Numerical PDE
D.Y. Kwak

November 19, 2007

1.1 The Stokes equations

The Navier-Stokes equations for a viscous incompressible fluid are as follows:

$$
\begin{array}{r}
\rho\left(\frac{\partial u_{i}}{\partial t}+\sum_{j} u_{j} \frac{\partial u_{i}}{\partial x_{j}}\right)-\sum_{j} \frac{\partial \sigma_{i j}}{\partial x_{j}}=\rho f_{i}, \quad 1 \leq i \leq n \\
\operatorname{div} \mathbf{u}=\sum_{i} D_{i i}(\mathbf{u})=0(\text { incompressibility }) \tag{1.2}
\end{array}
$$

where

$$
\begin{aligned}
\sigma_{i j} & =-P \delta_{i j}+2 \mu D_{i j}(\mathbf{u}) \\
D_{i j}(\mathbf{u}) & =\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right), \quad 1 \leq i, j \leq n .
\end{aligned}
$$

In these equations, \mathbf{u} is the velocity of the fluid, ρ is the density, $\mu>0$ is the viscosity and P is the pressure; $\sigma_{i j}$ is the stress tensor and the vector \mathbf{f} represents body forces per unit mass. Let $p=P / \rho$ and $\nu=\mu / \rho$. With these notation, we have the following form:

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial t}+\sum_{j} u_{j} \frac{\partial u_{i}}{\partial x_{j}}-2 \nu \sum_{j} \frac{\partial D_{i j}(\mathbf{u})}{\partial x_{j}}+\frac{\partial p}{\partial x_{i}}=f_{i}, \quad 1 \leq i \leq n . \tag{1.3}
\end{equation*}
$$

We introduce some notations: For $\mathbf{u}=\left(u_{1}, u_{2}\right)^{T}$, let

$$
\operatorname{grad} \mathbf{u}=\nabla \mathbf{u}=\left(\begin{array}{ll}
\frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{2}} \tag{1.4}\\
\frac{\partial u_{2}}{\partial x_{1}} & \frac{\partial u_{2}}{\partial x_{2}}
\end{array}\right)
$$

Then $D(\mathbf{u})=\frac{1}{2}\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)$. We also define vector Laplacian: $\Delta \mathbf{u}=\binom{\Delta u_{1}}{\Delta u_{2}}$
Note that if $\operatorname{div} \mathbf{u}=0$, the following identity holds

$$
\begin{equation*}
\sum_{j} \frac{\partial D_{i j}(\mathbf{u})}{\partial x_{j}}=\frac{1}{2} \sum_{j}\left(\frac{\partial^{2} u_{i}}{\partial x_{j}^{2}}+\frac{\partial^{2} u_{j}}{\partial x_{i} \partial x_{j}}\right)=\frac{1}{2} \Delta u_{i}, \quad \text { for each } i \tag{1.5}
\end{equation*}
$$

so that it can be written as

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{u}}{\partial t}+\sum_{j} u_{j} \frac{\partial \mathbf{u}}{\partial x_{j}}-\nu \Delta \mathbf{u}+\operatorname{grad} p=\mathbf{f} \tag{1.6}\\
\operatorname{div} \mathbf{u}=0
\end{array}\right.
$$

Or

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}-\nu \Delta \mathbf{u}+\operatorname{grad} p=\mathbf{f} \tag{1.7}\\
\operatorname{div} \mathbf{u}=0
\end{array}\right.
$$

where $(\mathbf{u} \cdot \nabla) \mathbf{v}=\mathbf{e}_{i} \sum_{j} u_{j} \frac{\partial v_{i}}{\partial x_{j}}$. Here $\mathbf{u} \cdot \nabla$ can be considered as inner product.
We only consider the steady-state case, and assume that \mathbf{u} is so small that we can ignore the non-linear convection term $u_{j} \frac{\partial u_{i}}{\partial x_{j}}$. Thus, we have the Stokes equation:

$$
\left\{\begin{array}{l}
-2 \nu \sum_{j} \frac{\partial D_{i j}(\mathbf{u})}{\partial x_{j}}+\frac{\partial p}{\partial x_{i}}=f_{i}, \quad 1 \leq i \leq n \tag{1.8}\\
\operatorname{div} \mathbf{u}=0
\end{array}\right.
$$

In vector form, it can be written as

$$
\left\{\begin{aligned}
-\nu \Delta \mathbf{u}+\operatorname{grad} p & =\mathbf{f} \\
\operatorname{div} \mathbf{u} & =0
\end{aligned}\right.
$$

1.1.1 The "Velocity-Pressure" formulation

Let $L_{0}^{2}(\Omega)$ be the space of all $L^{2}(\Omega)$ functions q such that $\int_{\Omega} q d x=0$. The next theorem is necessary for the stability:

Theorem 1.1.1. There exists a constant $c>0$ such that

$$
\sup _{\mathbf{v} \in\left(H_{0}^{1}(\Omega)\right)^{n}} \frac{(\phi, \operatorname{div} \mathbf{v})}{|\mathbf{v}|_{1}} \geq c\|\phi\|_{0}, \quad \forall \phi \in L_{0}^{2}(\Omega)
$$

Proof. By Cor 2.4 there exists unique $\mathbf{v} \in V^{\perp}$ such that $\operatorname{div} \mathbf{v}=\phi$ and $|\mathbf{v}|_{1} \leq$ $c\|\phi\|_{0}$. Hence

$$
\frac{(\phi, \operatorname{div} \mathbf{v})}{|\mathbf{v}|_{1}}=\frac{\|\phi\|_{0}^{2}}{|\mathbf{v}|_{1}} \geq \frac{1}{c}\|\phi\|_{0}
$$

Theorem 1.1.2. Let \mathbf{f} be given in $\left(H^{-1}(\Omega)\right)^{n}$ and $\mathbf{g} \in\left(H^{1 / 2}(\Gamma)\right)^{n}$ resp., such that

$$
\int_{\Gamma} \mathbf{g} \cdot \mathbf{n} d \sigma=0
$$

Then there exists unique pair of functions (\mathbf{u}, p) in $\left(H^{1}(\Omega)\right)^{n} \times L_{0}^{2}(\Omega)$ such that

$$
\left\{\begin{align*}
-\nu \Delta \mathbf{u}+\operatorname{grad} p & =\mathbf{f} \text { in } \Omega \tag{1.9}\\
\operatorname{divu} & =0 \text { in } \Omega \\
\mathbf{u} & =\mathbf{g} \text { on } \Gamma .
\end{align*}\right.
$$

