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Chapter 1

System of nonlinear equations

”Approximate infinite dim problem by finite dim problem”

In thish chapter, we consider carious iterative methods for solving the root

of the system of equations

f(x) = 0,

where x ∈ R
n and f(x) ∈ R

n is a vector valued function.

1.1 Operations with digital computer

Floating-point numbers

A common way of expressing real number is decimal system. For example,

325.7 is expressed as

3× 102 + 2× 101 + 5 + 7× 10−1.

In most computers, numbers are represented using binary system as follows:

(11.0101)2 = 1 · 2 + 1 + 1 · 2−2 + 1 · 2−4.

To convert decimal number into binary expression, we let

(0.3)10 = (.a1a2a3 · · · )2.

Multiplying by 2

0.6 = (a1.a2a3 · · · )2, ai = 0, 1.
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2 CHAPTER 1. SYSTEM OF NONLINEAR EQUATIONS

Thus a1 = 0. Repeating, we obtain a2 = 1, a3 = 0. round up, round off, chop.

Normalized scientific notation

875.33432 = .87533432 × 103

0.00067 = .67× 10−3.

In decimal number system the normalized notation is x = ±r × 10n, 1/10 ≤
r < 1. In binary we write x = ±q × 2m, 1

2 ≤ q < 1. Here, q is called the

mantissa and m is the exponent.

Memory in computer K32

Assume a 32-bit machine called K32. Any word(number) is allocated a 32

bits, where one bit is for the ± sign, seven for exponent, 23 for mantissa. Any

real number has the form x = ±q × 2m,(1 ≤ q < 2). The normalized binary

expression is q = (1.f)2. Here the first digit is always 1 because 1 ≤ q < 2.

0.67 =
a1
2

+
a2
22

+
a3
23

+ · · ·

1.34 = a1 +
a2
2

+
a3
22

+ · · · ⇒ a1 = 1,

0.68 = a2 +
a3
2

+
a4
22

+ · · · ⇒ a2 = 0,

1.36 = a3 +
a4
2

+
a5
22

+ · · · ⇒ a3 = 1.

Thus 0.67 = (1.010 · · · )2. But if 0.43 = a1
2 + a2

22 + a3
23 + · · · , then

0.86 = a1 +
a2
2

+
a3
22

+ · · · ⇒ a1 = 0

1.72 = a2 +
a3
2

+
a4
22

+ · · · ⇒ a2 = 1

1.44 = a3 +
a4
2

+
a5
22

+ · · · ⇒ a3 = 1

Thus 0.43 = (0.1101 · · · )2 in normalized form is

(1.101 · · · )2 × 2−1.

One does not record the first digit, always use next 23 digits to record.
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s = (sign ) e = exponent 8 bit f = normalized mantissa 23 bits

A word in computer K32

Here, 0 < e < (11111111)2 = 28 − 1 = 255, so −126 ≤ m ≤ 127. If

x = (−1)sq × 2m,

with q = (1.f)2, f is the 23 bit floating part and m = e− 127. (Here 0 < e <

255) Consider x = −1024.125 = −(210 + 2−3) = (−1)1(10000000000.001)2 .
s = 1, q = 1.0000000000001, m = 10.

s = 1, e = m+ 127 = 137 = (10001001)2 , f = (0.0000000000001)2 .

• The largest and the smallest number K32 can deal with is between

10−38 ∼ 1038

• The Precision is 2−23 ≈ 1.2× 10−7.

• Integer case: Use all 31 bit(except the sign) So we can represent the

numbers between −(231 − 1) and (231 − 1) ≈ 2.1× 109.

Overflow, underflow

If a number is too big (m ≥ 127) machine will say ‘overflow’ or NaN(Not a

number). The subsequent computation is meaningless. if the number is too

small in size (m ≤ −127) it says ‘underflow’ and the number is treated as zero.

Machine ǫ

A positive number that is negligible compared to the unity is called the ma-

chine epsilon, denoted by mǫ. It is the smallest number satisfying 1.0 +mǫ 6=
1.0 and can be computed by the following:

input s← 1

for k = 1, 2, · · · , 2000 do

s← 0.5s

t← s+ 1.0

if (t ≤ 1.0) then

s← 2.0s
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output k − 1, s

endif

endfor

The value mǫ in K32 is roughly 10−7 for single precision. The mǫ bounds the

relative error in representing a number:

∣∣∣∣
fl(x)− x

x

∣∣∣∣ ≤ mǫ.

Note : one should not confuse the machine mǫ with the smallest number a

machine can represent, which is close to 2−127. If you change the above code

without assigning the value to t, i.e., change the 5-th line to if (s + 1 ≤ 1.0)

then, you get different output. (s value stored in the registry-CPU)

1.1.1 Absolute, relative error, Loss of significance

Loss of significance

x = 0.123456789

y = 0.123455586

x− y = 0.000001203

If this calculation were performed in a decimal computer with 6 mantissas,

then

fl(x) = 0.123457

fl(y) = 0.123456

fl(x)− fl(y) = 0.000001

Relative error is large:

x− y − [fl(x)− fl(y)]
x− y =

0.000001203 − 0.000001

0.000001203
=

0.000000303

0.000001203
= 25%

The zero is just place holders.



1.1. OPERATIONS WITH DIGITAL COMPUTER 5

Subtraction of close numbers

In evaluating √
x2 + 1− 1

it is easy to lose significant digits if x is small. This phenomena is called

subtractive cancelation. representing small number as a difference

of two large number is a bad idea.

Example 1.1.1. (1) The avoid the subtractive cancelation in the evalua-

tion of
√
x2 + 1− 1, we change it to x2/

√
x2 + 1 + 1. On the hand held

calculator, (having 9 significant digits) with x = 0.00001

√
x2 + 1− 1 = 0.5× 10−8, while x2/

√
x2 + 1 + 1 = 0.4 × 10−8

a relative error is
0.1× 10−8

0.4× 10−8
≈ 25%

(2) Assume a computer with 6 digits accuracy:

True value x = 0.0000024 stored as =̇0.000002

True value y = 0.0000005 stored as =̇0.000001

True value x− y = 0.0000019 computed as =̇0.000001

The rel error is

x− y − [fl(x)− fl(y)]
x− y =

0.0000019 − 0.000001

0.0000019
=

0.0000009

0.0000019
= 47%

(3) As another typical example consider

e−x − (1− x+
x2

2
) = −x

3

3!
+
x4

4!
− x5

5!
+ · · · (1.1)

The true value of e−4.5 − (1 − 4.5 + 4.52

2 ) is close to −6.61389100. But

computing it using the series expnsion −4.53

3! + 4.54

4! − 4.55

5! + · · · could be



6 CHAPTER 1. SYSTEM OF NONLINEAR EQUATIONS

terrible!

−4.53

3!
+

4.54

4!
= −15.1875 + 17.0859375 = 1.8984375

−4.53

3!
+

4.54

4!
− 4.55

5!
= −15.1875 + 17.0859375 − 15.37734375 = −13.47880

−4.53

3!
+

4.54

4!
− 4.55

5!
+

4.56

6!
= −15.1875 + 17.0859375 − 15.37734375

+11.5330078 = −1.945792

To avoid subtractive cancelation use a nested multiplication.

e−x − (1− x+
x2

2
) = −x

3

3!
(1− x

4
(1− x

5
(1− x

6
))) + · · · (1.2)

= −15.1875(1 − 4.5

4
(1− 4.5

5
(1− (1− 4.5

6
)))) = −4.746

=̇ −x
3

3!
(1− x

4
(1− x

5
(1− x

6
(1− x

7
))))

= −15.1875(1 − 4.5

4
(1− 4.5

5
(1− 4.5

6
(1− 4.5

7
)))) = −8.7125

Exercise 1.1.2. (1) Write a computer code (use single precision if possible)

to carry out the evaluations in (1.1) and (1.2) . For (1.1, mimick Taylor

expansion; save the result of each terms like x3

3! as temp = x3

3! then add.

For example,

input temp = x2

2! , sum = 0

for k = 1, 2, · · · , 2000 do

temp2 = −temp ∗ x/(k + 2)

sum = sum+ temp2, temp = temp2

output k, sum

endfor

Other wise, all the computations are carried out in the CPU and you do

not see much difference.

Compare the difference in the values. How many terms are needed to

get accurate value in each case ?

(2) Write a code (as given above) to compute the machine ǫ in your machine

and execute to find it. Do eith single precision or Double precision
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(specify).

(3) What if you change the 5-th line of the code to if (s+ 1 ≤ 1.0) then ?

1.2 Roots of a nonlinear equation

1.2.1 Iterative method-scalar equation

We first consider one dimensional case.

Given f(x) find all α ∈ [a, b] such that f(α) = 0.

Case 1) f(x) can be computed exactly for all x ∈ [a, b].

Case 2) f(x) is known only by data.

Definition 1.2.1. α is a zero of multiplicity m of f(x). If

m = lub{k | lim
x→α

|f(x)|
|x− α|k <∞}.

The equation f(x) = 0 can be written in a variety of forms:

x = f(x) + x = g(x)

or x = x− φ(x)f(x), φ(x) 6= 0 for x ∈ [a, b]

or x = x− F (f(x)), F (0) = 0, F (y) 6= 0 for y 6= 0.

These leads to a so called ‘Picard iteration method’.

Picard iteration method

(1) Start with some x0.

(2) Put xk+1 = g(xk).

Theorem 1.2.2. [Convergence of Picard iteration method] Suppose the fol-

lowing condition hold.

(1) |g(x) − g(x′)| ≤ λ|x− x′|, ∀x, x′ ∈ [x0 − ρ, x0 + ρ] = I

(2) 0 ≤ λ < 1

(3) |x0 − g(x0)| ≤ (1− λ)ρ.

Then



8 CHAPTER 1. SYSTEM OF NONLINEAR EQUATIONS

0 x1 x2

y = g(x)

y = x

g(x1)

Figure 1.1: Picard’s method

(1) the sequence {xk} generated by xk+1 = g(xk), stays in I

(2) there exists an α satisfying α = g(α) and xk → α

(3) α is unique.

If g satisfies (1), (2) of the above condition, we say it is a contraction map.

Proof. 1. |x0 − x1| = |x0 − g(x0)| ≤ (1− λ)ρ⇒ x1 ∈ I

|xk+1 − xk| = |g(xk)− g(xk−1)| ≤ λ|xk − xk−1| ≤ · · · ≤ λk|x1 − x0|
|xk+1 − x0| ≤ |xk+1 − xk|+ |xk − xk−1|+ · · ·+ |x1 − x0|

≤ (λk + λk−1 + · · ·+ λ+ 1)(1 − λ)ρ = (1− λk+1)ρ.

Thus xk+1 ∈ I.
2.

|xn − xn+p| ≤ |xn − xn+1|+ |xn+1 − xn+2|+ · · ·+ |xn+p−1 − xn+p|
≤ λn(1− λ)ρ+ λn+1(1− λ)ρ+ · · ·+ λn+p−1(1− λ)ρ
= λn(1− λ)ρ(1 + λ+ · · · + λp−1) = λnρ · (1− λp) < ε

for all sufficiently large n and p. Hence {xn} is a Cauchy sequence in R and

thus converges. g(α) = α holds by continuity.

3. Assume g(α) = α, g(β) = β. Then

|α− β| = |g(α) − g(β)| ≤ λ|α− β| < |α− β|, since λ < 1.

This is a contradiction unless α = β.
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If ρ is large in Theorem 1.2.2, then condition (3) is easily satisfied. But

if ρ is small then condition (3) is not easily satisfied. Instead condition (1)

λ = max |g′(x)| is easily satisfied.

Remark 1.2.3. In particular, if g(x) ∈ C1(I) and |g′(x)| ≤ λ < 1, then the

conditions (1) and (2) are satisfied and the convergence is guaranteed as long

as x0 is close to g(x0).

We now present a slightly different version.

Theorem 1.2.4. Assume

(1) g(α) = α i.e., α is a solution of the problem

(2) |g(x) − g(x′)| ≤ λ|x− x′| for x ∈ I = [α− ρ, α+ ρ]

(3) 0 ≤ λ < 1.

Then, for any x0 ∈ I, {xk} stays in I and {xk} → α.

Proof. |x1 − α| = |g(x0) − g(α)| ≤ λ|x0 − α| < ρ since x0 ∈ [α − ρ, α + ρ].

Hence x1 ∈ I and by induction,

|xk − α| = |g(xk−1)− g(α)| ≤ λ|xk−1 − α|
= λ|g(xk−2)− g(α)| ≤ λ2|xk−2 − α| ≤ · · · ≤ λk|x0 − α| ≤ λk · ρ < ρ.

Thus {xk} stays in I and furthermore, {xk} converges to α.

Order of Convergence

Given a numerical algorithm, the number µ satisfying

|xk − α| ≤M |xk−1 − α|µ

for some fixed numberM ≥ 0 is called the order of convergence. Hence Picard

method is a order one method.

Assume µ = 1 then

|xk − α| ≤M |xk−1 − α| ≤M2|xk−2 − α| ≤ · · · ≤Mk|x0 − α|.

Thus M must satisfy 0 ≤ M < 1 to assure the convergence. (For any initial

guess) The magnitude of M is crucial in linear order method.
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When µ > 1, multiply a constant C,

C|xk − α| ≤ CM |xk−1 − α|µ.

Choose C =M
1

µ−1 . Then CM = Cµ and if we define ek = C|xk − α|, we see

C|xk − α| ≤ Cµ|xk−1 − α|µ ⇒ ek ≤ eµk−1 ≤ (eµk−2)
µ ≤ · · · ≤ eµ1+2+···+k

0 .

So we require the initial guess to be close enough to assure the convergence.

Here

µ ≈ log ek
log ek−1

=
logC + log ek
logC + log ek−1

≈ log |xk − α|
log |xk−1 − α|

(1.3)

assuming |xk−1 − α| << 1. If µ = 1 we say, it is linear and if µ = 2, it is

quadratic.

In practice it is hard to compute this number since we do not know C.

Instead it can be computed using three term relations (See later sections).

1.2.2 Error propagation

In actual computation, it may not be possible to evaluate g(x) exactly due to

rounding error or g(x) may be given as a numerical table such as numerical

solution of differential equations. Thus, the actual iteration scheme may be

represented as

xk+1 = g(xk) + δk,

where |δk| < δ for some known bound δ.

Theorem 1.2.5. Suppose

(1) α = g(α)

(2) |g(x) − g(α)| ≤ λ|x− α|, 0 ≤ λ < 1, x ∈ [α− ρ0, α+ ρ0]

(3) |x0 − α| ≤ ρ0 where 0 < ρ0 < ρ− δ

1− λ
(4) xk+1 = g(xk) + δk, |δk| < δ.

Then, |α− xk| ≤ ρ and

|α− xk| ≤
δ

1− λ + λk(ρ0 −
δ

1− λ).
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Method of bisection

Assume we have two points a, b such that f(a)f(b) < 0. Put

r0 = a, s0 = b

and for n = 0, 1, 2, . . . , do the following:

(1) Set zn = rn+sn
2 and compute f(zn).

(2) With p = f(rn) · f(zn) do

(a) If p = 0 (or |p| < pre-specified TOL), then stop and accept α = zn

(b) If p < 0 then set rn+1 = rn and sn+1 = zn

(c) If p > 0 then set rn+1 = zn and sn+1 = sn.

Note that rn ≤ α ≤ sn. Convergence analysis: Since zn+1 = 1
2(rn+1 + sn+1),

we see

|rn+1 − sn+1| =




|rn − zn| =

∣∣rn − rn+sn
2

∣∣ = |rn−sn|
2

|zn − sn| =
∣∣ rn+sn

2 − sn
∣∣ = |rn−sn|

2 .
(1.4)

Hence

|rn+1 − sn+1| =
|rn − sn|

2
≤ · · · ≤ |r0 − s0|

2n+1
→ 0.

Since rn+1 ≤ α ≤ sn+1, {rn} converges to α. Hence so does {zn}.

|zn − α| =

∣∣∣∣
rn + sn

2
− α

∣∣∣∣ =
∣∣∣∣
rn − α

2
+
sn − α

2

∣∣∣∣ (∗)

≤
∣∣∣∣
rn − α

2

∣∣∣∣+
∣∣∣∣
sn − α

2

∣∣∣∣

=
sn − α

2
+
α− rn

2
=
sn − rn

2

≤ |r0 − s0|
2n+1

→ 0.

Considering the sign of terms in (*), we have

|zn − α| =

∣∣∣∣
rn + sn

2
− α

∣∣∣∣ =
∣∣∣∣
rn − α

2
+
sn − α

2

∣∣∣∣

≤ max

(∣∣∣∣
rn − α

2

∣∣∣∣+
∣∣∣∣
sn − α

2

∣∣∣∣
)
.
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This is a first order (linear) method.

1.2.3 Pseudo code for bisection method

input r, s and f with f(r)f(s) < 0

for k = 1, 2, · · · , 2000 do

set z = (r + s)/2 and compute p = f(z)

If |p| < tol then set z as solution and break;

If p < 0 then set r = z (* do not set s to save time *)

else s = z

endif

output k − 1, z

end

Method of false position-Regular Falsi

Assume f(a)f(b) < 0. Use a linear approximation using first two data (sn, f(sn))

and (rn, f(rn)) to obtain a new prediction. Let

zn = sn −
(sn − rn)f(sn)
f(sn)− f(rn)

=
rnf(sn)− snf(rn)
f(sn)− f(rn)

and proceed as in bisection method.

Secant method

Secant method is (almost) the same as the method of false position but we do

no check if f(a)f(b) < 0, so it saves some computation. Thus given two initial

guesses z0, z1, we let

zn+1 =
zn−1f(zn)− znf(zn−1)

f(zn)− f(zn−1)
= zn−

f(zn)(zn − zn−1)

f(zn)− f(zn−1)
, n = 1, 2, · · · . (1.5)

Convergence behavior will be investigated later.

A special case of Picard iteration

Assume g ∈ C2 and g′(α) = 0 in the Picard iteration xk+1 = g(xk). In this

case we can show the convergence is quadratic(same as Newton’s method):
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0 rn zn sn

y = f(x)

0 znzn+1 zn−1

y = f(x)

Figure 1.2: Method of false position and secant method

Since

g(x) = g(α) + g′(α)(x − α) + g′′(ξ)
2

(x− α)2, ξ ∈ (x, α)

= g(α) +
g′′(ξ)
2

(x− α)2,

we have from xk+1 = g(xk),

|xk+1 − α| = |g(xk)− α| = |g(xk)− g(α)| ≤
∣∣∣∣
g′′(ξ)
2

∣∣∣∣ |xk − α|
2. (1.6)

Therefore ek+1 ≤Me2k whereM = max |g′′(x)|
2 . (Quadratic convergence): Mul-

tiply by M and set ēk+1 =Mek, we have

ēk+1 ≤ (ēk)
2 ≤ (ē2k−1)

2 ≤ · · · ≤1+2+···+2k

0 = (ē0)
2k+1

.

If |ē0| =M |x0 − α| < 1, it converges quickly.

Newton’s method

Let us now derive the Newton’s method for solving f(x) = 0. To consider a

more general scheme, we put

g(x) = x− φ(x)f(x).

This is a consistent scheme if φ(x) 6= 0 near the solution. We see that

g′(x) = 1− φ′(x)f(x)− φ(x)f ′(x).
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0 x1x2x3

y = f(x)

0 x1x2x3

y = f(x)

Figure 1.3: Newton’s method and secant method

We see from the previous discussion that we get a second order convergence if

g′(α) = 0. Hence we choose φ so that

g′(α) = 1− φ′(α)f(α) − φ(α)f ′(α) = 1− φ(α)f ′(α) = 0,

i.e, if φ(x) ≡ 1
f ′(x) , the scheme becomes xk+1 = xk − f(xk)

f ′(xk)
and it was shown

to be second order, provided f ′(α) 6= 0.

Defect of Newton’s method: If the value is given by table or algorithm,

(i.e., as a solution of D.E.) how to find f ′(x)?

Convergence of Newton’s method

Suppose f ∈ C2 in a neighborhood of x̄, where f(x̄) = 0 and f ′(x̄) 6= 0. The

Newton’s method is:

xn+1 = xn −
f(xn)

f ′(xn)
, f(x̄) = 0.

Let en = xn − x̄ be the error. Use the Taylor expansion near xn,

0 = f(x̄) = f(xn) + f ′(xn)(x̄− xn) +
f ′′(c)(x̄ − xn)2

2
, c ∈ [xn, x̄]

en+1 = en −
f(xn)

f ′(xn)
=
enf

′(xn)− f(xn)
f ′(xn)

=
f ′′(c)e2n
2f ′(xn)

.
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Let M = sup[a,b] |f ′′(x)| and m = inf [a,b] |f ′(x)|. Then by continuity m > 0.

|en+1| ≤
M

2m
|e2n| =

2m

M
·
(
M

2m
|en|
)2

.

Define En+1 =
M
2m |en+1|, then we see

En+1 ≤ E2
n ≤ · · · ≤ E2n+1

0 .

Hence the Newton’s method converges if E0 =
M
2m |e0| < 1.

Case of multiple root

Suppose f(x̄) = f ′(x̄) = 0, f ′(x) 6= 0 except xn = x̄ near x̄, f ′′(x̄) 6= 0. Then

we have by Taylor series

en+1 =
f ′′(c)e2n
2f ′(xn)

=
f ′′(c)e2n

2f ′(xn)− 2f ′(x̄)

=
f ′′(c)e2n

2(xn − x̄)f ′′(ξ)
=

f ′′(c)
2f ′′(ξ)

en.

Thus only 1st order convergence, i.e, |en+1| ≈ 1
2 |en| like bisection. But Newton

method is better because bisection method cannot be used for a double root.

Theorem 1.2.6 (Mean value theorem for integral). Let f be continuous and

g be integrable which does not change sign on [a, b]. Then there exists a point

c ∈ [a, b] satisfying

∫ b

a
f(x)g(x) dx = f(c)

∫ b

a
g(x) dx.

General multiple root

Now x̄ is a root of f(x) = 0 of multiplicity p, i.e, f(x̄) = · · · f (p−1)(x̄) = 0

and f (p)(x̄) 6= 0. By the integral form of Taylor’s formula applied to f and f ′

respectively, we have

f(x) = f(x̄)+f ′(x̄)(x− x̄)+ · · ·+ f (p−1)(x̄)

(p− 1)!
(x− x̄)p−1+

∫ x

x̄

(x− t)p−1

(p− 1)!
f (p)(t) dt

(1.7)
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f ′(x) = f ′(x̄)+f ′′(x̄)(x−x̄)+· · ·+f
(p−1)(x̄)

(p− 2)!
(x−x̄)p−2+

∫ x

x̄

(x− t)p−2

(p− 2)!
f (p)(t) dt

(1.8)

On the other hand, since f(x̄) = · · · f (p−1)(x̄) = 0, we see (1.7), (1.8) becomes

f(x) =

∫ x

x̄

(x− t)p−1

(p − 1)!
f (p)(t) dt (1.9)

f ′(x) =

∫ x

x̄

(x− t)p−2

(p − 2)!
f (p)(t) dt. (1.10)

Multiply the second equation by (x − x̄) and subtract first equation from it,

we have

(x− x̄)f ′(x)−f(x) =
∫ x

x̄

f (p)(t)

(p − 1)!
(x− t)p−2[(p−1)(x− x̄)− (x− t)] dt. (1.11)

Note that the quantity in bracket does not change sign. Hence by integral

mean value theorem, there is a point c between x and x̄ satisfying

=
f (p)(c)

(p − 1)!

