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Chapter 6

Supplementary Note

6.1 Iterative method

Given a symmetric positive definite n×n matrix A, we consider minimization
problem: Given a quadratic functional

φ(x) =
1

2
xTAx− bTx+ c

find the minimizer of φ.

Theorem 6.1.1. x0 is a minimizer of φ if and only if Ax0 = b.

6.1.1 Method of steepest descent

How to find the minimizer ? We start with an arbitrary initial guess x0. We
try to find the next approximation in the form

xk+1 = xk + τkd
k (6.1)

dk is called search direction where τk is chosen to minimize, or reduce φ(x)
on some interval near xk in that direction. We need to choose dk and τk. We
know

Theorem 6.1.2. dk = −∇φ(xk) = b−Axk is the direction of steepest descent.

To determine the parameter τk, we see

φ(xk+ τkd
k) =

1

2
τ2kd

kTAdk+ τdT∇φ(xk)+ ĉ =
1

2
τ2(Adk,dk)− τ(dk,dk)+ ĉ.

Thus minτ φ(x
k + τkd

k) is obtained when

d

dτ
φ(xk + τkd

k) = τ(Adk,dk)− (dk,dk) = 0.
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Thus, τk = − (dk ,dk)
(Adk,dk)

. Also, the next search direction is given by

dk+1 = b−Axk+1 = b−A(xk + τkd
k) = dk − τkAd

k.

Now the method of steepest descent is described as follows:

dk = b−Axk

xk+1 = xk + τkd
k

τk =
(dk,dk)

(Adk,dk)

dk+1 = dk − τkAd
k.

6.1.2 Convergence analysis

We introduce a norm (·, ·)A by (x,y)A = (Ax,y). When A is symmetric,
positive definite, (·, ·)A becomes a true norm (called energy norm) on Rn.

Theorem 6.1.3. We have

‖xk − x‖A ≤
(

κ(A) − 1

κ(A) + 1

)k

‖x0 − x‖A,

where κ(A) is the spectral condition number of A. Furthermore the number of

iteration to reduce the error by a factor ǫ is

N ≤ 1

2
κ(A) ln(1/ǫ) + 1.

6.1.3 Conjugate gradient

The steepest descent is very slow. Hence we need another direction. The idea
is to choose a new direction so that it is A-orthogonal to previous direction.
Let x0 = 0, d0 = r0 = b and

xk+1 = xk + αkd
k (6.2)

rk = b−Axk. (6.3)

We choose, as in the method of steepest descent, αk so that φ(xk + αkd
k) is

minimized. Thus,

αk = (dk, rk)/(Adk,dk) (6.4)

It also makes the residual rk+1 to be orthogonal to the search direction dk,

(dk, rk+1) = (dk,b−Axk+1) = (dk,b−Axk − αkAd
k) = 0. (6.5)
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Now let us determine new direction in the form: dk+1 = rk+1 − βkd
k. (If

βk = 0, it is steepest descent.) Assuming

(Adj ,dk) = 0, j ≤ k − 1, (6.6)

we choose dk+1 so that it is orthogonal to dk:

0 = (Adk+1,dk) = (Ark+1 − βkAd
k,dk). (6.7)

Thus we obtain βk = (Adk, rk+1)/(Adk,dk).
Now let

Vk = SPAN{b, Ab, · · · , Ak−1b}
then it is easy to see that

Vk = SPAN{d0,d1, · · · ,dk−1}.
We claim

Lemma 6.1.4.

dk+1 ⊥ Vk+1 with respect to (A·, ·) (6.8)

rk+1 ⊥ Vk with respect to (A·, ·) (6.9)

Proof. Since the first relation is obvious from the construction of dk, it suffices
to show

(Adj , rk+1) = 0, j ≤ k − 1.

We see
(Adj , rk+1) = (Adj ,dk+1)− βk(Ad

j ,dk) = 0

by induction (6.6).

Let ek = xk − x. Then from (6.5), we see that (dk, A(x − xk+1)) = 0 or
(Aek,dk−1) = 0.

