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1.1 The Stokes equations

The Navier-Stokes equations for a viscous incompressible fluid are as follows:

ρ


∂ui

∂t
+

∑

j

uj
∂ui

∂xj


−

∑

j

∂σij

∂xj
= ρfi, 1 ≤ i ≤ n, (1.1)

divu =
∑

i

Dii(u) = 0(incompressibility), (1.2)

where

σij = −Pδij + 2µDij(u)

Dij(u) =
1
2
(
∂ui

∂xj
+

∂uj

∂xi
), 1 ≤ i, j ≤ n.

In these equations, u is the velocity of the fluid, ρ is the density, µ > 0 is the
viscosity and P is the pressure; σij is the stress tensor and the vector f represents
body forces per unit mass. Let p = P/ρ and ν = µ/ρ. With these notation, we
have the following form:

∂ui

∂t
+

∑

j

uj
∂ui

∂xj
− 2ν

∑

j

∂Dij(u)
∂xj

+
∂p

∂xi
= fi, 1 ≤ i ≤ n. (1.3)

We introduce some notations: For u = (u1, u2)T , let

gradu = ∇u =

(
∂u1
∂x1

∂u1
∂x2

∂u2
∂x1

∂u2
∂x2

)
(1.4)

Then D(u) = 1
2(∇u +∇uT ). We also define vector Laplacian: ∆u =

(
∆u1

∆u2

)

Note that if divu = 0, the following identity holds

∑

j

∂Dij(u)
∂xj

=
1
2

∑

j

(
∂2ui

∂x2
j

+
∂2uj

∂xi∂xj

)
=

1
2
∆ui, for each i (1.5)

so that it can be written as

{
∂u
∂t +

∑
j uj

∂u
∂xj

− ν∆u + grad p = f ,

divu = 0.
(1.6)
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Or {
∂u
∂t + (u · ∇)u− ν∆u + grad p = f ,
divu = 0.

(1.7)

where (u · ∇)v = ei
∑

j uj
∂vi
∂xj

. Here u · ∇ can be considered as inner product.
We only consider the steady-state case, and assume that u is so small that

we can ignore the non-linear convection term uj
∂ui
∂xj

. Thus, we have the Stokes
equation:

{
−2ν

∑
j

∂Dij(u)
∂xj

+ ∂p
∂xi

= fi, 1 ≤ i ≤ n,

divu = 0.
(1.8)

In vector form, it can be written as
{ −ν∆u + grad p = f

divu = 0.

1.1.1 The “Velocity-Pressure” formulation

Let L2
0(Ω) be the space of all L2(Ω) functions q such that

∫
Ω q dx = 0. The next

theorem is necessary for the stability:

Theorem 1.1.1. There exists a constant c > 0 such that

sup
v∈(H1

0 (Ω))n

(φ, divv)
|v|1 ≥ c‖φ‖0, ∀φ ∈ L2

0(Ω).

Proof . By Cor 2.4 there exists unique v ∈ V ⊥ such that divv = φ and |v|1 ≤
c‖φ‖0. Hence

(φ, divv)
|v|1 =

‖φ‖2
0

|v|1 ≥ 1
c
‖φ‖0.

Theorem 1.1.2. Let f be given in (H−1(Ω))n and g ∈ (H1/2(Γ))n resp., such
that ∫

Γ
g · ndσ = 0

Then there exists unique pair of functions (u, p) in (H1(Ω))n × L2
0(Ω) such that




−ν∆u + grad p = f in Ω

divu = 0 in Ω
u = g on Γ.

(1.9)
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Proof . There exists a function ug ∈ H1(Ω)n such that

divug = 0 in Ω, ug = g on Γ.

Now let us put problem (1.9) into general framework of chap 4.: We set

X = H1
0 (Ω)n, M = L2

0(Ω).

Multiply by v ∈ M and integrate by parts,

−(ν∆u,v) + (grad p,v) = (ν∇u,∇v)− (p, divv) = (f ,v).

