
Contents

5 Solving matrix equations Ax = b 77

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 System of linear equations . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Gaussian elimination-LU decomposition . . . . . . . . . 88

5.2.2 Keeping track of Permutation . . . . . . . . . . . . . . . 95

5.3 Iterative method for large system of equation . . . . . . . . . . 108

5.3.1 Convergence of iterative scheme . . . . . . . . . . . . . . 112

6 Algebraic eigenvalue problem 121

6.1 Inclusion or exclusion theorem . . . . . . . . . . . . . . . . . . 121

6.2 Jacobi algorithm (Hermitian case) . . . . . . . . . . . . . . . . 123

6.3 Givens algorithm for tridiagonalization . . . . . . . . . . . . . . 127

6.4 Householder transformations . . . . . . . . . . . . . . . . . . . 129

6.4.1 Reduction to U-H form by elementary reflector . . . . . 129

6.4.2 Reduction to tridiagonal matrix when A is symmetric . 132

6.5 Eigenvalues of symmetric tridiagonal matrix(Givens) . . . . . . 133

6.6 Eigenval of symm. tridiag by bisection-Wilkinson . . . . . . . . 136

6.6.1 The Sturm sequence property . . . . . . . . . . . . . . . 136

6.6.2 The bisection process-Wilkinson original method . . . . 137

6.6.3 A modified method to avoid under/overflow . . . . . . . 137

6.7 Gram-Schmidt Orthogonalization and the QR Decomposition . 141

6.7.1 Classical Gram-Schmidt . . . . . . . . . . . . . . . . . . 141

6.7.2 Other Ways to Obtain QR-decomposition . . . . . . . . 144

6.8 Subspace Iterations . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.8.1 Power method - a few extreme eigenvalues . . . . . . . . 147

6.8.2 Inverse power method . . . . . . . . . . . . . . . . . . . 150

6.8.3 Inverse power method with origin shift . . . . . . . . . . 150

6.8.4 Deflation method . . . . . . . . . . . . . . . . . . . . . . 151

6.8.5 Simultaneous Iteration . . . . . . . . . . . . . . . . . . . 152

6.8.6 QR - Iteration . . . . . . . . . . . . . . . . . . . . . . . 155

6.8.7 Krylov Subspace Methods . . . . . . . . . . . . . . . . . 159

6.9 Generalized Eigenvalue Problems . . . . . . . . . . . . . . . . . 162

6.10 Stability and Condition number for the eigenvalue problem . . 163

1



76 CONTENTS

6.10.1 Error bound of eigenvalues . . . . . . . . . . . . . . . . 165
6.11 Least Square Methods - by QR . . . . . . . . . . . . . . . . . . 168
6.12 Singular Value decomposition . . . . . . . . . . . . . . . . . . . 170
6.13 Solving linear system by minimizing the residual . . . . . . . . 172



Chapter 5

Solving matrix equations
Ax = b

5.1 Preliminaries

Definition 5.1.1. A n × n matrix A is it similar to B if there exists a non-
singular matrix P such that PAP−1 = B. It is called a similarity transfor-
mation. If B is a diagonal matrix then A is called diagonalizable.

Definition 5.1.2 (non-defective). If A has n-linearly independent eigenvec-
tors, then it is called non-defective. Otherwise, it is defective.

A nonsingular matrix can be defective.

Theorem 5.1.3. Eigenvectors corresponding to distinct eigenvalues are lin-
early independent.

Theorem 5.1.4. If PAP−1 = B then A and B have the same set of eigen-
values.

We have a characterization of diagonalizable matrices:

Theorem 5.1.5. A is diagonalizable if and only if there exists a positive
definite Hermitian matrix P such that PAP−1 = N is a normal matrix.

How do we classify defective matrices? The best way is to study the multi-
plicity of the eigenvalues and the number of linearly independent eigenvectors
associated to it.

Definition 5.1.6. The elementary divisors of a square matrix A are the poly-
nomials (λ − α1)

e1 , · · · , (λ − αt)
et obtained from the characteristic equation

|A− λI| = 0.

77



78 CHAPTER 5. SOLVING MATRIX EQUATIONS AX = B

Jordan canonical form

To each elementary divisor (λ− α)e we associate an elementary Jordan block
of the form

Jα =








α 1 0 0
α 1 0

. . . 1
α







,

where Jα is order e × e. If e = 1, Jα contains the single element α. Once we
have elementary divisors of A, we can construct the Jordan canonical form.

Definition 5.1.7. Jordan canonical form is a block diagonal matrix whose
diagonal blocks are elementary Jordan blocks.

The following shows the relation between elementary divisor and Jordan
blocks.

Theorem 5.1.8. Any n × n matrix A is similar to J , a Jordan canonical
form. J is unique up to permutation of elementary Jordan blocks.

An example

J =











1 0

0 1 0

0 α1 0

0 α1 0

0 α2 1
0 α2











Corollary 5.1.9. If (λ− λ1)
e1 , (λ − λ2)

e2 , · · · , (λ − λt)
et are the elementary

divisors of A, where λ1, λ2, · · · need not be distinct, then

n = e1 + · · ·+ et.

If all elementary divisors are linear, then e1 = e2 = · · · = 1 and t = n.
Thus Jordan canonical form is diagonal.

Theorem 5.1.10. If A has t elementary Jordan blocks in its Jordan canonical
form, then A has a set of t linearly independent eigenvectors.

Theorem 5.1.11. If α is an eigenvalue of A which appears in r elementary
divisors of A (or in r elementary Jordan blocks) then there exists r linearly
independent eigenvectors of A associated with α.

Definition 5.1.12. If S is a vector subspace of Rn such that AS ⊂ S, then
S is called an invariant subspace of A.

Thus the subspace of eigenvectors corresponding to an eigenvalue α is an
invariant subspace.
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Definition 5.1.13. Let (λ − λ1)
e1 , (λ − λ2)

e2 , · · · , (λ − λt)
et be elementary

divisors of A. If λ1, · · · , λt are distinct, then A is called non-derogatory. On
the other hand, if any two of λ′s are equal, we say A is derogatory. Stated
again, A is derogatory if and only if the same eigenvalue appears in more than
one elementary Jordan block in its Jordan canonical form.

Householder reflection

Given two vectors u,v of the same length, we want to find an orthogonal
transform which maps u to v.