Proof. There exists a function $\mathbf{u}_{g} \in H^{1}(\Omega)^{n}$ such that

$$
\operatorname{div} \mathbf{u}_{g}=0 \text { in } \Omega, \mathbf{u}_{g}=g \text { on } \Gamma
$$

Now let us put problem (1.9) into general framework of chap 4.: We set

$$
X=H_{0}^{1}(\Omega)^{n}, \quad M=L_{0}^{2}(\Omega)
$$

Multiply by $\mathbf{v} \in M$ and integrate by parts,

$$
-(\nu \Delta \mathbf{u}, \mathbf{v})+(\operatorname{grad} p, \mathbf{v})=(\nu \nabla \mathbf{u}, \nabla \mathbf{v})-(p, \operatorname{div} \mathbf{v})=(\mathbf{f}, \mathbf{v})
$$

Here $(\nabla \mathbf{u}, \nabla \mathbf{v})$ is interpreted as follows: Write $\mathbf{u}=\left(u_{1}, u_{2}\right)^{T}$. Then

$$
\nabla \mathbf{u}=\left(\begin{array}{ll}
\frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{2}} \\
\frac{\partial u_{2}}{\partial x_{1}} & \frac{\partial u_{2}}{\partial x_{2}}
\end{array}\right), \quad \nabla \mathbf{v}=\left(\begin{array}{cc}
\frac{\partial v_{1}}{\partial x_{1}} & \frac{\partial v_{1}}{\partial x_{2}} \\
\frac{\partial v_{2}}{\partial x_{1}} & \frac{\partial v_{2}}{\partial x_{2}}
\end{array}\right)
$$

For two matrices A, B we sometimes write

$$
\begin{gather*}
A: B=\sum_{i, j} a_{i j} b_{i j} \\
a(\mathbf{u}, \mathbf{v})=\nu \sum_{i, j=1}^{N}\left(\frac{\partial u_{i}}{\partial x_{j}}, \frac{\partial v_{i}}{\partial x_{j}}\right)=\nu(\operatorname{grad} \mathbf{u}, \operatorname{grad} \mathbf{v})=\int \operatorname{grad} \mathbf{u}: \operatorname{grad} \mathbf{v} d x \tag{1.10}\\
b(\mathbf{v}, q)=-(q, \operatorname{div} \mathbf{v}) \\
\langle\ell, \mathbf{v}\rangle=\langle\mathbf{f}, \mathbf{v}\rangle-a\left(\mathbf{u}_{g}, \mathbf{v}\right), \chi=0 .
\end{gather*}
$$

and

$$
V=\left\{\mathbf{v} \in H_{0}^{1}(\Omega)^{n}, \operatorname{div} \mathbf{v}=0\right\}
$$

$a(\cdot, \cdot)$ satisfies ellipticity and b satisfies inf-sup condition by theorem 1.1.1. We apply Corollary 1.2.5:

Weak formulation There exists a unique pair of functions $(\mathbf{w}, p) \in H_{0}^{1}(\Omega)^{n} \times$ $L_{0}^{2}(\Omega)$ such that

$$
\left\{\begin{aligned}
a(\mathbf{w}, \mathbf{v})+b(\mathbf{v}, p) & =\langle\ell, \mathbf{v}\rangle \text { for all } \mathbf{v} \in H_{0}^{1}(\Omega)^{n} \\
b(\mathbf{w}, q) & =0 \text { for all } q \in L_{0}^{2}(\Omega)
\end{aligned}\right.
$$

Here $\mathbf{u}=\mathbf{u}_{g}+\mathbf{w}, \mathbf{w} \in H_{0}^{1}(\Omega)$. This is equivalent to Problem (1.9)

Remark 1.1.3. This can be put in an equivalent form as follows:

$$
\left\{\begin{align*}
a(\mathbf{u}, \mathbf{v})-(p, \operatorname{div} \mathbf{v}) & =\langle\mathbf{f}, \mathbf{v}\rangle \text { for all } \mathbf{v} \in H_{0}^{1}(\Omega)^{n} \tag{1.11}\\
(q, \operatorname{div} \mathbf{v}) & =0 \text { in for all } q \in L_{0}^{2}(\Omega) \\
\mathbf{u} & =\mathbf{g} \text { on } \Gamma .
\end{align*}\right.
$$

The choice $M=L_{0}^{2}(\Omega)$ is a matter of convenience and we can just as well take $M=M^{2}(\Omega) / \mathbb{R}$.

1.2 A General result

Let X and M be two Hilbert spaces with norms $\|\cdot\|_{X}$ and $\|\cdot\|_{M}$ and let X^{\prime} and M^{\prime} be their dual spaces. As usual, we denote $\langle\cdot, \cdot\rangle$ be the duality pairing between X and X^{\prime} or M and M^{\prime}

Introduce bilinear forms

$$
a(\cdot, \cdot): X \times X \rightarrow \mathbb{R}, \quad b(\cdot, \cdot): X \times M \rightarrow \mathbb{R}
$$

with norms

$$
\|a\|=\sup _{u, v} \frac{a(u, v)}{\|u\|_{X}\|v\|_{X}}, \quad\|b\|=\sup _{v \in X, \mu \in M} \frac{b(v, \mu)}{\|v\|_{X}\|\mu\|_{\mu}}
$$

We consider the following two variational problem called problem (Q):
Given $\ell \in X^{\prime}$ and $\chi \in M^{\prime}$, find a pair $(u, \lambda) \in X \times M$ such that

$$
\begin{align*}
a(u, v)+b(v, \lambda) & =\langle\ell, v\rangle \text { for all } v \in X \tag{1.12}\\
b(u, \mu) & =\langle\chi, \mu\rangle \text { for all } \mu \in M \tag{1.13}
\end{align*}
$$