Thus,
ek = xk − x ⊥ Vk with respect to (A·, ·). (6.10)

The algorithm is

d0 = r0, x0 = 0

xk+1 = xk + αkd
k, αk = (dk, rk)/(Adk,dk) (6.11)

rk+1 = b−Axk+1 = rk − αkAx
k (6.12)

dk+1 = rk+1 − βkd
k βk = (Adk, rk+1)/(Adk,dk). (6.13)

Note that since rk+1 = rk −αkAd
k, only one evaluation of A is necessary and

no need to estimate βk.

Remark 6.1.5. One can check that

αk = (rk, rk)/(Adk,dk)

and
βk = −(rk+1, rk+1)/(rk, rk).
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6.1.4 Error analysis

By (6.10) we have

(Aek, ek) = (Aek,xk − y+ y − x) = (Aek,y − x), ∀y ∈ Vk (6.14)

(6.15)

and Cauchy Schwarz inequality,

(Aek, ek) ≤ (A(x − y),x− y), ∀y ∈ Vk. (6.16)

Since y ∈ Vk,

y = Pk(A)b,

for some polynomial Pk−1(t) of degree k − 1. Hence

(A(x− y),x − y) = (A(I − Pk−1(A))b, (I − Pk−1(A))b)

≤ ‖I − Pk−1(A)A‖2(Ax,x).

Thus

(Aek, ek) ≤ min
Qk∈Pk

‖Qk(A)‖2(Ax,x),

where ‖ · ‖ is the matrix norm and Qk(t) is any polynomial of degree k with
Q(0) = 1. Let Q̃k(t) be such that Q̃k(1) = 1 and set Qk(t) = Q̃k(1− 2

λN+λ1
t).

Then Qk(0) = 1 and Qk(A) = Q̃k(M) where M = I − 2
λN+λ1

A. Then we see
that σ(M) ⊂ [−ρ, ρ], where

ρ =
λN − λ1

λN + λ1
< 1.

Thus

min
Qk(0)=1

‖Qk(A)‖ = min
Q̃k(1)=1

‖Q̃k(M)‖ (6.17)

= min
Q̃k(1)=1,

max
λ∈σ(M)

|Q̃k(λ)| (6.18)

= min
Q̃k(1)=1

max
λ∈[−ρ,ρ]

|Q̃k(λ)| (6.19)

The best choice is given by Chebyshev polynomial on [−ρ, ρ] which is Q̃k(x) =
Ck(

x
ρ
)/Ck(

1
ρ
). The minimum value can be seen to be

2

(√
K − 1√
K + 1

)n

where K = λN

λ1
.
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Remark 6.1.6. Conjugate gradient method ends in finite steps: If we choose
PN so that 1−λjPN−1(λj) = 0, ∀λj ∈ σ(A), then A(eN , eN ) = 0 and hence
xN = x.

Remark 6.1.7. If the eigenvalues are accumulated near λ1, then let Q(t) =
Q1(t)Q2(t), where Q2(t) is a polynomial of lower degree which is bounded by
small constant C.

|Q| ≤ max
σ(M)

|Q1(t)|max
σ(M)

|Q2| ≤ max
[−τ,τ ]

|Q1(t)| ≤ C

(

λ1 − λ̃0

λ1 + λ̃0

)n−k

≤
(

λ1 − λ0

λ1 + λ0

)n

for large n.

6.1.5 Preconditioning

Consider
R−1Ax = R−1b = b̃.

we introduce an inner product [·, ·] as either (A·, ·) or (R·, ·). Then the operator
R−1A is symmetric with respect to [·, ·],i.e.

[R−1Ax,y] = [x, R−1Ay].

R−1 is called a preconditioner for A. Two properties of preconditioner is
desirable:

(1) The action of R−1 on an arbitrary vector is in some sense ”easy” to
compute.

(2) Since A and R are both SPD, there exist λ̃0, λ̃N such that

λ̃0(Rx,x) ≤ (Ax,x) ≤ λ̃N (Rx,x).

The condition number of R−1A = λ̃N/λ̃0 should be smaller than that of
A.