The following form of n×nmatrixHw is called aHouseholder reflection
(elementary reflector), if

Hw = I − 2ww∗, w∗ := w̄T

for some unit vector w ∈ R
n. Here Pw := ww∗ is a projection along the vector

w. Clearly Hw is symmetric and orthogonal (H∗
w = Hw and H∗

wHw = I). We
need to find w so that the Householder reflection satisfies Hwu = v. From
the figure 5.1 we can see w is given by

w =
u− v

‖u− v‖ . (5.1)

Theorem 5.1.14 (Schur). If M ∈ C
n,n, then ∃ a unitary matrix U such

that UHMU = T , where T is upper triangular, displaying eigenvalues on the
diagonal. If M is a real matrix, then it is possible to choose a real symmetric
matrix U , and T is real, block upper triangular, each of the blocks are either

1× 1 or 2× 2 blocks of the form

[
a −b
b a

]

.

q

v

u

Pwu

−2Pwu

w

w = u−v

‖u−v‖

Figure 5.1: Action of an elementary reflector Hw

A constructive proof. Let λ1 be an eigenvalue of M and u be a corresponding
eigenvector(there exists at least one) with u1 ≤ 0 and uHu = ‖u‖2 = 1 so
that Mu = λ1u. There exists a vector w such that wHw = 1 and

(I − 2wwH)e1 = u. (5.2)
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Let U1 = I − 2wwH . Then UH
1 = U1 and we have

UH
1 MU1 = UH

1 M(I − 2wwH).

Its first column is

UH
1 M(I − 2wwH)e1 = UH

1 Mu = UH
1 λ1u = λ1e1.

Thus,

UH
1 MU1 =








λ1 b2 . . . bn
0
... M1

0







. (5.3)

We repeat above process for M1 to construct U ′
2 ∈ R

(n−1)×(n−1) so that
(U ′

2)
HM1U

′
2 is a (n− 1)× (n− 1) matrix similar to (5.3). Let

U2 =








1 0 . . . 0

0
... U ′

2

0







.

Then

UH
2 MU2 =








1 0 . . .

0
... (U ′

2)
H

0















λ1 b2 . . . bn
0
... M1

0















1 0 . . .

0
... U ′

2

0








=








λ1 ∗
0
... (U ′

2)
HMU ′

2

0







=










λ1 ∗ ∗
0 λ2 ∗
0 0
...

... M2

0 0










.

Continue the same process to obtain U3, . . . , Un−1. Finally, U = U1U2 · · ·Un−1

is the desired unitary matrix. The eigenvalues of M are clearly the diagonal
elements of T obtained in this process.

A nonconstructive proof. Let u1 be an eigenvector of A, which has unit
length. By the Gram-Schmidt process we may choose u′

2, · · · ,u′
n so that

{u1,u
′
2, · · · ,u′

n} is an orthonormal basis. Let Q0 = [u1,u
′
2, · · · ,u′

n]. Then

Q0 is unitary and Q∗
0AQ0 =

[
λ1 ∗
0 A1

]

, for some (n − 1) × (n − 1) matrix
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A1. Likewise, we may find a unitary (n − 1) × (n − 1) matrix Q1 so that

Q∗
1A1Q1 =

[
λ2 ∗
0 A2

]

. Then if S1 = Q0

[
1 0
0 Q1

]

, we have

S∗
1AS1 =





λ1 ∗ ∗
0 λ2 ∗
0 0 A2





Note that S1 is unitary by Theorem. Now continue in this fashion, letting

Sk = Sk−1

[
Ik 0
0 Qk

]

, and we see that U = S∗
nASn is upper triangular. Letting

S = Sn we see that A = SUS∗.

Remark 5.1.15. Componentwise, the equation (5.2) becomes

1− 2|w1|2 = u1,−2wiw̄1 = ui, for i = 2, · · · , n.

Since u1 ≤ 0, w1 = ±
√

1−u1
2 6= 0 (real). So we have

wi = −
ui
2w1

, i = 2, · · · , n.

One can check that

w∗w =

n∑

i=1

|wi|2 =
1− u1

2
+

n∑

i=2

|ui|2
4|w1|2

=
1− u1

2
+

1− u21
2(1− u1)

= 1.

Except a multiplicative constant, this process produces the same vector as
(5.1).

Corollary 5.1.16. If M is Hermitian, then T is diagonal.

Proof.
(UHMU)H = UHMHU = UHMU = T = TH .

Moreover, since T has real diagonal elements, the eigenvalues ofM are real.

Vector norm and its subordinate matrix norm

Definition 5.1.17. A vector norm ‖ · ‖ : Cn → R
1 is a function satisfying

(1) ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0

(2) ‖cx‖ = |c| ‖x‖

(3) ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

Example 5.1.18. (1) ‖x‖1 =
∑ |xi|

(2) ‖x‖2 = (
∑ |xi|2)

1
2 = (xH · x) 1

2 ≡ (x,x)
1
2
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(3) ‖x‖p = (
∑ |xi|p)

1
p for 1 ≤ p <∞.

(4) ‖x‖∞ = maxi |xi|.

Exer. prove that ‖ · ‖2 satisfies (3).

‖x+ y‖22 = (x+ y)H(x+ y) = ‖x‖22 + ‖y‖22 + yHx+ xHy (real number)

≤ ‖x‖22 + ‖y‖22 + 2(
∑

|yi|2)1/2 · (
∑

|xi|2)1/2

= (‖x‖2 + ‖y‖2)2.

Theorem 5.1.19. We have

(1) ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤ n‖x‖∞

(2) ‖x‖2 ≤ n
1
2‖x‖∞

(3) n− 1
2‖x‖1 ≤ ‖x‖2.

Exercise 5.1.20. Show

(1) ‖x‖2 ≤ n
1
2‖x‖∞

(2) n− 1
2‖x‖1 ≤ ‖x‖2

(3) Show that ‖x‖p is a norm for 1 ≤ p <∞, but not a norm for 0 < p < 1.

1982 MAA Ratio of Matrix Norms E 2847 [1980, 671]. Proposed by Emeric
Deutsch, Polytechnic Institute of New York, Brooklyn. For the n × n real
matrix A = [aij ], define

‖A‖∞ = max
i

n∑

j=1

|aij |; ‖A‖2 = max eigenvalue of A ∗A; |||A|||2 =
n∑

j=1

|aij |2.

Set Re A = 1
2 (A+A∗). Find

(i) max
A≥0, 6=0

‖A‖∞/|||Re A|||; (ii) max
A≥0, 6=0

‖A‖∞/|||Re A|||.

Here A∗ denotes the transpose of A; A > 0 means A has no negative element.
The answer is

(i)2
√

(n− 1) if n ≥ 2(and 1 if n = 1); (ii)
√

(2n− 1).

Definition 5.1.21. We say f : Cn → R is uniformly continuous, if for each
x ∈ C

n, and given ε > 0 there exists a δ > 0 such that |f(x) − f(y)| < ε,
whenever ‖x− y‖∞ < δ.

Theorem 5.1.22. If ‖ · ‖ is any norm, then it is a continuous function.
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Proof.

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ =
∥
∥
∥
∥
∥

n∑

i=1

(xi − yi)ei

∥
∥
∥
∥
∥
≤ max |xi − yi|

n∑

i=1

‖ei‖

= ‖x− y‖∞
n∑

i=1

‖ei‖.

Thus if we choose δ < ǫ∑n
i=1 ‖ei‖

, then we see

| ‖x‖ − ‖y‖ | < ǫ.

Definition 5.1.23. We say two norms ‖ · ‖α and ‖ · ‖β are equivalent if there
exist positive constants C0, C1 such that

C0‖x‖α ≤ ‖x‖β ≤ C1‖x‖α, for all x ∈ V.

Theorem 5.1.24. In a finite dimensional normed linear space V , all norms
are equivalent. In other words, if ‖ · ‖α and ‖ · ‖β are any two norms, then
there exist positive constants C0, C1 such that C0‖x‖α ≤ ‖x‖β ≤ C1‖x‖α for
all x ∈ V .

