi-w\right), \quad \forall w \in W_{h}\left(=P_{k}\right)
$$

Taking infimum w.r.t w, we get the result.

Lemma 3.4.3.

$$
\left\|\mathbf{e}_{h}\right\|_{-s} \leq C h^{\min (s, k+1)}\left\|\mathbf{e}_{h}\right\|+C h^{\min (s+1, k+1)}\left\|\operatorname{div} \mathbf{e}_{h}\right\|_{0}
$$

Proof. Let $\boldsymbol{\phi} \in \mathbf{H}^{s}(\Omega)$. Then from the error equation (3.52b) and property of
Π_{h},

$$
\begin{aligned}
&\left(\alpha \mathbf{e}_{h}, \boldsymbol{\phi}\right)=\left(\alpha \mathbf{e}_{h}, \Pi_{h} \boldsymbol{\phi}\right)+\left(\alpha \mathbf{e}_{h}, \boldsymbol{\phi}-\Pi_{h} \boldsymbol{\phi}\right) \\
&=\left(\operatorname{div} \Pi_{h} \boldsymbol{\phi}, z\right)+\left(\alpha \mathbf{e}_{h}, \boldsymbol{\phi}-\Pi_{h} \boldsymbol{\phi}\right) \\
&=(\operatorname{div} \boldsymbol{\phi}, z)+\left(\alpha \mathbf{e}_{h}, \boldsymbol{\phi}-\Pi_{h} \boldsymbol{\phi}\right) \\
&\left|\left(\alpha \mathbf{e}_{h}, \boldsymbol{\phi}\right)\right| \leq\|\boldsymbol{\phi}\|_{s}\left\{\|z\|_{-s+1}+C h^{\min (s, k+1)}\left\|\mathbf{e}_{h}\right\|\right\}
\end{aligned}
$$

Conclusion follows from (3.53) since

$$
\begin{aligned}
\left\|\mathbf{e}_{h}\right\|_{-s} & \leq\|z\|_{-s+1}+C h^{\min (s, k+1)}\left\|\mathbf{e}_{h}\right\| \\
& \leq C h^{\min (s, k+1)}\left\|\mathbf{e}_{h}\right\|_{0}+C h^{\min (s+1, k+1)}\left\|\operatorname{div} \mathbf{e}_{h}\right\|
\end{aligned}
$$

Theorem 3.4.4. We have

$$
\begin{gather*}
\left\|p-p_{h}\right\|_{0} \leq C h^{r}\|f\|_{r}, \quad 1 \leq r \leq k+1 \tag{3.54}\\
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{0} \leq C h^{r}\|f\|_{r+1}, \quad 1 \leq r \leq k+1 \tag{3.55}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|\operatorname{div}\left(\mathbf{u}-\mathbf{u}_{h}\right)\right\|_{0} \leq C h^{r}\|f\|_{r}, \quad 1 \leq r \leq k+1 \tag{3.56}
\end{equation*}
$$

Proof. Take $\mathbf{v}=\boldsymbol{\sigma}_{h}=\Pi_{h} \mathbf{u}-\mathbf{u}_{h}$ in the error equation. Note

$$
\boldsymbol{\sigma}_{h}=\Pi_{h} \mathbf{u}-\mathbf{u}_{h}=\mathbf{u}-\mathbf{u}_{h}-\left(\mathbf{u}-\Pi_{h} \mathbf{u}\right)=\mathbf{e}_{h}-\left(\mathbf{u}-\Pi_{h} \mathbf{u}\right) .
$$

Then by (3.52)

$$
\left(\alpha \mathbf{e}_{h}, \boldsymbol{\sigma}_{h}\right)=\left(\operatorname{div} \boldsymbol{\sigma}_{h}, z\right)=0
$$

Thus

$$
\left(\alpha \boldsymbol{\sigma}_{h}, \boldsymbol{\sigma}_{h}\right)=-\left(\alpha\left(\mathbf{u}-\Pi_{h} \mathbf{u}\right), \boldsymbol{\sigma}_{h}\right)
$$

and hence

$$
\begin{gather*}
\left\|\boldsymbol{\sigma}_{h}\right\| \leq C\left\|\mathbf{u}-\Pi_{h} \mathbf{u}\right\| \\
\left\|\mathbf{u}-\mathbf{u}_{h}\right\| \leq\left\|\mathbf{u}-\Pi_{h} \mathbf{u}\right\|+\left\|\Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right\| \leq C h^{r}\|\mathbf{u}\|_{r} \text { for } 1 \leq r \leq k+1 \tag{3.57}
\end{gather*}
$$