Application to Conjugate Gradient Method

One could directly apply cg-method to the preconditioned system. But it is
sometimes hard to estimate the condition number of the first type of precon-
ditioner. Thus, we consider an alternative way:

The idea is to apply the cg with respect to new inner product: With
r̃0 = d̃0 = b̃−R−1Ax0, the algorithm is

xk+1 = xk + αkd̃
k, αk = [d̃k, r̃k]/[R−1Ad̃k, d̃k]

r̃k+1 = r̃k − αkR
−1Ad̃k

d̃k+1 = r̃k+1 − βkd̃
k, βk = [R−1Ad̃k, r̃k+1]/[R−1Ad̃k, d̃k]
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With [·, ·] = (R·, ·), the algorithm becomes

xk+1 = xk + αkd̃
k, αk = (Rd̃k, r̃k)/(Ad̃k, d̃k)

r̃k+1 = r̃k − αkR
−1Ad̃k

d̃k+1 = r̃k+1 − βkd̃
k, βk = (Ad̃k, r̃k+1)/(Ad̃k, d̃k)

This algorithm could be disastrous because we need to evaluate Rdk at each
step. To avoid this, we write the algorithm in an equivalent form

xk+1 = xk + αkd̃
k, αk = (d̃k, Rzk)/(Ad̃k, d̃k)

rk+1 = rk − αkAd̃
k

zk+1 = R−1rk+1

d̃k+1 = zk+1 − βkd̃
k, βk = (Ad̃k, zk+1)/(Ad̃k, d̃k)

and change the starting value:
With r0 = b−Ax0, d0 = z0 = R−1r0,

xk+1 = xk + αkd
k, αk = (dk, rk)/(Adk,dk) (6.20)

rk+1 = rk − αkAd
k (6.21)

zk+1 = R−1rk+1 (6.22)

dk+1 = zk+1 − βkd
k, βk = (Adk, zk+1)/(Adk,dk) (6.23)

This is the final algorithm where only one evaluation of A and R−1 is involved
in each iteration.

Preconditioned iterative method

Consider an iterative method to solve R−1Ax = R−1b = b̃. We change it to
the form

x = x−R−1Ax+ b̃.

Hence we obtain an iterative method of the form

xk+1 = Mxk + b̃, (6.24)

where M = I −R−1A. This will be convergent if ρ(M) = ρ < 1.

Lemma 6.1.8. The condition number is κ(R−1A) = 1+ρ
1−ρ

iff ρ(M) = ρ < 1.

Proof. Since M is symmetric ,

−ρ(Ry,y) ≤ (RMy,y) ≤ ρ(Ry,y).

This is equivalent to

−ρ(Ry,y) ≤ (Ay,y) − (Ry,y) ≤ ρ(Ry,y)

(1− ρ)(Ry,y) ≤ (Ay,y) ≤ (1 + ρ)(Ry,y).
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6.2 Linear Algebra

Theorem 6.2.1 (Schur). If M ∈ C
n,n, then ∃ a unitary matrix U such that

U∗MU = T , where T is upper triangular.

Proof. Let λ1 be an eigenvalue of M and u1 be a corresponding eigenvec-
tor(there exists at lest one) with u1 ≥ 0 and u∗

1u1 = ‖u1‖2 = 1 so that
Mu1 = λu1. Let y2, · · · ,yn be a set of orthonormal vector which in turn are
orthogonal to u1. Let U1 = (u1,y2, · · · ,yn). Then U1 is unitary and

MU1 = U1T1

where the first column of T is (λ1, 0, · · · , 0). Then we have

U∗
1MU1 = T1 =

(

λ1 ∗
0 M1

)

.

Repeat the same process to M2 to obtain (n− 1)× (n− 1) unitary matrix U2

such that

U∗
2M1U2 = T2 =

(

λ2 ∗
0 M2

)

.

Let

V2 =

(

1 0
0 U2

)

Then

V ∗
2 U

∗
1M1U1V2 = T ′

2 =





λ1 ∗ ∗
0 λ2 ∗
0 M3



 .

Repeat the same process until we obtain the desired decomposition. The
eigenvalues of U are clearly those of T obtained in this process.

Theorem 6.2.2 (Singular value decomposition). If A ∈ R
m×n then there

exists orthogonal matrices U ∈ R
m×m and V ∈ R

n×n such that

U tAV = Σ = diag(σ1, σ2, · · · , σp) (6.25)

where Σ is m× n matrix and p = min(m,n) and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Proof. Note that B = AAt ∈ Rm×m is real, symmetric matrix which is non-
negative definite. Thus B has orthonormal eigenvectors u1, · · · ,um with non-
negative eigenvalues λi. Define σi =

√
λi and U = (u1, · · · ,um). Define

F = AtU ∈ R
n×m and let

F =
(

f1, · · · , fm
)

, then F t =







f t1
...
f tm






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U t

A V
=

m > n

or
U t A V

=

n > m

Figure 6.1: Σ of SVD

Observe that
F tF = diag(σ2

i ), fi · fj = σ2
i δij , i, j ≤ m.