Here (∇u,∇v) is interpreted as follows: Write u = (u1, u2)T . Then

∇u =

(
∂u1
∂x1

∂u1
∂x2

∂u2
∂x1

∂u2
∂x2

)
, ∇v =

(
∂v1
∂x1

∂v1
∂x2

∂v2
∂x1

∂v2
∂x2

)

For two matrices A,B we sometimes write

A : B =
∑

i,j

aijbij

a(u,v) = ν
N∑

i,j=1

(
∂ui

∂xj
,
∂vi

∂xj

)
= ν( gradu, gradv) =

∫
gradu : gradv dx

(1.10)
b(v, q) = −(q, divv)

〈`,v〉 = 〈f ,v〉 − a(ug,v), χ = 0.

and
V = {v ∈ H1

0 (Ω)n, divv = 0}.
a(·, ·) satisfies ellipticity and b satisfies inf-sup condition by theorem 1.1.1. We
apply Corollary 1.2.5:

Weak formulation There exists a unique pair of functions (w, p) ∈ H1
0 (Ω)n ×

L2
0(Ω) such that

{
a(w,v) + b(v, p) = 〈`,v〉 for all v ∈ H1

0 (Ω)n

b(w, q) = 0 for all q ∈ L2
0(Ω).

Here u = ug + w,w ∈ H1
0 (Ω). This is equivalent to Problem (1.9)
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Remark 1.1.3. This can be put in an equivalent form as follows:




a(u,v)− (p, divv) = 〈f ,v〉 for all v ∈ H1
0 (Ω)n

(q, divv) = 0 in for all q ∈ L2
0(Ω)

u = g on Γ.
(1.11)

The choice M = L2
0(Ω) is a matter of convenience and we can just as well

take M = M2(Ω)/R.

1.2 A General result

Let X and M be two Hilbert spaces with norms ‖ · ‖X and ‖ · ‖M and let X ′ and
M ′ be their dual spaces. As usual, we denote 〈·, ·〉 be the duality pairing between
X and X ′ or M and M ′

Introduce bilinear forms

a(·, ·) : X ×X → R, b(·, ·) : X ×M → R

with norms

‖a‖ = sup
u,v

a(u, v)
‖u‖X‖v‖X

, ‖b‖ = sup
v∈X,µ∈M

b(v, µ)
‖v‖X‖µ‖µ

.

We consider the following two variational problem called problem (Q):
Given ` ∈ X ′ and χ ∈ M ′, find a pair (u, λ) ∈ X ×M such that

a(u, v) + b(v, λ) = 〈`, v〉 for all v ∈ X (1.12)
b(u, µ) = 〈χ, µ〉 for all µ ∈ M. (1.13)

In order to study (Q), we associate two linear operators A ∈ L(X;X ′) and
B ∈ L(X; M ′) defined by

〈Au, v〉 = a(u, v) for all u, v ∈ X (1.14)
〈Bv, µ〉 = b(u, µ) for all v ∈ X,µ ∈ M. (1.15)

Let B′ ∈ L(M ; X ′) be dual operators defined by
〈
B′µ, v

〉
= 〈µ,Bv〉 = b(v, µ), v ∈ X, µ ∈ M. (1.16)

With these, the problem can be written as
Find (u, λ) ∈ X ×M such that

Au + B′λ = ` in X ′ (1.17)
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Bu = χ in M ′. (1.18)

We set V = Ker(B) and more generally define

V (χ) = {v ∈ X;Bv = χ}.

Note that V = V (0).
Now problem (Q) can be changed into equivalent form (P):
Find u ∈ V (χ) such that

a(u, v) = 〈`, v〉 , v ∈ V (1.19)

Theorem 1.2.1. The problem (Q) has a unique solution which depends contin-
uously on the given data if there is a constant β > 0 such that

inf
µ∈M

sup
v∈X,

b(v, µ)
‖v‖X‖µ‖µ

≥ β > 0. (1.20)

Corollary 1.2.2. Assume that a(·, ·) is coercive on V , i.e. there exists a constant
α > 0 such that

a(v, v) ≥ α‖v‖2
X , ∀v ∈ V. (1.21)

Then problem (Q) has unique solution b form satisfies inf-sup condition.

1.2.1 Saddle Point Approach

Introduce an energy functional J : X → R by

J(v) =
1
2
a(v, v)− 〈`, v〉 (1.22)

and let

L(v, µ) = J(v) + b(v, µ)− 〈χ, µ〉 . (1.23)

Consider the following problem, called problem (L):
Find a saddle point (u, λ) ∈ X ×M of the Lagrangian functional L, i.e, find

a pair (u, λ) ∈ X ×M such that

L(u, µ) ≤ L(u, λ) ≤ L(v, λ), v ∈ X, µ ∈ M. (1.24)

Theorem 1.2.3. Assume a(·, ·) is symmetric and a(v, v) ≥ 0. Then the problem
(L) has a unique solution (u, λ) which is the solution of problem (Q).
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Proof . The first inequality of (1.24) can be written as

b(v, µ− λ) ≤ 〈χ, µ− λ〉 , ∀µ ∈ M.