∫ x

x̄
(x− t)p−2[(p − 1)(x − x̄)− (x− t)] dt

=
f (p)(c)

(p − 1)!

(
1− p
p

)
(x− x̄)p. (1.12)

Hence we have

en+1 = en −
f(xn)

f ′(xn)
=
enf

′(xn)− f(xn)
f ′(xn)

=
f (p)(c)epn · 1−p

p

(p− 1)!

/ ep−1
n · f (p)(ξ)
(p − 1)!

=
1− p
p
· f

(p)(c)

f (p)(ξ)
· en ≈

1− p
p

en.

Since p−1
p < 1 we have first order convergence. However, the convergence rate

deteriorate as p grows.

Improvement of convergence

Assume we know the multiplicity of a root in advance. Consider the following

modification of Newton’s method for the case of p-th multiple root.

xn+1 = xn − p
f(xn)

f ′(xn)
. (1.13)
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Proceeding as in (1.7), (1.8) with p+ 1 replacing p, we have

f(x) =
f (p)(x̄)

p!
(x− x̄)p +

∫ x

x̄

(x− t)p
p!

f (p+1)(t) dt (1.14)

f ′(x) =
f (p)(x̄)

(p − 1)!
(x− x̄)p−1 +

∫ x

x̄

(x− t)p−1

(p − 1)!
f (p+1)(t) dt (1.15)

Hence

(x− x̄)f ′(x)− pf(x) =
∫ x

x̄

f (p+1)(t)

(p− 1)!
(x− t)p−1[(x− x̄)− (x− t)] dt. (1.16)

Again by integral mean value theorem, there exists a point c between x̄ and

x such that

(x− x̄)f ′(x)− pf(x) =
f (p+1)(c)

(p− 1)!

∫ x

x̄
(x− t)p−1[(x− x̄)− (x− t)] dt

=
f (p+1)(c)

(p− 1)!

(x− x̄)p+1

p(p+ 1)
.

Hence using (1.10), we see

en+1 = en − p
f(xn)

f ′(xn)
=
enf

′(xn)− pf(xn)
f ′(xn)

=
e2n

p(p+ 1)

f (p+1)(c)

f (p)(ξ)
.

If p = 1 this reduces to original Newton’s method. Note that this scheme may

diverge for a problem with simple root. One has to know the multiplicity in

advance to use this version. But after a few iteration one can find p (since it

is an integer).

Nonconvergence of Newton’s method

There are certain instances when the Newton’s method does not converge. (It

may diverge or fall into some periodic behavior)

1.2.4 Variants of Newton’s Method

A few difficulties with the Newton’s method

(1) It may not be possible to find a formula for f ′.
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(2) Even if the formula for f ′ is available, it may be too expansive to com-

pute.

(3) Newton’s method may fail to converge.

Finite Differences

We may replace f ′(xn) by

f ′(xn) ≈
f(xn + h)− f(xn)

h

for some h.

Quasi Newton Method

xn+1 = xn −
f(xn)

sn
.

(1) One choice is sn = f(xn)−f(xn−1)
xn−xn−1

(secant method)

(2) another choice is to use constant slope sn = c.

Damping

Failure of Newton’s method may happen for example, when we overshoot the

value: Try Newton’s method for f(x) = 1/x− 10 with x0 = 10. We will see it

fails to converge.

Thus we use damping:

xn+1 = xn − µn
f(xn)

f ′(xn)
(1.17)

for 0 < µn < 1 and µn → 1 as n→∞.

Mixing Methods

Start with bisection (guaranteed) and after a few iteration switch to New-

ton’s method(fast).
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Convergence of Secant method

One of the drawback of Newton’s method is that it requires to evaluate the

derivative which is not only costly but sometimes not available. So we suggest a

variant of Newton’s method which does not require the evaluation of derivative.

We replace the derivative f ′(xn) in the Newton method by the backward

finite difference

f(xn)− f(xn−1)

xn − xn−1

which is available during the iterations(Need two initial values, however.).

Thus the secant method is given in the form

xn+1 = xn −
f(xn)(xn − xn−1)

f(xn)− f(xn−1)
.

Convergence proof:

xn+1 − x̄ = xn − x̄−
f(xn)(xn − xn−1)

f(xn)− f(xn−1)

=
(xn − x̄)(f(xn)− f(xn−1))− f(xn)(xn − xn−1)

f(xn)− f(xn−1)

=
(xn − x̄)

f(xn)− f(xn−1)

[
f(xn)− f(xn−1)−

f(xn)− f(x̄)
xn − x̄

(xn − xn−1)

]

=
(xn − x̄)(xn − xn−1)

f(xn)− f(xn−1)

[
f(xn)− f(xn−1)

xn − xn−1
− f(xn)− f(x̄)

xn − x̄

]

= (xn − x̄)(xn−1 − x̄)
f ′′(ηn)
2f ′(ξn)

, ηn, ξn ∈ (xn−1, x̄).

In the last equality, we used MVT and second divided difference formula: For

a C2 function f we have (Later or if |xn − x̄| ≤ |xn−1 − x̄|)

f(xn)− f(xn−1)

xn − xn−1
− f(xn)− f(x̄)

xn − x̄
=
f ′′(ηn)

2
(xn−1 − x̄). (1.18)

Thus we have

|en+1| ≤ |en| · |en−1| ·M,

where M = max
2

∣∣∣f
′′(ηn)
f ′(ξn)

∣∣∣. Put qn =M |xn − x̄|. Then

qn+1 ≤ qn · qn−1. (1.19)
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We now solve the difference equation qn+1 = qn · qn−1 to find out the conver-

gence order. Let zn = log qn. Then we obtain a Fibonacci sequence

zn+1 = zn + zn−1

whose solution can be obtained in the form: zn = c1λ
n
1 + c2λ

n
2 where λi is the

sol. of λ2 − λ − 1 = 0. λ1 = (1 +
√
5)/2 (larger one), λ2 = (1 −

√
5)/2. One

can find the values c1, c2 by the initial condition. Thus

qn = ezn = ec1λ
n
1+c2λn

2 .

For large n, we have qn+1 ∼ qλ1
n . Thus Men+1 ≤ (Men)

λ1and the sequence

{qn} converges provided |Me1| < 1.

Remark 1.2.7. 1. If x̄ is a double root, M = max
2

∣∣∣f
′′(ηn)
f ′(ξn)

∣∣∣ may be ∞. Look

at y = x2. In this case, we have no convergence.

2. qn+1 ∼ qλ1
n , λ1 = 1+

√
5

2 =̇1.618. This suggest that secant method may

be better than bisection (linear) or function iteration.

Computing the order of convergence

Given some iterative method to find a zero of f(x̄) = 0. Assuming we know

the exact solution(or a close approximation of it), we can estimate the order

of convergence. Let en+1 = |xn+1 − x̄|. Assume en+1 ≈ Meµn, M constant.

Then en ≈Meµn−1. Then dividing we obtain

en+1

en
≈
(

en
en−1

)µ

. (1.20)

Thus we have

µ ≈ log

(
en+1

en

)/
log

(
en
en−1

)
. (1.21)

One can also estimate M.

Definition 1.2.8. Let xn be a sequence. Then the first forward difference is

∆xn = xn+1 − xn (1.22)

Successive forward differences are defined recursively, as follows: The k-th
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forward difference is given in terms of the k − 1 st forward difference as

∆kxn = ∆(∆k−1xn) (1.23)

Aitken’s δ2 method

Aitken’s method (George Aitken, 1895-1967) is based on the following obser-

vation. For any linearly convergent method we have

lim

∣∣∣∣
xn+1 − x̄
xn − x̄

∣∣∣∣ = λ > 0. (1.24)

Thus for sufficiently large n, we might expect that

xn+1 − x̄
xn − x̄

≈ xn+2 − x̄
xn+1 − x̄

≈ λ > 0. (1.25)

Solving for x̄ we obtain

x̄ = xn +
xn+2xn − x2n+1 − xn∆2xn

∆2xn
. (1.26)

Expanding the numerator, we see

x̄ = xn −
(∆xn)

2

∆2xn
. (1.27)

This motivates us to define a new sequence (while computing xn) by

(Ax)n = xn −
(∆xn)

2

∆2xn
. (1.28)

Steffensen’s method

Based on the Aitkin’s method (applied to the fixed point equation x = f(x)

using xn+1 = f(xn)) we obtain Steffensen’s method. It is defined by

xn+1 = xn −
(f(xn)− xn)2

f(f(xn))− 2f(xn) + xn
.

Note the similarity with Aitken’s method. The xn+1 on the left side is like

(Ax)n in Aitken’s method.
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One can show that if f ∈ C2 and f ′(x̄) 6= 1 then

en+1 =
f ′′(x̄)f ′(x̄)
2(f ′(x̄)− 1)

e2n +O(e3n).

Use Taylor expansion (f(x̄) = x̄)

f(xn) = f(x̄+ en) = enf
′(x̄) +

1

2
e2nf

′′(x̄) +O(e3n) ≡ x̄+ g(en)

(f(xn)− xn)2 = (g(en)− en)2 = e2n(f
′(x̄)− 1 +

1

2
enf

′′(x̄))2

= e2n(f
′(x̄)− 1)2 + e3nf

′′(x̄)(f ′(x̄)− 1) +O(e4n).

Continuing

f(f(xn)) = f(x̄+ g(en)) = f(x̄) + g(en)f
′(x̄) +

1

2
g(en)

2f ′′(x̄) +O(e3n)

yn ≡ x̄+ g(en)[f
′(x̄) +

1

2
g(en)f

′′(x̄)] +O(e3n)

= x̄+ en(f
′(x̄) +

1

2
enf

′′(x̄))[f ′(x̄) +
1

2
g(en)f

′′(x̄)] +O(e3n)

= x̄+ en(f
′(x̄) +

1

2
enf

′′(x̄))[f ′(x̄) +
1

2
en(f

′(x̄) +
1

2
enf

′′(x̄))f ′′(x̄)]

= x̄+ en(f
′(x̄))2 +

1

2
e2nf

′(x̄)f ′′(x̄)(1 + f ′(x̄)) +O(e3n).

f(f(xn))− 2f(xn) + xn = en(f
′(x̄)− 1)2 +

1

2
e2nf

′′(x̄)(f ′(x̄) + 2)(f ′(x̄)− 1) +O(e3n).

Since en+1 − en = xn+1 − xn

en+1 = en −
[f(xn)− xn]2

f(f(xn))− 2f(xn) + xn
=

f ′′(x̄)f ′(x̄)e2n +O(e3n)

2(f ′(x̄)− 1)(1 +O(en))

=
f ′′(x̄)f ′(x̄)
2(f ′(x̄)− 1)

e2n +O(e3n).

Remark 1.2.9. Equivalently, Steffensen’s method to find the solution of

f(x) = 0 (f(x)− x = 0 above) has the following form: Given x0, find

xn+1 = xn −
f(xn)

g(xn)

for n = 0, 1, 2, 3, ..., where the slope function g(xn) is a composite of the
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original function given by the following formula:

g(xn) =
f(xn + f(xn))− f(xn)

f(xn)
.

The function g is the average slope of the function f between the last sequence

point (x, y) = (xn, f(xn)) and the auxiliary point (x, y) = (xn + h, f(xn + h)),

with the step h = f(xn).

Advantages and drawbacks

The main advantage of Steffensen’s method is that it has quadratic conver-

gence like Newton’s method.

The price for the quick convergence is the double function evaluation(secant

method needs only one function evaluation): both f(xn) and f(xn + h) must

be calculated, which might be time-consuming if f is a complicated function.

Exercise 1.2.10. (1) Use Taylor expansion to prove the divided difference

formula (1.18).

(2) Let f1(x) = (x−1)(x7+6x6+3x2−3) and f2(x) = 2x7−x6−3.5x4+2.

(a) Use Newton’s method to find the zero of f1 near 0.757628... (another

one is near −0.779945...). Also find the zero of f2 between −1 and

0.5.

(b) Find the root of f2 between −1 and 0.5.

(c) Repeat the problem with Steffenson’s method.

(Start with several initial values near the zero and see what happens).

In each case, find the order of convergence (use |xn− x̄|, not |xn−xn−1|)
and compare with theoretical results. Also, use graphical tools to draw

the graph and plot some intermediate values.

(3) Find first ten roots of the equation tan x = x.

Set

g(t) =
f(t)− f(xn)
(t− xn)

and use MVT for g
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Figure 1.4: (x− 1)(x7 + 6x6 + 3x2 − 3) and 2x7 − x6 − 3.5x4 + 2

1.2.5 Higher degree interpolation and inverse interpolation

Quadratic interpolation-Muller’s method

Recall the method of using a linear interpolation to find a root of function

(e.g., secant method or regular-falsi method): Given a bracket [x0, x1], we

interpolate f by a linear function and let the zero of the linear function be the

approximate root of f .

Can we use higher degree polynomial to generate a sequence of iterates?

Given data (xk, f(xk)) = (xk, yk), k = 1, 2, · · · , one can construct a polynomial

p s.t. yk = p(xk), k = 1, 2, · · · . But solving p(x̄) = 0 is difficult! Muller used a

quadratic interpolation. This is a direct extension of secant method to solve

f(α) = 0. It is of high order and works for complex roots when the starting

value is a complex number. But it may give us a complex number even when

we are expecting real solution.

Now we describe Muller’s method: Given f(x), and x0, x1, x2 near α.

Construct a second degree polynomial p such that p(x0) = f(x0), p(x1) =

f(x1), p(x2) = f(x2). Let p(x) = a(x− x2)2 + b(x− x2) + c. Then

a(x0 − x2)2 + b(x0 − x2) + c = f(x0)

a(x1 − x2)2 + b(x1 − x2) + c = f(x1)

a(x2 − x2)2 + b(x2 − x2) + c = f(x2)

With δ0 = x0 − x2, δ1 = x1 − x2, r0 = f(x0)− f(x2), r1 = f(x1)− f(x2), one
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obtains

a =
δ1r0 − δ0r1
δ0δ1(δ0 − δ1)

, b =
δ20r1 − δ21r0
δ0δ1(δ0 − δ1)

, c = f(x2).

Thus

x− x2 =
−b±

√
b2 − 4ac

2a
.

We take the one with smaller modulus.(Reason:Assume three consecutive

points lie on a smooth convex curve, it is reasonable to expect smaller value

is a good approximation.)

Remark 1.2.11. (1) Müller’s method can find complex root also.

(2) Newton’s method also finds complex root if started with complex num-

bers.

(3) To find the root of a polynomial, it is suggested to use the companion

matrix. Let

C =




0 1 0
. . .

. . . 0

. . . 1

−an −an−1 . . . −a1




We can show that

|C − λI| = 0

if and only if p(λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0.

(4) Order of convergence for Müller’s method. en+1
.
= e1.839n .

(5) Müller’s method may not converge for triple root. In this case use per-

turbation.

Inverse interpolation

An alternative is to use the inverse interpolation: Given data (xk, f(xk)) =

(xk, yk), k = 1, 2, · · · , where yk are distinct, we construct a polynomial p(y)

such that xk = p(yk). Set p(0) as the next iterate.
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y = p(x)

b

b

bx = p̃(y)

x = p̃(0)

x = p−1(0)

x

Figure 1.5: quadratic(blue) and inverse quadratic(red) interpolation

Example 1.2.12 (inverse quadratic interpolation). Assume we have data

(x1, f(x1)), (x2, f(x2)), (x3, f(x3)). The quadratic polynomial p(y) s.t. p(yk) =

xk, k = 1, 2, 3 is

p(y) = x1
(y − y2)(y − y3)
(y1 − y2)(y1 − y3)

+ x2
(y − y1)(y − y3)
(y2 − y1)(y2 − y3)

+ x3
(y − y1)(y − y2)
(y3 − y1)(y3 − y2)

New approximation is

p(0) = x1
y2y3

(y1 − y2)(y1 − y3)
+ x2

y1y3
(y2 − y1)(y2 − y3)

+ x3
y1y2

(y3 − y1)(y3 − y2)

=
x1y2y3(y3 − y2) + x2y3y1(y1 − y3) + x3y1y2(y2 − y1)

(y1 − y2)(y2 − y3)(y3 − y1)

This is similar to Muller’s but no need to worry complex roots, or no need to

choose which one of the roots. The convergence order is 1.839.

Example 1.2.13. Consider a quadratic interpolating poly with data:

(1, 1), (2, 1.5), (3, 0.3)

Lagrange interpolation pn(x) =
∑n

i=0 f(xi)
∏

j 6=i
(x−xj)
(xi−xj)

gives

p(x) = 1
(x− 2)(x− 3)

(−1)(−2) + 1.5
(x − 1)(x− 3)

1(−1) + 0.3
(x− 1)(x − 2)

2
.
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y = p(x)

b

b

b

x = p̃(y)

x = p̃(0)

x = p−1(0)

x

y

Figure 1.6: quadratic/inverse quadratic interp. Example 1.2.13

But its inverse quadratic interpolation x = p̃(y) is

p̃(y) = 1
(y − 1.5)(y − .3)

(−.5)(.7) + 2
(y − 1)(y − .3)

.5(1.2)
+ 3

(y − 1)(y − 1.5)

(−.7)(−1.2) .

Thus

p(x) =
1

2
(−1.7x2+6.1x−2.4), p̃(y) = 2.047619y2−8.1190524y+5.0714298.

Two roots of p(x) are 3.318 and 0.4498 while p̃(0) = 5.0714298..

1.2.6 Safeguarded Methods

We may consider a hybrid method between fast method and safe method. For

example combine (fast) Newton’s Method with the (safe) bisection method.

Start with a bracket [x0, x1]. If each Newton’s step gives new iterate xnew,

if xnew ∈ [x0, x1] use either [x0, xnew] or [xnew, x1] (whichever is a bracket).

Otherwise throw away xnew and use bisection.

1.2.7 Nested multiplication

First note on the efficient polynomial evaluation. Use recursive evaluation as

follows:(Nested multiplication or synthetic division) Fore example,

p(x) = x4 − 5x3 + 7x2 − 12x+ 13

= (((x− 5)x+ 7)x− 12)x+ 13.
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Comput. costs:

4 + 4 + 3 + 2 + 4 = 17, vs 7.

More generally,

p(x) = anx
n + an−1x

n−1 + · · ·+ a0

= (· · · (((anx+ an−1)x+ an−2)x+ an−3)x · · · + a1)x+ a0.(1.29)

In this way, we not only save time but to avoid underflow(imagine what will

happen if x is very small and n is large). High power terms like xn may be

neglected if computed individually even if they have some significance if added

together.

Horner’s Method of Synthetic Division

For a polynomial pn(x) = anx
n + an−1x

n−1 + · · ·+ a0 we can write it as

pn(x) = (x− x0)q(x) + p(x0),

where q(x) = bn−1x
n−1 + · · ·+ b0. We expand it.

(x− x0)(bn−1x
n−1 + · · ·+ b0) + p(x0)

= bn−1x
n + (bn−1 − x0bn−2)x

n−1 + · · ·+ (b0 − x0b1)x+ p(x0)

Comparing this with pn(x), we see

bn−1 = an

bn−2 = an−1 + x0bn−1

...

b0 = a1 + x0b1

p(x0) = a0 + x0b0.

This is nothing but (1.29). Exer. Derive this and compare the comput. com-

plexity.

Input n, ai(0 ≤ i ≤ n), x0
bn−1 ← an
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for k = n− 1, n − 2, · · · , 0 do

bk−1 ← ak + x0bk

end

output (bi,−1 ≤ i ≤ n− 1)

Note that b−1 = p(x0).

If this is done by pencil we have

an an−1 · · · a0

x0 x0bn−1 · · · x0b0

−−−− −−−− −−−−− −−−− −−−−
+ bn−1 bn−2 · · · b−1

Remark 1.2.14. If you do not need ak after the work, you can overwrite ak

to save memory. See complete Horner’s algorithm.

Example 1.2.15. Use Horner’s algorithm for p(x) = x4− 4x3 +7x2 − 5x− 2

at x0 = 3. Then

p(x) = (x− 3)(x3 − x2 + 4x+ 7) + 19.

Repeated Horner’s method

If we use Horner’s method at a fixed value c repeatedly, we can expansion of

the poly. and find the derivatives. If we have

p(x) = cn(x− x0)n + cn−1(x− x0)n−1 + · · · c1(x− x0) + c0,

we have f ′(x0) = c1 and f (k)(x0)/k! = ck. To find all the coefficients ck, we

will use Horner’s algorithm repeatedly, called a Complete Horner’s Algorithm:

input n, ai(0 ≤ i ≤ n), x0
for k = 0, · · · , n− 1 do

for j = n− 1, n− 2, · · · , k do

aj ← aj + x0aj+1

end

end

output ai(0 ≤ i ≤ n)
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Here we overwrite aj to save memory.

Remark 1.2.16. Horner’s method gives an efficient numerical way of com-

puting the higher order derivatives of a polynomial: p(k)(x0) = k!ck which

may be hard to find by simple repetition of divided difference. But there is a

systematic way of computing divided difference. (Later)

Consider Newton’s method again:

xk+1 = xk −
f(xk)

f ′(xk)
.

A partial Horner’s method can be used to compute f(x0) and f
′(x0). Thus to

find a root of a polynomial by Newton’s method, we do not need to provide

the derivative. First we define repeated (partial) Horner’s method :

Horner (x0, α, β)

input n, ai(0 ≤ i ≤ n), x0
α← an

β ← 0

for k = n− 1, n − 2, · · · , 0 do

β ← α+ x0β

α← ak + x0α

end

output α, β

Here α = p(x0) β = p′(x0). Here to order of computation of α, β has to be

observed. So this can be combined to give Newton’s method:

Newton’s Methods for polynomials

input n, ai(0 ≤ i ≤ n), x0,M, ǫ

for j = 1 to M do

Horner (n, (ai : 0 ≤ i ≤ n), x0, α, β)
x1 ← x0 − α/β
output α, β, x1

if |x1 − x0| < ǫ, then stop

x0 ← x1

enddo
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1.2.8 Root of a polynomial

If we are interested in finding one of the zeros of a polynomial and if we

know approximate value, then Picard method or Newton method can be used.

However, if one is interested in finding many(or all of) roots, above methods

are not effective.

Companion matrix

There is a way to find all the zeros of a polynomial using a matrix. A com-

panion matrix for a polynomial p(x) = xn + a1x
n−1 + · · · + an defined as

C =




0 1 0
. . .

. . . 0

. . . 1

−an −an−1 . . . −a1




Lemma 1.2.17. We have

p(x) = det (xI − C) = det




x −1 0
. . .