The (k, k) entry of this equality asserts that k-th column of F (call it fk)
has norm ‖fk‖ = σk. Furthermore, the off-diagonal elements of this equality
asserts that distinct columns of F are orthogonal. Pick r > 0 such that
σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = 0. Then {fi}ri=1 are the nonzero
orthogonal vectors and

vi =
1

σi
fi, i = 1, · · · , r

defines an orthonormal set of vectors. We may expand {vi}ri=1 to an orthonor-
mal basis of Rn by appending vectors {vr+1, · · · ,vn}. Now define the orthog-
onal matrix V ∈ R

n×n by V = (v1, · · · ,vn) and observe F = V · diag(σi).
Now

U tA = F t = diag(σi)V
t ⇒ U tAV = diagi=1,··· ,p(σi).

Thus Σ is m× n (almost diagonal) matrix described above.

Remark 6.2.3. (1) The Schur decomposition may be written

A = UTU t, A ∈ R
n×n

The Singular value decomposition may be written

A = UΣV t, A ∈ R
m×n

Both of them are unitary transformations.

(2) When A is square the singular values and eigenvalues are not directly

related in general. Let =

[

1 a
0 5

]

which is already in Schur form. The

eigenvalues are 1, 5. However, the singular values σ1 → ∞ and σ2 → 0
as a → ∞.
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(3) The 2-norm of any matrix A ∈ R
m×n is given by the largest singular

value: ‖A‖2 = σ1. Verification: By orthogonality we see ‖Ux‖2 = ‖x‖2
for any orthogonal matrix. Hence

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

= max
‖UΣV tx‖2

‖x‖2
= max

‖ΣV tx‖2
‖V tx‖2

= max
y 6=0

‖Σy‖2
‖y‖2

.

6.3 projections

A matrix P ∈ R
n×n is an orthogonal projection onto a subspace S ⊂ R

n if

(1) Range(P ) ⊂ S

(2) P 2 = P

(3) P t = P

In this case I − P is also an orthogonal projection (onto S⊥).

Example 6.3.1. (1) P = 1
‖V ‖2

V V t is an orthogonal projection onto S =

Span(V ).

(2) Let the columns of V = (v1, · · · ,vk) be orthonormal. Then P =
V V t is an orthogonal projection onto Span(v1, · · · ,vk). In fact, Px =
∑k

i=1(v
t
ix)vi.

6.4 Pseudo inverse

If A is m× n matrix, what problems do we have in defining the ”inverse” of
A ?

• It may not be one-to-one

• It may not be onto. (Ran(A) 6= R
m)

What if we restrict it to a subspace of Rn? In fact one can find subspaces
S1 ⊂ R

n and S2 ⊂ R
m so that A is one-to-one and onto S1 → S2. To show how

this can be done, we need some projections: Let P be the orthogonal projection
ontoKer(A)⊥. Then I−P is the orthogonal projection onto N(A) := Ker(A).
Hence x−Px ∈ Ker(A) so that Ax = APx. So we can imagine the action of
A as

(1) a projection P and

(2) a transformation by A onto the range of A.
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Now restrict this action only to ker(A)⊥. Now A : Ker(A)⊥ → Rang(A)
is one-to-one and onto: Suppose Ax1 = Ax2, for x1,x2 ∈ Ker(A)⊥. Then
x1 − x2 ∈ Ker(A)⊥, Also, x1 − x2 ∈ Ker(A). Hence x1 − x2 = 0. Now A can
be thought of a the composition of a projection and an invertible transform.

Singular value decomposition provides a way of constructing such pseudo
inverse(denoted by A+)

A = UΣV t = (Ur : Ūr)

(

diag(σi) 0
0 0

)

(Vr : V̄r)
t = UrΣrV

t
r =

r
∑

i=1

σiuiv
t
i.

Indeed, Vr is the projection onto Ker(A)⊥. Since the columns of V are or-
thogonal, we have

Avj =
r
∑

i=1

σiui(v
t
ivj) = 0, j = r + 1, · · · , n.