Since µ is arbitrary, this is equivalent to(by taking µ → ±µ + λ)

b(v, λ) = 〈χ, λ〉 , ∀µ ∈ M.

Next The second inequality of (1.24) is equivalent to

L(u, λ) = inf
v∈X

L(v, λ).

Since a(·, ·) is symmetric, we have

d

dt
L(u + tv, λ)|t=0 = a(u, v)− b(v, λ)− 〈`, v〉

Furthermore, we have the second derivative

d2

dt2
L(u + tv, λ)|t=0 = a(v, v) ≥ 0

Therefore, v → L is convex functional and its minimum u is characterized by the
condition d

dtL(u + tv, λ)|t=0 = 0, i.e.

a(u, v) + b(v, λ) = 〈`, v〉 , ∀v ∈ X.

Thus (u, λ) is a saddle point of L iff it is a solution of problem (Q).

Corollary 1.2.4. This problem has a unique solution (u, λ) which is the solution
of problem (Q).

min
v∈X

(
sup
µ∈M

L(v, µ)

)
= L(u, λ) = max

µ∈M

(
inf
v∈X

L(v, µ)
)

. (1.25)

1.2.2 Augmented Lagrangian

Introduce energy functional Jr : X → R by

Jr(v) = J(v) +
r

2
〈
C−1(Bv − χ), Bv − χ

〉
(1.26)

and Augmented Lagrangian functional

Lr(v) = Jr(v) + b(v, µ)− 〈χ, µ〉 , r > 0 (1.27)

We have
Jr(u) = inf

v∈V (χ)
Jr(u).
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Corollary 1.2.5. The solution (u, λ) is the unique saddle point problem of aug-
mented lagrangian functional Lr:

min
v∈X

(
sup
µ∈M

Lr(v, µ)

)
= Lr(u, λ) = max

µ∈M

(
inf
v∈X

Lr(v, µ)
)

. (1.28)

Standard Uzawa

Let p0
h given. With small ε > 0, Solve

a(um+1,v) + b(v, pm
h ) = (f ,vh)− a(ug,v), v ∈ Vh

(pm+1 − pm, q) = εb(um+1, q), q ∈ Mh

Stop if ‖pm+1 − pm‖ is sufficiently small.

Conjugate Gradient for infinite dimensional space

Recall our problem (Q): Consider the following variational problem:
(Q) For ` given in X ′ and χ ∈ M ′, find a pair (u, λ) in X ×M such that

a(u, v) + b(v, λ) = 〈`, v〉 ∀v ∈ X (1.29)
b(u, µ) = 〈χ, µ〉 ∀µ ∈ M. (1.30)

p. 78. Define
ar(u,v) = a(u,v) + r

〈
C−1Bu, Bv

〉
(1.31)

Then problem (Q) is equivalent to solving

ar(u,v) = 〈`,v〉+ rb(v, C−1χ)− b(v, µ) ∀v ∈ X (1.32)

Given (u0, λ0), σ0 = 0. For m ≥ 0, compute gm, ωm ∈ M, zm ∈ X, ρm, σm ∈ R
and (um+1, λm+1) ∈ X ×M by

Cgm = χ−Bum

σm = c(gm, gm)/c(gm−1, gm−1)
ωm = gm + σmωm−1

Arzm = B′ωm

ρm = c(gm, gm)/b(zm, gm)
λm+1 = λm − ρmωm

um+1 = um + ρmzm

Here B′ is adjoint of B(In matrix form it is Bt.)
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Augmented Lagrangian formulation

p 123.
Now change every space to finite dimensional one. Let

Xh ⊂ X, Mh ⊂ M

be finite dimensional subspace with certain approximation properties.
(Qh) For ` given in X ′

h and χ ∈ M ′
h, find a pair (uh, λh) in Xh × Mh such

that

a(uh,vh) + b(vh, λh) = 〈`,vh〉 ∀vh ∈ Xh (1.33)
b(uh, µ) = 〈χ, µ〉 ∀µ ∈ Mh. (1.34)

Define for some large r > 0

ah
r (uh,vh) = a(uh,vh) + r

〈
C−1Buh, Bvh

〉
= b(vh, C−1Buh) (1.35)