. . . 0

. . . −1
an an−1 . . . x+ a1




and hence the roots of the polynomial p(x) are the eigenvalues of C.
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Proof. Let pn(x) := det (xI − C). Use the first row to expand to see

pn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 . . . 0

0 x −1 . . . 0

0 0 x −1 0
... −1
an an−1 . . . a2 x+ a1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(n× n)

= xpn−1(x)− (−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 . . . 0

0 x −1 . . . 0

0 0 x −1 0
... −1
an an−2 . . . a2 x+ a1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(n − 1) × (n − 1)

= xpn−1(x) + (−1)nan

∣∣∣∣∣∣∣∣∣∣∣∣

−1 . . . 0

x −1 . . . 0

0 x −1 0 0

. . . . . . x −1 0

0 0 x −1

∣∣∣∣∣∣∣∣∣∣∣∣

(n− 2)× (n− 2)

= xpn−1(x) + an

= x(xpn−2(x) + an−1) + an

= x(x(· · · (xp1(x) + a2) + · · ·+ an−2) + an−1) + an,

with p1(x) = x+ a1. Then this is nothing but the p(x) written in the nested

multiplication form. Hence we have pn(x) = p(x).

Bairstow’ Method for complex roots

It is possible that a polynomial of real coefficients can have complex roots. To

find complex roots of such case with a real arithmetic, the method of Bairstow

is useful.

Theorem 1.2.18. We let

p(z) = q(z)(z2 − uz − v) + r(z),
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where

q(z) = bnz
n−2 + bn−1z

n−3 + · · ·+ b3z + b2 (1.30)

r(z) = b1(z − u) + b0. (1.31)

Then bk are given by

bk = ak + ubk+1 + vbk+2, (k = n, n− 1, · · · , 0)

where bn+1 = bn+2 = 0.

Proof. Use the method of undetermined coefficients for p(z) = q(z)(z2 − uz−
v) + r(z). From

n∑

k=0

akz
k =

(
n∑

l=2

blz
l−2

)
(z2 − uz − v) + b1(z − u) + b0

n∑

k=0

akz
k =

(
n−2∑

k=0

bk+2z
k

)
(z2 − uz − v) + b1(z − u) + b0,

we see

ak = bk − ubk+1 − vbk+2 (0 ≤ k ≤ n− 2) (1.32)

an−1 = bn−1 − ubn
an = bn.

If p has the factor (z2 − uz − v), then we have

b0(u, v) = 0

b1(u, v) = 0.

Here b0, b1 are (implicit) functions of u, v. We will apply Newton’s Methods

here to find u and v from which we can find the root of pn(x) = 0 by the

formula.

Let ck = ∂bk
∂u , dk =

∂bk−1

∂v . We will need c0, d1, c1 and d2. For this purpose,

we have to compute all c′ks and d
′
ks. Note that ak is independent of u, v. Taking
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the derivatives of (1.32) w.r.t u and v

0 =
∂ak
∂u

= ck − bk+1 − u
∂bk+1

∂u
− v∂bk+2

∂u

0 =
∂ak
∂v

= dk+1 − bk+2 − u
∂bk+1

∂v
− v∂bk+2

∂v

we obtain

ck = bk+1 + uck+1 + vck+2, (cn+1 = cn = 0)

dk = bk+1 + udk+1 + vdk+2.

From this we see that ck = dk and we will use just one of them. We want to

compute δu, δv from

[
∂b0
∂u

∂b0
∂v

∂b1
∂u

∂b1
∂v

][
δu

δv

]
= −

[
b0(u, v)

b1(u, v)

]

In other words,

[
c0 d1

c1 d2

] [
δu

δv

]
=

[
c0 c1

c1 c2

] [
δu

δv

]
= −

[
b0(u, v)

b1(u, v)

]
.

So with J = c0c2 − c21, we have

δu = (c1b1 − c2b0)/J, δv = (c1b0 − c0b1)/J.

Algorithm-Bairstow

input n, ai(0 ≤ i ≤ n), u, v, it
bn ← an

cn ← 0

cn−1 ← an−1

for j = 1, 2, ·, n − 1, n do

bn−1 ← an−1 + ubn

for k = n− 2, n − 3, · · · , 0 do

bk ← ak + ubk+1 + vbk+2

ck ← bk+1 + uck+1 + vck+2

end

J ← c0c2 − c21



1.3. SYSTEMS OF NONLINEAR EQUATIONS 35

u← u+ (c1b1 − c2b0)/J
v ← v + (c1b0 − c0b1)/J

output j, u, v, b0, b1

end

1.3 Systems of nonlinear equations

Let f : Rn → R
n. Seek a point x̄ such that f(x̄) = 0 ∈ R

n, where

f(x) =




f1(x1, . . . , xn)
...

fn(x1, . . . , xn)


 .

Example 1.3.1. Consider a complex equation e2z + z2 + 2 = 0. Solving

e2x(cos 2y + i sin 2y) + x2 − y2 + i2xy + 2 = 0,

we get 


e2x cos 2y + x2 − y2 + 2 = 0

e2x sin 2y + 2xy = 0.

A Norm ‖ · ‖ on R
n → R is a function satisfying

(1) ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0

(2) ‖αx‖ = |α|‖x‖

(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Example 1.3.2. (1) ‖x‖2 =
√∑

x2i

(2) ‖x‖∞ = max |xi|

(3) ‖x‖1 =
∑ |xi|.
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Taylor expansion in several variables

f(x, y) = f(x0, y0) + (x− x0)
∂f

∂x
(x0, y0) + (y − y0)

∂f

∂y
(x0, y0)

+
1

2

(
(x− x0)2

∂2f

∂x2
+ 2(x− x0)(y − y0)

∂2f

∂x∂y
+ (y − y0)2

∂2f

∂y2

)
+ · · ·

= f(x0, y0) +
[
∂f
∂x ,

∂f
∂y

] [x− x0
y − y0

]
+

1

2

[
x− x0
y − y0

]T [ ∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

][
x− x0
y − y0

]
+ · · ·

= f(x0) +Df(x0) · (x− x0) +
1

2
(x− x0)

T ·D2f(x0) · (x− x0) + · · ·

Here D2f = ( ∂f
∂xi∂xj

)ij is called the Hessian of f.

1.3.1 Picard iteration to solve f(x) = 0

Assume f ∈ C2. Put x = x−A(x)f(x) :≡ g(x), where A is an n×n nonsingular

matrix. Define a Picard iteration

x(k+1) = g(x(k)).

Theorem 1.3.3. Suppose the following hold.

(1) g(α) = α

(2) B = {x ∈ R
n : ‖x−α‖∞ ≤ ρ}

(3)
∣∣∣ ∂gi∂xj

(x)
∣∣∣ ≤ λ

n , for all i, j or
∑

j

∣∣∣ ∂gi∂xj
(x)
∣∣∣ ≤ λ, ∀ x ∈ B

(4) 0 < λ < 1.

Then for any x(0) ∈ B, the sequence generated by x(k+1) = g(x(k)) satisfies

(1) the sequence x(k) remains in B

(2) {x(k)} → α

(3) α is unique.

Proof. For any x, y ∈ B, we have

gi(x) = gi(y) +
∑

j

∂gi
∂xj

(ξij)(xj − yj).
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Hence

|gi(x)− gi(y)| ≤
∑

j

∣∣∣∣
∂gi
∂xj

∣∣∣∣ |xj − yj| ≤ λ‖x− y‖∞.

Thus ‖g(x) − g(y)‖∞ ≤ λ‖x− y‖∞ and g is a contraction map. Hence

‖x(k) −α‖∞ ≤ λ‖x(k−1) −α‖∞ ≤ · · · ≤ λk‖x(0) −α‖∞ < λkρ < ρ.

Thus, x(k) ∈ B for all k and x(k) → α.

Now we derive a second order scheme: Let

g(x) = g(α) +Dg(α) · (x−α) +
1

2
(x−α) ·D2g(ξ̄)(x−α).

Assume Dg(α) = 0, and we expect that

‖x(k+1) −α‖ ≤ K‖x(k) −α‖2 (2nd order convergence)

We know that there is ξi such that

gi(x)− gi(α) =
1

2

∑

j,k

∂2gi
∂xj∂xk

(ξi)(xj − αj)(xk − αk).

Suppose there is a number M such that

max
i,j,k

∣∣∣∣
∂2gi

∂xj∂xk

∣∣∣∣ ≤
2M

n2

then

‖x(k)−α‖∞ = ‖g(x(k−1))−g(α)‖∞ ≤
1

2
n2·2M

n2
‖x(k−1)−α‖2∞ =M‖x(k−1)−α‖2∞.

Thus we obtain a second order convergence.

Question is how to choose A so that Dg(α) = 0? Note the derivative of

A(x) is a n× n× n matrix. Writing componentwise, we have

gi(x) = xi − Rowi(A(x))f(x) = xi −
∑

k

aik(x)fk(x).
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Take derivative w.r.t xj and set to 0.

0 =
∂gi
∂xj

(α) = δij−
∑

k

(aik(α)
∂fk
∂xj

(α)+
∂aik
∂xj

fk(α)) = δij−
∑

k

aik(α)
∂fk
∂xj

(α).

In vector form

0 = Dg(α) = I −A(α)Df(α).

Thus, if we put A(x) = (Df(x))−1 then we obtain g(x) = x− (Df(x))−1f(x),

This is nothing but Newton’s method:

x(k+1) = x(k) − (Df(x(k)))−1f(x(k)).

Theorem 1.3.4. Let B ≡ {x ∈ R
n : ‖x− x(0)‖ ≤ ρ} where ‖ · ‖ is any norm,

and assume

(1) ‖g(x) − g(y)‖ ≤ λ‖x− y‖ on B

(2) 0 < λ < 1

(3) ‖g(x(0))− x(0)‖ ≤ (1− λ)ρ

holds. Then the sequence generated by x(k+1) = g(x(k)) satisfies

(1) x(k) ∈ B, ∀k and

(2) ∃ unique α such that limk x
(k) = α and g(α) = α.

Proof. Skip.

Computational cost of Newton’s Method

(1) Evaluation of f(x(k)) · · · .

(2) Evaluation of Df(x(k)) · · · may be by finite diff. quotient.

(3) Solution of the linear system Df(x(k))y = f(x(k))... Most expansive.

1.4 Newton Type Method for Systems

Let f : Rn → R
n be a differentiable map. We consider solving the roots of the

equation:

f(x) = 0.
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x1

Figure 1.7: Newton’s Method- intersection of two tangent plane

Taylor expansion: with R(x) a remainder term, we have

f(x) = f(x(0)) +Df(x(0))(x− x(0)) + r(x).

We replace f(x) by f(x(0)) +Df(x(0))(x− x(0)) and setting

f(x(0)) +Df(x(0))(x− x(0)) ≈ 0,

we obtain an approximate solution. Thus

x ≈ x(0) − [Df(x(0))]−1f(x(0))

Define x(k+1) = x(k) − [Df(x(k))]−1f(x(k)).

Remark 1.4.1. To compute [DF (x0)]
−1f(x0), it is not desirable to form the

inverse [Df(x0)]
−1. Instead we solve

DF (x(k))∆x(k) = −f(x(k))

and set xk+1 = x(k) + ∆x(k). If DF (x(k)) is (close to) singular we expect a

poor convergence. We stop if the relative error is under tolerance.

ρ(k+1) =
‖x(k+1) − x(k)‖
‖x(k+1)‖ < TOL.
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1.4.1 Broyden’s Method

The Newton’s method reads:

x(k+1) ≈ x(k) − [Df(x(k))]−1f(x(k)). (1.33)

When n is large, the cost of computing [Df(x(k)]−1f(x(k)) is high. How to

reduce the cost?

Quasi-Newton’s Method

Replace (1.33) by

x(k+1) ≈ x(k) −Akf(x
(k)),

where Ak is an approximation of [Df(x(k))]−1. Typically Ak → [Df(x(k))]−1

as k →∞. Usually the convergence may be slower but the cost of calculating

Akf(x
(k)) is cheaper so that the over all cost is cheap.

One of such method is the Broyden’s Method, a secant like method.

Broyden’s Method

Recall when n = 1 the secant method replaces f ′(xk) by the linear approxi-

mation of derivative:

f ′(xk) ≈
f(xk)− f(xk−1)

xk − xk−1
. (1.34)

This cannot be applied to higher dimensional. However, observe that it is

equivalent to

f ′(xk)(xk − xk−1) ≈ f(xk)− f(xk−1). (1.35)

We shall derive a matrix which approximate Df(xk). We require

Ak(xk − xk−1) = f(xk)− f(xk−1). (1.36)

Unfortunately this requirement does not define a unique matrix Ak. To define

it we shall use Ak−1 (assuming it is available from previous step) and requireAk

satisfies (1.36) only along xk−xk−1 direction, while in the direction orthogonal

to xk − xk−1, Ak has same effect as Ak−1, i.e.,

Akz = Ak−1z, (1.37)
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for all z orthogonal to xk−xk−1. It can be obtained as a rank one modification

of Ak−1. It can be verified that the matrix

Ak = Ak−1 +
f(xk)− f(xk−1)−Ak−1(xk − xk−1)

‖xk − xk−1‖2
(xk − xk−1)

T (1.38)

satisfies both (1.36) and (1.37). This is summarized as Broyden’s Method:

Broyden’s Method

1. Set : A0 = Df(x0).

2. Compute x1 = x0 −Df(x0)
−1f(x0)

3. Begin loop : k = 1

4. Compute xk+1 = xk −A−1
k f(xk) using (1.38)

5. Repeat unless certain stopping criteria is met

This method is converges super linearly but takes much less time to con-

verge. It is advised to reset Ak to Df(xk) periodically.

The formula (1.38) is given in the form

Ak = Ak−1 + uvT , (1.39)

where

u =
f(xk)− f(xk−1)−Ak−1(xk − xk−1)

‖xk − xk−1‖2
, v = (xk − xk−1)

T .

The product of the form uvT := u ⊗ v is sometimes called outer product

and

rank uvT = 1.

The formation ofAk by the formula (1.39) is called rank-one update(modification).

In this case, the computation A−1
k x is easily carried out using the action

A−1
k−1a for some vector a. We can implement the Broyden’s method using the

Sherman-Morrison formula(1950). [24] H. A. van der Vorst, Bi-CGSTAB: A

fast and smoothly converging variant of Bi-CG
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Sherman-Morrison formula

Lemma 1.4.2 (Sherman-Morrison formula). If A is nonsingular and vTA−1u+

1 6= 0, then A+ uvT is nonsingular and

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (1.40)

Exercise 1.4.3. (1) Derive the formula (1.38) using the rank one update

(modification) of Ak−1.

(2) Verify Sherman-Morrison formula.

(3) Compute Df(x) when F (x) = Ax + c for an m × n matrix A and

x ∈ R
n, c ∈ R

m.

(4) Determine what Newton’s method amounts to if the problem is linear.

(5) Explain how you would exploit the Sherman-Morrison formula to New-

ton’s method.

(6) Prove theorem 1.3.4.

1.4.2 Jacobi or Gauss-Seidel type of iteration

First consider a linear equation Ax = b and consider a splitting the matrix

A = D−L−U, where D is a diagonal matrix and L,U are strictly lower (resp.

upper) triangular matrix. This leads to

Dx = (L+ U)x+ b

x = D−1(L+ U)x(k) +D−1b.

Hence we define

x(k+1) = D−1(L+ U)x(k) +D−1b Jacobi

= Gx(k) + b1.

Another possibility is to consider a splitting of the form

(D − L)x = Ux+ b

x(k+1) = (D − L)−1Ux(k) + (D − L)−1b Gauss-Seidel

= Gx(k) + b2.
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These scheme will be shown to converges if ρ(G) < 1, where

G = D−1(L+ U), or (D − L)−1U.

Recall ρ(G) ≤ ‖G‖ for any norm. Hence they will converge, in particular, if

‖G‖ < 1 for some norm.

Jacobi type

Consider the Jacobi type iteration for a system of nonlinear equation choose

x(0) = (x
(0)
1 , . . . , x

(0)
n ). For k = 0, 1, 2, . . . calculate x(k+1) from the relation





f1(x
(k+1)
1 , x

(k)
2 , . . . , x

(k)
n ) = 0

f2(x
(k)
1 , x

(k+1)
2 , x

(k)
3 , . . . , x

(k)
n ) = 0

. . .

fn(x
(k)
1 , . . . , x

(k)
n−1, x

(k+1)
n ) = 0.

If we solved(express) explicitly, we may write





x
(k+1)
1 = g1(x

(k)
2 , . . . , x

(k)
n )

x
(k+1)
2 = g2(x

(k)
1 , x

(k)
3 , . . . , x

(k)
n )

. . .

x
(k+1)
n = gn(x

(k)
1 , . . . , x

(k)
n−1).

In practice, solving for each x
(k+1)
i , i = 1, 2, · · · , n one can use root finding

scheme developed earlier, i.e., bisection, secant or Newton’s method again. To

use Newton’s method, one can proceed as follows:

Treat x1 as a function of x2, . . . , xn and take the total derivative of f1(x1, . . . , xn) =

0 w.r.t. x2, we get

0 =
df1
dx2

=
∂f1
∂x1
· ∂x1
∂x2

+
∂f1
∂x2

∴

∂x1
∂x2

=
∂g1
∂x2

= −∂f1/∂x2
∂f1/∂x1

.

Set x
(k+1)
1 = x

(k)
1 −

∂f1/∂x2

∂f1/∂x1
. In general, Treat xi as a function of x1, x2, . . . , xn

except xi and take the derivative of fi(x1, . . . , xn) = 0 w.r.t xj, we get

∂fi
∂xi

∂xi
∂xj

+
∂fi
∂xj

= 0, (j 6= i)⇒ ∂xi
∂xj

= − ∂fi
∂xj

/
∂fi
∂xi

.
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For k = 1, 2, · · · ,
For i = 1, 2, · · · , n do:

x
(k+1)
i = x

(k)
i −

∂fi
∂xj

/
∂fi
∂xi

(x
(k)
i ).

DG =




0 × ×
× . . . ×
× × 0


 .

This scheme will converge if ‖DG‖ ≤ ρ < 1.

Gauss-Seidel type

We solve for x
(k+1)
1 , x

(k+2)
1 , · · · from the equations given in the following order:





f1(x
(k+1)
1 , x

(k)
2 , . . . , x

(k)
n ) = 0

f2(x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k)
n ) = 0

. . .

fn(x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
n ) = 0.

SOR(Successive over relaxation) type

This is a combination between Jacobi and Gauss-Seidel type: For k = 0, 1, · · ·
do: put

x
(k+1)
i = (1− ω)x(k)i + ωx

(k+ 1
2
)

i ,

where x
k+ 1

2
i for i = 1, 2 · · · , n is computed as follows:





f1(x
(k+ 1

2
)

1 , x
(k)
2 , . . . , x

(k)
n−1, x

(k)
n ) = 0

f2(x
(k+1)
1 , x

(k+ 1
2
)

2 , x
(k)
3 , . . . , x

(k)
n ) = 0

. . .

fn(x
(k+1)
1 , . . . , x

(k+1)
n−1 . . . , x

(k+ 1
2
)

n ) = 0.

When ω = 0, SOR is equal to Jacobi and when ω = 1, SOR is equal to

Gauss-Seidel method. However, the value x
k+ 1

2
i is different from the value

computed in Gauss-Seidel method even though they look similar.(At each

step i = 1, 2, · · · , n, we solve similar i-th equation but with updated value by
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x
(k+1)
i = (1− ω)x(k)i + ωx

(k+ 1
2
)

i ).
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Chapter 2

Approximation and

interpolation

2.1 Piecewise linear approximation

Given {(xi, f(xi)}mi=0 we want to approximate f(x) for x /∈ {x0, . . . , xm} by

some piecewise linear approximation. Assume

(1) f is continuous.

(2) xk+1 − xk are small for k = 0, . . . ,m− 1.

(3) x ∈ [x0, xm]

For x ∈ (xk, xk+1) define

L(x) ≡ f(xk) +
f(xk+1)− f(xk)

xk+1 − xk
(x− xk)

=
xk+1 − x
xk+1 − xk

f(xk) +
x− xk

xk+1 − xk
f(xk+1)

= w0(x)f(xk) + w1(x)f(xk+1), w0 + w1 = 1, 0 ≤ w0, w1 ≤ 1

Then limm→∞L(x) = f(x) if mesh → 0 uniformly and f ∈ C0[a, b].

47
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Proof.

f(x)− L(x) = f(x)−w0(x)f(xk)− w1(x)f(xk+1)

= w0[f(x)− f(xk)] + w1[f(x)− f(xk+1)]

|f(x)− L(x)| ≤ |w0| |f(x)− f(xk)|+ |w1| |f(x)− f(xk+1)]

≤ max{|f(x)− f(xk)|, |f(x)− f(xk+1)|}

Moreover, if f(x) ∈ C2[a, b], we have the following result.

Theorem 2.1.1. Assume f(x) ∈ C2[a, b] and x ∈ (a, b) is given. If L(x) =

f(a) +
f(b)− f(a)

b− a (x− a) then ∃ c(x) ∈ (a, b) such that

f(x)− L(x) = (x− a)(b− x)
2

f ′′(c(x))

and moreover, if |f ′′(x)| ≤M2, then |f(x)− L(x)| ≤ (b−a)2

8 M2.

Proof. Use the Taylor expansion for f(a) and f(b) at x to get

f(a) = f(x) + f ′(x)(a− x) + (a− x)2
2

f ′′(c1) (2.1)

f(b) = f(x) + f ′(x)(b− x) + (b− x)2
2

f ′′(c2), a < c1 < x < c2 < b.(2.2)

Hence

f(b)− f(a) = (b− a)f ′(x) + (b− x)2
2

f ′′(c2)−
(a− x)2

2
f ′′(c1). (2.3)
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Substitute (2.1)-(2.3) into L(x) to see

L(x) = f(x) + f ′(x)(a− x) + (a− x)2
2

f ′′(c1)

+f ′(x) +
(b− x)2f ′′(c2)− (a− x)2f ′′(c1)

2(b− a) (x− a)

= f(x) +

[
(a− x)2

2
− (a− x)2

2(b− a) (x− a)
]
f ′′(c1) +

(b− x)2(x− a)
2(b− a) f ′′(c2)

= f(x) +
(a− x)2(b− x)

2(b− a) f ′′(c1) +
(b− x)2(x− a)

2(b− a) f ′′(c2)

= f(x) + α1(x)f
′′(c1) + α2(x)f

′′(c2), 0 < α1(x), α2(x).

We want to estimate

L(x)− f(x) = α1(x)f
′′(c1) + α2(x)f

′′(c2).

To do so, put ψ(ξ) = α1(x)f
′′(c1) + α2(x)f

′′(c2) − (α1 + α2)f
′′(ξ). Note that

we treat x as constant here. Since ψ(c1)ψ(c2) = −α1α2(f
′′(c2)− f ′′(c1))2 < 0

there is a c(x) ∈ (c1, c2) such that ψ(c(x)) = 0. Thus

L(x)− f(x) = (α1 + α2)f
′′(c(x)) =

(a− x)(b− x)
2(b− a) (a− x− b+ x)f ′′(c(x))

=
(x− a)(b− x)

2
f ′′(c(x)).

Now to derive the error bound, we observe max[a,b] |x− a||x− b| = (b−a)2

4 .

2.2 Basic problem of approximation theory

Suppose V is a finite dimensional subspace of C[a, b]. Given f ∈ Cn[a, b], find

p ∈ V so that p is as close to f as possible. Usually V = Pn{polynomial of degree ≤
n}. We need some kind of norm to measure a function in V .