Proof. We shall show every norm is equivalent to ‖ · ‖∞. First let S = {y ∈
V : ‖y‖∞ = 1}. Then S is closed and bounded. Let ‖ · ‖ be any other norm.
Since any norm is a continuous function, it assumes a positive max and min
on S, i.e., 0 < m ≤ ‖y‖ ≤ M on S. Then for any x 6= 0 ∈ C

n, x
‖x‖∞ ∈ S.

Hence m ≤
∥
∥
∥

x
‖x‖∞

∥
∥
∥ ≤M . In other words,

m‖x‖∞ ≤ ‖x‖ ≤M‖x‖∞.

This inequality obviously holds for x = 0. Finally transitivity of equivalence
relation proves the result.

Definition 5.1.25. Let ‖ · ‖ be a vector norm, and let A be in C
n,n. Then

the norm ‖A‖ of A defined by

‖A‖ := sup
‖x‖6=0

‖Ax‖
‖x‖ ≡ sup

‖x‖=1
‖Ax‖

is called the matrix norm subordinate to the vector norm ‖ · ‖.

Properties of a matrix norm:

(1) ‖A‖ ≥ 0 and ‖A‖ = 0 iff A ≡ 0

(2) ‖cA‖ = |c| ‖A‖
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(3) ‖A+B‖ ≤ ‖A‖+ ‖B‖

(4) ‖A · B‖ ≤ ‖A‖ · ‖B‖

(5) ‖Ax‖ ≤ ‖A‖ · ‖x‖

Definition 5.1.26. Let A ∈ C
n,n have eigenvalues {λi} ordered in such a way

that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Then ρ(A) = |λ1| is called the spectral radius
of A.

Theorem 5.1.27. Let A = [aij ] ∈ C
n,n. Then we have

(1) ‖A‖1 = maxj
∑

i |aij |,(maximum column sum),

(2) ‖A‖2 =
√

ρ(AHA), ‖A‖2 = ρ(A) if A = AH ,

(3) ‖A‖∞ = maxi
∑

j |aij |, (maximum row sum).

Proof. (2) We note that

‖A‖2 = sup
‖x‖2=1

‖Ax‖2 = sup
√

(Ax, Ax) = sup
√
xHAHAx.

Since AHA is Hermitian, it has a complete set of orthonormal eigenvectors,
v1, . . . ,vn corresponding to eigenvalues {µj}nj=1. Moreover, the eigenvalues

are non-negative since AHA positive semi-definite. We arrange them so that
µ1 ≥ µ2 · · · ≥ µn ≥ 0. Since any x can be written as x =

∑n
j=1 cjvj , we have

0 ≤ (

n∑

j=1

cjvj)
HAHA(

n∑

j=1

cjvj) = (

n∑

j=1

cjvj)
H(

n∑

j=1

µjcjvj) =

n∑

j=1

µj|cj |2.

But since ‖x‖2 =
∑n

j=1 |cj |2 = 1, we see

sup
‖x‖2=1

√
√
√
√

n∑

j=1

µj|cj |2 =
√
µ1.

H.W prove (1) and (3).

Theorem 5.1.28. If λ is any eigenvalue of A and ‖ · ‖ is any matrix norm,
then |λ| ≤ ‖A‖. Furthermore, if ε > 0 is given, then there exists a norm ‖ · ‖α
such that ‖A‖α ≤ ρ(A) + ε.

Proof. First statement is left to the reader. For the second assertion, we
recall Schur’s lemma. There exists a unitary matrix U such that UHAU = T
is upper triangular whose diagonal elements are eigenvalues of A. Let D =
Diag(α1, α2, . . . , αn), with α > 0. Define ‖·‖α by ‖x‖α = ‖D−1UHx‖∞. Then
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we see (D−1TD)ij = tijα
j−i and we compute the norm of A subordinate to

the vector norm ‖ · ‖α.

‖A‖α = sup
‖x‖α=1

‖Ax‖α = sup
‖D−1UHx‖∞=1

‖D−1UHAx‖∞

= sup
‖D−1UHx‖∞=1

‖D−1UHAUDD−1UHx‖∞ = sup
‖y‖∞=1

‖D−1UHAUDy‖∞

= sup
‖y‖∞=1

‖D−1TDy‖∞ = sup
‖y‖∞=1

max
i

(
∑

j≥i

tijα
j−iyj

)

≤ sup
‖y‖∞=1

max
i

(
∑

j≥i

|tijαj−i|
)

= max
i

(

|tii|+
∑

j>i

|tij|αj−i

)

≤ max
i
|tii|+ ε = ρ(A) + ε,

if α is sufficiently small.

Definition 5.1.29 (Convergence of a matrix). We say Ak converges to zero
if the entries of Ak converges to zero.

Corollary 5.1.30. For A ∈ C
n,n, we have limk A

k = 0 if and only if ρ(A) < 1.

Proof. Suppose that ρ(A) < 1. Then by above theorem, there exists an α > 0

such that ‖A‖α ≤ ρ(A) + 1−ρ(A)
2 < 1. So

‖Ak‖α ≤ ‖A‖kα ≤ (
ρ(A) + 1

2
)k −→ 0.

By the norm equivalences theorem for matrices, we conclude that

lim
k
‖Ak‖∞ = 0,

i.e., the maximum row sum approaches 0. Thus, each entry approaches zero.
Conversely, assume limk A

k = 0. Then limk ‖Ak‖∞ = 0. But then ‖Ak‖ ≥
ρ(Ak) = ρk(A)→ 0. Hence ρ(A) < 1.

(Alternative proof) We transform A into a Jordan canonical form S−1AS = J .
Then S−1AkS = Jk → 0 if the eigenvalues are < 1. Hence Ak → 0.

Banach Fixed Point Theorem

Definition 5.1.31. Let S be a subset of a normed linear space X. If every
Cauchy sequence in S converges in S, we say S is complete.
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Definition 5.1.32. Let S be a subset of a normed linear spaceX. An operator
A : S → X is called a contraction operator if there is a constant λ ∈ [0, 1) such
that

‖Ax−Ay‖ ≤ λ‖x− y‖
for all x, y ∈ S.

Theorem 5.1.33 (Banach). Let S be a complete subset of a normed space X
and A : S → A be a contraction. Then A has a unique fixed point. Further-
more, the sequence generated by

xn+1 := Axn, n = 0, 1, 2, · · · ,

with any starting point x0 converges to the unique fixed point x and we have
the a priori error estimate

‖xn − x‖ ≤ λn

1− λ
‖x1 − x0‖.

Proof. Left as an exercise.

Exercise 5.1.34. (1) Let A be a n×n symmetric, positive definite matrix.
Show that

√

〈A·, ·〉 is a norm on R
n.

(2) Let X,Y,Z be three normed linear spaces and let B : X → Y and
A : Y → Z are bounded linear operators. Show that ‖AB‖ ≤ ‖A‖‖B‖.