Problem (Qh) is equivalent to solving

ah
r (uh(µh),vh) = 〈`,vh〉+ b(vh, rC−1

h χ− µh), ∀vh ∈ Xh

Now Uzawa method based on conjugate gradient method is:
Starting from an initial guess λ0

h ∈ Mh, compute the solution u0
h ∈ Xh satis-

fying

ah
r (u0

h,vh) = 〈`,vh〉+ b(vh, rC−1
h χ− λ0

h), ∀vh ∈ Xh

Let σ0 = 0.
For m ≥ 0, compute gm

h , ωm
h ∈ Mh, zm

h ∈ Xh, ρm
h , σm

h ∈ R and (um+1
h , λm+1

h ) ∈
Xh ×Mh by

c(gm
h , µh) = 〈χh, µh〉 − b(um

h , µh), µh ∈ Mh residual

σm
h =

c(gm
h , gm

h )
c(gm−1

h , gm−1
h )

only if m ≥ 1

ωm
h = gm

h + σm
h ωm−1

h , ωh = g0
h

ah
r (zm

h ,vh) = b(vh, ωm
h ), ∀vh ∈ Xh search direction

ρm
h =

c(gm
h , gm

h )
b(zm

h , gm
h )

λm+1
h = λm

h − ρm
h ωm

h

um+1
h = um

h + ρm
h zm

h

Take r as large as possible and c = Id and ρ = r.



44

1.2.3 Application to Stokes Equation

The approximate problem is




(∇uh,∇vh)− (ph, divvh) = (f ,vh) for all vh ∈ Xh,
(qh,divvh) = 0 in for all qh ∈ Mh(Ω)

uh = g on Γ.
(1.36)

Then with
a(uh,vh) = (∇uh,∇vh), b(vh, q) = −(q, divvh)

this fits with previous setting. Let Qh : L2
0(Ω) → Mh is orthogonal projection

defined by
(Qhq, µ) = (q, µ) ∀µ ∈ Mh.

Set χ = 0, C = id and < `,v >=< f ,v > in previous setting. Conjugate gradient
method with

ah
r (uh,vh) = a(uh,vh) + r 〈Qh( divuh), Qh( divvh)〉 (1.37)

is described as follows:
Given an initial guess p0

h ∈ Mh, compute the solution u0
h ∈ Xh satisfying

ah
r (u0

h,vh) = (p0
h, divvh) + (f ,vh)− a(ug,v),∀vh ∈ Xh

Let σ0 = 0.
For m ≥ 0, compute (zm

h , ωm
h ) ∈ Xh ×Mh, µm

h , σm
h ∈ R and (um+1

h , pm+1
h ) ∈

Xh ×Mh by

σm
h =

‖Qh( divum
h )‖2

0

‖Qh( divum−1
h )‖2

0

ωm
h = Qh( divum

h ) + σm
h ωm−1

h , ω0
h = Qh( divu0

h)

ah
r (zm

h ,vh) = −(ωm
h , divvh), ∀vh ∈ Xh,

µm
h = − ‖Qh( divum

h )‖2
0

(Qh( divum
h ), Qh( div zm

h ))

pm+1
h = pm

h − µm
h ωm

h

um+1
h = um

h + µm
h zm

h

Here the projection is necessary each step because divum
h does not belong to

L2
0(Ω).

Finally, add ug to u∞h .
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1.2.4 Error Estimate

Hypothesis 1

(approximation property of Xh) There exists an operator rh : Hm+1(Ω)n ∩
H1

0 (Ω)n → Xh such that

‖v − rhv‖1 ≤ Chm‖v‖m+1, ∀v ∈ Hm+1(Ω)n 1 ≤ m ≤ l (1.38)

Hypothesis 2

(approximation property of Mh) There exists an operator Sh : L2(Ω) → Mh such
that

‖q − Shq‖0 ≤ Chm‖q‖m+1, ∀q ∈ Hm(Ω)n, 0 ≤ m ≤ l (1.39)

Hypothesis 3

(Uniform inf-sup condition) For each qh ∈ Mh there exists a vh ∈ Xh such that

(qh, divvh) = ‖qh‖2
0, (1.40)

|vh|1 ≤ C‖qh‖0, (1.41)

where C > 0 is independent of h, qh and vh.

Theorem 1.2.6. Under Hypothesis 1,2,3, the solution of the problem(1.36) sat-
isfies

‖u− uh‖1 + ‖p− ph‖0 ≤ Chm{‖u‖m+1 + ‖p‖m}. (1.42)

Remark 1.2.7. One can expect one higher order for L2 error estimate by duality
technique.