Example 2.2.1. The following is a norm if V = Pn.

‖f(x)‖ =
n∑

i=0

|f(xi)|.

Question

(1) Does there exist a function p ∈ V such that ‖f − p‖ is minimum?
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(2) Unique?

(3) How to find it?

(4) How close is V to Ck?

(5) What basis for V is convenient?

Example 2.2.2. Let f ∈ Cn[a, b] and V = Pn. Let x0 ∈ [a, b] be a fixed point.

If we define a new norm ‖g‖t =
∑n

k=0 |g(k)(x0)| then, the truncated Taylor

series at x0 is the best approximation w.r.t ‖·‖t, i.e, if p(x) =
∑n

k=0
f(k)(x0)

k! (x−
x0)

k then ‖f − p‖t = 0.

Let f ∈ C0[a, b] and let K = {x0, x1, . . . , xn} ⊂ [a, b]. Define V ≡
PL(a, b ; K): the set of continuous functions which is piecewise linear on each

subintervals (xi, xi+1). Then dimV = n+ 1 and basis functions are

Ti(x) =





x− xi−1

xi − xi−1
on [xi−1, xi]

x− xi+1

xi − xi+1
on [xi, xi+1]

0 elsewhere

In this case ∃ unique p ∈ V such that ‖f − p‖t = 0.

2.3 Approximation by polynomial interpolation

Definition 2.3.1. Interpolation of a given function f defined on an interval

[a, b] by a polynomial p: Given a set of specified points {(xi, f(xi)}ni=0 with

{xi} ⊂ [a, b], the polynomial p of degree n satisfying

p(xi) = f(xi), i = 1, · · · , n

is called an polynomial interpolation. Nonpolynomial interpolation can be

defined, but rarely used.

Here we shall use the semi-norm to measure the error:

‖f‖ ≡
n∑

i=0

|f(xi)|.

Theorem 2.3.2. If V ≡ Pn(x), polynomial of degree n, then for given f , ∃!
p ∈ V such that ‖f − p‖ = 0.
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Proof. We want to find a polynomial of the form p = a0 + a1x + · · · + anx
n

such that p(xi) = f(xi), for i = 0, . . . , n, i.e,

p(x1) = a0 + a1x1 + · · ·+ anx
n
1 = f(x1)

= · · ·
p(xn) = a0 + a1xn + · · · + anx

n
n = f(xn)

In matrix form, 


1 x0 · · · xn0
1 x1 · · · xn1

. . .

1 xn · · · xnn







a0
...

an


 =




f(x0)
...

f(xn)


 (2.4)

This equation involves a Van der Monde matrix whose determinant is
∏

i>j(xi−
xj). Thus we see a unique solution exists as long as the interpolation points

are distinct.

A basis for V = Pn

A naive basis is {1, x, , . . . , xn}. Is it convenient? No!

(1) To compute the coefficients in (2.4), one has to solve a linear system.

(2) Moreover, the Van der Monde matrix is extremely ill-conditioned!

Example 2.3.3. Consider

x −y = 1 + ǫ

(1 + 10−9)x −y = 1
(2.5)

Without ǫ, the exact solution is x = 0, y = −1, while with ǫ perturbation,

x = −109ǫ, y = −109ǫ− 1− ǫ!

Lagrange basis

Construct a polynomial basis wi(x) such that wi(xj) = δij , i, j = 0, · · · , n.
Start with the polynomial

wi(x) = k
n∏

j 6=i

(x− xj)
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so that wi(xj) = δij , j = 0, · · · , n is easily satisfied. We require

wi(xi) = k
∏

j 6=i

(xi − xj) = 1

Then we obtain 1
k =

∏
j 6=i(xi − xj) and hence

wi(x) =
∏

j 6=i

(x− xj)
(xi − xj)

.

These are the Lagrange interpolating polynomials. Now using these,

one can readily construction a polynomial interpolation.

Proposition 2.3.4. Let f ∈ C[a, b] and let pn be the unique element of Pn(x)

such that f(xi) = pn(xi), i = 0, 1, . . . , n. Then

pn(x) =
n∑

i=0

f(xi)
∏

j 6=i

(x− xj)
(xi − xj)

.

Question

(1) How big is ‖f(x)− pn(x)‖∞?

(2) What happens if nodes are close?

(3) limn→∞ pn(x) =?

(4) Is Lagrange best?

Error Estimate

Theorem 2.3.5. Let f(x) ∈ Cn+1[a, b]. If a = x0, x1, . . . , xn = b are n + 1

distinct points and pn(x) is the Lagrange (any) interpolating polynomial, then

there exists a function ξ(x) ∈ (a, b) such that

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏

i=0

(x− xi).

Proof. Let d(x) =
∏n

i=0(x− xi) and define

Φ(x) ≡ f(x)− pn(x)
d(x)

≡ R(x)

d(x)
. (2.6)
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First we claim Φ(x) has a removable singularity at xj. In fact we see by

L’Hopital’s rule

lim
x→xj

Φ(x) =
R′(xj)∏

i 6=j(xj − xi)
<∞.

Thus Φ(x) is regarded as continuous.

In fact Φ ∈ C(n+1)[a, b]. Let x be fixed(not a variable!) different from xi.

Then the function defined by

Ω(z) = f(z)− pn(z)− d(z)Φ(x) ∈ C(n+1)[a, b]

vanishes(as a function of z) at xi, i = 0, · · · , n (n+1 nodal points). But it also

vanishes at x by (2.6). Thus Ω(z) vanishes at n + 2 distinct points in (a, b).

Thus by Rolle’s Theorem,

Ω′(z) has n+ 1 distinct zeros in (a, b)

Ω′′(z) has n distinct zeros in (a, b)

· · ·
Ω(n+1)(z) has at least one zero in (a, b).

We denote the last zero by ξ(x). Thus

Ω(n+1)(ξ(x)) = 0 = f (n+1)(ξ)− (n+ 1)!Φ(x).

Hence

Φ(x) ≡ f(x)− pn(x)
d(x)

=
f (n+1)(ξ)

(n+ 1)!

∴ f(x)− pn(x) =
f (n+1)(ξ(x))

(n+ 1)!

n∏

i=0

(x− xi).

We now estimate
∏n

i=0(x−xi) for the uniformly spaced case(xi−xi−1 = h)

as follows: First one can easily see that the maximum value is assumed at



54 CHAPTER 2. APPROXIMATION AND INTERPOLATION

either of the extreme intervals (x0, x1) or (xn−1, xn). Thus

max

∣∣∣∣
n∏

i=0

(x− xi)
∣∣∣∣ ≤ max

(x0,x1)
|(x− x0)(x− x1)| max

(x0,x1)
|(x− x2)(x− x3)| · · · (x− xn)|

≤ h2

4
· (2h) · · · (hn) = hn+1

4
n!.

Thus ‖f(x)− p(x)‖∞ ≤ hn+1

4(n+1) max |f (n+1)(x)|.
Another way.(Kincaid) Assume xj < x < xj+1. Then

∣∣∣∣
n∏

i=0

(x− xi)
∣∣∣∣ ≤ max

(xj ,xj+1)
|(x− xj)(x− xj+1)| · |

j−1∏

i=0

(x− xi)| · |
n∏

i=j+1

(x− xi)|

≤ h2

4

j−1∏

i=0

(xj+1 − xi) ·
n∏

i=j+1

(xi − xj+1)

≤ h2

4

j−1∏

i=0

(j − i+ 1)h ·
n∏

i=j+1

(i− j)h

=
hn+1

4
n!.

Now we consider the second and third question. Polynomial of degree n has

the tendency of n− 1 oscillation(has n− 1 local extreme points). Thus, if the

interval is fixed and n gets higher(as a result the interpolating points will get

close together), it may oscillate unnecessarily. Indeed the following example

by Runge shows it.

Example 2.3.6 (Runge).

f(x) =
1

1 + x2
on [−a, b]

Given {(xi, f(xi)) | i = 0, 1, . . . , n}, let

h =
b+ a

n
, xk = x0 + kh, k = 0, . . . , n.

Interpolate f(x) by polynomial of degree n.

pn(xk) = f(xk), k = 0, 1, . . . , n.

Runge showed limn→∞ ‖f(x)− pn(x)‖∞ =∞.
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Thus Runge’s example shows higher degree polynomial is not always good

for interpolation. This suggests us to use lower degree polynomial on each

subinterval.

Exercise 2.3.7. (1) Write down a computer code to find a Newton form of

interpolating polynomial(call NIP)

(a) use it to find Newton inter. poly pk (k = 4, 5, 6) for f(x) = x8 −
x7 + 5x4 − 23x2 − x on [0, 2]

(xi, f(xi))
k
i=0, xi =

2

k
.

Draw the graph of f(x) and pk on the same plane to compare.

(b) Repeat the same for f(x) = sinx on [0, πi2 ] with

(xi, f(xi))
8
i=0, xi =

πi

16
.

Draw the graph of f(x) and pk to compare.

(2) Find poly. interpolation of Runge example (with uniformly spaced points)

for a = b = 5 with n = 5, 10, 20, 40 (polynomial of degree n). Draw the

graph and see what happens as n grows.

(3) Is there anyway to improve if you are allowed to change the location of

points ?

Theorem 2.3.8 (Weierstrass approximation theorem). The set of all polyno-

mials (usually denoted by P [a, b]) is uniformly dense in C[a, b].

Bernstein polynomial

We have a concrete construction of poly. approximation satisfying Weierstrass

theorem by Bernstein. Assume I = [0, 1]. Let

βn,j(x) ≡
(
n

j

)
xj(1− x)n−j ∈ Pn(x)

and set

Bn(f ; x) ≡
n∑

j=0

f(xj)βn,j(x), xj = j/n.
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Let βn,j(x) ≡
(
n

j

)
xj(1− x)n−j ∈ Pn(x), on [0, 1].

Bn(f ; x) ≡
n∑

j=0

f(xj)βn,j(x), xj = j/n.

Then we have

n∑

j=0

βn,j(x) = 1 (2.7)

n∑

j=0

j

n
βn,j(x) = x (2.8)

n∑

j=0

j2

n2
βn,j(x) = (1− 1

n
)x2 +

x

n
(2.9)

Proof. (1) Expand (x+ 1− x)n.

(2) We have (a + b)n =
∑n

j=0

(
n

j

)
ajbn−j . Differentiate (a + b)n w.r.t a,

to obtain

n(a+ b)n−1 =

n∑

j=1

(
n

j

)
jaj−1bn−j.

Multiply by a/n,

a(a+ b)n−1 =

n∑

j=1

j

n

(
n

j

)
ajbn−j.

Put a = x, b = 1− x,

(3) Differentiate twice (a+ b)n w.r.t a, to obtain

n(n− 1)(a + b)n−2 =

n∑

j=2

(
n

j

)
j(j − 1)aj−2bn−j.

Multiply by a2/n2, we get

a2n(n− 1)(a+ b)n−2

n2
=
∑

j=2

c
j(j − 1)

n2

(
n

j

)
ajbn−j.
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Put a = x, b = 1− x,

x2(1− 1

n
) =

n∑

j=2

j2

n2

(
n

j

)
xj(1− x)n−j −

n∑

j=2

j

n2

(
n

j

)
xj(1− x)n−j

=

n∑

j=0

j2

n2
βn,j(x)−

1

n

n∑

j=0

j

n
βn,j(x)

=
n∑

j=0

j2

n2
βn,j(x)−

x

n
by (2).

(4) By induction, we can show {βn,j(x)} form a basis for Pn(x).

(5) For x ∈ [0, 1], βn,j ≥ 0.

Definition 2.3.9. ω(f, δ) = lub |f(x) − f(x′)|, |x − x′| < δ, x, x′ ∈ [0, 1] is

called the modules of continuity of f .

Theorem 2.3.10. If f(x) ∈ C[0, 1], ‖f(x)−Bn(f ; x)‖∞ ≤ 9
4ω(f, n

− 1
2 ).

Remark 2.3.11. This is not an interpolating approximation in general.

Proof. Fix x. Then

f(x)−Bn(f ; x) =
n∑

j=0

[f(x)− f(xj)]βn,j(x) = s1(x) + s2(x),

where

s1(x) =
∑

j∈I
[f(x)− f(xj)]βn,j(x), I = {j : |x− xj| < δ}

so that

|s1(x)| ≤
∑

j∈I
|f(x)− f(xj)|βn,j(x) ≤ ω(f, δ)

∑

j∈I
βn,j(x) ≤ ω(f, δ).

Now

|s2(x)| ≤
∑

j /∈I
|f(x)− f(xj)|βn,j(x).

Insert {ξi}pi=1 uniformly between x and xj where p ≡ [
x−xj

δ ], so that
x−xj

p+1 < δ.

Then

f(x)− f(xj) = [f(x)− f(ξ1)] + [f(ξ1)− f(ξ2)] + · · ·+ [f(ξp)− f(xj)]
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and

|s2(x)| ≤
∑

j /∈I
(p+ 1)ω(f, δ)βn,j(x) ≤

∑

j /∈I
(1 +

|x− xj |
δ

)ω(f, δ)βn,j(x)

≤ ω(f, δ)[1 +
1

δ2

n∑

j=0

(x2 − 2xxj + x2j)βn,j(x)](xj =
j

n
)

= ω(f, δ)[1 +
1

δ2
(x2 − 2x2 + (1− 1

n
)x2 +

1

n
x)]

= ω(f, δ)[1 +
x(1− x)
δ2n

] ≤ ω(f, δ)(1 + 1

4δ2n
).

Now choosing δ = 1/
√
n we have

|f(x)−Bn(f ; x)| ≤ |s1(x)|+ |s2(x)| ≤ ω(f, δ)(2 +
1

4δ2n
) =

9

4
ω(f ; n−

1
2 ).

Corollary 2.3.12. (Weierstrass Approximation Theorem) If f ∈ C[0, 1] and

ε > 0 is given, then there exists an integer n(ε) and pn(x) ∈ Pn(x) such that

for all n ≥ n0, it holds that

‖f(x)− pn(x)‖∞ < ε.

Caution: This pn(x) is not an interpolating polynomial.

Newton’s form of interpolating polynomial

We now describe an efficient way of calculating the coefficients of an interpo-

lating polynomial. We know the Lagrangian form of interpolation is

pn(x) =

n∑

i=0

f(xi)

j=n∏

j 6=i

x− xj
xi − xj

.

This may be useful to analyze, but it is not efficient for computation. We now

present a Newton form of interpolating polynomial. The idea is to compute

pn(x) by induction using the se

{1, (x− x0), (x− x0)(x− x1), . . . ,
n−1∏

i=0

(x− xi)}
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as another basis for Pn(x). Since pn(x) is one degree higher than pn−1(x), one

can set

pn(x) = pn−1(x) + qn(x),

with qn(xj) = 0, j = 0, 1, . . . , n−1. Then pn(xi) = pn−1(xi) for i = 0, · · · , n−1
and we hope pn(xn) = f(xn). Thus qn(x) = an

∏n−1
i=0 (x− xi) and

pn(x) = pn−1(x) + an

n−1∏

i=0

(x− xi)

= pn−2(x) + an−1

n−2∏

i=0

(x− xi) + an

n−1∏

i=0

(x− xi)

· · ·

= a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · · + an

n−1∏

i=0

(x− xi).

If we denote f [x0, . . . , xk] for ak, then

pn(x) =

n∑

k=0

ak

k−1∏

i=0

(x− xi) ≡
n∑

k=0

f [x0, . . . , xk]

k−1∏

i=0

(x− xi). (2.10)

This is called the Newton’s form of interpolation and f [x0, . . . , xk] are

called the divided difference.

https://en.wikipedia.org/wiki/Newton_polynomial

For k+1 data points we construct the Newton basis as With nk(x) =
∏k−1

j=0(x−
xj), k = 0, · · · , n




1 0 0 · · · 0

1 x1 − x0 0 · · · 0

1 x2 − x0
∏1

j=0(x2 − xj)
...

...
...

. . . 0

1 xk − x0 · · · · · · ∏k−1
j=0(xk − xj)







a0

a1

...

ak




=




y0

y1

...

yk




System is written as

k∑

j=0

ajnj(xk) = yk, k = 0, · · · , n.
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Solving we get

a0 = y0

a0 +a1(x1 − x0) = y1

a0 +a1(x2 − x0) +a2(x2 − x0)(x2 − x1) = y2

. · · · · · · .

a0 +a1(xk − x0) +a2(xk − x0)(x2 − x1) · · · +ak
∏k−1

j=0(xk − xj) = yk

Computing the divided difference

Example 2.3.13. (1) f [xi] = f(xi).

(2) f [x0, x1] =
f [x1]−f [x0]

x1−x0
= f(x1)−f(x0)

x1−x0
.

(3) f [x0, x1, x2] =
f [x1,x2]−f [x0,x1]

x2−x0
.

(4) p2(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1).
3.

y2 − y0 − a1(x2 − x0) = f [x2]− f [x0]− f [x0, x1](x2 − x0)

Hence

f [x0, x1, x2] =
y2 − y0 − f [x0, x1](x2 − x0)

(x2 − x0)(x2 − x1)
=
f [x1, x2]− f [x0, x1]

x2 − x0

Now we show how to compute f [x0, . . . , xk] efficiently. We write pn(x) in

two ways(by reverse ordering starting from xn),

a0 + a1(x− x0) + · · · + an(x− x0)(x− x1) · · · (x− xn−1) =

n∑

k=0

ak

k−1∏

i=0

(x− xi)

b0 + b1(x− xn) + · · ·+ bn(x− xn)(x− xn−1) · · · (x− x1) =
n∑

k=0

bk

n−k+1∏

i=n

(x− xi),

where bn = f [xn, . . . , x0] by definition. Comparing the highest order term, we

get

an = f [x0, . . . , xn] = bn = f [xn, . . . , x0].

Reordering the points, we also see that

bn := f [xn, . . . , x0] = f [xi(0), . . . , xi(n)],
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for any permutation i(k) of numbers {0, 1, · · · , n}. Hence the divided dif-

ference is independent of the order of its arguments xi.

Subtract two expressions for pn to get

0 = an[(x− x0)− (x− xn)](x− x1) · · · (x− xn−1) + (an−1 − bn−1)x
n−1 + · · ·

Comparing the coefficients of xn−1, we see

an(xn − x0) + (an−1 − bn−1) = 0.

Since bn−1 = f [xn, . . . , x1] = f [x1, . . . , xn] and an−1 = f [x0, . . . , xn−1](∵

bn−1 is defined using n points xn, · · · x1 and an−1 is defined using n points

x0, · · · xn−1), we see

an = f [x0, . . . , xn] =
bn−1 − an−1

xn − x0
=
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

Thus Newton’s formula is useful when a new point of interpolation is added

to the existing interpolation.

Example 2.3.14. Suppose we are given x0, . . . , xn and pn. If we have one

more point xn+1. Then pn+1 is constructed by adding one more term to pn:

pn(x) = pn−1(x) + f [x0, . . . , xn−1, xn]

n−1∏

i=0

(x− xi). (2.11)

Error of Newton’s form of interpolating polynomial

We recall Lagrangian polynomial satisfies the error form (Theorem 2.3.5)

f(x) =
n∑

i=0

f(xi)
∏

j 6=i

x− xj
xi − xj

+
f (n+1)(ξ)

(n+ 1)!

n∏

i=0

(x− xi). (2.12)

The Newton form of polynomial for the points x0, · · · , xn is

pn(x) =
n∑

k=0

f [x0, . . . , xk]
k−1∏

i=0

(x− xi).

Since the Newton form of interpolating polynomial is just another form of

Lagrange interpolation, they are essentially the same polynomials. Hence the

error term of the Newton interpolation is the same as that in (2.12). However,



62 CHAPTER 2. APPROXIMATION AND INTERPOLATION

we can derive the error form directly from the construction:

Theorem 2.3.15. We have

f(x) =

n∑

k=0

f [x0, . . . , xn]

k−1∏

i=0

(x− xi) + f [x0, . . . , xn, x]

n∏

i=0

(x− xi). (2.13)

Proof. If we treat x as an added point for interpolation(i.e. we consider an

interpolation with data {x0, x1, · · · , xn, x}), the new interpolation polynomial

(with variable ξ) is

pn+1(ξ) = pn(ξ) + f [x0, . . . , xn, x]

n∏

i=0

(ξ − xi). (2.14)

Since pn+1(ξ) interpolates at x also, we see that

f(x) = pn+1(x) =

n∑

k=0

ak

k−1∏

i=0

(x− xi) + f [x0, . . . , xn, x]

n∏

i=0

(x− xi). (2.15)

Corollary 2.3.16. There exist a point ξ ∈ [x0, x1, . . . , xn] such that the fol-

lowing holds.

f [x0, x1, . . . , xn, x] =
f (n+1)(ξ)

(n+ 1)!
. (2.16)

By the same way there exist a point ξ ∈ [x0, x1, . . . , xn] such that

f [x0, x1, . . . , xn] =
f (n)(ξ)

n!
. (2.17)

Roughly speaking, the divided difference is similar to Taylor coefficients. Also

note that this formula holds when some of xi coincide each other.

Proof. By comparing (2.15) with (2.12), we see the result.

2.3.1 Hermite Interpolation

We would like to construct a polynomial p of certain degree that not only

interpolate the function values, but also its derivatives up to certain order.
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Let us construct a polynomial p such that

p(xi) = f(xi), i = 0, . . . , n

p(j)(xi) = f (j)(xi), j = 1, 2, . . . , γi, i = 0, . . . , n.
(2.18)

Simply these conditions can be put

p(j)(xi) = f (j)(xi), j = 0, 1, . . . , γi, i = 0, . . . , n. (2.19)

The number of conditions are
∑n

i=0(γi + 1).

Lemma 2.3.17. There exists a unique polynomial p(x) of degree ≤ m =

n+
∑n

i=0 γi satisfying above conditions.

Proof. First let us assume f(xi) = f (j)(xi) = 0, ∀ i, j = 1, 2, . . . , γi. Let

p(x) =

m∑

k=0

ak(x− α)k.

Then p(x) has a zero of multiplicity γi+1 at xi, thus p(x) has
∑n

i=0(γi+1) =

m + 1 zeros, and as a polynomial of degree m, p(x) ≡ 0 and therefore, the

homogeneous linear system in the unknowns {ai}mi=0 formed by (2.18) has

only trivial solution, which in turn, implies that a unique solution exists for

the nonhomogeneous system.

Naive Construction

Let us assume n = 1 and γ0 = γ1 = 1. m = 1 +
∑1

i=0 γi = 3.

(1) Method of undetermined “coefficients.” With h = x1−x0 we let p(x) =∑3
k=0 ak(x− x0)3−k, h = x1 − x0 and ask it satisfies

p(x0) = a3

p(x1) = a0h
3 + a1h

2 + a2h+ a3

p′(x0) = a2

p′(x1) = 3a0h
2 + 2a1h+ a2.

Solving for ak, k = 0, . . . , 3, we get p(x).

(2) Method of undetermined “weight”

We let p(x) =
∑n

i=0

∑γi
j=0wi,j(x)f

(j)(xi) and seek to determine wij (x) so

that above relation is exact for (x− x0)j , j = 0, . . . , 3.
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Construction by Lagrangian form

For simplicity, we consider only the case when γi = 1, i = 0, . . . , n.