Meanwhile(since $\operatorname{div} \boldsymbol{\sigma}_{h}=0$)

$$
\left\|\operatorname{div} \mathbf{e}_{h}\right\|_{0}=\left\|\operatorname{div}\left(\mathbf{u}-\Pi_{h} \mathbf{u}\right)\right\|_{0} \leq C h^{r}\|\operatorname{div} \mathbf{u}\|_{r}, 1 \leq r \leq k+1
$$

From Lemma 3.4.1 and (3.57)

$$
\begin{aligned}
\left\|p-p_{h}\right\|_{0} \leq & \left\|P_{h} p-p_{h}\right\|_{0}+\left\|p-P_{h} p\right\|_{0} \\
\leq & C h\left\|\mathbf{e}_{h}\right\|_{0}+C h^{\min (2, k+1)}\left\|\operatorname{div} \mathbf{e}_{h}\right\|_{0} \\
\leq & C h^{1+\min (r, k+1)}\|\mathbf{u}\|_{r} \\
& +C h^{\min (2, k+1)+\min (r, k+1)}\|\operatorname{div} \mathbf{u}\|_{r}+C h^{\min (r, k+1)}\|p\|_{r}
\end{aligned}
$$

Simplify the result, we get (3.54).

3.5 Hybrid form of mixed methods

The solution of algebraic system associated with mixed formulation can be simplified by the introduction of a Lagrange multiplier to enforce the continuity of normal component of \mathbf{u} across the interelement boundaries. Let

$$
\begin{equation*}
M_{h}=\left\{m: m_{e} \in P_{k}(e) \text { if } e \subset \Omega, m_{e}=0 \text { if } e \subset \partial \Omega,\right\} \tag{3.58}
\end{equation*}
$$

Following Fraejis de Veubeke, our problem is to seek $\left\{\mathbf{u}_{h}, p_{h}, m_{h}\right\} \in \mathbf{V}_{h}^{k} \times W_{h}^{k} \times M_{h}^{k}$ such that

$$
\begin{align*}
\left(\alpha \mathbf{u}_{h}, \mathbf{v}\right)-\sum_{T}\left(\operatorname{div} \mathbf{v}, p_{h}\right)+\sum_{T}<\mathbf{v} \cdot \mathbf{n}_{T}, m_{h}>\partial T & =\left\langle\mathbf{v} \cdot \mathbf{n}, g>, \mathbf{v} \in \mathbf{V}_{h}^{k},\right. \tag{3.59a}\\
\sum_{T}\left(\operatorname{div} \mathbf{u}_{h}, w\right)_{T} & =(f, w), w \in W_{h}^{k} \tag{3.59b}\\
\sum_{T}\left(\mathbf{u}_{h}, q\right)_{\partial T} & =0, q \in M_{h}^{k} \tag{3.59c}
\end{align*}
$$

We introduce some norms

$$
\begin{align*}
\left|m_{h}\right|_{0, h}^{2} & =\sum_{e}\left\|m_{h}\right\|_{0, e}^{2} \tag{3.60a}\\
\left|m_{h}\right|_{-1 / 2, h}^{2} & =\sum_{e}|e|\left\|m_{h}\right\|_{0, e}^{2} \tag{3.60b}
\end{align*}
$$

Lemma 3.5.1. If $\left\{\mathbf{u}_{h}, p_{h}, m_{h}\right\} \in \mathbf{V}_{h}^{k} \times W_{h}^{k} \times M_{h}^{k}$ is the solution of (3.59) then

$$
\begin{equation*}
\left\|m_{h}-Q_{h}^{k} p\right\|_{0, e} \leq C\left\{h^{1 / 2}\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{0, T}+h^{-1 / 2}\left\|P_{h} p-p_{h}\right\|_{0, T}\right\} \tag{3.61}
\end{equation*}
$$

Proof. Let $e \subset \Omega \cap T$ and define \mathbf{v} on T by requiring

$$
\begin{align*}
\mathbf{v} \cdot \mathbf{n}_{e} & =m_{h}-Q_{h} p \text { on } e \tag{3.62a}\\
\mathbf{v} \cdot \mathbf{n}_{T} & =0 \text { on } \partial T \backslash e \tag{3.62b}\\
\left(\mathbf{v}, \boldsymbol{\phi}_{k-1}\right)_{T} & =0, \forall \boldsymbol{\phi}_{k-1} \in\left(P_{k-1}(K)\right)^{2} . \tag{3.62c}
\end{align*}
$$