In order to study (Q), we associate two linear operators $A \in \mathcal{L}\left(X ; X^{\prime}\right)$ and $B \in \mathcal{L}\left(X ; M^{\prime}\right)$ defined by

$$
\begin{align*}
\langle A u, v\rangle & =a(u, v) \text { for all } u, v \in X \tag{1.14}\\
\langle B v, \mu\rangle & =b(u, \mu) \text { for all } v \in X, \mu \in M \tag{1.15}
\end{align*}
$$

Let $B^{\prime} \in \mathcal{L}\left(M ; X^{\prime}\right)$ be dual operators defined by

$$
\begin{equation*}
\left\langle B^{\prime} \mu, v\right\rangle=\langle\mu, B v\rangle=b(v, \mu), v \in X, \mu \in M \tag{1.16}
\end{equation*}
$$

With these, the problem can be written as
Find $(u, \lambda) \in X \times M$ such that

$$
\begin{equation*}
A u+B^{\prime} \lambda=\ell \text { in } X^{\prime} \tag{1.17}
\end{equation*}
$$

$$
\begin{equation*}
B u=\chi \text { in } M^{\prime} \tag{1.18}
\end{equation*}
$$

We set $V=\operatorname{Ker}(B)$ and more generally define

$$
V(\chi)=\{v \in X ; B v=\chi\}
$$

Note that $V=V(0)$.
Now problem (Q) can be changed into equivalent form (P):
Find $u \in V(\chi)$ such that

$$
\begin{equation*}
a(u, v)=\langle\ell, v\rangle, \quad v \in V \tag{1.19}
\end{equation*}
$$

Theorem 1.2.1. The problem (Q) has a unique solution which depends continuously on the given data if there is a constant $\beta>0$ such that

$$
\begin{equation*}
\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|_{X}\|\mu\|_{\mu}} \geq \beta>0 \tag{1.20}
\end{equation*}
$$

Corollary 1.2.2. Assume that $a(\cdot, \cdot)$ is coercive on V, i.e. there exists a constant $\alpha>0$ such that

$$
\begin{equation*}
a(v, v) \geq \alpha\|v\|_{X}^{2}, \quad \forall v \in V \tag{1.21}
\end{equation*}
$$

Then problem (Q) has unique solution b form satisfies inf-sup condition.

1.2.1 Saddle Point Approach

Introduce an energy functional $J: X \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
J(v)=\frac{1}{2} a(v, v)-\langle\ell, v\rangle \tag{1.22}
\end{equation*}
$$

and let

$$
\begin{equation*}
\mathcal{L}(v, \mu)=J(v)+b(v, \mu)-\langle\chi, \mu\rangle \tag{1.23}
\end{equation*}
$$

Consider the following problem, called problem (L):
Find a saddle point $(u, \lambda) \in X \times M$ of the Lagrangian functional \mathcal{L}, i.e, find a pair $(u, \lambda) \in X \times M$ such that

$$
\begin{equation*}
\mathcal{L}(u, \mu) \leq \mathcal{L}(u, \lambda) \leq \mathcal{L}(v, \lambda), \quad v \in X, \mu \in M \tag{1.24}
\end{equation*}
$$

Theorem 1.2.3. Assume $a(\cdot, \cdot)$ is symmetric and $a(v, v) \geq 0$. Then the problem (L) has a unique solution (u, λ) which is the solution of problem (Q).

Proof. The first inequality of (1.24) can be written as

$$
b(v, \mu-\lambda) \leq\langle\chi, \mu-\lambda\rangle, \quad \forall \mu \in M
$$

Since μ is arbitrary, this is equivalent to(by taking $\mu \rightarrow \pm \mu+\lambda$)

$$
b(v, \lambda)=\langle\chi, \lambda\rangle, \quad \forall \mu \in M
$$

Next The second inequality of (1.24) is equivalent to

$$
\mathcal{L}(u, \lambda)=\inf _{v \in X} \mathcal{L}(v, \lambda) .
$$

Since $a(\cdot, \cdot)$ is symmetric, we have

$$
\left.\frac{d}{d t} \mathcal{L}(u+t v, \lambda)\right|_{t=0}=a(u, v)-b(v, \lambda)-\langle\ell, v\rangle
$$

Furthermore, we have the second derivative

$$
\left.\frac{d^{2}}{d t^{2}} \mathcal{L}(u+t v, \lambda)\right|_{t=0}=a(v, v) \geq 0
$$

Therefore, $v \rightarrow \mathcal{L}$ is convex functional and its minimum u is characterized by the condition $\left.\frac{d}{d t} \mathcal{L}(u+t v, \lambda)\right|_{t=0}=0$, i.e.

$$
a(u, v)+b(v, \lambda)=\langle\ell, v\rangle, \quad \forall v \in X .
$$

Thus (u, λ) is a saddle point of \mathcal{L} iff it is a solution of problem (Q).
Corollary 1.2.4. This problem has a unique solution (u, λ) which is the solution of problem (Q).

$$
\begin{equation*}
\min _{v \in X}\left(\sup _{\mu \in M} \mathcal{L}(v, \mu)\right)=\mathcal{L}(u, \lambda)=\max _{\mu \in M}\left(\inf _{v \in X} \mathcal{L}(v, \mu)\right) . \tag{1.25}
\end{equation*}
$$

1.2.2 Augmented Lagrangian

Introduce energy functional $J_{r}: X \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
J_{r}(v)=J(v)+\frac{r}{2}\left\langle C^{-1}(B v-\chi), B v-\chi\right\rangle \tag{1.26}
\end{equation*}
$$

and Augmented Lagrangian functional

$$
\begin{equation*}
\mathcal{L}_{r}(v)=J_{r}(v)+b(v, \mu)-\langle\chi, \mu\rangle, \quad r>0 \tag{1.27}
\end{equation*}
$$

We have

$$
J_{r}(u)=\inf _{v \in V(\chi)} J_{r}(u) .
$$

Corollary 1.2.5. The solution (u, λ) is the unique saddle point problem of augmented lagrangian functional \mathcal{L}_{r} :

$$
\begin{equation*}
\min _{v \in X}\left(\sup _{\mu \in M} \mathcal{L}_{r}(v, \mu)\right)=\mathcal{L}_{r}(u, \lambda)=\max _{\mu \in M}\left(\inf _{v \in X} \mathcal{L}_{r}(v, \mu)\right) \tag{1.28}
\end{equation*}
$$