(3) Show the following:

Let f : [0,∞)→ [0,∞) be given by

f(x) = x+
1

1 + x

satisfy |f(x)− f(y)| < |x− y| for all x ≥ 0. However, it does not have a
fixed point.

(4) Can you find another nontrivial example in the above problem ? espe-
cially vector valued case?

f(x) = (x1 +
1

x1 + x2
, x2 +

1

x1 + x2
)

(5) Let X,Y be normed linear spaces and denote by L(X,Y ) the linear
space of all bounded linear operators A : X → Y . Show that the space
L(X,Y ) equipped with the norm

‖A‖ := sup
‖x‖=1

‖Ax‖

is again a normed space and L(X,Y ) is a Banach space if Y is a Banach
space.
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(6) (a) Show that for any n× n matrix A with ‖A‖ < 1, the series

A+
A2

2
+

A3

3
+ · · ·

converges and denote its limit by − ln(I −A).

(b) Show that if λ is an eigenvalue of A then − ln(1−λ) the eigenvalue
of − ln(I −A).

5.2 System of linear equations

n∑

j=1

aijxj = bi, i = 1, . . . ,m(m ≥ n)

Ax = b, A ∈ C
m,n, b ∈ C

m

We say Ax = b is consistent if it has at least one solution.

Definition 5.2.1. [A : b] : m× (n+ 1) is called augmented matrix.

Theorem 5.2.2. Ax = b is consistent iff

rank[A : b] = rank[A],

i.e, if b can be obtained by a linear combination of columns of A. In this case,
the coefficient is a solution x.

Theorem 5.2.3. If Axp = b, then any solution of Ax = b has the form
y = xp +w, where w ∈ ker(A).

Theorem 5.2.4. If A ∈ C
m,n has a submatrix of order r such that the sub-

matrix has nonzero determinant and r is the largest such number, then

rankA = r.

Corollary 5.2.5. Ax = b has a unique solution iff rank(A) = n iff there
exists some n× n submatrix with nonzero determinant.

Cramer’s rule

If m = n and A is nonsingular, then

Ax = b

x = A−1b, A−1 =
1

detA
[cij ],

where cij = (−1)i+j detAji is the cofactor obtained by deleting j-th row and
i-th column. In other words,

A−1 =
1

detA
(Adj(A)).

Cramer’s rule is useful for theoretical analysis. However, it’s computational
cost is high and hardly used for n > 3.
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5.2.1 Gaussian elimination-LU decomposition

Let A ∈ C
n,n be nonsingular. We would like to transform the equation Ax = b

into LUx = b or Ux = b′, where U(L) is upper(lower) triangular. The
resulting upper triangular system of equation

∑

j≥i

u
(1)
ij xj = b′i, i = 1, . . . , n

is easily solved by back(forward) substitution.

Step 1; Create zeros on the first column

We first create 0 at (2, 1) position while adjusting the entire 2nd row.

To do so we assume a11 6= 0 and let m21 =
a
(1)
21
a11

. Then do

a
(2)
2j = a

(1)
2j −m21a

(1)
1j j = 2, . . . , n; (5.4)

Repeat procedure (5.4) for i = 3, · · · , n: Create 0 at (i, 1) position
while adjusting the entire i-th row.

Let mi1 =
a
(1)
i1
a11

. Set

a
(2)
ij = a

(1)
ij −mi1a

(1)
1j , j = 2, . . . , n.

Resulting matrix looks like:

(A′ : b′) =









a
(1)
11 a

(1)
12 . . . a

(1)
1n b

(1)
1

0 a
(2)
22 . . . a

(2)
2n b

(2)
2

...
...

...
...

0 a
(2)
n2 . . . a

(2)
nn b

(2)
n









operation count

# of divisions for mi1, (2 ≤ i ≤ n) is n−1 and # of multiplication for adjusting
(n− 1)× (n− 1) submatrix is (n− 1)2. (Same for addition)

The matrix (elementary) involved is E21(m21), . . . , En1(mn1), where

Eij(r) ≡
i− th









1 0
. . .

r
. . .

1









is an elementary row matrix whose action, when multiplied on the left, is to
add r-times of j-th row to i-th row. Let M1 = En1(mn1) . . . E21(m21). Then

[A′ : b′] = En1(mn1) . . . E21(m21)[A : b] = M1[A : b].

Observe
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(1) M1 is nonsingular,

(2) Eij (i > j) are elementary row operations whose entries are mij .

(3) detM1 = 1,

(4) M1 is lower triangular.

Now M1 and its inverse are given by the following form.

Lemma 5.2.6.

M1 =

[
1 0

−m1 In−1

]

, M−1
1 =

[
1 0

m1 In−1

]

, (5.5)

where m1 = [m21,m31, · · · ,mn1]
T and In−1 is (n−1)×(n−1) identity matrix.

Since

M1A =

[

a11 A
(1)
12

0 A
(2)
22

]

≡ U1 =

[

I1 0

0 A
(2)
22

] [

a11 A
(1)
12

0 In−1

]

, (5.6)

we have

A =

[
I1 0

m1 In−1

][

I1 0

0 A
(2)
22

][

a11 A
(1)
12

0 In−1

]

. (5.7)

Step 2: Create zeros on the second column

Assume a
(2)
22 6= 0 and let m32 =

a
(2)
32

a
(2)
22

, and set

a
(3)
3j = a

(2)
3j −m32a

(2)
2j , j = 3, . . . , n. (5.8)

Repeat procedure (5.8) for for i = 4, · · · , n: Let mi2 =
a
(2)
i2

a
(2)
22

and set

a
(3)
ij = a

(2)
ij −mi2a

(2)
2j , j = 3, . . . , n.

Then we see
En2(mn2) · · ·Ei2(mi2) · · ·E32(m32)[A

1 : b1]

=












a
(1)
11 . . . . . . . . . . . . . . a

(1)
1n b

(1)
1

0 a
(2)
22 . . . . . . . . a

(2)
2n b

(2)
2

... 0 a
(3)
33 . . . a

(3)
3n b

(3)
3

...
...

...

0 0 a
(3)
n3 . . . a

(3)
nn b

(3)
n












# of divisions is n− 2 for mi2, for 3 ≤ i ≤ n
# of multiplication is (n− 2)2
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Step 3

Continuing above process, we get(as long as no zero elements appear in the
pivot) a sequence of matrices

Mr =








Ir 0 0 0
0 1 0 0
... −mr

. . .

0 0 1







,

where mr = [mr+1,r, · · · ,mnr]
T .

A =

[

Ik 0

L
(k)
21 In−k

][

Ik 0

0 A
(k)
22

] [

A
(k)
11 A

(k)
12

0 In−k

]

. (5.9)

This process is called Gaussian elimination.

Now the pseudo algorithm for Gaussian elimination(LU-decomposition) is

input n, aij, (bi)
for k = 1, · · · , n− 1 do

for i = k + 1, · · · , n do

mik =
a
(k)
ik

a
(k)
kk

;

for j = k + 1, · · · , n do

a
(k+1)
ij ← a

(k)
ij −mika

(k)
kj

end
end

end

It involves a construction of lower triangular matrix L such that

(1) L−1A is upper triangular

(2) L is nonsingular

(3) detL = 1

(4) L−1 is also triangular and L−1 = Mn−1 · · ·M1.