The existence and uniqueness is given by the mixed finite element(RT) construction. A scaling argument gives(Ok , use Piolar transform $\mathbf{v}=\frac{1}{J} B \hat{v} \circ F^{-1}$)

$$
\begin{equation*}
h\|\mathbf{v}\|_{1, T}+\|\mathbf{v}\|_{0, T} \leq C h^{1 / 2}\left\|m_{k}-Q_{h}^{k} p\right\|_{0, e} \tag{3.63}
\end{equation*}
$$

Take \mathbf{v} as test function in (3.59)

$$
\left(\alpha \mathbf{u}_{h}, \mathbf{v}\right)_{T}-\left(\operatorname{div} \mathbf{v}, p_{h}\right)_{T}+<m_{h}, m_{h}-Q_{h} p>_{e}=0
$$

Since

$$
(\alpha \mathbf{u}, \mathbf{v})_{T}-(\operatorname{div} \mathbf{v}, p)_{T}+<u, m_{h}-Q_{h} p>_{e}=0
$$

we have

$$
\left\|m_{h}-Q_{h} u\right\|_{0, e}^{2}=<m_{h}-p, m_{h}-Q h p>_{e}=\left(\alpha\left(\mathbf{u}-\mathbf{u}_{h}\right), \mathbf{v}\right)_{T}-\left(\operatorname{div} \mathbf{v}, z_{h}\right)_{T}
$$

and the result follows from (3.63)

Postprocessing introduced by Arnold-Brezzi

Lemma 3.5.2 (Arnold-Brezzi). Let k be nonnegative even integer. There exists a map

$$
R^{k+1}(T): \prod_{i=1}^{3} L^{2}\left(e_{i}\right) \times L^{2}(T) \rightarrow P_{k+1}
$$

$p_{h}^{*}=R^{k+1}(T)\left\{m_{h}, p_{h}\right\}$ is given by

$$
\begin{align*}
<p_{h}^{*}-m_{h}, q>_{e_{i}} & =0, q \in P_{k}\left(e_{i}\right), i=1,2,3 \tag{3.64a}\\
\left(p_{h}^{*}-p_{h}, q\right)_{T} & =0, q \in P_{k-2}(T), \text { for } k \geq 2 \tag{3.64b}
\end{align*}
$$

Moreover

$$
\begin{equation*}
\left\|p_{h}^{*}\right\|_{0, T} \leq C\left[\left\|p_{h}\right\|_{0, T}+h^{1 / 2} \sum_{i}\left\|m_{h}\right\|_{0, e_{i}}\right] \tag{3.65}
\end{equation*}
$$

The case where $k=1$ and $k=3$ have to be treated separately. For $k=1, R^{2}$ is determined by

$$
\begin{align*}
<p_{h}^{*}-m_{h}, 1>_{e_{i}} & =0, i=1,2,3 \tag{3.66a}\\
\left(p_{h}^{*}-p_{h}, q\right)_{T} & =0, q \in P_{1}(T) \tag{3.66b}
\end{align*}
$$

However this case is not used below to extend m_{h}, p_{h} when $k=1$. For $k=3$, $p_{h}^{*} \in P_{4}(T)$ is determined by

$$
\begin{align*}
<p_{h}^{*}-m_{h}, q>_{e_{i}} & =0, q \in P_{2}\left(e_{i}\right), i=1,2,3 \tag{3.67a}\\
\left(p_{h}^{*}-p_{h}, q\right)_{T} & =0, q \in P_{2}(T) . \tag{3.67b}
\end{align*}
$$

For $k=0,1,2,3,4,6,8, \cdot$, let R_{h}^{k+1} denote the extension of corresponding $R^{k+1}(T)$ to all T and let

$$
u_{h}^{*}=\left\{\begin{array}{l}
R_{h}^{1}\left\{m_{h}, p_{h}\right\}, k=1 \tag{3.68}\\
R_{h}^{k+1}\left\{m_{h}, p_{h}\right\}, k=2,3,4,6,, 8 \cdots
\end{array}\right.
$$

Then

Theorem 3.5.3.

$$
\left\|p-p_{h}^{*}\right\|_{0} \leq\left\{\begin{array}{l}
K h^{2}\left(\|f\|_{1}+|g|_{5 / 2}\right), k=1 \tag{3.69}\\
K h^{k+2}\left(\|f\|_{k}+|g|_{k+3 / 2}\right), k=2,3,4,6,, 8 \cdots
\end{array}\right.
$$