Standard Uzawa

Let p_{h}^{0} given. With small $\epsilon>0$, Solve

$$
\begin{aligned}
a\left(\mathbf{u}^{m+1}, \mathbf{v}\right)+b\left(\mathbf{v}, p_{h}^{m}\right) & =\left(\mathbf{f}, \mathbf{v}_{h}\right)-a\left(\mathbf{u}_{g}, \mathbf{v}\right), \quad \mathbf{v} \in \mathbf{V}_{h} \\
\left(p^{m+1}-p^{m}, q\right) & =\epsilon b\left(\mathbf{u}^{m+1}, q\right), \quad q \in M_{h}
\end{aligned}
$$

Stop if $\left\|p^{m+1}-p^{m}\right\|$ is sufficiently small.

Conjugate Gradient for infinite dimensional space

Recall our problem (Q): Consider the following variational problem:
(Q) For ℓ given in X^{\prime} and $\chi \in M^{\prime}$, find a pair (u, λ) in $X \times M$ such that

$$
\begin{align*}
a(u, v)+b(v, \lambda) & =\langle\ell, v\rangle \quad \forall v \in X \tag{1.29}\\
b(u, \mu) & =\langle\chi, \mu\rangle \quad \forall \mu \in M \tag{1.30}
\end{align*}
$$

p. 78. Define

$$
\begin{equation*}
a_{r}(\mathbf{u}, \mathbf{v})=a(\mathbf{u}, \mathbf{v})+r\left\langle C^{-1} B \mathbf{u}, B \mathbf{v}\right\rangle \tag{1.31}
\end{equation*}
$$

Then problem (Q) is equivalent to solving

$$
\begin{equation*}
a_{r}(\mathbf{u}, \mathbf{v})=\langle\ell, \mathbf{v}\rangle+\operatorname{rb}\left(\mathbf{v}, C^{-1} \chi\right)-b(\mathbf{v}, \mu) \quad \forall \mathbf{v} \in X \tag{1.32}
\end{equation*}
$$

Given $\left(\mathbf{u}^{0}, \lambda^{0}\right), \sigma_{0}=0$. For $m \geq 0$, compute $g^{m}, \omega^{m} \in M, \mathbf{z}^{m} \in X, \rho^{m}, \sigma^{m} \in \mathbb{R}$ and $\left(\mathbf{u}^{m+1}, \lambda^{m+1}\right) \in X \times M$ by

$$
\begin{aligned}
C g^{m} & =\chi-B \mathbf{u}^{m} \\
\sigma^{m} & =c\left(g^{m}, g^{m}\right) / c\left(g^{m-1}, g^{m-1}\right) \\
\omega^{m} & =g^{m}+\sigma^{m} \omega^{m-1} \\
A_{r} \mathbf{z}^{m} & =B^{\prime} \omega^{m} \\
\rho^{m} & =c\left(g^{m}, g^{m}\right) / b\left(\mathbf{z}^{m}, g^{m}\right) \\
\lambda^{m+1} & =\lambda^{m}-\rho^{m} \omega^{m} \\
\mathbf{u}^{m+1} & =\mathbf{u}^{m}+\rho^{m} \mathbf{z}^{m}
\end{aligned}
$$

Here B^{\prime} is adjoint of B (In matrix form it is B^{t}.)

Augmented Lagrangian formulation

p 123.

Now change every space to finite dimensional one. Let

$$
X_{h} \subset X, \quad M_{h} \subset M
$$

be finite dimensional subspace with certain approximation properties.
$\left(Q_{h}\right)$ For ℓ given in X_{h}^{\prime} and $\chi \in M_{h}^{\prime}$, find a pair $\left(\mathbf{u}_{h}, \lambda_{h}\right)$ in $X_{h} \times M_{h}$ such that

$$
\begin{align*}
a\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)+b\left(\mathbf{v}_{h}, \lambda_{h}\right) & =\left\langle\ell, \mathbf{v}_{h}\right\rangle \quad \forall \mathbf{v}_{h} \in X_{h} \tag{1.33}\\
b\left(\mathbf{u}_{h}, \mu\right) & =\langle\chi, \mu\rangle \quad \forall \mu \in M_{h} . \tag{1.34}
\end{align*}
$$

Define for some large $r>0$

$$
\begin{equation*}
a_{r}^{h}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)=a\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)+r\left\langle C^{-1} B \mathbf{u}_{h}, B \mathbf{v}_{h}\right\rangle=b\left(\mathbf{v}_{h}, C^{-1} B \mathbf{u}_{h}\right) \tag{1.35}
\end{equation*}
$$

Problem $\left(Q_{h}\right)$ is equivalent to solving

$$
a_{r}^{h}\left(\mathbf{u}_{h}\left(\mu_{h}\right), \mathbf{v}_{h}\right)=\left\langle\ell, \mathbf{v}_{h}\right\rangle+b\left(\mathbf{v}_{h}, r C_{h}^{-1} \chi-\mu_{h}\right), \forall \mathbf{v}_{h} \in X_{h}
$$

Now Uzawa method based on conjugate gradient method is:
Starting from an initial guess $\lambda_{h}^{0} \in M_{h}$, compute the solution $\mathbf{u}_{h}^{0} \in X_{h}$ satisfying

$$
a_{r}^{h}\left(\mathbf{u}_{h}^{0}, \mathbf{v}_{h}\right)=\left\langle\ell, \mathbf{v}_{h}\right\rangle+b\left(\mathbf{v}_{h}, r C_{h}^{-1} \chi-\lambda_{h}^{0}\right), \forall \mathbf{v}_{h} \in X_{h}
$$