Hence {vr+1, · · · ,vn} forms a basis for Ker(A) and {v1, · · · ,vr} forms a basis
for Ker(A)⊥. Thus

P = VrV
t
r

is a n×n orthogonal matrix which provides a projection onto Ker(A)⊥. Simi-
larly, {u1, · · · ,ur} forms a basis for Ran(A) so that Q = UrU

t
r is an orthogonal

projection onto Ran(A).

A
R

n
R

m

P Q

N(A)+ R(A)

Figure 6.2: Pseudo Inverse

Transform back to Ker(A)⊥

Since Q is the projection onto the range of A, the equation

Ax = Qy

has a unique solution for any y ∈ R
n. In fact,

UrΣrV
t
r x = UrU

t
ry
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implies

Ur(ΣrV
t
r x− U t

ry) = 0.

This is a linear combination of columns of Ur which are linearly independent.
Hence we must have

ΣrV
t
r x = U t

ry ⇒ V t
r x = Σ−1

r U t
ry

so that

(VrV
t
r )x = (VrΣ

−1
r U t

r)y.

Since VrV
t
r is a projection ont Ker(A)⊥ and x ∈ Ker(A)⊥, we obtain

x = (VrΣ
−1
r U t

r)y.

Hence we can define

A+ = VrΣ
−1
r U t

r

or equivalently

A+ = (Vr : V̄r)

(

diag( 1
σi
) 0

0 0

)

(Ur : Ū
t
r) = V Σ+U t.

Also, Σ+ is the pseudo inverse of Σ.(Check it )

Remark 6.4.1. (1) AA+ 6= I in general. But A+A = VrV
t
r = P which acts

like I on Ker(A)⊥. Likewise, AA+ = UrU
t
r = Q acts like I on Ran(A).

(2) A+ provides the solution to the minimal least square problem:

Find a minimal(‖x‖ is minimal) solution x ∈ R
n of such that

min
x∈Rn

‖Ax− b‖ with ‖x‖ is minimal.

(3) The SVD is one way of constructing the pseudoinverse of A. Other
ways are discussed in G. Peters and J. H. Wilkinson, ”The least squares
problem and pseudoinverses”, Computer Jour, 13. pp 309-316(1970).

6.5 Least square problem

We consider the following problem: Find x ∈ R
n such that

min
x∈Rn

‖Ax− b‖2.

The solution always exists, but may not be unique. Every solution satisfies
the normal equation.

AtAx = Atb.
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If the columns of A are linearly independent then Ker(A) = 0 so AtA is
symmetric positive definite. Hence the solution of least square problem is
unique. Assume this, and consider Cholesky decomposition which is stable.

LDLt = AtA.

This suggests the following approach to solving least square problem:

(1) Form B = AtA and the right hand side c = Atb.

(2) Compute the Cholesky decomposition B = LDLt.

(3) Solve LDLtx = c with forward and backward substitution.

Advantages of normal equation approach.

(1) The Cholesky decomposition LDLt does not require partial pivoting for
stability. Thus symmetry permutation may be used to lessen the fill-in
during the decomposition.

(2) The computation of AtA is carried out by summing along the columns
of A so bij =

∑

k akiakj. Hence the row-reordering of A is irrelevant and
B can be formed by processing the rows of A sequentially in any order.

(3) The decomposition LDLt = AtA provides a convenient access to the
useful statistical information contained in the unscaled covariance matrix
(AtA)−1.

Disadvantages of normal equation approach.

(1) Unless extended precision is employed, there may be significant loss of
information during the formation of AtA.

A =













1 1 1 1
ǫ 0 0 0
0 ǫ 0 0
0 0 ǫ 0
0 0 0 ǫ













⇒ AtA =









1 + ǫ2 1 1 1
1 1 + ǫ2 1 1
1 1 1 + ǫ2 1
1 1 1 1 + ǫ2









If |ǫ| <
√

machine number ≈ 10−4, then the computed AtA will be
singular.

(2) The condition number of AtA is quite large. The condition number of
m × n matrix is defined as κ2(A) = ‖A‖2‖A+‖2. In fact, the condition

number of AtA is [κ2(A)]
2 which is

σ2
1

σ2
r

. Hence the normal equation

produce am amplification of errors proportional to [κ2(A)]
2.