We seek a polynomial of degree 2n+ 1 such that

p(xi) = f(xi), p′(xi) = f ′(xi), i = 0, . . . , n.

A nice candidate for the basis is

{ϕj(x), ψj(x), j = 0, 1, . . . , n}.

where for all i, j = 0, . . . , n

ϕj(xi) = δij , ϕ′
j(xi) = 0

ψj(xi) = 0, ψ′
j(xi) = δij .

Then we see that

p(x) =

n∑

j=0

[f(xj)ϕj(x) + f ′(xj)ψj(x).]

Construction of ϕj(x), ψj(x) can be carried out as follows: We compute ψj(x)

first. Since ψj(x) has double zeros at all xi except j, and has a simple zero at

xj, we see that ψj is of the form

ψj(x) = C0(x− xj)
∏

i 6=j

(x− xi)2.

Furthermore, it must satisfy ψ′
j(xj) = 1. Hence

ψ′
j(xj) = C0

∏

i 6=j

(xj − xi)2 = 1.

Thus C0 = 1/
∏

i 6=j(xj − xi)2 and hence

ψj(x) = (x− xj)[ℓj(x)]2,

where ℓj(x) =
∏

i 6=j
x−xi

xj−xi
.

Now we construct ϕj(x). Since ϕj(x) has double zeros at all xi except

j, and has a simple zero at ϕj(xj) = 1, we see ϕj(x) has double factor of

x − xi except i = j. Hence by considering the degree, one can set ϕj(x) =
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(a(x− xj) + b)[ℓj(x)]
2. Since

ϕj(xj) = b = 1 and ϕ′
j(xj) = a+ 2bℓ′j(xj) = 0,

we see

ϕj(x) = [ℓj(x)]
2[1− 2ℓ′j(xj)(x− xj)].

Now we need to compute ℓ′j(xj). Taking the logarithmic derivative of ℓj(x) =∏
i 6=j

x−xi

xj−xi
, we have

ℓ′j(x)

ℓj(x)
=
∑

i 6=j

1

x− xi
.

Evaluating at xj we have

ℓ′j(xj) =
∑

i 6=j

1

xj − xi
=
∑

j 6=i

1

xj − xi
.

Thus

1− 2ℓ′j(x)(x− xj) = 1− 2
∑

i 6=j

x− xj
xj − xi

.

Hence

ϕj(x) = [ℓj(x)]
2


1− 2

∑

i 6=j

x− xj
xj − xi


 .

Exercise 2.3.18. (1) Write down L.I.P for 4 point a, b, c, d and let b→ a

and c→ d.

Construction by Newton form

The the divided difference is not defined if any of two points are equal. What

happens to the divided difference if two points converge to one point? We see

lim
x1→x0

f [x0, x1] = lim
x1→x0

f(x1)− f(x0)
x1 − x0

= f ′(x0).

Thus, it is legitimate to define

f [x0, x0] = f ′(x0).
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For higher order, we see from the error formula (Corollary 2.16)

f [x0, x1, . . . , xn, x] =
f (n+1)(ξ)

(n+ 1)!
, ξ ∈ [x0, x1, . . . , xn].

If some of the points, say x1, . . . , xi → x0, then

f [x0, x0, . . . , x0︸ ︷︷ ︸
i+1

, · · · , xn, x] = lim
xi→x0

f [x0, x1, . . . , xi, · · · , xn, x]

= lim
xi→x0

1

i!

∂f (i)

∂xi0
[ξ, xi+1, · · · , xn, x].

Thus the divided difference is defined for any multiple argument. For example,

if all the points x1, . . . , xn, x→ x0, then we define

f [x0, x0, . . . , x0] =
f (n+1)(x0)

(n+ 1)!
.

From the interpolation polynomial

f(x0)+f [x0, x1](x−x0)+f [x0, x1, x2](x−x0)(x−x1)+· · ·+f [x0, · · · , xn]
n−1∏

i=0

(x−xi)

one can show that a Hermite interpolation can be obtained from the Newton

interpolation by simply repeating the interpolation points as many times as

the multiplicity. Note that we can easily construct Newton’s form of Hermite

interpolation for any order of derivatives γi, i = 0, . . . , n.

Example 2.3.19. (1). If n = 2 and γ0 = 1, γ1, γ2 = 0, then use {x0, x0, x1, x2}
as the interpolation points to find p(x) as

f(x0)+f [x0, x0](x−x0)+f [x0, x0, x1](x−x0)(x−x0)+f [x0, x0, x1, x2](x−x0)2(x−x1)

Then p(x) satisfies p(xi) = f(xi), i = 0, 1, 2 and p′(x0) = f ′(x0).

(2). If n = 2 and γ0 = γ1 = 1, γ2 = 0, then use {x0, x0, x1, x1, x2} as the

interpolation points to find p(x) equals

f(x0) + f [x0, x0](x− x0) + f [x0, x0, x1](x− x0)(x− x0)
+ f [x0, x0, x1, x1](x− x0)2(x− x1) + f [x0, x0, x1, x1, x2](x− x0)2(x− x1)2.
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Then one can check p(x) satisfies

p(xi) = f(xi), i = 0, 1, 2, and p′(x0) = f ′(x0), p
′(x1) = f ′(x1).

Verification.

p′(x1) = f [x0, x0] + 2f [x0, x0, x1](x1 − x0) + f [x0, x0, x1, x1](x1 − x0)2

= f ′(x0) + 2f [x0, x0, x1](x1 − x0) + (f [x0, x1, x1]− f [x0, x0, x1])(x1 − x0)
= f ′(x0) + f [x0, x0, x1](x1 − x0)− f [x0, x1, x1](x1 − x0)
= f ′(x0) + (f [x1, x0]− f [x0, x0])− (f [x0, x1]− f [x1, x1]) = f ′(x1).

In general, one can conjecture the following theorem.

Theorem 2.3.20. Suppose x0 is repeated γ0 + 1-times in the Newton’s in-

terpolation, x0, · · · , x0, x1, x2, · · · , xn. Then the polynomial defined by these

data

p(x) = f [x0] + f [x0, x0](x− x0) + · · · + f [x0, . . . , x0](x− x0)γ0

+

n∑

k=1

f [x0, . . . , x0, x1, · · · , xk](x− x0)γ0+1
k−1∏

j=1

(x− xj).
(2.20)

It satisfy

p(j)(x0) = f (j)(x0), j = 0, · · · , γ0 and p(xk) = f(xk), k = 1, · · · , n. (2.21)

(Just treat as if all x0 are distinct, then set them equal.) Similarly, the poly-

nomial constructed from the data x0, · · · , x0, x1, · · · , x1, x2, · · · , xn (Here x1 is

repeated γ1 + 1-times) is

p(x) = f [x0] + f [x0, x0](x− x0) + · · ·+ f [x0, . . . , x0](x− x0)γ0

+f [x0, . . . , x0, x1](x− x0)γ0(x− x1) + · · ·
+f [x0, . . . , x0, x1, . . . , x1](x− x0)γ0(x− x1)γ1

+
n∑

k=2

f [x0, . . . , x0, x1, . . . , x1, x2, · · · , xk](x− x0)γ0+1(x− x1)γ1+1
k−1∏

j=2

(x− xj).
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It satisfies

p(j)(x0) = f (j)(x0), j = 0, · · · , γ0, p(j)(x1) = f (j)(x1), j = 0, · · · , γ1.
(2.22)

Proof. Assume k = 1 and Let h = x1 − x0.

p(x1) = f [x0] + f [x0, x0]h+ · · ·+ f [x0, . . . , x0︸ ︷︷ ︸
γ0+1

]hγ0 + f [x0, . . . , x0︸ ︷︷ ︸
γ0+1

, x1]h
γ0+1.

(2.23)

p(x1)

= f [x0] + f [x0, x0]h+ · · ·+ f [x0, . . . , x0︸ ︷︷ ︸
γ0+1

]hγ0 +
f [x0, . . . , x0, x1]− f [x0, . . . , x0]

h
hγ0+1

= f [x0] + f [x0, x0]h+ · · ·+ f [x0, . . . , x0]h
γ0 + (f [x0, . . . , x0, x1]− f [x0, . . . , x0])hγ0

= f [x0] + f [x0, x0]h+ · · ·+ f [x0, . . . , x0︸ ︷︷ ︸
γ0

]hγ0−1 + f [x0, . . . , x0︸ ︷︷ ︸
γ0

, x1]h
γ0

Continuing,

= f [x0] + f [x0, x0]h+ f [x0, x0, x0]h
2 + f [x0, x0, x0, x1]h

3

= f [x0] + f [x0, x0]h+ f [x0, x0, x0]h
2 +

f [x0, x0, x1]− f [x0, x0, x0]
h

h3

= f [x0] + f [x0, x0]h+ f [x0, x0, x1]h
2

= f [x0] + f [x0, x0]h+ (f [x0, x1]− f [x0, x0])h
= f [x0] + f [x0, x1]h = f [x0] + f [x1]− f [x0] = f [x1].

What if you have more than one point ?

Example 2.3.21. Suppose we are given the data

f(x0), f(x1), f
(j)(x0), j = 1, 2 and f ′(x1).

Then by filling in the following table, one can find the corresponding Hermite

interpolation.

p(x) = f [x0] + f [x0, x0](x− x0) + f [x0, x0, x0](x− x0)2 + f [x0, x0, x0, x1](x− x0)3
+f [x0, x0, x0, x1, x1](x− x0)3(x− x1)



2.3. APPROXIMATION BY POLYNOMIAL INTERPOLATION 69

x0 f [x0] f [x0, x0] f [x0, x0, x0] f [x0, x0, x0, x1] f [x0, x0, x0, x1, x1]

x0 f [x0] f [x0, x0] f [x0, x0, x1] f [x0, x0, x1, x1]

x0 f [x0] f [x0, x1] f [x0, x1, x1]

x1 f [x1] f [x1, x1]

x1 f [x1]

x0, x0, x0, x1, x2, f(x0) = 1, f ′(x0) = 2, f ′′(x0) = 2, f(x1) = 3, f(x2) = 4

So the Hermite interpolation is

xi f(xi) f [x0, x0] f [x0, x0, x0] f [x0, x0, x0, x1] f [x0, x0, x0, x1, x2]

0 1 2 2/2! -1/1 3/4/2

0 1 2 0 -1/2/2

0 1 2 -1/2

1 3 1

2 4

Table 2.1: Newton’s interpol.

p(x) = 1 + 2x+ x2 − x3 + 3

8
x2(x− 1)

The following holds. (See Issacson, p.254)

Corollary 2.3.22. Suppose f (m) is continuous in [a, b], x, y, z are distinct

points in [a, b] and 0 ≤ p, q, r ≤ m. Then

f [x, . . . , x︸ ︷︷ ︸
p+1

, y, . . . , y︸ ︷︷ ︸
q+1

, z, . . . , z︸ ︷︷ ︸
r+1

] =
1

p!q!r!

∂p

∂xp
∂q

∂yq
∂r

∂zr
f [x, y, z]. (2.24)

Error of Hermite interpolation

Now what happens to the error term of Newton’s interpolating polynomial

if xi → xi+1 for some i ? For simplicity, assume γi = 1 for all i so that the

interpolating nodes are all repeated once: x0, x0, · · · , xn, xn. This corresponds
to the case x0, x1, · · · , x2n+1 with x2i+1 → xi, i = 0, · · · , n. Then we see the

error term from (2.15) becomes

f [x0, x0, · · · , xn, xn, x]
n∏

i=0

(x− xi)2 =
f (2n+2)(ξ)

(2n+ 2)!

n∏

i=0

(x− xi)2. (2.25)
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2.4 Polynomial of best approximation

Definition 2.4.1. Let

dn(f) ≡ min
pn(x)∈Pn(x)

‖f(x)− pn(x)‖∞.

A polynomial which attains this minimum is called the polynomial of best

approximation(P.B.A) to f(x) on [a, b].

The question is can we find it ? How ? First, we study some of its property.

Theorem 2.4.2 (De La Valeé Poussin). If there exists a polynomial pn(x)

which oscillates about f(x) n + 2-times, i.e., f(xj) − pn(xj) = (−1)jej , j =

0, 1, . . . , n+ 1, where all ej are of one sign, then dn(f) ≥ minj |ej |.

Proof. Suppose there exists a polynomial qn(x) such that ‖f(x)− qn(x)‖∞ <

minj |ej |. Then qn(xj)− pn(xj) have the same sign as f(xj)− pn(xj) because
qn(x)− pn(x) = f(x)− pn(x)− [f(x)− qn(x)]. Hence, qn(x)− pn(x) has n+1

zeros, but as a polynomial of degree n, it must be identically zero. So pn(x) ≡
qn(x) and hence ‖f(x)− pn(x)‖∞ < minj |ej |. This is a contradiction.

Theorem 2.4.3 (Chebyshev). pn(x) is the polynomial of best approximation

(P.B.A.) to f(x) in [a, b] if and only if f(x)−pn(x) takes the value ±‖f−pn‖∞
with alternating signs at least (n+2) times in [a, b]. Moreover, pn(x) is unique.

x0 x1 x2

n = 1

x1

ξ1 x2

ξ2 x3

ξ3

Mn

−Mn

Proof. ⇐ Let {xj}n+1
j=0 be the points at which the maximum deviation is at-

tained with alternating sign. By D.V. Poussin’s theorem, dn(f) ≥ ‖f(x) −
pn(x)‖∞ ≡Mn. Hence pn(x) is a P.B.A.
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(⇒) Conversely, suppose pn(x) is a polynomial of degree n such that f(x)−
pn(x) attains ±‖f(x)− pn(x)‖∞ with alternating signs k(≤ n+1) times only.

Then without loss of generality, we may assume that for some xi with a ≤
x1 < x2 < · · · < xk ≤ b, it holds that

f(xj)− pn(xj) = (−1)j‖f(x)− pn(x)‖∞ = (−1)jMn, j = 1, 2, . . . , k.

Then there exist ξ1, . . . , ξk−1 separating xi’s such that in the odd interval

f(x)− pn(x) < Mn − ε for x ∈ [a, ξ1] ∪ [ξ2, ξ3] ∪ · · · = I1,

while in the even interval

−Mn + ε < f(x)− pn(x) for x ∈ [ξ1, ξ2] ∪ [ξ3, ξ4] ∪ · · · = I2.

Let r(x) =
∏k−1

i=1 (x−ξi)(its degree is≤ n). Then with g(x) = ±r(x)/2‖r(x)‖∞,

and qn(x) = pn(x) + εg(x), (signs are chosen so that g(x) < 0 on I1, g(x) > 0

on I2) Since |f(x)− pn(x)| ≤Mn,

−Mn < −Mn − εg(x) ≤ f(x)− qn(x) ≤Mn − ε(g(x) + 1) ≤Mn − ε/2 < Mn

on I1 and

−Mn < −Mn+ε−εg(x) < f(x)−qn(x) = f(x)−pn(x)−εg(x) < Mn−εg(x) < Mn

on I2. Hence ‖f−qn‖∞ < Mn and this means qn(x) is a better approximation.

Hence pn(x) cannot be a P.B.A. Thus if pn(x) is a P.B.A., it must oscillates

at least n+ 2-times.

Uniqueness: If pn(x), qn(x) are two P.B.A.’s, then

dn(f) ≤ ‖f(x)−
1

2
(pn(x) + qn(x))‖∞ ≤

1

2
‖f − pn‖∞ +

1

2
‖f − qn‖∞ = dn(f).

Thus 1
2 (pn(x) + qn(x)) is also a P.B.A. So equality must hold. By the result

of theorem, there exist n+ 2 points where maximum is attained, i.e.,

|f(xi)− pn(xi)| =
1

2
|f(xi)− pn(xi)|+

1

2
|f(xi)− qn(xi)|, i = 0, 1, . . . , n+ 1.

and the terms must have the same sign. Thus f(xi)− pn(xi) = f(xi)− qn(xi),
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i = 0, 1, . . . , n + 1, and since pn, qn are polynomials of degree n, pn(x) ≡
qn(x).

Observation: The PBA pn must interpolate f at least n+ 1 distinct points.

2.4.1 Chebyshev polynomials

We have seen that the P.B.A. must oscillate n+2-times about f(x) and hence

interpolates f(x) at n+ 1 distinct points, but we do not know the points and

value ‖f − pn‖∞. But when f ∈ C(n+1)[a, b], we have the error formula

en(x) = f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏

i=0

(x− xi). (2.26)

Our goal is to minimize this error term. However, it is hard to estimate fn+1.

Hence, instead of minimizing ‖en(x)‖∞, we focus on minimizing
∏n

i=0(x−xi).
This will be a good approximation as long as f (n+1)(ξ) is not too large. If it is

constant(i.e., f is a polynomial of degree n+1), the error will be minimized if

we choose the points x0, · · · , xn so that
∏n

i=0(x − xi) has smallest maximum

in [a, b]. Hence we will indeed have the PBA.

Thus we may consider the following:

Find the best approximation pn(x) ∈ Pn to the function f(x) = xn+1.

In this case the error f(x) − pn(x) will be of the form: Cn
∏n

i=0(x − xi),.

(Cn = f(x)(n+1)

(n+1)! = 1.) To minimize
∏n

i=0(x − xi), we have to enforce n + 2

times uniform oscillations by Chebyshev(Chebysheff) Theorem. This suggest

a polynomial whose behavior is similar to a trigonometric function. Assume

[a, b] = [−1, 1]. Note that cos(n+ 1)θ oscillates n+2 times between −1 and 1

in [0, π], i.e.,

cos(n+ 1)θj = (−1)j , for θj =
jπ

n+ 1
, j = 0, · · · , n+ 1.

We let θ = cos−1 x and consider cos(n+ 1) cos−1 x, i.e.,

Tn+1(x) = An+1 cos[(n + 1) cos−1 x], x ∈ [−1, 1].

Recall the addition formula for cosine function:

cos(n+ 1)θ + cos(n− 1)θ = 2cos θ cosnθ.
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If we let tn(x) = cos[n cos−1 x], we obtain a recurrence relation

tn+1(x) + tn−1(x) = 2xtn(x), n = 1, 2, . . .

From this we get t0 = 1, t1(x) = x, t2(x) = 2xt1 − t0 = 2x2 − 1, and

tn(x) = 2n−1xn + · · · .

So if we choose An+1 = 2−n, then Tn+1(x) is a monic polynomial and its

maximum oscillation is 2−n. Tn+1(x) is called ‘Chebyshev’ polynomial of

the first kind.

Tn+1(x) = 2−n cos[(n + 1) cos−1 x] = (x− x0)(x− x1) · · · (x− xn). (2.27)

Since Tn+1(x) is the error term of P.B.A(up to a constant), we have

f(x)− pn(x) =
n∏

i=0

(x− xi) = Tn+1(x).

The polynomial pn(x) interpolates xn+1 at xi(i = 0, · · · , n), the zeros of

Tn+1(x), i.e., the points where

cos[(n+ 1) cos−1 xi] = 0 or (n+ 1) cos−1 xi =
(2i + 1)π

2
.

Such points are called Chebyshev points and we use these points as in-

terpolation points for general f . The points (2k+1)π
2n+2 , k = 0, . . . , n are evenly

distributed on [−1, 1] and the Chebyshev points on [−1, 1] are the cosine of

these points,

xk = cos

(
(2k + 1)π

2n+ 2

)
, k = 0, . . . , n.

We use the zeros of Chebyshev polynomial of degree n+1 to interpolate with

a polynomial of degree n.

Theorem 2.4.4. If f ∈ Cn+1[−1, 1] then the PBA using these interpolation

points satisfies

‖f(x)− pn(x)‖∞ ≤
1

2n
max
[−1,1]

∣∣∣∣∣
f (n+1)(ξ)

(n+ 1)!

∣∣∣∣∣ . (2.28)
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b b b

1−1
b b bb b

1−1

Figure 2.1: Chebyshev points on [−1, 1], n = 3 and n = 5

In particular, if f(x) = xn+1, then

f(x)− pn(x) =
n∏

i=0

(x− xi)

and ‖f(x)− pn(x)‖∞ = 2−n.

If the interval is [a, b] and f(y) : [a, b] → R, then change of variable gives

the following interpolating points for f :

yk =
1

2
[(b− a)xk + (a+ b)], k = 0, . . . , n.

The maximum of
∏n

j=0(y − yj) is

max
[a,b]

n∏

j=0

(y − yj) =

∣∣∣∣
b− a
2

∣∣∣∣
n+1

max
[−1,1]

n∏

j=0

(x− xj)

=
1

2n

∣∣∣∣
b− a
2

∣∣∣∣
n+1

.

Exercise 2.4.5. (1) Solve Runge example again with Chebyshev points for

n = 5, 10, 20, 30 (Use polynomial of degree n- i.e., use roots of Chebysh-

eff polynomial Tn+1(ξ) = 0). Check ‖f(x) − pn(x)‖∞ by taking suffi-

ciently many points between interpolation points. Also draw graphs for

f(x), pn(x) and f
′(x), p′n(x).
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Fk

Fk+1

xk−1 xk xk+1

Figure 2.2: Cubic Spline on [xk−1, xk] and [xk, xk+1]

2.5 Cubic splines

Although Chebyshev points are good for P.B.A. they are sometimes incon-

venient since the points are not uniform. Also the error of the derivative is

large. Runge’s example suggests us to use a lower degree polynomial on each

subinterval. Let y = f ∈ C2[a, b], x0 = a < x1, . . . , < xn = b. We wish to

construct an interpolation s(x) ∈ C2[a, b], which is piecewise cubic polynomial

on Ik = [xk−1, xk], k = 1, · · · , n. Let Fk(x) ≡ s(x)|Ik . Then each Fk(x) is a

cubic polynomial on Ik and

(1) Fk(xk−1) = yk−1 and Fk(xk) = yk for k = 1, · · · , n,

(2) F ′
k(x

−
k ) = F ′

k+1(x
+
k ) for k = 1, · · · , n − 1, (interior derivative )

(3) F ′′
k (x

−
k ) = F ′′

k+1(x
+
k ) for k = 1, · · · , n− 1. (interior 2nd derivative )

Condition (1) automatically enforces interpolation at xk for k = 0, · · · , n and

continuity xk for k = 1, · · · , n − 1. Since s(x) is a cubic polynomial in each

interval Ik = [xk−1, xk], k = 1, · · · , n, we have 4n unknowns. Now we count

the number of conditions:

• 2n from (1) and

• 2(n − 1) interior derivative continuity from (2) and (3),

total of 4n− 2 conditions. We need to impose two more conditions.

Since F ′′
k (x) is linear we may write

F ′′
k (x) = dk−1(

xk − x
hk

) + dk(
x− xk−1

hk
), (2.29)
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for some constants dk and hk = xk − xk−1. Note that Fk is constructed to

satisfy F ′′
k (x

−
k ) = F ′′

k+1(x
+
k ) for k = 1, · · · , n − 1.

F ′
k(x) = −dk−1

(xk − x)2
2hk

+ dk
(x− xk−1)

2

2hk
+ c1,k (2.30)

Fk(x) = dk−1
(xk − x)3

6hk
+ dk

(x− xk−1)
3

6hk
+ c2,k(x− xk−1) + c3,k(xk − x).(2.31)

Fk(x) must interpolate f(x) at xk−1 and xk. Hence

Fk(xk−1) = dk−1
h2k
6

+ c3,khk = yk−1, Fk(xk) = dk
h2k
6

+ c2,khk = yk.