L−1A = U ∴ A = LU.

Here direct computation ofMn−1 · · ·M1 is not so neat, but L = M−1
1 M−1

2 · · ·M−1
n−1

is!

Lemma 5.2.7. {E21(r)}−1 = E21(−r).
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In fact, we have

L = M−1
1 M−1

2 · · ·M−1
n−1,

where

M−1
1 = E−1

n1 (−mn1) · · ·E−1
21 (−m21) = En1(mn1) · · ·E21(m21)

= · · ·
M−1

k = E−1
nk (−mnk) · · ·E−1

k+1,k(−mk+1,k) = Enk(mnk) · · ·Ek+1,k(mk+1,k).

M−1
k =








Ik 0
0 1 0

mk
. . .

0 0 1







.

Incidently we have obtained a LU-decomposition.

Lemma 5.2.8.

M−1
1 M−1

2 =











1 0 0 0 0
m21 1 0 0 0
... m32 1 0 0

· · 0
. . .

mn1 mn2 0 · · · 1











.

Apply similar idea repeatedly, we can find L.

Lemma 5.2.9. The following block matrix multiplication formula holds:

[
Ik 0
M21 In−k

] [
Ik 0
0 M22

]

=

[
Ik 0
M21 M22

]

. (5.10)

Thus

L = M−1
1 M−1

2 · · ·M−1
n−1 =










1 0 0 0 0
m1 1 0 0 0

m2 1 0 0
...

... m3
. . .

...
· · · · · · 1










. (5.11)

Corollary 5.2.10. The entries of L = (ℓij) are

ℓii = 1, i = 1, · · · n
ℓik = mik, i = k + 1, · · · n, k = 1, · · · , n
ℓik = 0, i < k.
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Back substitution

From the above process we have obtained Ux = b′, which can be easily solved
by back substitution:

u11x1+ u12x2+ · · ·+ u1nxn = b′1
u22x2+ · · ·+ u2nxn = b′2

· · ·
unnxn = b′n.

This can be solved easily ba back substitution:

xn =
b′n
unn

, · · · , xi =
(b′i −

∑

j>i ui,jxj)

uii
, · · · , x1 =

(b′1 −
∑

j>1 u1jxj)

u11
.

Back substitution algorithm in pseudo code is

input n, aij, (bi)
for i = n, · · · , 1 do

sum = 0
for j = i+ 1, · · · , n do

sum← sum+ aijxj
xi = (bi − sum)/aii
end

end

Total computational complexity

Now we count the number of operations for LU decomposition(only count
multiplications and divisions ignoring additions and subtractions) : For k =
1, 2, · · · , n−1, each step involves n−k operations for the multiplier vector mk

a total of
∑n−1

1 (n− k) = n(n−1)
2 operations. Next, elimination of k-th column

involves (n − k)2 a total of
∑n−1

k=1(n− k)2 operations.

n− k, k = 1, . . . , n− 1 for mik

∴
∑n−1

1 (n− k) = n(n−1)
2

(n− k)2, k = 1, . . . , n − 1 for multiplication.

∴
∑n−1

k=1(n− k)2 =
∑n−1

s=1 s
2 = (n−1)n(2n−1)

6 = O(n
3

3 ).

The number of operations for right hand side and back substitution is

n− k, k = 1, . . . , n − 1 for the 1-right hand side

∴
∑n−1

k=1(n− k) = n(n−1)
2

k, k = 1, · · · , n for the back substitution

∴
∑n

1 k = n(n+1)
2 .

Here, we ignored addition.

Total: n(n2−1)
3 for LU decomposition, mn(n−1)

2 for the m right hand sides

and mn(n+1)
2 for the back substitution.
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Remark 5.2.11. Gaussian elimination without pivoting is mathematically
equivalent to the unique triangular decomposition LU with L unit lower tri-
angular matrix. But LU decomposition has computational advantage when
there are several right hand sides. In general, Ax = b is equivalent to Ly = b
and Ux = y and solve two systems by forward and backward substitution.

Numerical stability and partial pivoting

If a
(r)
rr is either zero or very small during the LU decomposition, the rounding

error is likely to be large. One way to correct this phenomenon is to interchange
the rows during the elimination so that the pivoting element is largest, called
partial pivoting.

Example 5.2.12. Consider solving

10−6x1 + x2 = 0.501 (5.12)

x1 − x2 = 999.5 (5.13)

The exact solution is x1 = 1, 000, x2 = 0.5. We use 6 digit decimal arithmetic.
Eliminating x1 from the first row, we get

−(106 + 1)x2 = −500, 000.5

Since 1/(106 + 1) = 10−6 with 6 digit decimal arithmetic, we have x2 =
500, 000.5 ∗ 10−6 = 0.5000005 = 0.500001 (rounded). Substituting into (5.12),
we obtain

10−6x1 = 0.501 − 0.500001 = 0.000999

and hence x1 = 999.

Partial pivoting

If some a
(k)
kk = 0 (zero pivot) or very small, we choose a p such that |apk| =

maxi≥k |aik|. Such p exists since detA 6= 0.) We interchange p-th row with k-
th row including the right hand side vector b. (In the actual coding, we do not
interchange rows. Instead, we merely permute the index using a permutation
vector p.)

Now the pseudo algorithm for Gaussian elimination with partial pivoting
is

input n, aij, (bi)
for i = 1, · · · , n do

pi ← i
end
For k = 1, · · · , n− 1 do

Determine j ≥ k so |apjk| = maxi≥k |apik|
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Swap pk ↔ pj
for i = k + 1, · · · , n do

mpik =
a
(k)
pik

a
(k)
pkk

;

a
(k)
pik

= mpik (this is to overwrite A by L)

for j = k + 1, · · · , n do

a
(k+1)
pij

← a
(k)
pij
−mpika

(k)
pkj

end
end

end

The result of partial pivoting is of the form

Ln−1Pn−1 · · ·L1P1A = U, (5.14)

where Pi are permutations. Is this LU decomposition ? No! Clearly, the
following matrix

(Ln−1Pn−1 · · ·L1P1)
−1

is not a lower triangular matrix. But by multiplying P = Pn−1 · · ·P1, we can
show it is an LU decomposition.

Theorem 5.2.13. Let P = Pn−1 · · ·P1. Then we have

PA = LU,

where

L = P (Ln−1Pn−1 · · ·L1P1)
−1

= Pn−1 · · ·P2P1P
−1
1 L−1

1 P−1
2 L−1

2 · · ·P−1
n−1L

−1
n−1

= (Pn−1 · · · (P2L
−1
1 P−1

2 )L−1
2 · · ·P−1

n−1)L
−1
n−1

is a lower triangular matrix.

Proof. We see from (5.14) that

A = P−1
1 L−1

1 P−1
2 L−1

2 P−1
3 · · ·P−1

n−1L
−1
n−1U.

Thus
P2P1A = (P2L

−1
1 P−1

2 )L−1
2 P−1

3 · · ·P−1
n−1L

−1
n−1U.