An alternative procedure of postprocessing is a local version of Nitsche: Define $u_{h}^{*} \mid T \in P_{k+1}(T)$, triangle by triangle as the solution of

$$
\begin{align*}
A_{T}\left(p_{h}^{*}, q\right)= & \left(a \operatorname{grad} p_{h}^{*}, \operatorname{grad} q\right)_{T}-\left\langle a \frac{\partial p_{h}^{*}}{\partial n}, q\right\rangle_{\partial T} \\
& -\left\langle p_{h}^{*}, a \frac{\partial q}{\partial n}\right\rangle_{\partial T}+\sigma h^{-1}\left\langle p_{h}^{*}, q\right\rangle_{\partial T} \tag{3.70}\\
= & (f, q)_{T}-\left\langle m_{h}, a \frac{\partial q}{\partial n}\right\rangle_{\partial T}+\sigma h^{-1}\left\langle m_{h}, q\right\rangle_{\partial T}
\end{align*}
$$

for $q \in P_{k+1}(T)$, where σ is some constant to be determined by k, a and shale of triangle only.
Theorem 3.5.4. Let $k \geq 2$ and p_{h}^{*} be defined as above. Then

$$
\begin{equation*}
\left\|p-p_{h}^{*}\right\|_{0} \leq K h^{k+2}\left(\|f\|_{k}+|g|_{k+3 / 2}\right) \tag{3.71}
\end{equation*}
$$

Proof. Recall A is not coercive over $H^{1}(T)$, is coercive on $P_{k+1}(T)$ for sufficiently large σ.(on finite dimensional space, $\sigma h^{-1}\langle q, q\rangle_{\partial T}$ dominates $\left\langle a \frac{\partial q}{\partial n}, q\right\rangle_{\partial T}$ for sufficiently large σ. In particular,

$$
\begin{equation*}
A(q, q) \geq \rho\left(|\operatorname{grad} q|_{T}^{2}+h^{-1}\|q\|_{\partial T}^{2}\right), q \in P_{k+1}(T) \tag{3.72}
\end{equation*}
$$

Since the error equation is(integrate $(\nabla a \nabla p, q)=(f, q)$ by part and just subtract rhs from (3.70))

$$
\begin{align*}
A_{T}\left(p-p_{h}^{*}, q\right) & =\left\langle m_{h}-p, a \frac{\partial p}{\partial n}, q\right\rangle_{\partial T}+\sigma h^{-1}\left\langle p-m_{h}^{*}, q\right\rangle_{\partial T} \quad, q \in P_{T}^{k+1} \tag{3.73}\\
& =\left\langle m_{h}-Q_{h}^{k} p, a \frac{\partial p}{\partial n}\right\rangle_{\partial T}+\sigma h^{-1}\left\langle p-m_{h}^{*}, q\right\rangle_{\partial T}
\end{align*}
$$

where Q_{h}^{k} is L^{2}-projection on each edge into $P_{k}(e)$ with respect to weight a. Take $\phi \in P_{k+1}(T)$. Then
shift p to q^{*} and choose $q=\phi-p_{h}^{*}$:

$$
\begin{align*}
A_{T}\left(\phi-p_{h}^{*}, \phi-p_{h}^{*}\right)= & A_{T}\left(p-p_{h}^{*}, \phi-p_{h}^{*}\right)+A_{T}\left(\phi-p, \phi-p_{h}^{*}\right) \\
= & A_{T}\left(\phi-p, \phi-p_{h}^{*}\right)+\left\langle m_{h}-Q_{h}^{k} p, a \frac{\partial}{\partial n}\left(\phi-p_{h}^{*}\right)\right\rangle_{\partial T} \\
& \quad+\sigma h^{-1}\left\langle p-m_{h}, \phi-p_{h}^{*}\right\rangle_{\partial T} \tag{3.74}
\end{align*}
$$