‖u− uh‖0 ≤ Ch{|u− uh|1 + inf ‖p− ph‖0}. (1.43)

The next task is how to construct spaces Xh and Mh which satisfy the hy-
potheses.

1.2.5 Approximation Spaces Xh and Mh

P1 nonconforming finite element method

First we introduce a P1 nonconforming finite element method for −∆u = f .
Given a triangulation of the domain by triangles. Consider the space of all
piecewise linear functions which is continuous only at mid point of edges. Here
the degree of freedom is located at mid point of edges.
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◦ ◦ ◦

◦ ◦ ◦ ◦◦

◦ ◦ ◦
K1

K2

K3

K4

Figure 1.1: Label of elements and vertices

Let Nh be the space of all functions which is linear on each triangle and whose
degrees of freedoms are determined

{
uh(m)|L = uh(m)|R when m is a mid point of interior edges
uh(m) = 0 when m is a mid point of boundary edges

Since uh is discontinuous, the a(uh, vh) =
∫
Ω∇uh · ∇vh dx- is not well defined.

So we define a discrete form ah as follows:

ah(uh, vh) =
∑

T∈Th

∫

T
∇uh · ∇vh dx (1.44)

The solution of this fem with P1-nonconforming fem is: Find uh ∈ Nh such that

ah(uh, vh) = f(vh), ∀vh ∈ Nh.

Note that in general
ah(u, vh) 6= f(vh).

Also we define a discrete norm on Nh by

‖uh‖h = ah(uh, uh)1/2.

Theorem 1.2.8 (Second Strang lemma). Under conditions given above, there
exists a constant C independent of vh such that

‖u− uh‖h ≤ C

(
inf

vh∈Vh

‖u− vh‖h + sup
wh∈Vh

|ah(u, wh)− f(wh)|
‖wh‖h

)
. (1.45)
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Proof . Let vh be an arbitrary element in Vh. Then

α‖uh − vh‖2
h ≤ ah(uh − vh, uh − vh)

= a(u− vh, uh − vh) + f(uh − vh)− ah(u, uh − vh)
≤ M‖u− vh‖h‖uh − vh‖h + |f(uh − vh)− ah(u, uh − vh)|.

So

α‖uh − vh‖h ≤ CM‖u− vh‖h +
|f(uh − vh)− ah(u, uh − vh)|

‖wh‖h

≤ CM‖u− vh‖h + sup
wh∈Vh

|f(wh)− ah(u,wh)|
‖wh‖h

Now result follows from this and the triangle inequality

‖u− vh‖h ≤ ‖u− vh‖h + ‖uh − vh‖h.

Stable pair for Stokes equation

For Stokes equation, we need to choose pair of spaces so that inf-sup condition
holds. For velocity typically we use P2 and P1 for pressure. Another choice is
P1-nonconforming for velocity and P0 for pressure(Called C-R(Crouzeix-Raviart-
1973) element). Let P0 be the space of all functions which are piecewise constant
on each T . Then Hypothesis 1,2,3 hold and it we have

Theorem 1.2.9. The solution of the Stokes problem(1.36) with Xh = (Nh)2,
Mh = P0 ∩ L2

0(Ω) satisfies

‖u− uh‖h + ‖p− ph‖0 ≤ Ch1{‖u‖2 + ‖p‖1}. (1.46)

1.3 Navier-Stokes equation

Notations: with vector u,v and matrix A,B, define

gradu = ∇u =

(
∂u1
∂x1

∂u1
∂x2

∂u2
∂x1

∂u2
∂x2

)

uu = eiuiejuj dyadic product or outer product

(u · ∇)v = ei

∑

j

uj
∂vi

∂xj
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∇ ·A = ek

∑

j

∂Ajk

∂xj

A : B = AijBij scalar

The Navier-Stokes equation(dimensionless form-after some scaling)
{

∂u
∂t +

∑
j uj

∂u
∂xj

− ν∆u + grad p = f ,

divu = 0.
(1.47)

can be written as {
∂u
∂t + (u · ∇)u− ν∆u + grad p = f ,
divu = 0.

(1.48)

Then we have
∇ · (uu) = u · ∇u + u(∇ · u) (1.49)

Exer. Prove it.(First verify)
∫

K
∇ · (uu)dx =

(∫

∂K
(u2

1n1 + u2u1n2)ds,

∫

∂K
(u1u2n1 + u2

2n2)ds

)T

1.3.1 Alternative forms

Divergence form

With (1.49) and divergence free condition, one has another form of NS equation:
{

∂u
∂t +∇ · (uu)− ν∆u + grad p = f ,
divu = 0.