Observe that

L−1
1 =

[
1 0
m1 In−1

]

=





1 0 0
m1 1 0
m∗ 0 In−2



 (5.15)

and P2 is a permutation of rows not involving the first row. Hence we see
L′
1 := P2L

−1
1 P−1

2 has exactly the same form as L−1
1 .(By permuting rows and
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columns of (n− 1) identity matrix twice, In−1 remain unchanged. Meanwhile
we exchange the corresponding entries of m1). Now

P3P2P1A = (P3L
′
1L

−1
2 P−1

3
︸ ︷︷ ︸

L′

2

)L−1
3 · · ·P−1

n−1L
−1
n−1U.

By Lemma 5.2.8, L′
1L

−1
2 is of the form :

L′
1L

−1
2 =





1 0 0
m1 1 0
m̄∗ 0 In−2









1 0 0
0 1 0
0 m∗

2 In−2



 =





1 0 0
m1 1 0
m̄∗ m∗

2 In−2



 . (5.16)

Again observe that P3 is a permutation of rows (not involving the first two
rows). Hence L′

2 := P3L
′
1L

−1
2 P−1

3 is a form similar to L′
1L

−1
2 in (5.16). Thus

P4P3P2P1A = (P4L
′
2L

−1
3 P−1

4
︸ ︷︷ ︸

L′

3

)L−1
4 · · ·P−1

n−1L
−1
n−1U = L′

3L
−1
4 · · ·P−1

n−1L
−1
n−1U,

where L′
3 := P4L

′
2L

−1
3 P−1

4 is a lower triangular matrix having a similar block
structure as L′

2L
−1
3 . Repeating this process, we see

L = (Pn−1 · · · (P2L
−1
1 P−1

2 )L−1
2 · · ·P−1

n−1)L
−1
n−1 (5.17)

= (Pn−1L
′
n−3L

−1
n−2P

−1
n−1)L

−1
n−1 (5.18)

= L′
n−2L

−1
n−1. (5.19)

Here the product of last matrices is a lower triangular matrix.

Remark 5.2.14. The result was known in Wendroff(1966), Forsythe-Moler
(1967). This result says that the partial pivoting is equiv. to LU decomposition
of PA without pivoting. But we do not know P in advance. The U is computed
in (5.14) during the elimination using partial pivoting and L is obtained by
(5.17) (row exchange to L−1

k for k = 1, · · · , n− 1).

5.2.2 Keeping track of Permutation

Note P = Pn−1 · · ·P1 is the product of permutation matrices involved in the
pivoting process. We do not save the matrices P ′

ks. Instead, we start with a
pivot vector p0 = [1, 2, 3, · · · , n] and let pk = Pkp0 permute it according to
P .Since the system Ax = b is changed to PAx = Pb, we need to permute b
accordingly to form Pb.

Example 5.2.15. Assume n = 4. If the final p = p3 is [2, 4, 3, 1], then we see
that the rows of PA are the rows of A in the order of 2, 4, 3, 1. So the right
hand side b can be permuted in the same way, i.e., Pp = (b2, b4, b3, b1).
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There are cases when partial pivoting is not necessary.

Proposition 5.2.16. If A is symmetric positive definite, then it has the fol-
lowing properties:

(1) A is nonsingular; in fact, det(A) > 0.

(2) Let Ak be the leading principal minors of A. It can be shown that A is
positive definite if and only if det(Ak) > 0 for k = 1, 2, · · · , n.

(3) All of the diagonal elements of A are positive.

(4) The largest element of the matrix lies on the diagonal.

(5) All of the eigenvalues of A are positive.

Theorem 5.2.17. If A is symmetric positive definite, then

(1) aii > 0,

(2) maxi aii = maxi,j |aij |,

(3) The submatrices (a
(k)
ij ), 1 ≤ k ≤ n appearing during the Gaussian elimi-

nations are also symmetric positive definite.

(4) a
(k)
ii ≤ a

(k−1)
ii , for k ≤ i ≤ n.

(5) If A is, in addition, diagonally dominant, then so are the submatrices
appearing in the G.E.

Proof. (1) x∗Ax ≥ 0, equality when (only) x = 0. Put x = ei

(2) Put x = ei+ej = (0, . . . , 1, 0, . . . , 1, 0, . . . ), then x∗Ax = aii+aij+aji+
ajj > 0, so that aii+ajj ≥ −2aij . Put y = ei−ej = (0, . . . , 1, 0, . . . , 0,−1, 0 . . . ),
we obtain aii+ajj ≥ 2aij . Thus aii+ajj ≥ 2|aij | and maxi aii ≥ aii+ajj

2 ≥
|aij |.

(3) symmetry: a
(2)
ij = a

(1)
ij −

a
(1)
i1

a
(1)
11

a
(1)
1j ⇒ a

(2)
ji = a

(2)
ij .

positive definiteness: Let x = (x1, x2, · · · , xn) and x̄ = (x2, · · · , xn).

x̄A(2)x =
n∑

i,j=2

a
(2)
ij xixj

=
∑

i,j=2

a
(1)
ij xixj −

n∑

i,j=2

a
(1)
i1

a
(1)
11

a
(1)
1j xixj (Caution with index i, j)

=

n∑

i,j=1

a
(1)
ij xixj − 2

n∑

j=2

a
(1)
1j x1xj − a

(1)
11 x

2
1 − a

(1)
11

( 1∑

i=1

a
(1)
i1

a
(1)
11

xi

)2

= xTAx− a
(1)
11

[

x1 +
n∑

i=2

a
(1)
i1

a
(1)
11

xi

]2
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Set x1 = −
∑n

i=2
a
(1)
i1

a
(1)
11

xi. Then

x̄A(2)x =
∑n

i,j=2 a
(2)
ij xixj = xTAx ≥ 0.

Proof (3):

A(k) = P TA, P is lower triangular.

Then

B := A(k)P = P TAP =

[

D 0

0 A
(k)
22

]

,

where D is diagonal and A
(k)
22 is symmetric. Let x be any vector in R

n of the
form x = [0, z], z ∈ R

n−k. Then

xTBx = (Px)TA(Px) = yTAy = zTA
(k)
22 z > 0,

since y = Px is nonzero vector.

Theorem 5.2.18. The GE. without pivoting preserves the diagonally dom-
inance of A. Thus if A is a symmetric, diagonally dominant then partial
pivoting is not necessary.

Remark 5.2.19. See p 189 of Kincaid-Cheney and corollary 2. They give
reasoning to row scaled pivot. Question: If A is SPD, is it true that A is
diagonally dominant ?