Thus c2,k = yk
hk
− dkhk

6 , c3,k =
yk−1

hk
− dk−1hk

6 and c1,k = c2,k−c3,k. Now compute

the derivative at xk: We see

F ′
k(x

−
k ) =

dkhk
2

+ (
yk
hk
− dkhk

6
)− (

yk−1

hk
− dk−1hk

6
)

=
dkhk
3

+
dk−1hk

6
+ (

yk − yk−1

hk
). (2.32)

On the other hand, we consider F ′
k+1(x

+
k ). Replacing k by k+1 in (2.30) and

evaluating at xk, we get

F ′
k+1(x

+
k ) = −dkhk+1

2
+ (

yk+1

hk+1
− dk+1hk+1

6
)− (

yk
hk+1

− dkhk+1

6
)

= −dkhk+1

3
− dk+1hk+1

6
+ (

yk+1 − yk
hk+1

). (2.33)

The continuity of derivative: Equating (2.32) with (2.33) and arranging in

terms of unknowns dk, k = 0, 1 · · · , n

hk
6
dk−1+

hk + hk+1

3
dk+

hk+1

6
dk+1 =

yk+1 − yk
hk+1

− yk − yk−1

hk
, 1 ≤ k ≤ n−1.

(Note the rhs is difference between (approx. of) y′k+1(xk) and y
′
k(xk).) We see

two more conditions are needed to guarantee the existence of the solution. A

common choice is to let d0 = dn = 0. In this case, we obtain a tridiagonal

system

Ax = k, (2.34)
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where x = (d1, · · · , dn−1). A typical row of A looks like

[0, . . . ,
hi
6
,
hi + hi+1

3
,
hi+1

6
, . . . , 0].

Hence A is diagonally dominant and thus nonsingular. The spline obtained in

this way is called the natural spline. To find it, one has to solve the system

of linear equations (2.34). Fortunately, the system is tridiagonal, which is easy

to solve.

Solution of a tridiagonal system by LU-decomposition.




b1 c1 . . . 0

a1 b2 c2
...

...
. . .

. . . cn−1

0 . . . an−1 bn



=




1 0 . . . 0

ℓ1 1 0
...

...
. . .

. . . 0

0 . . . ℓn−1 1







d1 c1 . . . 0

0 d2 c2
...

...
. . .

. . . cn−1

0 . . . 0 dn




LU decomposition costs 2(n− 1) multiplication n− 1 addition.

◦





d1 = b1

For i = 1, . . . , n− 1

ℓi = ai/di

di+1 = bi+1 − ℓici.

Forward substitution Ly = k costs n− 1 mult. n− 1 add.

◦





y1 = k1

For i = 2, . . . , n

yi = ki − ℓi−1yi−1.

Back substitution Ux = y costs 2(n− 1) + 1 mult. n− 1 add.

◦





xn = yn/dn

For i = n− 1, . . . , 1

xi = (yi − ciyi+1)/di.

It requires (5n − 4) multiplication and 3n− 3 addition.
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Theorem 2.5.1. (Holliday) Among all C2-function which interpolate f at

{xi}ni=0, the natural cubic spline has smallest curvature.

Proof. Let g(x) be any C2-interpolant. Then we have

0 ≤
∫ b

a
[g′′(t)− s′′(t)]2 dt

=

∫ b

a
[g′′(t)]2 dt− 2

∫ b

a
[g′′(t)− s′′(t)]s′′(t) dt−

∫ b

a
[s′′(t)]2 dt.

We will show the second term is zero, which completes the proof,

∫ b

a
[g′′(t)− s′′(t)]s′′(t) dt

=
n−1∑

i=0

∫ xi+1

xi

[g′′(t)− s′′(t)]s′′(t) dt

=
n−1∑

i=0

[
(g′(t)− s′(t))s′′(t)|xi+1

xi −
∫ xi+1

xi

(g′(t)− s′(t))s′′′ dt
]

=

n−1∑

i=0

[(g′(t)− s′(t))s′′(t)− (g(t) − s(t))s′′′(t)|xi+1
xi ].

By telescoping series, the first term equals (g′(xn)− s′(xn))s′′(xn)− (g′(x0)−
s′(x0))s′′(x0) = 0 by the assumption s′′(x0) = s′′(xn) = 0. Since s′′′ is constant

on each interval and g(xi) = s(xi), the second one is also zero.

Remark 2.5.2. There are other choices of d0 and dn. Suppose the values

f ′(x0), f ′(xn) are known. Then we obtain so called a clamped spline.

Theorem 2.5.3. Let f ∈ C2[a, b] and s be the natural cubic spline with node

{xi}ni=0, then with h = maxk hk

‖f − s‖∞ ≤ h3/2
(∫ b

a
|f ′′|2

)1/2

‖f ′ − s′‖∞ ≤ h1/2
(∫ b

a
|f ′′|2

)1/2

.

Thus cubic spline is also good to approximate f ′.

Proof. We prove the second estimate first. Fix x ∈ [xi−1, xi] = Ii. By Rolle’s



2.5. CUBIC SPLINES 79

theorem, there exists τ ∈ Ii such that f ′(τ)− s′(τ) = 0. Then we have

∫ x

τ
[f ′′(t)− s′′(t)] dt = f ′(t)− s′(t)|xτ = f ′(x)− s′(x)

and by the proof of Holliday’s Theorem,

|f ′(x)− s′(x)| = |
∫ x

τ
(f ′′ − s′′) dt| ≤

(∫ x

τ
|f ′′ − s′′|2dt

)1/2

(

∫ x

τ
dt)1/2

≤ h1/2
(∫ b

a
|f ′′ − s′′|2dt

)1/2

= h1/2
(∫ b

a
(|f ′′|2 − |s′′|2)dt

)1/2

≤ h1/2
(∫ b

a
|f ′′|2dt

)1/2

.

Now for the first estimate we see, for x ∈ [xi, xi+1]

|f(x)− s(x)| =

∣∣∣∣
∫ x

xi

(f ′(t)− s′(t)) dt
∣∣∣∣ ≤

∫ x

xi

|f ′(t)− s′(t)| dt

≤ h‖f ′ − s′‖∞ = h3/2
(∫ b

a
|f ′′|2

)1/2

.

Exercise 2.5.4. (1) Write down the explicit entry of A and k in (2.34).

(2) (Clamped spline) Derive the equation Ax = k of size (n + 1) × (n + 1)

with data s′(x0) = f ′(x0), s′(xn) = f ′(xn) instead of d0 = dn = 0 in

(2.34). Write down the entry of A and k explicitly.

(3) (Computer) Construct a spline approximation to f(x) = 1
1+x2 on [−5, 5]

with n = 10, 20, 40, 80 with equally spaced subintervals. Let Eh =

‖sh(x) − f(x)‖∞ and E′
h = ‖s′h(x) − f ′(x)‖∞ and estimate Eh and E′

h

(compute these norms by choosing many (say, 10) points in each sub-

interval).

Fill out the table below by computing the ratio:=log2
E2h
Eh

. Draw graphs

and discuss the results.

(4) (Computer) Construct a spline approximation to and compute ‖s(x) −
f(x)‖∞ and ‖s′(x)− f ′(x)‖∞ for f(x) = e0.8x on [−3, 3].
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Eh ratio E′
h ratio

n = 10 * *

n = 20

n = 40

n = 80

Table 2.2: Error of Cubic spline

2.6 The B-Splines

We begin with the knots one the real line :

· · · < t−2 < t−1 < t0 < t1 < t2 < · · ·

2.6.1 The B-Splines of degree k

B0
i (x) =




1 if ti ≤ x < ti+1

0 otherwise

Now higher order splines are constructed as follows: (k ≥ 1)

Bk
i (x) =

(
x− ti
ti+k − ti

)
Bk−1

i (x) +

(
ti+k+1 − x
ti+k+1 − ti+1

)
Bk−1

i+1 (x) (2.35)

≡ V k
i B

k−1
i (x) +

(
1− V k

i+1

)
Bk−1

i+1 (x). (2.36)

b
B0

i

ti−1 ti ti+1 ti+2

B1
0 = xB0

0 + (2− x)B0
1

b

b

b

0 1 2

B1
1 = (x− 1)B0

1 + (3− x)B0
2

b

b

b

31 2

Figure 2.3: The B-Spline B0
i and B1

i
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1

1 2 3

b b

B2
0

1

1 2 3 4

b b

B2
1

Figure 2.4: The B-Spline B2
0 and B2

1

Assume t0 = 0, t1 = 1, t2 = 2, · · · . Then

B2
0(x) =

x

2
B1

0 + (1− x− 1

2
)B1

1 (2.37)

=





x
2 · x on 0 ≤ x < 1

x
2 (2− x) + 3−x

2 (x− 1) = −x2 + 3x− 1.5 on 1 ≤ x < 2

(3−x)2

2 on 2 ≤ x < 3

B2
1(x) =

x

2
B1

1 +
3− x
2

B1
2 = B2

0(x− 1) (2.38)

=





(x−1)2

2 on 1 ≤ x < 2

−(x− 1)2 + 3(x− 1)− 1.5 on 2 ≤ x < 3

(4−x)2

2 on 3 ≤ x < 4

(2.39)

B3
0(x) =

x

3
B2

0 + (1− x− 1

3
)B2

1 =
x

3
B2

0 + (
4− x
3

)B2
1 (2.40)

=





x
3 · x

2

2 on 0 ≤ x < 1

x
3 · (−x2 + 3x− 1.5) + 4−x

3
(x−1)2

2 on 1 ≤ x < 2

x
3 ·

(3−x)2

2 + 4−x
3 (−x2 + 5x− 5.5) on 2 ≤ x < 3

4−x
3 ·

(4−x)2

2 on 3 ≤ x < 4

(2.41)

Properties of B-Splines

(1) For k ≥ 1, Bk
i (x) 6= 0 if and only if x ∈ (ti, ti+k+1). For k = 0, B0

i (x) 6= 0

if and only if x ∈ [ti, ti+1).
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1

1 2 3 4

b

b

b

B3
0

1

1 2 3 4

b

b

b

d
dx

B3
0 = B2

0 −B2
1

Figure 2.5: The B-Spline B3
0 and d

dxB
3
0

(2)
∑∞

i=−∞Bk
i ≡ 1

(3)
∞∑

i=−∞
ciB

k
i =

∞∑

i=−∞

[
ciV

k
i + ci−1(1− V k

i )
]
Bk−1

i

Derivatives of B-Splines

Lemma 2.6.1. For k ≥ 2

d

dx
Bk

i (x) =

(
k

ti+k − ti

)
Bk−1

i (x)−
(

k

ti+k+1 − ti+1

)
Bk−1

i+1 (x). (2.42)

For k = 1 the equation holds for all x except x = ti, ti+1, ti+2.

Lemma 2.6.2. For k ≥ 1 the B-splines Bk
i belongs to Ck−1(R).

2.7 B-Splines: Applications

We want to see the relation between B-Splines and the spline function intro-

duced before. where we considered functions that are Ck−1(R) and piecewise

polynomials of degree ≤ k on each of the intervals [t0, t1], [t1, t2], · · · , [tn−1, tn].

The set of all such functions will be denoted by Sk
n (We assume the knot are

given from the beginning.) We view the functions in Sk
n defined on [t0, tn].

Basis for Sk
n

Theorem 2.7.1. The following set is a basis for Sk
n.

{Bk
i (x)|[t0,tn] : −k ≤ i ≤ n− 1} (2.43)
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Hence the dimension of Sk
n is k + n.

Proof. This follows since, for k ≥ 1, Bk
i (x) 6= 0 if and only if x ∈ (ti, ti+k+1).

Bk
−k(x) 6= 0 and Bk

n−1(x) 6= 0.

Relation with cubic Splines

Let k = 3. Then the functions {B3
i , i = −3,−2, · · · , n − 1} form a basis for

cubic spline on [0, n].

S3(x) =

n−1∑

j=−3

cjB
3
j (x). (2.44)

We know that we need 4 conditions to uniquely specify a cubic, and in [t0, tn]

there are n intervals, so altogether a total of 4n conditions are needed. The

continuity conditions are automatically satisfied in the n − 1 interior points,

(thats 3(n− 1) conditions) The other requirement is that S3 must match the

given points, i.e. S3(tk) = f(tk), for k = 0, · · · , n (n+ 1 conditions). So there

are two unspecified conditions, and like before we can take S′′
3 (t0) = S′′

3 (tn) =

0.

B-Splines as Interpolations

Spline functions can be used for interpolations at points other than the knots.

Let x1 < x2 < · · · < xn be a given set of nodes and y1, y2, · · · , yn are values

we want to interpolate. We would like to find an interpolation function of the

form
∑n

j=1 cjB
k
j , i.e,

n∑

j=1

cjB
k
j (xi) = yi (2.45)

A condition for this system to be uniquely solved is given by Schoenberg-

Whitney.

Theorem 2.7.2 (Schoenberg-Whitney Theorem). For the matrix Aij = Bk
j (xi)

to be nonsingular it is nec. and suff. that there be no 0 element on its diagonal.

In other words, Bk
i (xi) 6= 0.

Corollary 2.7.3. Assume k ≥ 1. Since Bk
i (x) 6= 0 if and only if x ∈

(ti, ti+k+1), we must have ti < xi < ti+k+1 for the interpolation equation

(2.45) have a solution.
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This solution is not unique (incase the interpolation points are knots).

Suppose xi = ti for all i.

∞∑

j=−∞
cjB

k
j (ti) = yi, (1 ≤ i ≤ n) (2.46)

For k = 0, 1 this system has unique solution. However, for k = 2, this system

has n equation in n + 1 unknowns. For k = 3, this system has n equation in

n+ 2 unknowns. (2.45) becomes

ci−3B
3
i−3(ti) + ci−2B

3
i−2(ti) + ci−1B

3
i−1(ti) = yi, (1 ≤ i ≤ n) (2.47)

A useful condition is to impose S′′(t0) = S′′(tn) = 0 (Natural spline).

Noninterpolatory approximation

This procedure is introduced by Schoenberg(1967). Given f we define a spline

function Sf by

Sf =

∞∑

i=−∞
f(xi)B

k
i (x), xi =

1

k
(ti+1 + · · ·+ ti+k) (2.48)

Assume k ≥ 2 (2.48) does not interpolate f .

Our task is to investigate whether a continuous function f can be approx-

imated by splines. We hold k while increasing the number of knots.

We introduce a special spline function that approximates f

g(x) =
∞∑

i=−∞
f(ti+2)B

k
i (x). (2.49)

With this we have

Theorem 2.7.4 (Schoenberg-Whitney Theorem).

max
t0,tn
|f(x)− g(x)| ≤ kω(f, δ), (2.50)

where ω(f, δ) the the modulus of continuity:

ω(f, δ) = max
|s−t|≤δ

|f(s)− f(t)|
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and δ = max−k≤i≤n+1 |ti − ti−1|.

As a corollary to Wierstrass approx. theorem, we conclude that spline

approx. (2.49) can be arb. close to f if δ → 0.

2.8 Bézier Curves

We introduce some basic idea of computer aided geometric design. Consider

a mapping f : D → R
m,m = 2, 3 where D is an interval in R. In computer

graphics it is essential that the geometric objects can be visualized and ma-

nipulated effectively. For simplicity we assume D = [0, 1]. In gnenral, we use

the mapping (x− a)/(b− a).

Definition 2.8.1. For n ∈ Z
+ we denote by Pm

n be the linear space of poly-

nomials

p(x) =

n∑

k=0

akx
k, x ∈ R,

where a0, · · · , an ∈ R
m.

We observe

1 ≡
n∑

k=0

(
n

k

)
xk(1− x)n−k

and set

Bn
k (x) :=

(
n

k

)
xk(1− x)n−k, k = 0, · · · , n.

Theorem 2.8.2. Then we have

(1) Bn
k (x) ≥ 0

(2) Bn
k (x) = Bn

n−k(1− x)

(3) Bn
0 (x) = (1− x)Bn−1

0 (x), Bn
n(x) = xBn−1

n−1(x)

(4) x = 0 is a zero of Bn
k (x) of order k and x = 1 is a zero of order n− k.

(5) Each polynomial Bn
k (x) assume its maximum at x = k/n.

(6) They satisfy

Bn
k (x) = xBn−1

k−1 (x) + (1− x)Bn−1
k (x)

for k = 1, 2, · · · , n.
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(7) The polynomials Bn
0 (x), · · · , Bn

n(x) form a basis for Pn.

Proof. (5) follows from

d

dx
Bn

k (x) =

(
n

k

)
xk−1(1− x)n−k−1(k − nx), k = 0, · · · , n.

For (6) observe (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Define

Bn
k (x; a, b) ≡ Bn

k

(
x− a
b− a

)
.

Definition 2.8.3. The polynomial

p(x) =
n∑

k=0

Bn
k (x; a, b), x ∈ R

is called the Bézier polynomials and the graph is called Bézier curves The

coefficients b0, · · · ,bn ∈ R
m are called the control points.

The convex hull of points bk, k = 0, · · · , n is defined by

con{b0, · · · ,bn} :=
{

n∑

k=0

αkbk : αk ≥ 0,
n∑

k=0

αk = 1

}

Proposition 2.8.4. (1) Note that p(a) = b0, p(b) = bn. i.e, the end

points of Bézier polynomial and the Bézier curve coincide.

(2) The Bézier curve is contained in the convex hull of Bézier curve points:

(3) p′(0) = n(b1−b0), p′(1) = n(bn−bn−1) i.e, the Bézier curve has the

same tangent lines as the Bézier polygon.

Example 2.8.5 (Bézier curve of order 1 and 2). (1) For k = 1 the Bézier curve

is the line segment joining two control points, i.e., since B1
0 = x, B1

1 = (1−x),
we have

p(x) = b0x+ b1(1− x).



2.8. BÉZIER CURVES 87

b0

b1

b2

b0

b1

b2

Figure 2.6: Bézier curves of degree 2 and polygons

B2
0 = x2, B2

1 = 2x(1− x), B2
2 = (1− x)2

(2) On [0, 3], B2
0 = x2/9, B2

1 = 2x(3 − x)/9, B2
2 = (3 − x)2/9. With control

points b0 = (0, 0), b1 = (2, 2), and b2 = (3, 1), we have

p(x) = (0, 0)x2/9 + (2, 2)2x(3 − x)/9 + (3, 1)(3 − x)2/9 (2.51)

Or componentwise

p1(x) = 4x(3− x)/9 + (3− x)2/3 = (3 − x)(4x + 9− 3x)/9 = (3− x)(x+ 9)/9

p2(x) = 4x(3 − x)/9 + (3− x)2/9 = (3− x)(4x+ 3− x)/9 = (3− x)(x+ 1)/3.

(3) With control points b0 = (0, 0), b1 = (0.2, 2), and b2 = (3, 0.5), we

have

p(x) = (0, 0)x2/9 + (0.2, 2)2x(3 − x)/9 + (3, 0.5)(3 − x)2/9. (2.52)

Componentwise

p1(x) = 0.4x(3 − x)/9 + (3− x)2/3 = (3− x)(9 − 2.6x)/9

p2(x) = 4x(3 − x)/9 + 0.5(3 − x)2/9 = (3− x)(2.5x + 1.5)/9.

Example 2.8.6 (Bézier curve of order 3). On [0, 4]

B3
0(3, 7) = x3/64, B3

1 = 3x2(4−x)/64, B3
2 = 3x(4−x)2/64, B3

3 = (4−x)3/64.
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b1 b2

b3

b1

b2

b3

Figure 2.7: Bézier splines of order 3

With control points b0 = (0, 0), b1 = (2, 2), b2 = (3, 2), and b3 = (4,−1) we
have

p(x) = (2, 2)3x2(4− x)/64 + (3, 2)3x(4− x)2/64 + (4,−1)(4− x)3/64. (2.53)

Or componentwise

p1(x) = 6x2(4− x)/64 + 9x(4− x)2/64 + 4(4 − x)3/64 = (x2 + 4x+ 64)(4 − x)/64
p2(x) = 6x2(4− x)/64 + 6x(4− x)2/64− (4− x)3/64 = (−x2 + 32x− 16)(4 − x)/64.

With control points b0 = (0, 0), b1 = (2, 2), b2 = (1,−1), and b3 = (4, 0)

we have

p(x) = (2, 2)3x2(4− x)/64 + (1,−1)3x(4− x)2/64+ (4, 0)(4− x)3/64. (2.54)

Or componentwise

p1(x) = 6x2(4− x)/64 + 3x(4− x)2/64 + 4(4 − x)3/64 = (7x2 − 20x+ 64)(4 − x)/16
p2(x) = 6x2(4− x)/64 − 3x(4− x)2/64 = (9x2 − 12x)(4 − x)/64.

2.8.1 Bézier spline

Bézier spline is a Composite Bézier curve. For example, on [0, 3] same as

above, and on [3, 7], we take

B2
0(3, 7) = (x− 3)2/16, B2

1 = 2(x− 3)(7− x)/16, B2
2 = (7− x)2/16.
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b0

b1

b2

b
′

1

b
′

2

Figure 2.8: Bézier splines

With control points b′0 = (3, 1), b′1 = (5,−1), and b′2 = (7, 0), we have

p(x) = (3, 1)(x−3)2/16+(5,−1)2(x−3)(7−x)/16+(7, 0)(7−x)2/16 (2.55)

Or if p(x) = (p1(x), p2(x)), componentwise

p1(x) = 3(x− 3)2/16 + 10(x− 3)(7 − x)/16 + 7(7− x)2/16
= (−16x+ 160)/16

p2(x) = (x− 3)2/16 − 2(x− 3)(7− x)/16 = (x− 3)(3x− 17)/16.
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Chapter 3

Numerical integration

In this chapter, we study how to approximate the definite integral of some

smooth functions. An idea is to use an interpolating polynomial F (x) to

evaluate the integral. Thus we have

∫ b

a
f(x) dx ≈

∫ b

a
F (x) dx.

Our purpose is how to such an interpolation so that the error is minimized.

3.1 Quadrature based on equal intervals

We would like to design a quadrature for the following integral:

∫ b

a
f(x) dx.

One point formula-rectangle rule: If F (x) is a constant interpolation at

x0, then the above integral is approximated by (b−a)f(x0) called a rectangle

rule. Using Taylor expansion, one can show that there exist ξ0 and ξ0 in [a, b]

such that the following hold.

∫ b

a
f(x) dx =




(b− a)f(x0) + (b−a)2

2 f ′(ξ0), if x0 6= b+a
2

(b− a)f(x0) + (b−a)3

24 f ′′(ξ1), if x0 = b+a
2 .

(3.1)

Thus one point formula is exact for constant polynomial(except mid point

rule), so it is called a 0-th order method.

91
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Two point formula-trapezoidal rule:

∫ b

a
f(x) dx =

b− a
2

(f(a) + f(b))− (b− a)3
12

f ′′(ξ). (3.2)

This formular can be derived by the error formula for linear interpolation:

f(x)− p1(x) =
f ′′(ξ)
2

(x− a)(x− b).

This is exact for linear polynomials, hence it is a first order method.