Let $\sigma_{0}=0$.
For $m \geq 0$, compute $g_{h}^{m}, \omega_{h}^{m} \in M_{h}, \mathbf{z}_{h}^{m} \in X_{h}, \rho_{h}^{m}, \sigma_{h}^{m} \in \mathbb{R}$ and $\left(\mathbf{u}_{h}^{m+1}, \lambda_{h}^{m+1}\right) \in$ $X_{h} \times M_{h}$ by

$$
\begin{aligned}
c\left(g_{h}^{m}, \mu_{h}\right) & =\left\langle\chi_{h}, \mu_{h}\right\rangle-b\left(\mathbf{u}_{h}^{m}, \mu_{h}\right), \quad \mu_{h} \in M_{h} \text { residual } \\
\sigma_{h}^{m} & =\frac{c\left(g_{h}^{m}, g_{h}^{m}\right)}{c\left(g_{h}^{m-1}, g_{h}^{m-1}\right)} \text { only if } m \geq 1 \\
\omega_{h}^{m} & =g_{h}^{m}+\sigma_{h}^{m} \omega_{h}^{m-1}, \quad \omega_{h}=g_{h}^{0} \\
a_{r}^{h}\left(\mathbf{z}_{h}^{m}, \mathbf{v}_{h}\right) & =b\left(\mathbf{v}_{h}, \omega_{h}^{m}\right), \quad \forall \mathbf{v}_{h} \in X_{h} \text { search direction } \\
\rho_{h}^{m} & =\frac{c\left(g_{h}^{m}, g_{h}^{m}\right)}{b\left(\mathbf{z}_{h}^{m}, g_{h}^{m}\right)} \\
\lambda_{h}^{m+1} & =\lambda_{h}^{m}-\rho_{h}^{m} \omega_{h}^{m} \\
\mathbf{u}_{h}^{m+1} & =\mathbf{u}_{h}^{m}+\rho_{h}^{m} \mathbf{z}_{h}^{m}
\end{aligned}
$$

Take r as large as possible and $c=I d$ and $\rho=r$.

1.2.3 Application to Stokes Equation

The approximate problem is

$$
\left\{\begin{align*}
\left(\nabla \mathbf{u}_{h}, \nabla \mathbf{v}_{h}\right)-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right) & =\left(\mathbf{f}, \mathbf{v}_{h}\right) \text { for all } \mathbf{v}_{h} \in X_{h}, \tag{1.36}\\
\left(q_{h}, \operatorname{divv}_{h}\right) & =0 \text { in for all } q_{h} \in M_{h}(\Omega) \\
\mathbf{u}_{h} & =\mathbf{g} \text { on } \Gamma .
\end{align*}\right.
$$

Then with

$$
a\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)=\left(\nabla \mathbf{u}_{h}, \nabla \mathbf{v}_{h}\right), \quad b\left(\mathbf{v}_{h}, q\right)=-\left(q, \operatorname{div} \mathbf{v}_{h}\right)
$$

this fits with previous setting. Let $Q_{h}: L_{0}^{2}(\Omega) \rightarrow M_{h}$ is orthogonal projection defined by

$$
\left(Q_{h} q, \mu\right)=(q, \mu) \quad \forall \mu \in M_{h} .
$$

Set $\chi=0, C=i d$ and $\langle\ell, \mathbf{v}\rangle=<\mathbf{f}, \mathbf{v}>$ in previous setting. Conjugate gradient method with

$$
\begin{equation*}
a_{r}^{h}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)=a\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)+r\left\langle Q_{h}\left(\operatorname{div} \mathbf{u}_{h}\right), Q_{h}\left(\operatorname{div} \mathbf{v}_{h}\right)\right\rangle \tag{1.37}
\end{equation*}
$$

is described as follows:
Given an initial guess $p_{h}^{0} \in M_{h}$, compute the solution $\mathbf{u}_{h}^{0} \in X_{h}$ satisfying

$$
a_{r}^{h}\left(\mathbf{u}_{h}^{0}, \mathbf{v}_{h}\right)=\left(p_{h}^{0}, \operatorname{div} \mathbf{v}_{h}\right)+\left(\mathbf{f}, \mathbf{v}_{h}\right)-a\left(\mathbf{u}_{g}, \mathbf{v}\right), \forall \mathbf{v}_{h} \in X_{h}
$$

Let $\sigma_{0}=0$.
For $m \geq 0$, compute $\left(\mathbf{z}_{h}^{m}, \omega_{h}^{m}\right) \in X_{h} \times M_{h}, \mu_{h}^{m}, \sigma_{h}^{m} \in \mathbb{R}$ and $\left(\mathbf{u}_{h}^{m+1}, p_{h}^{m+1}\right) \in$ $X_{h} \times M_{h}$ by

$$
\begin{aligned}
\sigma_{h}^{m} & =\frac{\left\|Q_{h}\left(\operatorname{div} \mathbf{u}_{h}^{m}\right)\right\|_{0}^{2}}{\left\|Q_{h}\left(\operatorname{div} \mathbf{u}_{h}^{m-1}\right)\right\|_{0}^{2}} \\
\omega_{h}^{m} & =Q_{h}\left(\operatorname{div} \mathbf{u}_{h}^{m}\right)+\sigma_{h}^{m} \omega_{h}^{m-1}, \quad \omega_{h}^{0}=Q_{h}\left(\operatorname{div} \mathbf{u}_{h}^{0}\right) \\
a_{r}^{h}\left(\mathbf{z}_{h}^{m}, \mathbf{v}_{h}\right) & =-\left(\omega_{h}^{m}, \operatorname{div} \mathbf{v}_{h}\right), \quad \forall \mathbf{v}_{h} \in X_{h}, \\
\mu_{h}^{m} & =-\frac{\left\|Q_{h}\left(\operatorname{div} \mathbf{u}_{h}^{m}\right)\right\|_{0}^{2}}{\left(Q_{h}\left(\operatorname{div} \mathbf{u}_{h}^{m}\right), Q_{h}\left(\operatorname{div} \mathbf{z}_{h}^{m}\right)\right)} \\
p_{h}^{m+1} & =p_{h}^{m}-\mu_{h}^{m} \omega_{h}^{m} \\
\mathbf{u}_{h}^{m+1} & =\mathbf{u}_{h}^{m}+\mu_{h}^{m} \mathbf{z}_{h}^{m}
\end{aligned}
$$

Here the projection is necessary each step because $\operatorname{div} \mathbf{u}_{h}^{m}$ does not belong to $L_{0}^{2}(\Omega)$.