Proof. Let A
(1)
22 be the submtrix appearing in the G.E. after elim. the first

row. Let k = 1.
∣
∣
∣
∣
∣
a
(1)
22 −

a
(1)
21

a
(1)
11

a
(1)
12

∣
∣
∣
∣
∣

>

n∑

i=3

∣
∣
∣
∣
∣
a
(1)
2i −

a
(1)
21

a
(1)
11

a
(1)
1i

∣
∣
∣
∣
∣

which is equiv. to

∣
∣
∣a

(1)
22 a

(1)
11 − a

(1)
21 a

(1)
12

∣
∣
∣ >

n∑

i=3

∣
∣
∣a

(1)
2i a

(1)
11 − a

(1)
21 a

(1)
1i

∣
∣
∣

This is to see
n∑

i=3

∣
∣
∣a

(1)
2i a

(1)
11 − a

(1)
21 a

(1)
1i

∣
∣
∣ ≤ |a(1)11 |

n∑

i=3

|a(1)2i |+ |a
(1)
21 |

n∑

i=3

|a(1)1i |

≤ |a(1)11 |(|a
(1)
22 | − |a

(1)
21 |) + |a

(1)
21 |(|a

(1)
11 | − |a

(1)
12 |)

= |a(1)11 ||a
(1)
22 | − |a

(1)
21 ||a

(1)
21 |

≤ |a(1)11 a
(1)
22 − a

(1)
21 a

(1)
21 |.
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Corollary 5.2.20. If A is symmetric and diagonally dominant, then partial
pivoting is not necessary. Just note that GE. plus columns wise elim. do not

change the submatrices A
(k)
22 appearing in the G.E. after elim.

LDMT decomposition

Theorem 5.2.21. If the leading principal submatrices Ak of A ∈ R
n×n are

nonsingular, then there exist unit lower triangular matrices L and M and
diagonal matrix D such that A = LDMT .

Proof. Comparing the (1, 1) blocks of (5.9) we see that the leading principal

submatrices Ak = L
(k)
11 A

(k)
11 . Since

det [A
(k)
11 ] = a

(k)
11 det [A

(k−1)
11 ].

It follows that

det Ak = a
(1)
11 · · · a

(k)
kk .

Thus the elimination can proceed.

Now let A = LU be its LU -decomposition. Define D = diag(d1, · · · , dn),
where di = uii for i = 1, · · · , n. Note that D is nonsingular and MT = D−1U
is unit upper triangular. Then A = LU = LD(D−1U) = LDMT .

Theorem 5.2.22. If A ∈ R
n×n is positive definite, then A has an LDMT

decomposition and diagonal entries of D are positive.

Proof. All principle submatrices of a positive definite are positive definite
and therefore nonsingular. By theorem above, A = LDMT exists. Let
S = DMTL−T = L−1AL−T is positive definite and upper triangular with
sii = di. Hence di are positive.

Positive definite matrix can be bad conditioned!

Example 5.2.23. The matrix

A =

[
ǫ m
−m ǫ

]

, m≫ ǫ

is positive definite, and its LDMT decomposition is

A =

[
1 0
−m

ǫ 1

] [
ǫ 0

0 ǫ+ m2

ǫ

] [
1 m

ǫ
0 1

]

.

Pivoting is necessary for this example.
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Cholesky factorization

If A is real symmetric and positive definite, we may factor alternatively as

A = BBT ,

where B = LD, D is a diagonal matrix with dkk =

√

a
(k)
kk , k = 1, · · · , n. The

details are as follows:
Let A = LU = AT = UTLT so that

U(LT )−1 = L−1UT .

Since left hand side is upper triangular and the right hand side is lower tri-
angular, we see this matrix is diagonal, say D = L−1UT . Hence A = LDLT .
Since D is positive definite,

√
D exists and hence

A = BBT , B = LD1/2.

The following algorithm is called Cholesky factorization.

b11 =
√
a11

bi1 =
ai1
b11

, i = 2, · · · , n

and for j = 2, · · · , n

bjj =

(

ajj −
j−1
∑

k=1

b2jk

)1/2

bij = (aij −
j−1
∑

k=1

bikbjk)/bjj , i = j + 1, · · · , n.

In pseudo code, it is

input n, aij
for j = 1, · · · , n do

bjj =
(

ajj −
∑j−1

k=1 b
2
jk

)1/2

for i = j + 1, · · · , n do

bij = (aij −
∑j−1

k=1 bikbjk)/bjj
end

end

Ill-conditioned system and condition number

When we numerically solve a system of equations

Ax = b,
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we usually get approximate solution x+h where h is the error. We would like
analyze the relative error ‖h‖

‖x‖ and find its relation with matrix A. Since

A(x+ h) 6= b,

we can view x+ h as the solution of a perturbed problem

(A+ E)(x+ h) = b+ k.

Theorem 5.2.24. If ‖A−1‖ · ‖E‖ < 1, then

‖h‖
‖x‖ ≤ C‖A‖ · ‖A−1‖

[‖k‖
‖b‖ +

‖E‖
‖A‖

]

,

where C = [1− ‖A−1E‖]−1.

Proof. Note that

(A+ E)h = b+ k−Ax− Ex = k− Ex.

Write A+ E = A(I +A−1E). Since

ρ(A−1E) ≤ ‖A−1E‖ ≤ ‖A−1‖ ‖E‖ < 1,

the matrix I +A−1E is nonsingular and so is A+E.(see the Neumann lemma
below)

∴ h = (A+ E)−1(k− Ex) = (I +A−1E)−1A−1(k− Ex).

Now we estimate the norm

‖h‖ ≤ ‖(I +A−1E)−1‖ · ‖A−1‖ · ‖k− Ex‖

≤ ‖A−1‖
1− ‖A−1E‖ [‖k‖ + ‖Ex‖]

‖h‖
‖x‖ ≤ ‖A−1‖

1− ‖A−1E‖

[‖k‖
‖x‖ + ‖E‖

]

=
‖A−1‖ · ‖A‖
1− ‖A−1E‖

[ ‖k‖
‖A‖ ‖x‖ +

‖E‖
‖A‖

]

.

Use the relation ‖b‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖ to get

‖h‖
‖x‖ ≤ Cκ(A)

[‖k‖
‖b‖ +

‖E‖
‖A‖

]

,

where C = 1/(1− ‖A−1E‖) and κ(A) = ‖A−1‖ · ‖A‖.



5.2. SYSTEM OF LINEAR EQUATIONS 101

The number κ(A) = ‖A−1‖ · ‖A‖ depends on the particular norm ‖ · ‖β
and such number κ(A)β are called the condition number of A. For example
spectral condition number is defined as

κ2(A) = ‖A‖2 · ‖A−1‖2 =
√

ρ(A∗A)ρ(A−1A∗−1).

Noting that the eigenvalues of A∗A are the reciprocal of eigenvalue values of

(A∗A)−1(unless they are zero), κ2 =
√

µ1

µn
, where µ1 ≥ · · · > µn are eigenvalues

of A∗A. Furthermore, if A is Hermitian(A∗ = A), then ‖A‖2 = ρ(A). Hence

κ2 =

∣
∣
∣
∣

λ1

λn

∣
∣
∣
∣
,

when eigenvalues are arranged in the order of magnitude |λ1| ≥ |λ2| ≥ · · · ≥
|λn| > 0.

If A is symmetric, positive definite, then κ2 =
λ1
λn

.