Composite trapezoidal rule

If [a, b] is partitioned into

a = x0 < x1 < · · · < xn = b,

we can use trapezoidal rule to each subinterval. Here the nodes are not nec-

essarily uniformly spaced. Thus we obtain

∫ b

a
f(x) dx =

n∑

i=1

∫ xi

xi−1

f(x) dx

=̇
1

2

n∑

i=1

(xi − xi−1)(f(xi) + f(xi−1)).

If the nodes are uniformly spaced with h = (b− a)/n, then the composite

trapezoidal rule becomes

∫ b

a
f(x) dx =

h

2

[
f(a) + 2

n−1∑

i=1

f(a+ ih) + f(b)

]
.

The error in this case is

−(b− a)2
12

f ′′(ξ).

Three point formula-Simpson rule. Use Newton interpolation at three

equally spaced points x0, x1, x2. Derivation : Let

∫ x2

x0

f(x) dx = Af(x0) +Bf(x1) + Cf(x2), (3.3)
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where f ∈ P2. For simplicity, we can assume x0 = −h, x1 = 0 and x2 = h.

Setting f = 1, x, x2, we obtain

2h = A+B +C

0 = −Ah+ Ch

2h2

3
= Ah2 +Bh2.

Solving for A,B and C, we obtain A = C = h
3 and B = 4

3h. Hence we get the

following Simpson’s rule

∫ x2

x0

f(x) dx ∼ h

3
(f(x0) + 4f(x1) + f(x2)) ≡ s1(f). (3.4)

One can readily check that this is exact for a polynomial up to degree three.

Hence this is a third order method, in fact one can show that

∫ x2

x0

f(x) dx =
h

3
(f(x0) + 4f(x1) + f(x2))−

h5

90
f (4)(ξ1), ξ1 ∈ [x0, x2]. (3.5)

Composite Simpson’s rule. If the domain is large, divide it by even number

of intervals and applying Simpson’s rule to a pair of subintervals, one can find

a more accurate approximation. Let xi = a+ ih, h = (b− a)/2n. Then
∫ b

a
f(x) dx =

∫ x2

x0

f(x) dx+

∫ x4

x2

f(x) dx+ · · ·+
∫ x2n

x2n−2

f(x) dx.

If Simpson’s rule is used for each integral, we obtain

∫ b

a
f(x) dx ∼ h

3

n∑

i=1

[f(x2i−2) + 4f(x2i−1) + f(x2i)].

To avoid repetitions it is rearranged as

h

3

[
f(x0) + 2

n∑

i=2

f(x2i−2) + 4
n∑

i=1

f(x2i−1) + f(x2n)

]
.

Five-eight rule. If we use the polynomial interpolation at the equally spaced

points x0, x1, x2 to approximate integral on [x0, x1], we get five-eight rule.

This is useful when we have information at a point x2 outside the interval
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[a, b] = [x0, x1]. Derive the following formula.

∫ x1

x0

f(x) dx =
h

12
(5f(x0)+8f(x1)−f(x2))+

h4

24
f (3)(ξ2), ξ2 ∈ [x0, x2]. (3.6)

3.1.1 General high order quadrature formula

Assume we have nodes x0, · · · , xn in [a, b]. We use the Lagrange interpolating

polynomial to derive a quadrature. Consider

pn(x) =
n∑

i=0

f(xi)ℓi(x), (3.7)

where

ℓi(x) =
n∏

j 6=i

(x− xj)
(xi − xj)

, 0 ≤ i ≤ n.

With some positive weight function w(x), we let

∫ b

a
f(x)w(x) dx ∼

∫ b

a
pn(x)w(x) dx =

n∑

i=0

f(xi)

∫ b

a
ℓi(x)w(x)dx.

If the nodes are equally spaced, it is called the Newton-Cotes formula :

∫ b

a
f(x)w(x) dx ∼

n∑

i=0

Aif(xi),

where

Ai =

∫ b

a
ℓi(x)w(x)dx.

Table 3.1: Closed Newton Cotes formula

∫ x1

x0

f(x) dx =
h

2
(f0 + f1) (trapezoid) −h

3

12
f (2)(ξ)

∫ x2

x0

f(x) dx =
h

3
(f0 + 4f1 + f2) (Simpson) −h

5

90
f (4)(ξ)

∫ x3

x0

f(x) dx =
3h

8
(f0 + 3f1 + 3f2 + f1) −3h5

80
f (4)(ξ)

∫ x4

x0

f(x) dx =
2h

45
(7f0 + 32f1 + 12f2 + 32f3 + 7f4) −8h7

945
f (6)(ξ)
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Error of numerical integration

We consider Newton-Cotes formula (uniform interval). We assume the

following situation: Let a ≤ x0 < x1 < · · · < xn ≤ b, xi − xi−1 = h and

consider an approximation of
∫ b
a f(x)dx by some quadrature based on the

data (x0, f(x0), · · · , (xn, f(xn)). Use Taylor formula with remainder:

f(x) = f(x0)+f
′(x0)(x−x0)+ · · ·+

f (n)(x0)

n!
(x−x0)n+

f (n+1)(ξ)

(n+ 1)!
(x−x0)n+1

or Newton’s interpolating polynomial

pn(f) = f(x0)+f [x0, x1](x−x0)+ · · ·+f [x0, x1, · · · , xn](x−x0) · · · (x−xn−1).

By the error formula, we have

f(x) = pn(f) + f [x0, x1, · · · , xn, x](x− x0) · · · (x− xn).

Integrating the error term of Newton’s formula we have

En(f) =

∫ b

a
f [x0, x1, · · · , xn, x]

n∏

i=0

(x− xi)dx =

∫ b

a

f (n+1)(ξ)

(n+ 1)!

n∏

i=0

(x− xi)dx.

Since the term
∏n

i=0(x−xi) does not change sign on each subinterval (xs, xs+1),

we can use mean value theorem to see the above quantity is

f (n+1)(ξ̄s)

(n+ 1)!

∫ xs+1

xs

n∏

i=0

(x− xi)dx =
f (n+1)(ξ̄s)

(n + 1)!
×O(hn+2),

for some ξ̄s ∈ (xs, xs+1).

A more precise error formula is follows (See Issacson-Keller). Let πn(x) =∏n
i=0(x− xi) and Wn(x) =

∫ x
a πn(x) dx.

Lemma 3.1.1. For n even we have

(1) Wn(a) =Wn(b) = 0,

(2) Wn(x) > 0, a < x < b.

Proof. (1) Wn(a) is trivial. To see Wn(b) = 0 holds, note that, for example,

πn(x) = (x − x0)(x − x1)(x − x2) is antisymmetric with respect to the mid

point x1. General case follows from this.
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(2) Note Wn(x0) = Wn(x2) = · · · = Wn(xn) = 0. Thus it suffices to

consider again the case πn(x) = (x−x0)(x−x1)(x−x2). Direct computation

shows Wn(x) > 0 for a < x < b.

Lemma 3.1.2. Let x ∈ [x0, xn] be any point. There exists ξ(x) such that

d

dx
f [x0, · · · , xn, x] =

f (n+2)(ξ(x))

(n+ 2)!
. (3.8)

Proof.

d

dx
f [x0, · · · , xn, x] = lim

h→0

f [x0, · · · , xn, x+ h]− f [x0, · · · , xn, x]
h

= lim
h→0

f [x0, · · · , xn, x+ h]− f [x, x0, · · · , xn]
x+ h− x

= lim
h→0

f [x0, · · · , xn, x, x+ h]

= f [x0, · · · , xn, x, x] =
f (n+2)(ξ(x))

(n + 2)!

for some ξ(x) ∈ [x0, xn] (Corollary 2.3.16).

Theorem 3.1.3. The error by Newton-Cotes formula is

En(f) =





f (n+2)(ξ̄)

(n+ 2)!

∫ b

a
x

n∏

i=0

(x− xi)dx if n is even,

f (n+1)(ξ̄)

(n+ 1)!

∫ b

a

n∏

i=0

(x− xi)dx if n is odd.

(3.9)

Thus an extra accuracy is obtained for n even.

Proof. Let n be even. Then from Newton’s form of interpolating polynomial,

we have

En(f) =

∫ b

a
πn(x)f [x0, · · · , xn, x] dx

= Wn(x)f [x0, · · · , xn, x]|ba −
∫ b

a
Wn(x)

d

dx
f [x0, · · · , xn, x] dx

= −
∫ b

a
Wn(x)

d

dx
f [x0, · · · , xn, x] dx.

Hence

En(f) = −
∫ b

a
Wn(x)

f (n+2)(ξ1)

(n+ 2)!
dx.
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Since Wn(x) > 0 by Lemma 3.1.1, we have by MVT for integral that

En(f) = −
f (n+2)(η)

(n+ 2)!

∫ b

a
Wn(x) dx, a < η < b.

Moreover, integration by parts shows

∫ b

a
Wn(x) dx = xWn(x)|ba −

∫ b

a
x
d

dx
Wn(x) dx

= −
∫ b

a
xπn(x) dx > 0.

We skip odd case.

We see

En(f) =




O(hn+3) if n is even,

O(hn+2) if n is odd.
(3.10)

Now we present the error analysis of the special case of Simpson’s rule.

Let n = 2 and x1− x0 = x2− x1 = h. One can use Taylor’s theorem to derive

the error estimate, but we present a method based on Hermite interpolation

which can be extended to higher degree. Let F̃3(x) be a polynomial of degree

3 such that

F̃3(xi) = f(xi), i = 0, 1, 2 and F̃ ′
3(x1) = f ′(x1).

Then by Hermite interpolation formula(Newton’s interpolation with repeated

nodes at x1)

f(x)− F̃3(x) = (x− x0)(x− x1)2(x− x2)
f (4)(ξ(x))

4!
.

Since Simpson’s rule is exact for a polynomial of degree three, we have

E(f) =

∫ x2

x0

[f(x)− F̃3(x)] dx =

∫ x2

x0

f(x) dx− h

3
[f(x0) + 4f(x1) + f(x2)].
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On the other hand,

E(f) =

∫ x2

x0

(x− x0)(x− x1)2(x− x2)
f4(ξ(x))

4!
dx

=
f (4)(ξ1)

4!

∫ x2

x0

(x− x0)(x− x1)2(x− x2) dx

by the integral mean value theorem. The last integral can be computed directly

and we see E(f) = −h5

90f
(4)(ξ1). Hence with h = (b− a)/2, we have

∫ b

a
f(x) dx = s1(f)−

(b− a)5
25 · 90 f4(ξ).

Posteriori Estimate

Even though an error term of the form O(hk) suggests how big the error is,

we still do not know how accurate the answer is. We introduce a method to

estimate the error after the computation. We take Simpson’s rule, for example.

Assume f (4)(ξ)
.
= f (4) is constant on a small interval [a, b], we use Simpson’s

rule on each of the interval [a, x1], [x1, b], where x1 = (a+ b)/2.

∫ b

a
f(x) dx =

∫ a+b
2

a
f(x) dx+

∫ b

a+b
2

f(x) dx = s2(f)−
(b− a)5
25 · 25 · 90f

(4) × 2,

where s2(f) is the result of Simpson’s rule applied on [a, x1] and [x1, b] resp.

s2(f)− s1(f) = −(b− a)5
25 · 90 [1− 1

24
]f (4) = −15

16

(b− a)5
25 · 90 f (4),

s2(f)− s1(f)
15

= − 1

16

(b− a)5
25 · 90 f (4) =

∫ b

a
f(x) dx− s2(f).

L.H.S is computable by machine, which is a good indication of error. If this

error is undesirable, we can divide the interval so that |s2 − s1| < ε.

3.2 Gaussian quadrature-unequal intervals

Check that the quadrature

∫ 1

−1
f(x) dx

.
= f(−

√
1

3
) + f(

√
1

3
)
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is exact up to degree 3. The degree of precision of the following quadrature is

5. ∫ 1

−1
f(x) dx

.
=

5

9
f(−

√
3

5
) +

8

9
f(0) +

5

9
f(

√
3

5
).

A three point formula is of the form:

α0f(x0) + α1f(x1) + α2f(x2).

More generally, we consider a quadrature with unspecified points:

∫ b

a
f(x)w(x)dx ≈

n∑

i=0

Aif(xi), (3.11)

where w is a fixed positive weight function. This formula is exact for polyno-

mial of degree up to n if and only if(let f(x) = ℓi(x))

Ai =

∫ b

a
w(x)

n∏

j 6=i

x− xj
xi − xj

dx.

Note that there are no restrictions on the nodes. By placing nodes at proper

places, we can obtain 2n+ 1 order of approximation.

Theorem 3.2.1. Let q be a nonzero polynomial of degree n + 1 which is

orthogonal to Pn(the set of all polynomials of degree ≤ n) with respect to the

weight w, i.e, we have

∫ b

a
q(x)p(x)w(x)dx = 0, for all p(x) ∈ Pn.

If x0, x1, · · · , xn are the zeros of q, then the quadrature formula (3.11) is exact

for all f ∈ P2n+1.

Proof. Let f ∈ P2n+1. Dividing f by q, we obtain

f = qp+ r (degree of p, r < n+ 1)

and we see f(xi) = r(xi). Since q is orthogonal to p w.r.t w and the formula

(3.11) is exact for polynomial of degree n, thus we have

∫ b

a
fw dx =

∫ b

a
rw dx =

n∑

i=0

Air(xi) =
n∑

i=0

Aif(xi).
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Now the remaining task is how to find orthogonal polynomials and their

zeros. Fortunately, a few cases are well-known: Let [−1, 1]. Then with w = 1,

the Legendre polynomials are orthogonal on [−1, 1]. i.e,
∫ 1

−1
pn(x)pm(x) dx = δnm.

A few Legendre polynomials are:

p0(x) =
1√
2
, p1(x) =

√
3

2
x

p2(x) =

√
5

2

1

2
(3x2 − 1), p3(x) =

√
7

2

1

2
(5x3 − 3x)

p4(x) =

√
9

2

1

8
(35x4 − 30x2 + 3), p5(x) =

√
11

2

1

8
(63x5 − 70x3 + 15x)

p6(x) =

√
13

2

1

24
(7 · 33x6 − 63 · 5x4 + 35 · 3x2 − 5)

, . . . ,

pn(x) =

(
n+

1

2

)1/2 1

n! 2n
dn

dxn
(x2 − 1)n :=

(
n+

1

2

)1/2

Φn(x).

Exercise 3.2.2 (Rodriguez). Let Φn(x) =
1

n! 2n
dn

dxn (x
2 − 1)n and show that

(1) Φn(1) = 1, Φn(−1) = (−1)n.

(2) Φn is generated by the recursive formula

Φn+1 =
2n+ 1

n+ 1
xΦn −

n

n+ 1
Φn−1, Φ0 = 1, Φ1 = x.

Observe Φn+1(x)− axΦn(x) =
∑n

i=0 αiΦi(x) and determine a, αi.

(3) Φn(x) is a solution of Legendre differential equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0.

(4) {Φn} are orthogonal.

(5) Find the weights Ai, i = 0, ·, n for n = 1, 2, 3, 4.
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Orthogonality. For m > n,

∫ 1

−1
Dn[(x2 − 1)n]Dm[(x2 − 1)m] dx

= Dn[(x2 − 1)n]Dm−1[(x2 − 1)m]|1−1 −
∫ 1

−1
Dn+1[(x2 − 1)n]Dm−1[(x2 − 1)m] dx

= (−1)2
∫ 1

−1
Dn+2Dm−2 dx = · · ·

= (−1)n
∫ 1

−1
Dn+nDm−n dx = C2n(−1)n

∫ 1

−1
Dm−n dx = 0.

Here C2n is 2n-th derivative of (x2 − 1)n which is constant. The last integral

vanishes as Dm−n−1(x2 − 1)n
∣∣1
−1

.

When m = n,

1

(2n)!

∫ 1

−1
· · · =

(−1)n
(2n)!

∫ 1

−1
D2n ·D0 = (−1)n

∫ 1

−1
(x2 − 1)n dx

= x(x2 − 1)n|1−1 − n
∫ 1

−1
2x2(x2 − 1)n−1 dx

= (−1)222n(n− 1)

∫ 1

−1
(x2 − 1)n−2x

4

3
dx = · · · = 2nn!

1

1 · 3 · 5 · · ·

= 2nn!
x2n+1|1−1

1 · 3 · 5 · · · (2n + 1)
=

2n+1n!

1 · 3 · 5 · · · (2n+ 1)
.

∴

∫ 1

−1
Dn ·Dn =

(2n)! 2n+1 · n!
1 · 3 · 5 · · · (2n+ 1)

=
(2n · n!)2
n+ 1

2

.

Normalizing, we obtain the orthonormality of Φn(x).

3.2.1 Error of Gaussian quadrature

Now we estimate the error of Gaussian quadrature.

Motive: Given f ∈ C2n+2[a, b], think of an interpolating poly p of degree

2n + 1 with interpolation points at xi, i = 0, · · · , n for which the error form

E(ξ(x)) is known (Hermite interpolation). Then we know

∫ b

a
E(ξ(x))dx =

∫ b

a
(f(x)− p(x))w(x)dx.

Then we can evaluate
∫ b
a p(x)w(x)dx by Gaussian quadrature. A choice is the

Hermite interpolation polynomial p of degree 2n + 1 with γ = 1 at xi, i =
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0, · · · , n.

Lemma 3.2.3. In Gaussian quadrature, the coefficients are positive and their

sum is
∫ b
a w(x)dx. In particular, if [a, b] = [−1, 1] and w ≡ 1, then

∑n
i=0Ai =

2.

Proof. Fix n and let q be a polynomial of degree n + 1 which is orthogonal

to Pn. The zeros of q are denoted by x0, · · · , xn. Let p(x) = q(x)/(x − xj)
for some j. Since p2(x) is of degree at most 2n, Gaussian quadrature with

x0, · · · , xn will be exact for p2(x). Hence

0 <

∫ b

a
p2(x)w(x)dx =

n∑

i=0

Aip
2(xi) = Ajp

2(xj)

so that Aj > 0. Now use Gaussian quadrature for f(x) = 1 to see

∫ b

a
w(x)dx =

n∑

i=0

Ai.

Theorem 3.2.4. For any f ∈ C2n+2[a, b], the error term E(f) in the Gaus-

sian quadrature

∫ b

a
f(x)w(x)dx =

n∑

i=0

Aif(xi) + E(f)

satisfies

E(f) =
f (2n+2)(ξ̄)

(2n + 2)!

∫ b

a
q2(x)w(x)dx,

for some a < ξ̄ < b and q(x) =
∏n

i=0(x− xi).

Proof. From (2.25) we see the Hermite interpolation polynomial p of degree

at most 2n+ 1 with γ = 1 at xi, i = 0, · · · , n satisfies

f(x)− p(x) = f (2n+2)(ξ(x))

(2n + 2)!
q2(x).

Hence

∫ b

a
(f(x)− p(x))w(x) dx =

∫ b

a

f (2n+2)(ξ(x))

(2n+ 2)!
q2(x)w(x) dx.
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Since the Gaussian quadrature is exact for polynomial of degree 2n + 1, we

have ∫ b

a
p(x)w(x) dx =

n∑

i=0

Aip(xi) =
n∑

i=0

Aif(xi).

Hence

∫ b

a
f(x)w(x) dx −

n∑

i=0

Aif(xi) =

∫ b

a

f (2n+2)(ξ(x))

(2n + 2)!
q2(x)w(x) dx. (3.12)

Furthermore, the mean value theorem(by positiveness of q2) implies that there

exists some ξ̄ such that the RHS of (3.12) equals

f (2n+2)(ξ̄)

(2n + 2)!

∫ b

a
q2(x)w(x) dx.

If we let kn := (2n)!
2n(n!)2

be the leading coefficients of Φn(x), then

q(x) =
pn+1(x)√
n+ 3

2 kn+1

.

So

En+1(f) =
f (2n+2)(ξ̄)

(2n + 2)!

∫ b

a
q2(x)w(x) dx =

2

2n+ 3

f (2n+2)(ξ̄)

(2n+ 2)!k2n+1

.
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3.3 More on Gauss type quadrature

Gauss Lobatto quadrature

Let φn be the Legendre polynomial of degree n on [−1, 1] and let xi, (i =

0, · · · , n) be the zeros of p(x) = φn+1(x) + λφn(x) + µφn−1(x). Here λ, µ are

chosen so that p(−1) = p(1) = 0. Then we have x0 = −1 and xn = 1. Now

consider the following quadrature

A0f(x0) +Anf(xn) +
n−1∑

i=1

Aif(xi) (3.13)

to approximate
∫ 1
−1 f(x)dx.

Theorem 3.3.1. The quadrature (3.13) is exact for polynomials degree up to

2n− 1.

Hence the coefficients Ai and quadrature points xi’s are determined by

letting f = 1, x, · · · , x2n−1.

Proof. First λ, µ are determined by the conditions p(−1) = p(1) = 0. Assume

the formula is exact for Pn. Let f be in P2n−1. Then dividing f by p, we can

write f = pq + r for some q ∈ Pn−2 and r ∈ Pn.

∫ 1

−1
f(x)dx =

∫ 1

−1
pq dx+

∫ 1

−1
r dx

= 0 +

∫ 1

−1
r dx (orthogonality)

=

n∑

i=0

Air(xi) (since r is degree n)

=
n∑

i=0

Aif(xi) (since p(xi) = 0 for i = 0, · · · , n).
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Example 3.3.2. For n = 3, we note that

p = 35x4 − 30x2 + 3 + λ(5x3 − 3x) + µ(3x2 − 1).

Using p(±1) = 0, we get λ = 0, µ = −4. Hence

p(x) = 35x4 − 42x2 + 7 = 7(5x2 − 1)(x2 − 1).

Thus x1 = − 1√
5
, x2 =

1√
5
.

When n = 3, there is a special method to find the formula. Assume the

following symmetric formula:

A0f(−1) +A1f(−x1) +A1f(x1) +A0f(1).

By symmetry, it is exact for any odd degree polynomial. We can find A0, A1

and x1 by imposing the condition that it is exact for f = 1, x2, x4.

A0 +A1 = 1

A0 +A1x
2
1 =

1

3

A0 +A1x
4
1 =

1

5
.

Solving we get x1 = − 1√
5
. Thus, the Gauss-Lobatto formula in this case is

1

6
f(−1) + 5

6
f(− 1√

5
) +

5

6
f(

1√
5
) +

1

6
f(1).

(For other general formula, See Beurling’s book)

Assume the formula

A0f(−1) +Anf(−x1) +
n−1∑

i=1

Aif(xi)

is exact up to degree 2n− 1, where the sum is up to n/2 for n even and up to
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(n+ 1)/2 for n odd.

f = 1 : A0 +An +

n−1∑

i=1

Ai = 2

f = x : −A0 +An +

n−1∑

i=1

Aixi = 0

: · · ·

f = xk : (−1)kA0 +An +
n−1∑

i=1

Aix
k
i =

2

k + 1

· · ·

Weight and points of Gauss Lobatto quadrature

Let Φn(x) be the unnormalized Legendre polynomial of degree n and let

φn(x) be its normalized(leading coefficient is 1) Legendre polynomial. Let

kn = (2n)!
2n(n!)2 be the leading coefficients of Φn(x). Then general Gauss Lobatto

quadrature based on n+ 1 points for [−1, 1] is

∫ 1

−1
f(x)dx =

2

n(n+ 1)
(f(−1) + f(1)) +

n−1∑

i=1

Aif(xi),

where xi, i = 1, · · · , n− 1 are zeros of φ′n(x), the derivative of Legendre poly-

nomial of degree n and

Ai =
2

n(n+ 1)k2nφ
2
n(xi)

.