Finally, add \mathbf{u}_{g} to \mathbf{u}_{h}^{∞}.

1.2.4 Error Estimate

Hypothesis 1

(approximation property of X_{h}) There exists an operator $\mathbf{r}_{h}: H^{m+1}(\Omega)^{n} \cap$ $H_{0}^{1}(\Omega)^{n} \rightarrow X_{h}$ such that

$$
\begin{equation*}
\left\|\mathbf{v}-\mathbf{r}_{h} \mathbf{v}\right\|_{1} \leq C h^{m}\|\mathbf{v}\|_{m+1}, \quad \forall \mathbf{v} \in H^{m+1}(\Omega)^{n} \quad 1 \leq m \leq l \tag{1.38}
\end{equation*}
$$

Hypothesis 2

(approximation property of M_{h}) There exists an operator $S_{h}: L^{2}(\Omega) \rightarrow M_{h}$ such that

$$
\begin{equation*}
\left\|q-S_{h} q\right\|_{0} \leq C h^{m}\|q\|_{m+1}, \quad \forall q \in H^{m}(\Omega)^{n}, \quad 0 \leq m \leq l \tag{1.39}
\end{equation*}
$$

Hypothesis 3

(Uniform inf-sup condition) For each $q_{h} \in M_{h}$ there exists a $\mathbf{v}_{h} \in X_{h}$ such that

$$
\begin{gather*}
\left(q_{h}, \operatorname{div} \mathbf{v}_{h}\right)=\left\|q_{h}\right\|_{0}^{2} \tag{1.40}\\
\left|\mathbf{v}_{h}\right|_{1} \leq C\left\|q_{h}\right\|_{0} \tag{1.41}
\end{gather*}
$$

where $C>0$ is independent of h, q_{h} and \mathbf{v}_{h}.
Theorem 1.2.6. Under Hypothesis 1,2,3, the solution of the problem(1.36) satisfies

$$
\begin{equation*}
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{1}+\left\|p-p_{h}\right\|_{0} \leq C h^{m}\left\{\|\mathbf{u}\|_{m+1}+\|p\|_{m}\right\} \tag{1.42}
\end{equation*}
$$

Remark 1.2.7. One can expect one higher order for L^{2} error estimate by duality technique.

$$
\begin{equation*}
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{0} \leq C h\left\{\left|\mathbf{u}-\mathbf{u}_{h}\right|_{1}+\inf \left\|p-p_{h}\right\|_{0}\right\} \tag{1.43}
\end{equation*}
$$

The next task is how to construct spaces X_{h} and M_{h} which satisfy the hypotheses.

1.2.5 Approximation Spaces X_{h} and M_{h}

P_{1} nonconforming finite element method

First we introduce a P_{1} nonconforming finite element method for $-\Delta u=f$. Given a triangulation of the domain by triangles. Consider the space of all piecewise linear functions which is continuous only at mid point of edges. Here the degree of freedom is located at mid point of edges.

Figure 1.1: Label of elements and vertices

Let N_{h} be the space of all functions which is linear on each triangle and whose degrees of freedoms are determined

$$
\begin{cases}\left.u_{h}(m)\right|_{L}=\left.u_{h}(m)\right|_{R} & \text { when } m \text { is a mid point of interior edges } \\ u_{h}(m)=0 & \text { when } m \text { is a mid point of boundary edges }\end{cases}
$$

Since u_{h} is discontinuous, the $a\left(u_{h}, v_{h}\right)=\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h} d x$ - is not well defined. So we define a discrete form a_{h} as follows:

$$
\begin{equation*}
a_{h}\left(u_{h}, v_{h}\right)=\sum_{T \in \mathcal{T}_{h}} \int_{T} \nabla u_{h} \cdot \nabla v_{h} d x \tag{1.44}
\end{equation*}
$$

The solution of this fem with P_{1}-nonconforming fem is: Find $u_{h} \in N_{h}$ such that

$$
a_{h}\left(u_{h}, v_{h}\right)=f\left(v_{h}\right), \quad \forall v_{h} \in N_{h}
$$

Note that in general

$$
a_{h}\left(u, v_{h}\right) \neq f\left(v_{h}\right)
$$

Also we define a discrete norm on N_{h} by

$$
\left\|u_{h}\right\|_{h}=a_{h}\left(u_{h}, u_{h}\right)^{1 / 2}
$$

Theorem 1.2.8 (Second Strang lemma). Under conditions given above, there exists a constant C independent of v_{h} such that

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{h} \leq C\left(\inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{h}+\sup _{w_{h} \in V_{h}} \frac{\left|a_{h}\left(u, w_{h}\right)-f\left(w_{h}\right)\right|}{\left\|w_{h}\right\|_{h}}\right) \tag{1.45}
\end{equation*}
$$

Proof. Let v_{h} be an arbitrary element in V_{h}. Then

$$
\begin{aligned}
\alpha\left\|u_{h}-v_{h}\right\|_{h}^{2} & \leq a_{h}\left(u_{h}-v_{h}, u_{h}-v_{h}\right) \\
& =a\left(u-v_{h}, u_{h}-v_{h}\right)+f\left(u_{h}-v_{h}\right)-a_{h}\left(u, u_{h}-v_{h}\right) \\
& \leq M\left\|u-v_{h}\right\|_{h}\left\|u_{h}-v_{h}\right\|_{h}+\left|f\left(u_{h}-v_{h}\right)-a_{h}\left(u, u_{h}-v_{h}\right)\right|
\end{aligned}
$$

So

$$
\begin{aligned}
\alpha\left\|u_{h}-v_{h}\right\|_{h} & \leq C M\left\|u-v_{h}\right\|_{h}+\frac{\left|f\left(u_{h}-v_{h}\right)-a_{h}\left(u, u_{h}-v_{h}\right)\right|}{\left\|w_{h}\right\|_{h}} \\
& \leq C M\left\|u-v_{h}\right\|_{h}+\sup _{w_{h} \in V_{h}} \frac{\left|f\left(w_{h}\right)-a_{h}\left(u, w_{h}\right)\right|}{\left\|w_{h}\right\|_{h}}
\end{aligned}
$$