(1.50)

Skew-Symmetric form

We begin with the identity
1
2
[∇ · (uu) + (u · ∇)u] = (u · ∇)u +

1
2
u(∇ · u) (1.51)

This gives the following form(Temam)
{

∂u
∂t + (u · ∇)u + 1

2u(∇ · u)− ν∆u + grad p = f ,
divu = 0.

(1.52)

Still another form:{
∂u
∂t + (u · ∇)u− (∇u) · u− ν∆u + grad p = f ,
divu = 0.

(1.53)
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Symmetric form

Skip. See Incompressible flow and the FEM by P.M Gresho and R.L. Sani, Wiley,
2000

1.4 The “Velocity-Pressure” formulation

Consider homogeneous boundary condition: u = 0 on Γ. Introduce trilinear form

a(w; u, v) =
n∑

i,j=1

∫

Ω
wj

∂ui

∂xj
vidx (1.54)

Lemma 1.4.1. The trilinear form a is continuous.

Proof . Use Hölder’s inequality

∣∣∣∣
∫

Ω
wj

∂ui

∂xj
vidx

∣∣∣∣ ≤ ‖wj‖0,4‖∂ui/∂xj‖0‖vi‖0,4

Lemma 1.4.2. Let u,v,w ∈ H1(Ω)n and let divw = 0 and w · n = 0 on
boundary. Then

a1(w;u,v) + a1(w;v,u) = 0, (1.55)
a1(w;v,v) = 0. (1.56)

Proof . Check second one. Since

a1(w;v,v) =
1
2

n∑

i,j=1

∫

Ω
wj

∂v2
i

∂xj

we have by Green’s formula,

a1(w;v,v) = −1
2

n∑

i,j=1

{∫

Ω
divwvi +

∫

Γ
w · vnids

}
= 0.

We set
a0(u,v) = ν(gradu,gradv)
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and

a(w;u,v) = a0(u,v) + a1(w;u,v) (1.57)

The problem has equivalent form:
Find a pair (u, p) ∈ V × L2

0(Ω) such that

a(u;u,v)− (p, divv) = (f ,v) , ∀v ∈ H1
0 (Ω)n (1.58)

Introduce norm of a-form:

N = sup
a(w;u,v)

‖w‖1‖u‖1‖v‖1
(1.59)

Theorem 1.4.3. If
N
ν2
‖f‖ < 1 (1.60)

then problem (1.58) has a unique solution.

1.4.1 Abstract Theory

The nonlinearity is introduced by means of a form

a(·; , ·, ·) : (u, v, w) ∈ X ×X ×X → a(w; u, v) ∈ R
We consider problem (Q):

For ` given in X ′, find a pair (u, λ) in X ×M such that

a(u; u, v) + b(v, λ) = 〈`, v〉 ∀v ∈ X (1.61)
b(u, µ) = 0 ∀µ ∈ M. (1.62)

Introduce linear operators A(w) ∈ L(X; X ′) for w in X, and B ∈ L(X;M ′) by

A(w)u, v) = a(w; u, v), ∀u, v ∈ X,

〈Bv, µ〉 = b(v, µ), ∀µ ∈ M.

With these the problem (Q) becomes

A(w)u + B′λ = `, in X ′, (1.63)
Bu = 0 in M ′. (1.64)

Iterative scheme for continuous case

Starting from u0 ∈ V ≡ Ker(B) construct (um, λm) in X ×M by

a(um; um+1, v) + b(v, λm+1) = 〈`, v〉 ∀v ∈ X (1.65)
b(um+1, µ) = 0 ∀µ ∈ M. (1.66)
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1.4.2 Numerical method

Let
W0h = Wh ∩H1

0 (Ω)n, Mh = Qh ∩ L2
0(Ω)

The approximate problem is : Find (uh, ph) ∈ W0h ×Mh(Ω) such that




a(uh;uh,vh)− (ph, divvh) = (f ,vh) for all vh ∈ W0h,
(qh, divvh) = 0 in for all qh ∈ Mh(Ω)

uh = g on Γ.
(1.67)

Iterative scheme





a(um
h ;um+1

h ,vh)− (pm+1
h , divvh) = (f ,vh) for all vh ∈ W0h,

(qh, divvm+1
h ) = 0 in for all qh ∈ Mh(Ω)
um+1

h = g on Γ.

(1.68)