The error is of the form

E = cnf
(2n)(ξ)

which is exact up to degree 2n−1 compared to the 2n+1(Gauss quadrature);

we have given up the freedom of location of points.

General Gauss Radau quadrature

Let Φn(x) be the unnormalized Legendre polynomial of degree n and let φn(x)

be its normalized(leading coefficient is 1) Legendre polynomial. Let kn =
(2n)!

2n(n!)2
be the leading coefficients of Φn(x). Then the general Gauss Radau

quadrature based on n + 1 points(the point −1 plus n points in the open
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interval) for [−1, 1] is
∫ 1

−1
f(x)dx =

2

(n+ 1)2
f(−1) +

n∑

i=1

Aif(xi),

where xi, i = 1, · · · , n are the zeros of

knφn(x) + kn+1φn+1(x)

x− 1

and

Ai =
1− xi

(n+ 1)2k2nφ
2
n(xi)

, i = 1, · · · , n.

The error is of the form

E = dnf
(2n+1)(ξ).

General Gauss Chebysheff quadrature

If we use w(x) = 1√
1−x2

for the Gauss quadrature, we obtain Chebysheff

polynomial of first kind and consequently obtain a quadrature. The nodes xi

are the zeros of a polynomial orthogonal w.r.t w(x) = 1√
1−x2

.

It turns out the Chebysheff polynomial satisfies

∫ 1

−1
Tm(x)Tn(x)

1√
1− x2

dx = cmnδmn (3.14)

and hence the zeros are

xk = cos

(
2k + 1

2(n + 1)
π

)
, k = 0, · · · , n.

The interpolating polynomial p satisfies

f(x)− p(x) = f (n+1)(ξ)

(n+ 1)!
(x− x0) · · · (x− xn). (3.15)

Thus Gauss Chebysheff quadrature with weight w(x) = 1√
1−x2

based on n+1

points for [−1, 1] is
∫ 1

−1
f(x)w(x) dx =

n∑

i=0

Aif(xi),
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where xi, i = 0, · · · , n are the zeros of Tn+1(x) and it can be shown that

Ai =

∫ 1

−1

ℓi(x)√
1− x2

dx =
π

n+ 1
, i = 0, · · · , n. (3.16)

Remark 3.3.3. If we use w(x) =
√
1− x2 instead, we obtain Chebysheff

polynomial of second kind and hence obtain Gauss Chebysheff quadrature of

second kind which will not be discussed further.

xk = cos

(
k

(n+ 2)
π

)
, wi =

π

n+ 2
sin2

(
k

(n+ 2)
π

)
, k = 0, · · · , n.

Exercise 3.3.4. (1) Verify (3.14) and (3.16).

(2) Find quadrature points x0, · · · , xn and weight A0, · · · , An for Gauss-

Legendre quadrature, when n = 1, 2, 3

(3) Do the same for Gauss- Lobatto quadrature, when n = 2, 3, 4

Note T0 = 1, T1(x) = x and for n ≥ 0 we have

Tn+1(x) = 2−n cos[(n+ 1) cos−1 x] = (x− x0)(x− x1) · · · (x− xn)

is the monic polynomial having xi, i = 0, · · · , n as zeros. The Gauss Chebysheff

quadrature using these points is exact for P2n+1. Hence for m ≤ 2n+ 1

∫ 1

−1

Tm(x)√
1− x2

dx =
n∑

i=0

AiTm(xi).

Since

n∑

i=0

AiTm(xi) =




π m = 0

0 m = 1, 2, · · · , n.
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we see

m = 0 :

n∑

i=0

Ai = π

m = 1 :

n∑

i=0

AiT1(xi) = 0

m = 2 :
n∑

i=0

AiT2(xi) = 0

· · · = 0

m = n :

n∑

i=0

AiTn(xi) = 0.

If m is even, xi = −xn−i and xn
2
= 0. If m is odd, xi = −xn−i

Lemma 3.3.5. For 0 ≤ m < n

n∑

i=0

Tm+1(xi) = 0.

Proof. We see xi = −xn−i and xn
2
= 0 if n is even. First assume m is even.

Tm+1(xi) = 2−m cos[(m+ 1) cos−1 xi]

= 2−m cos[(m+ 1) cos−1(−xn−i)]

= −2−m cos[(m+ 1) cos−1(xn−i)]

= −Tm+1(xn−i).

So in this case we have the result. Next assume m is odd. We see by the same

way as above,

Tm+1(xi) = Tm+1(xn−i)

and cos[(m+ 1) · 0] = cos[(m+ 1)π] = 1. ???
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A clean proof is:

n∑

i=0

cos(2i + 1)t =

n∑

i=0

cos(2i+ 1)t sin t

sin t

=
1

2 sin t

n∑

i=0

[sin(2i + 2)t− sin(2i)t]

=
1

2 sin t
sin(2n+ 2)t

=
1

2 sin t
sin(kπ) = 0,

when t = tk = kπ
2n+2 for k = 1, 2, · · · , n.

So Ai =
π

n+1 are the solution by checking.

m = 0 :
n∑

i=0

Ai =π

m = k :

n∑

i=0

Ai cos[k
2i+ 1

2(n + 1)
π] =0

· · ·

m = n :

n∑

i=0

Ai cos[n
2i+ 1

2(n + 1)
π] =0.

Another method, Try: Note
∫ 1
−1

Tk(x)√
1−x2

dx =
∑n

i=0Aix
k
i for k = 0, 1, · · · , n,

f = 1 :

n∑

i=0

Ai =

∫ 1

−1

1√
1− x2

dx = π

f = x :

n∑

i=0

Aixi =

∫ 1

−1

x√
1− x2

dx = 0

f = x2 :
n∑

i=0

Aix
2
i =

∫ 1

−1

x2√
1− x2

dx =
π

2

f = xk(even) :

n∑

i=0

Aix
k
i =

∫ 1

−1

xk√
1− x2

dx = 2
k − 1

k

k − 3

k − 2
· · · π

2

f = xk(odd) :
n∑

i=0

Aix
k
i =

∫ 1

−1

xk√
1− x2

dx = 0
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∫ 1

0

x2n√
1− x2

dx =

∫ π/2

0
sin2n θ dθ =

2n − 1

2n

2n− 3

2n− 2
· · · π

2
.
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Chapter 4

Numerical solution of O.D.Es

4.1 Introduction

Consider a (scalar valued) initial value problem

{
x′(t) = f(t, x)

x(t0) = x0.
(4.1)

Theorem 4.1.1 (Existence and uniqueness). Let f and ∂f
∂x be continuous on

the region R = [0, T ]× [a, b]. Then there is some interval [0, T1] in which there

exists a unique solution to (4.1).

Higher order Equations

We may consider higher order equations in n unknowns. k-th order DE has

the following implicit form:

f(t,x,x′, · · · ,x(k)) = 0

where f : Rrn+n+1 → R
n is a known function and x(t) ∈ R

n is the unknown.

If an ODE can be written as

x(k) = f(t,x,x′, · · · ,x(k−1))

113
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then it is explicit form. Any higher order ODE can be written as a system of

first order equations as follows: We introduce new unknowns

u1(t) = x,u2(t) = x(1), · · · ,uk(t) = x(k−1), U = (u1,u2, · · · ,uk)
T

so that the k-th order ODE becomes

U′ =




u′
1

u′
2

· · ·
u′
k−1

u′
k



=




u2

u3

· · ·
uk

f(t,u1, · · · ,uk)



:= G(t,U) (4.2)

Thus it suffices to consider the following IVP:

{
x′(t) = G(t,x)

x(t0) = x0.
(4.3)

4.1.1 Existence and Stability

4.2 Numerical Methods

4.2.1 Finite Difference Method

Given a differentiable function f we let

f ′(x) ≈ f(x+ h)− f(x)
h

.

This is called a forward difference. The approximation

f ′(x) ≈ f(x)− f(x− h)
h

is called a backward difference.

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′(ξ1), ξ1 ∈ (x, x+ h)

∴
f(x+ h)− f(x)

h
= f ′(x) +

h

2
f ′′(x) +

h2

6
f ′′(ξ1).
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Similarly,

f(x− h) = f(x)− hf ′(x) + h2

2
f ′′(x)− h3

6
f ′′(ξ2), ξ2 ∈ (x− h, x)

∴

f(x)− f(x− h)
h

= f ′(x)− h

2
f ′′(x) +

h3

6
f ′′(ξ2).

Take the average

f ′(x) =
f(x+ h)− f(x− h)

2h
− h2

6

f ′′′(ξ1) + f ′′′(ξ2)
2

.

By MVT the average f ′′′(ξ1)+f ′′′(ξ2)
2 is achieved by f ′′′(γ) for some γ. Thus we

obtain a second order approximation to f ′(x). This is a central difference.

fi+1 − fi−1

2hi
− f ′(xi) = O(

h2i
6
) if hi = hi+1.

Treating the end points

It is sometimes necessary to have a O(h2) method at end points. But we

cannot use the central difference at end points. Can we derive O(h2) method

at end points without using the central difference? Consider

f(x) = f(x)

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′(γ1),

f(x+ 2h) = f(x) + 2hf ′(x) + 2h2f ′′(x) +
4h3

3
f ′′(γ2).

By taking a linear combination of these terms, we want to get an approxima-

tion to f ′(x). Assume

f ′(x) = af(x) + bf(x+ h) + cf(x+ 2h) +O(h2)

and use the Taylor expansion to find a, b, c. From

f ′(x) = af(x) + b(f(x) + hf ′(x) +
h2

2
f ′′(x))

+c(f(x) + 2hf ′(x) + 2h2f ′′(x)) +O(h3)
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we obtain

a+ b+ c = 0, b+ 2c =
1

h
,
b

2
+ 2c = 0.

The solution is

a = − 3

2h
, b =

2

h
, c = − 1

2h
.

So

f ′(x) =
−3f(x) + 4f(x+ h)− f(x+ 2h)

2h
+O(h2).

4.2.2 One step methods - Euler methods

Let x(n) = x(tn). Since

xn+1 − xn
hn

≈ x′(t) = f(tn, x
(n))

we approximate x by the following formula

x(n+1) ≈ x(n) + hnf(tn, x
(n)), hn = tn+1 − tn.

So we define a sequence

xn+1 = xn + hnf(tn, xn), x0 = x(t0).

This is called forward Euler method(explicit). If we replace f(tn, x
(n)) by

f(tn+1, x
(n+1)) we obtain

x(n+1) ≈ x(n) + hnf(tn+1, x
(n+1)).

This is called the backward Euler method(implicit). This is more stable

but need to iterate to find the solution. (Picard) These can be also derived

from the integral form:

x(n+1) = x(n) +

∫ tn+1

tn

f(t, x(t)) dt.

Errors

Several kinds of errors.
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(1) Local truncation error. Depends on the scheme – O(hn+1) for n-th order

methods.

(2) Local round off error. Depends on the machine – ∼ 10−14 for each

arithmetic for double precision.

(3) Global truncation error. Depends on the scheme – O(hn) since n =

(T − t0)/h.

(4) Global round off error. – ∼ 10−14n for each arithmetic for double preci-

sion.

(5) Total error — Sum of the above.

Analysis of Euler’s Method

We return to the one step methods. A general one step method has the form

yn+1 = yn + hΦ(xn, yn, h). (4.4)

Define the local truncation error(LTE) by

LTEn+1 = y(xn+1)− [y(xn) + hΦ(xn, y(xn), h)] (4.5)

The global error(GE) is defined as

GEn+1 = y(xn+1)− yn+1. (4.6)

Definition 4.2.1. For numerical methods such as (4.4)

(1) we say the scheme is consistent if the local truncation error approaches

0 as h→ 0.

(2) we say a method is stable if for all sufficiently small h and ǫ, there is a

K > 0 such that the numerical solution of y′ = f(x, y), y(x0) = y0 + ǫ

differs from the exact solution by at most ǫK.

(3) we say a method is convergent if the global error approaches 0 as h

tends to zero.
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For Euler’s methods, we have

LTEn+1 = y(xn+1)− [y(xn) + hf(xn, y(xn))]

= yn + hy′(xn) +
h2

2
y′′(ξn)− y(xn)− hf(xn, y(xn))

= yn + hf(xn, y(xn)) +
h2

2
y′′(ξn)− y(xn)− hf(xn, y(xn))

=
h2

2
y′′(ξn).

What about the global error?

y(xn+1) = y(xn) + hf(xn, y(xn)) + LTEn+1

y(xn+1)− yn+1 = y(xn) + hf(xn, y(xn)) + LTEn+1 − yn+1

= y(xn) + hf(xn, y(xn)) + LTEn+1 − [yn + hf(xn, yn)]

= y(xn)− yn + h[f(xn, y(xn))− f(xn, yn)] + LTEn+1

GEn+1 = GEn + h[f(xn, y(xn))− f(xn, y(xn)−GEn)] + LTEn+1.

Let us write en+1 = |GEn+1|. Then

en+1 ≤ en + h|f(xn, y(xn))− f(xn, y(xn)−GEn)|+M

for some positive M which bounds LTEn+1. Let f be a Lipschitz constant for

f w.r.t y. Then

|f(xn, y(xn))− f(xn, y(xn)−GEn)| ≤ L|GEn| = Len.

Hence

en+1 ≤ en + hLen +M = (1 + hL)en +M

≤ (1 + hL)((1 + hL)en−1 +M) +M

≤ (1 + hL)2en−1 +M(1 + hL) +M

≤ (1 + hL)n+1e0 +M(1 + hL)n + · · ·+M(1 + hL) +M

≤ M
(1 + hL)n+1 − 1

hL
(∵ e0 = 0).
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Assume (n+ 1)h ≤ T . Since (1 + hL) ≤ ehL, we have

(1 + hL)n+1 − 1

hL
≤ eh(n+1)L − 1

hL
≤ eTL − 1

(n + 1)hL
(n + 1).

en+1 ≤ M
eTL − 1

TL
(n + 1) ≤ Ch2(n+ 1) ≤ CTh.

Theorem 4.2.2. A stable scheme is convergent iff it is consistent.

Above argument shows that a consistent scheme is convergent. Conversely,

a convergent scheme is clearly consistent because LTE ≤ GE.

Method of undetermined coefficients

Consider the Taylor series

x(t+ h) = x(t) + hx′(x) +
h2

2!
x′′(t) +

h3

3!
x(3)(t) + · · · (4.7)

By taking derivatives, we see that

x′(t) = f

x′′(t) = ft + fxx
′ = ft + fxf

x′′′(t) = ftt + ftxf + (ft + fxf)fx + f(fxt + fxxf),

where f, ft, fx etc are evaluated at (t, x). The first three terms in the Taylor

series can be written as

x(t+ h) = x(t) + hf +
1

2
h2(ft + ffx) +O(h3) (4.8)

= x(t) +
1

2
hf +

1

2
h[f + hft + hffx] +O(h3). (4.9)

One could define a numerical scheme using this formula. However, we need

to provide ft and fx. We will try a more efficient way of evaluating the value

x(t+ h). Using

f(t+ h, x+ hf) = f + hft + hffx +O(h2), (4.10)

we see

x(t+ h) = x+
1

2
hf +

1

2
hf(t+ h, x+ hf) +O(h3).
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Hence we define

xn+1 = xn +
1

2
(F1 + F2), sim. to trapezoid rule (4.11)

where

F1 = hf(tn, xn), F2 = hf(tn + h, xn + F1).

This is called a second order Runge -Kutta methods(truncation error is

O(h3)) or Heun’s Method. Let us count the cost: For (4.9) we see

3 function evaluations, 4 multi and 3 additions,

while for (4.11) we have

2 function evaluations, 2 multi and 4 additions.

Usually function evaluations require several arithmetic operations.

One can obtain more general second order Runge -Kutta method by setting

x(t+ h) = x(t) + w1hf + w2hf(t+ αh, x + βhf) +O(h3), (4.12)

where w1, w2, α, β are parameters to be determined. With the aid of Taylor

expansion (4.10), it can be written as

x(t+ h) = x(t) + w1hf + w2h[f + αhft + βhffx] +O(h3).

Comparing this with (4.9) we obtain





w1 + w2 = 1

w2α = 1
2

w2β = 1
2 .

One solution is w1 = w2 = 1
2 , α = β = 1. Hence we get Heun’s method from

(4.12). Other solution may exists, such as w1 = 0, w2 = 1, α = β = 1
2 . The

result is called modified Euler method:

xn+1 = xn + F2,

where

{
F1 = hf(tn, xn)

F2 = hf(tn + 1
2h, xn + 1

2F1). sim. to mid point rule
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Predictor-corrector methods

We start from the integral form:

x(n+1) = x(n) +

∫ tn+1

tn

f(t, x(t)) dt.

If we use trapezoidal rule to approximate the integral, we get

xn+1
.
= xn +

h

2
[f(tn, xn) + f(tn+1, xn+1)].

The result is a nonlinear equation in xn+1. One way of solving it is to re-

place(Predict) the term xn+1 on the right by some approximation.

If we use Euler’s method as a predictor,(i.e, replace xn+1 by xn+hf(tn, xn))

we obtain the Heun’s method:

x
(P )
n+1 = xn + hf(tn, xn) (4.13)

xn+1 = xn +
h

2
[f(tn, xn) + f(tn+1, x

(P )
n+1)]. (4.14)

This is another interpretation of the Heun’s method. We can go one step fur-

ther: If we use the result of Heun’s method as a corrector then the corrected

Heun’s method is obtained:

x
(P )
n+1 = xn + hf(tn, xn)

x
(C)
n+1 = xn +

h

2
[f(tn, xn) + f(tn+1, x

(P )
n+1)]

xn+1 = xn +
h

2
[f(tn, xn) + f(tn+1, x

(C)
n+1)].

Fourth order Runge-Kutta method

Higher order Runge-Kutta method can be obtained by similar idea. The fol-

lowing is the fourth order Runge-Kutta method. Composite finite elements for

elliptic boundary value problems with discontinuous coefficients. Computing

77, 29

xn+1 = xn +
1

6
(F1 + 2F2 + 2F3 + F4),
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where 



F1 = hf(t, xn)

F2 = hf(t+ 1
2h, xn + 1

2F1)

F3 = hf(t+ 1
2h, xn + 1

2F2)

F4 = hf(t+ h, xn + F3).

4.3 Multistep methods

So far, the approximation at x(tn+1) depends on the value of f only at xn =

x(tn). The known values xn−1, xn−2, · · · are not used. More efficient methods

can be derived if one utilizes these values.

Consider again {
x′(t) = f(t, x(t))

x(t0) = x0
.

We set by integrating

xn+1 = xn +

∫ tn+1

tn

f(t, x(t))dt.

The integral on the right side can be approximated by a numerical quadrature

using several points.

Adams Bashforth formula-Explicit methods

We assume hn = h for all n. Suppose the formula is of the following form:

xn+1 = xn + a0fn + a1fn−1 + · · · ,

where fn = f(tn, xn) and

∫ tn+1

tn

f(t, x(t))dt ≈
∑

i

aifn−i.

Such a formula is called Adams Bashforth Formula. The Adams Bashforth
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Formula of order 2,3,4,5(resp.) are as follows: HW. 4.29

xn+1 = xn +
h

2
[3fn − fn−1], lte = O(h3) (4.15)

xn+1 = xn +
h

12
[23fn − 16fn−1 + 5fn−2], lte = O(h4) (4.16)

xn+1 = xn +
h

24
[55fn − 59fn−1 + 37fn−2 − 9fn−3], lte = O(h5) (4.17)

xn+1 = xn +
h

720
[1901fn − 2774fn−1 + 2616fn−2 − 1274fn−3 + 251fn−4].

(4.18)

For example, (4.18) can be derived by considering the following quadrature.

∫ tn+1

tn

f(t, x(t))dt ≈ h[Afn +Bfn−1 + Cfn−2 +Dfn−3 + Efn−4]

so that the integral is exact for polynomials of degree four. Without loss of

generality, we assume t0 = 0 and h = 1 so that tn−4 = −4, · · · , tn = 0, tn+1 =

1. We take the following forms for polynomial basis(recall Newton form).

p0(t) = 1

p1(t) = t

p2(t) = t(t+ 1)

p3(t) = t(t+ 1)(t+ 2)

p4(t) = t(t+ 1)(t+ 2)(t+ 3)

We require the quadrature to be exact for these polynomials, i,e, for n =

0, 1, · · · , 4,
∫ 1

0
pn(t) dt = Apn(0) +Bpn(−1) + Cpn(−2) +Dpn(−3) +Epn(−4).

Solving these equations, we obtain coefficients in (4.18).

Remark 4.3.1. To use multistep methods, we need starting values since only

x0 is known. One choice is to use Runge-Kutta method in the first few steps

to get xn, n = 1, 2, 3, · · · . Usually, formula of the same order are used.
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Adams-Moulton method-predictor-corrector

A more precise formula can be derived if backward scheme is used, i.e, fn+1

is used in integrating the integral, we obtain

xn+1 = xn + afn+1 + bfn + cfn−1 + · · ·

which can also be obtained by the method described above. But this formula

cannot be used as is since right hand side contains an unknown. Instead, if a

reasonable approximation to fn+1 is known, we can derive an efficient method.

Here we introduce so called predictor-corrector method. First, use Adams

-Bashforth formula to find a tentative value x
(P )
n+1, then use Adams-Moulton

Formula to compute the corrected value of xn+1 by f(tn+1, x
(P )
n+1).

First, Adams-Moulton Formula of order 2,3,4, 5 are as follows:

xn+1 = xn +
h

2
[fn+1 + fn], lte = O(h3) (4.19)

xn+1 = xn +
h

12
[5fn+1 + 8fn − fn−1], lte = O(h4) (4.20)

xn+1 = xn +
h

24
[9fn+1 + 19fn − 5fn−1 + fn−2], lte = O(h5) (4.21)

xn+1 = xn +
h

720
[251fn+1 + 646fn − 264fn−1 + 106fn−2 − 19fn−3]. (4.22)

Combining these with Adams-Bashforth formula (4.16),(4.17),(4.18), we

can derive Adams-Moulton predictor- corrector methods: For example Adams-

Moulton method of order 4 is

{
x
(P )
n+1 = xn + h

24 [55fn − 59fn−1 + 37fn−2 − 9fn−3]

xn+1 = xn + h
24 [9fn+1(tn+1, x

(P )
n+1) + 19fn − 5fn−1 + fn−2].

Another method to approximate xn+1 is to use fixed point iteration:

zk+1 = φ(zk).

For example, to find xn+1 in (4.22), we let φ(z) = 251
720hf(tn+1, z)+F (xn, xn−1, · · · ),

etc. F denotes the rest of terms. It is guaranteed to converge to the fixed

point if |φ′(z)| < 1 which can be assured if we take h sufficiently small.

There are other methods: The 3-th order Milne-Thompson Formula is as
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follows:

xn+1 = xn−3 + h

[
8

3
fn −

4

3
fn−1 +

8

3
fn−2

]
. (4.23)