By the same inverse inequality used to show (3.72), and proper choice of ϕ,

$$
\begin{equation*}
A_{T}\left(\phi-p_{h}^{*}, \phi-p_{h}^{*}\right)=K\left[\|p\|_{k+2, T}^{2} h^{2 k+2}+\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{0, T}^{2}+h^{-2}\left\|P_{h}^{k+1} p-p_{h}\right\|_{0, T}^{2}\right] \tag{3.75}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\sum_{T}\left\{\left\|\operatorname{grad}\left(p-p_{h}^{*}\right)\right\|_{0, T}^{2}+h^{-1}\left\|p-p_{h}^{*}\right\|_{0, T}^{2}\right\} \leq K\left[\|f\|_{k}^{2}+|g|_{k+3 / 2}^{2}\right] h^{2 k+2} \tag{3.76}
\end{equation*}
$$

Now we can use duality argument on each triangle. Let

$$
\begin{align*}
-\operatorname{div}(a \operatorname{grad} \psi) & =\phi-p_{h}^{*}, x \in T \tag{3.77}\\
\psi & =0, x \in \partial T \tag{3.78}
\end{align*}
$$

so that $\|\psi\|_{2, T} \leq K\left\|\phi-p_{h}^{*}\right\|_{0, T}$ and $\|\psi\|_{1, T} \leq K h\|\psi\|_{2, T}$. Hence

$$
\left\|\phi-p_{h}^{*}\right\|_{0, T}^{2} \leq A\left(\phi-p_{h}^{*}, \psi\right) \leq K h A\left(\phi-p_{h}^{*}, \phi-p_{h}^{*}\right)^{1 / 2}\left\|\phi-p_{h}^{*}\right\|_{0, T}
$$

3.6 Trace estimate

Lemma 3.6.1. Let $v \in W_{p}^{1}(\Omega)$. Then

$$
\|v\|_{L^{p}(\partial \Omega)} \leq C\|v\|_{L^{p}(\Omega)}^{1-1 / p}\|v\|_{W_{p}^{1}(\Omega)}^{1 / p}
$$

See Brenner-Scott's book.
Corollary 3.6.2. On the reference element,

$$
\|\hat{v}\|_{L^{2}(\partial \hat{\Omega})}^{2} \leq C\|\hat{v}\|_{L^{2}(\hat{\Omega})}\left(\|\hat{v}\|_{L^{2}(\hat{\Omega})}+|\hat{v}|_{H^{1}(\hat{\Omega})}\right)
$$

On a finite element K of diameter h, we can show

$$
\|v\|_{L^{2}(K)} \approx C h\|\hat{v}\|_{L^{2}(\hat{K})}, \quad|v|_{H^{1}(K)} \approx|\hat{v}|_{H^{1}(\hat{K})}, \quad|v|_{L^{2}(\partial K)} \approx C h^{1 / 2}|\hat{v}|_{L^{2}(\partial \hat{K})}
$$

Transfer to the finite element

$$
\|v\|_{L^{2}(\partial K)}^{2} \leq C h^{-1}\|v\|_{L^{2}(K)}^{2}+\|v\|_{L^{2}(K)}|v|_{H^{1}(K)}
$$