Now result follows from this and the triangle inequality

$$
\left\|u-v_{h}\right\|_{h} \leq\left\|u-v_{h}\right\|_{h}+\left\|u_{h}-v_{h}\right\|_{h}
$$

Stable pair for Stokes equation

For Stokes equation, we need to choose pair of spaces so that inf-sup condition holds. For velocity typically we use P_{2} and P_{1} for pressure. Another choice is P_{1}-nonconforming for velocity and P_{0} for pressure(Called C-R(Crouzeix-Raviart$1973)$ element). Let P_{0} be the space of all functions which are piecewise constant on each T. Then Hypothesis $1,2,3$ hold and it we have

Theorem 1.2.9. The solution of the Stokes problem(1.36) with $X_{h}=\left(N_{h}\right)^{2}$, $M_{h}=P_{0} \cap L_{0}^{2}(\Omega)$ satisfies

$$
\begin{equation*}
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{h}+\left\|p-p_{h}\right\|_{0} \leq C h^{1}\left\{\|\mathbf{u}\|_{2}+\|p\|_{1}\right\} \tag{1.46}
\end{equation*}
$$

1.3 Navier-Stokes equation

Notations: with vector \mathbf{u}, \mathbf{v} and matrix A, B, define

$$
\begin{aligned}
\operatorname{grad} \mathbf{u} & =\nabla \mathbf{u}=\left(\begin{array}{ll}
\frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{2}} \\
\frac{\partial u_{2}}{\partial x_{1}} & \frac{\partial u_{2}}{\partial x_{2}}
\end{array}\right) \\
\mathbf{u u} & =\mathbf{e}_{i} u_{i} \mathbf{e}_{j} u_{j} \quad \text { dyadic product or outer product } \\
(\mathbf{u} \cdot \nabla) \mathbf{v} & =\mathbf{e}_{i} \sum_{j} u_{j} \frac{\partial v_{i}}{\partial x_{j}}
\end{aligned}
$$

$$
\begin{aligned}
\nabla \cdot A & =\mathbf{e}_{k} \sum_{j} \frac{\partial A_{j k}}{\partial x_{j}} \\
A: B & =A_{i j} B_{i j} \quad \text { scalar }
\end{aligned}
$$

The Navier-Stokes equation(dimensionless form-after some scaling)

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{u}}{\partial t}+\sum_{j} u_{j} \frac{\partial \mathbf{u}}{\partial x_{j}}-\nu \Delta \mathbf{u}+\operatorname{grad} p=\mathbf{f} \tag{1.47}\\
\operatorname{div} \mathbf{u}=0
\end{array}\right.
$$

can be written as

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}-\nu \Delta \mathbf{u}+\operatorname{grad} p=\mathbf{f} \tag{1.48}\\
\operatorname{div} \mathbf{u}=0
\end{array}\right.
$$

Then we have

$$
\begin{equation*}
\nabla \cdot(\mathbf{u u})=\mathbf{u} \cdot \nabla \mathbf{u}+\mathbf{u}(\nabla \cdot \mathbf{u}) \tag{1.49}
\end{equation*}
$$

Exer. Prove it.(First verify)

$$
\int_{K} \nabla \cdot(\mathbf{u u}) d x=\left(\int_{\partial K}\left(u_{1}^{2} n_{1}+u_{2} u_{1} n_{2}\right) d s, \int_{\partial K}\left(u_{1} u_{2} n_{1}+u_{2}^{2} n_{2}\right) d s\right)^{T}
$$

1.3.1 Alternative forms

Divergence form
With (1.49) and divergence free condition, one has another form of NS equation:

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{u}}{\partial t}+\nabla \cdot(\mathbf{u u})-\nu \Delta \mathbf{u}+\operatorname{grad} p=\mathbf{f} \tag{1.50}\\
\operatorname{div} \mathbf{u}=0
\end{array}\right.
$$

Skew-Symmetric form

We begin with the identity

$$
\begin{equation*}
\frac{1}{2}[\nabla \cdot(\mathbf{u u})+(\mathbf{u} \cdot \nabla) \mathbf{u}]=(\mathbf{u} \cdot \nabla) \mathbf{u}+\frac{1}{2} \mathbf{u}(\nabla \cdot \mathbf{u}) \tag{1.51}
\end{equation*}
$$

This gives the following form(Temam)

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\frac{1}{2} \mathbf{u}(\nabla \cdot \mathbf{u})-\nu \Delta \mathbf{u}+\operatorname{grad} p=\mathbf{f} \tag{1.52}\\
\operatorname{div} \mathbf{u}=0
\end{array}\right.
$$

Still another form:

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}-(\nabla \mathbf{u}) \cdot \mathbf{u}-\nu \Delta \mathbf{u}+\operatorname{grad} p=\mathbf{f} \tag{1.53}\\
\operatorname{div} \mathbf{u}=0
\end{array}\right.
$$

Symmetric form

Skip. See Incompressible flow and the FEM by P.M Gresho and R.L. Sani, Wiley, 2000

1.4 The "Velocity-Pressure" formulation

Consider homogeneous boundary condition: $\mathbf{u}=0$ on Γ. Introduce trilinear form

$$
\begin{equation*}
a(w ; u, v)=\sum_{i, j=1}^{n} \int_{\Omega} w_{j} \frac{\partial u_{i}}{\partial x_{j}} v_{i} d x \tag{1.54}
\end{equation*}
$$

Lemma 1.4.1. The trilinear form a is continuous.
Proof . Use Hölder's inequality

$$
\left|\int_{\Omega} w_{j} \frac{\partial u_{i}}{\partial x_{j}} v_{i} d x\right| \leq\left\|w_{j}\right\|_{0,4}\left\|\partial u_{i} / \partial x_{j}\right\|_{0}\left\|v_{i}\right\|_{0,4}
$$