Bibliography

[1] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates, RAIRO Model. Math. Anal. Numer. 19 (1985), pp. 7-32.
[2] S. C. Brenner, An optimal order multigrid for P1 nonconforming finite elements, Math. Comp. 52 (1989), pp. 1-15.
[3] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipiers, RAIRO, 1974, 2, pp. 129-151.
[4] F. Brezzi, J. Douglas, M. Fortin and L. Marini, Efficient rectangular mixed finite elements in two and three variables, RAIRO Model. Math. Numer. Anal. 21 (1987), pp. 581-604.
[5] F. Brezzi, J. Douglas, and L. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), pp. 217-235.
[6] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag, New-York, (1991).
[7] Z. Cai, J. E. Jones, S. F. McCormick and T. F. Russell, Controlvolume mixed finite element Methods, Computational Geosciences 1 (1997), pp. 289-315.
[8] Z. Chen, Analysis of mixed methods using conforming and nonconforming finite element methods, RAIRO Model. Math. Anal. Numer. 27 (1993), pp. 9-34.
[9] Z. Chen, Multigrid algorithms for mixed methods for second order elliptic problems, IMA Preprint Series \#1218, March 1994.
[10] Z. Chen and P. Oswald, Multigrid and multilevel methods for nonconforming Q1 elements, Math. Comp. 67 (1998), pp. 667-693.
[11] S. H. Chou and S. He, On the regularity and uniformness conditions on quadrilateral grids, submitted to Comput. Methods Appl. Mech. Engrg., (2001).
[12] S. H. Chou and D. Y. Kwak, Mixed covolume methods on rectangular grids for elliptic problems, SIAM J. Numer. Anal. 37, No. 3 (2000). pp. 758-771.
[13] S. H. Chou, D. Y. Kwak and P. Vassilevski, Mixed covolume methods for elliptic problems on triangular grids, SIAM J. Numer. Anal. 35, No. 5 (1998). pp. 1850-1861.
[14] S. H. Chou, D. Y. Kwak and K. Y. Kim, A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: the overlapping covolume case, accepted for publication in SIAM J. Numer. Anal. (2001).
[15] P. G. Ciarlet and P. A. Raviart, General Lagrange and HermiteInterpolation in \mathbb{R}^{n} with Application to Finite Element Methods, Arch. Rat. Mech. Anal, V46, (1972), pp. 177-199.
[16] S. H. Chou and S. Tang, Conservative P1 conforming and nonconforming Galerkin FEMs: effective flux evaluation via a nonmixed method approach, SIAM J. Numer. Anal. 38 (2000). pp. 660-680.
[17] S. H. Chou and S. Tang, Comparing two approaches of analyzing mixed finite volume methods, BGSU report, Bowling Green State University, OH. (2000).
[18] S. H. Chou and P. S. Vassilevski, A general mixed covolume framework for constructing conservative schemes for elliptic problems, Math. Comp., 68, No. 227, (1999). pp. 991-1011.
[19] B. Courbet and J. P. Croisille, Finite volume box schemes on triangular meshes, RAIRO Model. Math. Anal. Numer. 32 (1998), pp. 631-649.
[20] J. Douglas, Jr., R. E. Ewing and M. F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numér. 17 (1983), pp. 17-33.
[21] J. Douglas, Jr. and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), pp. 39-52.
[22] R. Falk and J. Osborn, Error estimates for mixed methods, RAIRO Anal. Numér. 14 (1980), pp. 249-277.
[23] M. Fortin, An analysis of the convergence of mixed finite element methods, RAIRO Anal. Numér. 11 (1977), pp. 341-354.
[24] Fraeijis de Veubeke B., Displacement and equilibrium models in the finite element method, in Stress Analysis (O.C. Zienkiewicz and G. Holister, eds), John Wiley and Sons, New York(1965).
[25] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Theory and Algorithms, Springer-Verlag, Berlin, 1986.
[26] C. Johnson and V. Thomee, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér 15 (1981), pp. 41-78.
[27] J. E. Jones A mixed finite volume element method for accurate computation of fluid velocities in porous media, Ph. D. thesis, University of Colorado at Denver, (1995).
[28] L. D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal. 22 (1995), pp. 493-496.
[29] L. D. Marini and P. Pietra, An abstract theory for mixed approximations of second order elliptic problems, Mat. Aplic. Comp. 8 (1989), pp. 219-239.
[30] S. McCormick, Multilevel adaptive methods for partial differential equations, Society of Industrial and Applied Mathematics, Philadelphia, PA, (1989).
[31] J. T. Oden, Generalized conjugate functions for mixed finite element Approximations of boundary value problem f in the Mathematical Fondations of the elliptic finite element methods... Babuska, Aziz eds. 629-670 (1972).
[32] M. Ohlberger, Convergence of a mixed finite elements-finite volume method for the two phase flow in porous media, East-West J. Numer. Math. 5 (1997), pp.183-210.
[33] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Methods in Partial Diff. Eqns. 8 (1992), pp. 97-111.
[34] P. A. Raviart and J. M. Thomas, A mixed finite element method for $2 n d$ order elliptic problems, in Proc. Conf. on Mathematical Aspects of Finite Element Methods, Lecture Notes in Math., Vol. 606, Springer-Verlag, Berlin, 1977, pp. 292-315.
[35] P. A. Raviart and J. M. Thomas, Primal hybrid finite element method for $2 n d$ order elliptic equations, Math. Comp. 31 (1977), pp. 391-413.
[36] R. Sacco and F. Saleri, Mixed finite volume methods for semiconductor device simulation, Numer. Methods in Partial Diff. Eqns. 13 (1997), pp. 215-236.
[37] J.-M. Thomas and D. Trujillo, Mixed finite volume methods, Inter. J. Numer. Methods Eng. 46 (1999), pp. 1351-1366.
[38] J. Wang and T. Mathew, Mixed finite element methods over quadrilaterals, In the Proceedings of the Third International Conference on Advances in Numerical Methods and Applications, Eds: I. T. Dimov, Bl. Sendov, and P. Vassilevski, World Scientific, (1994), pp 203-214.