Lemma 1.4.2. Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in H^{1}(\Omega)^{n}$ and let $\operatorname{div} \mathbf{w}=0$ and $\mathbf{w} \cdot \mathbf{n}=0$ on boundary. Then

$$
\begin{align*}
a_{1}(\mathbf{w} ; \mathbf{u}, \mathbf{v})+a_{1}(\mathbf{w} ; \mathbf{v}, \mathbf{u}) & =0 \tag{1.55}\\
a_{1}(\mathbf{w} ; \mathbf{v}, \mathbf{v}) & =0 \tag{1.56}
\end{align*}
$$

Proof. Check second one. Since

$$
a_{1}(\mathbf{w} ; \mathbf{v}, \mathbf{v})=\frac{1}{2} \sum_{i, j=1}^{n} \int_{\Omega} w_{j} \frac{\partial v_{i}^{2}}{\partial x_{j}}
$$

we have by Green's formula,

$$
a_{1}(\mathbf{w} ; \mathbf{v}, \mathbf{v})=-\frac{1}{2} \sum_{i, j=1}^{n}\left\{\int_{\Omega} \operatorname{div} \mathbf{w} v_{i}+\int_{\Gamma} \mathbf{w} \cdot \mathbf{v} n_{i} d s\right\}=0
$$

We set

$$
a_{0}(\mathbf{u}, \mathbf{v})=\nu(\operatorname{grad} \mathbf{u}, \operatorname{grad} \mathbf{v})
$$

and

$$
\begin{equation*}
a(\mathbf{w} ; \mathbf{u}, \mathbf{v})=a_{0}(\mathbf{u}, \mathbf{v})+a_{1}(\mathbf{w} ; \mathbf{u}, \mathbf{v}) \tag{1.57}
\end{equation*}
$$

The problem has equivalent form:
Find a pair $(\mathbf{u}, p) \in V \times L_{0}^{2}(\Omega)$ such that

$$
\begin{equation*}
a(\mathbf{u} ; \mathbf{u}, \mathbf{v})-(p, \operatorname{div} \mathbf{v})=(\mathbf{f}, \mathbf{v}), \quad \forall \mathbf{v} \in H_{0}^{1}(\Omega)^{n} \tag{1.58}
\end{equation*}
$$

Introduce norm of a-form:

$$
\begin{equation*}
\mathcal{N}=\sup \frac{a(\mathbf{w} ; \mathbf{u}, \mathbf{v})}{\|\mathbf{w}\|_{1}\|\mathbf{u}\|_{1}\|\mathbf{v}\|_{1}} \tag{1.59}
\end{equation*}
$$

Theorem 1.4.3. If

$$
\begin{equation*}
\frac{\mathcal{N}}{\nu^{2}}\|\mathbf{f}\|<1 \tag{1.60}
\end{equation*}
$$

then problem (1.58) has a unique solution.

1.4.1 Abstract Theory

The nonlinearity is introduced by means of a form

$$
a(\cdot ;, \cdot, \cdot):(u, v, w) \in X \times X \times X \rightarrow a(w ; u, v) \in \mathbb{R}
$$

We consider problem (Q):
For ℓ given in X^{\prime}, find a pair (u, λ) in $X \times M$ such that

$$
\begin{align*}
a(u ; u, v)+b(v, \lambda) & =\langle\ell, v\rangle \quad \forall v \in X \tag{1.61}\\
b(u, \mu) & =0 \quad \forall \mu \in M \tag{1.62}
\end{align*}
$$

Introduce linear operators $A(w) \in L\left(X ; X^{\prime}\right)$ for w in X, and $B \in L\left(X ; M^{\prime}\right)$ by

$$
\begin{aligned}
A(w) u, v) & =a(w ; u, v), \quad \forall u, v \in X \\
\langle B v, \mu\rangle & =b(v, \mu), \quad \forall \mu \in M
\end{aligned}
$$

With these the problem (Q) becomes

$$
\begin{align*}
A(w) u+B^{\prime} \lambda & =\ell, \text { in } X^{\prime} \tag{1.63}\\
B u & =0 \text { in } M^{\prime} \tag{1.64}
\end{align*}
$$

Iterative scheme for continuous case

Starting from $u^{0} \in V \equiv \operatorname{Ker}(B)$ construct $\left(u_{m}, \lambda_{m}\right)$ in $X \times M$ by

$$
\begin{align*}
a\left(u_{m} ; u_{m+1}, v\right)+b\left(v, \lambda_{m+1}\right) & =\langle\ell, v\rangle \quad \forall v \in X \tag{1.65}\\
b\left(u_{m+1}, \mu\right) & =0 \quad \forall \mu \in M \tag{1.66}
\end{align*}
$$

1.4.2 Numerical method

Let

$$
W_{0 h}=W_{h} \cap H_{0}^{1}(\Omega)^{n}, \quad M_{h}=Q_{h} \cap L_{0}^{2}(\Omega)
$$

The approximate problem is : Find $\left(\mathbf{u}_{h}, p_{h}\right) \in W_{0 h} \times M_{h}(\Omega)$ such that

$$
\left\{\begin{align*}
a\left(\mathbf{u}_{h} ; \mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right) & =\left(\mathbf{f}, \mathbf{v}_{h}\right) \text { for all } \mathbf{v}_{h} \in W_{0 h}, \tag{1.67}\\
\left(q_{h}, \operatorname{div} \mathbf{v}_{h}\right) & =0 \text { in for all } q_{h} \in M_{h}(\Omega) \\
\mathbf{u}_{h} & =\mathbf{g} \text { on } \Gamma .
\end{align*}\right.
$$

Iterative scheme

$$
\left\{\begin{align*}
a\left(\mathbf{u}_{h}^{m} ; \mathbf{u}_{h}^{m+1}, \mathbf{v}_{h}\right)-\left(p_{h}^{m+1}, \operatorname{div} \mathbf{v}_{h}\right) & =\left(\mathbf{f}, \mathbf{v}_{h}\right) \text { for all } \mathbf{v}_{h} \in W_{0 h}, \tag{1.68}\\
\left(q_{h}, \operatorname{div} \mathbf{v}_{h}^{m+1}\right) & =0 \text { in for all } q_{h} \in M_{h}(\Omega) \\
\mathbf{u}_{h}^{m+1} & =\mathbf{g} \text { on } \Gamma .
\end{align*}\right.
$$