Scaled row pivoting

Another efficient way pivoting is to scale each row by its maximum norm
during Gaussian elimination. LU-decomposition Algorithm with scaled row
pivoting is as follows:

input n, aij, (bi)
For i = 1, · · · , n do

pi ← i
Let si = |ai1|
for j = 2, · · · , n do

if |aij | > si, then set si = |aij |
end

end

for k = 1, · · · , n− 1 do
Select j ≥ k so that

|apjk|/spj ≥ |apik|/spi for i = k, k + 1, · · · , n
pk ↔ pj
for i = k + 1, · · · , n do

mpik =
a
(k)
pik

a
(k)
pkk

(*);

a
(k)
pik

= mpik (this is for L)

for j = k + 1, · · · , n do

a
(k+1)
pij

← a
(k)
pij
−mpika

(k)
pkj

end
end

end
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Solving Ax = b from LUx = Pb. First step is to solve for y from
Ly = Pb.(Elimination of right hand side-this could have been done during
the Elimination step (*) above)

for k = 1, 2, · · · , n− 1 do
for i = k + 1, · · · , n do

bpi ← bpi − apikbpk ;
end

end

Now get x from Ux = y(Backward substitution)

for i = n, n− 1, · · · , 1 do
for j = i+ 1, · · · , n do

temp = bpi − apijxj;
xi ← temp/apii

end
end

Symmetric indefinite matrix can be bad conditioned

Example 5.2.25. The matrix

A =

[
ǫ 1
1 ǫ

]

=

[
1 0
1/ǫ 1

] [
ǫ 0
0 ǫ− 1/ǫ

] [
1 0
1/ǫ 1

]T

, 1≫ ǫ.

Pivoting is necessary for this example.

Partial pivoting breaks the symmetry. Hence consider interchange of rows
and columns together, i.e,

PAP T = LDLT .

But this may not be possible as the following example shows:

P

[
ǫ 1
1 ǫ

]

P T =

[
ǫ 1
1 ǫ

]

for any permutation matrix P. There is a decomposition by Aasen computing

PAP t = LTLt, (5.20)

where L is lower triangular and T is tridiagonal. See section 5.4 of G. Golub
for details.
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Ill-conditioned system: Least square approximation

Given f(x) ∈ L2(0, 1), find a polynomial of degree n such that
∫ 1

0
(f(x)− pn(x))

2dx

is minimum. Let pn(x) =
∑n

i=0 cix
i. Then the minimum is attained when

∂

∂cj

∫ 1

0
(f(x)− pn(x))

2dx = 0, for j = 0, 1, · · · , n.

Hence, we get

n∑

i=0

ci

∫ 1

0
xixj dx =

∫ 1

0
f(x)xj dx, j = 0, 1, · · · , n

which can be written as
Ac = f , (5.21)

where Aij =
1

i+j+1 , i, j = 0, · · · , n, c = (c0, · · · , cn) and

f =

(∫ 1

0
f(x)x0dx, · · · ,

∫ 1

0
f(x)xndx

)

.

This matrix is called Hilbert matrix and is extremely ill-conditioned! If we
choose f(x) = Qn(x) =

∑n
i=0 qix

i, then ci = qi, so that one can compare the
numerical solution.(See exercise below. For n ≤ 10, it seems OK. In general,
it strongly depends on data.)

Example 5.2.26 (2D). A typical 2nd order elliptic differential equation is

−∆u = f on Ω
u = g on ∂Ω.

(5.22)

We take Ω = [0, 1]2. With h = 1/n, the derivatives are approximated by

uxx(x, y)
.
= [u(x+ h, y)− 2u(x, y) + u(x− h, y)]/h2

uyy(x, y)
.
= [u(x, y + h)− 2u(x, y) + u(x, y − h)]/h2.

The figure is called Molecule, Stencil, etc. For each point (interior mesh
pt), approximate ∇2u = ∆u by 5-point stencil. By Gershgorin disc theorem,
the matrix is nonsingular.

When the unit square is divided by n = 1/h equal intervals along x-axis
and y-axis, then the corresponding matrix A is (n−1)×(n−1) block-diagonal
matrix of the form:

A =
1

h2











B −I 0 · · ·
−I B −I 0

−I . . .
. . .

. . . B −I
· · · 0 −I B











(5.23)
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◦ ◦◦

◦

◦

(x, y) (x + h, y)(x − h, y)

(x, y + h)

(x, y − h)

Figure 5.2: 5-point Stencil

where

B =











4 −1 0 · · ·
−1 4 −1 0

−1 . . .
. . .

. . . 4 −1
· · · 0 −1 4











is (n − 1) × (n − 1) matrix. When g = 0 in (5.22), the eigenvectors of (n −
1)2 × (n− 1)2 matrix h2A are

xhµν(xi, yj) = sin(µπxi) sin(νπyj), (xi, yj) = (hi, hj) ∈ Ωh (5.24)

with the corresponding eigenvalues

λh
µν = 4h−2(sin2(µπh/2) + sin2(νπh/2)), 1 ≤ µ, ν ≤ n− 1. (5.25)

Note that the eigenvalues of Laplace equation for the domain [0, a]× [0, b] are

λµν = (
µ2

a2
+

ν2

b2
)π2, µ, ν = 1, · · · , . (5.26)

Tridiagonal matrix

Theorem 5.2.27. For tridiagonal matrix we have the following simple LU
decomposition:

A =









a1 c1

b2 a2
. . .

. . .
. . . cn−1

bn an









=









α1 0

b2 α2
. . .

. . .
. . . 0
bn αn

















1 γ1

1
. . .
. . . γn−1

1
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α1 = a1, α1 · γ1 = c1 ∴ γ1 = c1
α1
, αi 6= 0

b2γ1 + α2 = a2 ∴ α2 = a2 − b2γ1
α2γ2 = c2 ∴ γ2 = c2/α2

In general, let dummy the variables b0 = 0, γ0 = 0, γn = 0. Then we have for
i = 1, . . . , n

αi = ai − biγi−1,
γi = ci/αi.

To solve the system Ax = b, we only need back substitution where the
computational counts are:

Ly = b · · · forward-elimination 2(n − 1) + 1
Ux = y · · · back-substitution n− 1

∴ Total 5n− 4.

Block matrix or banded matrix

One can also consider the case of banded matrix or block tri-diagonal ma-
trix for which similar Gauss Elimination can be derived. For example, Block
Gaussian Elim. looks like:





A11 A12 . . .
A21 A22 . . .



 , A
(2)
2j = A

(1)
2j −A

(1)
21 A

(1)−1
11 A

(1)
1j , j = 2, . . . , n.

The matrix A is called banded if there exists a natural number d such that

aij = 0, |i− j| > d.

To factor a n×n matrix with bandwidth d, we need nd2/2 operations asymp-
totically. To our application with aij = a(φi, φj) where φi are basis functions,
we have

d = max{|i− j| : a(φi, φj) 6= 0},

where we assumed φi, φj are associated with d.o.f belonging to the same el-
ement. Clearly d depends on the chosen enumeration of nodes. Thus if we
want to use Gaussian elimination, we want to enumerate the nodes so as to
make band width as small as possible. Consider a domain [0, 2] × [0, 1] with
5 × 10 uniform mesh. We enumerate x = 0, 0 ≤ y ≤ 1 first vertically as
1, 2, , · · · , 6. Then along x = 0.2, 0 ≤ y ≤ 1 we enumerate as 7, 8, · · · , 12 etc.
Then d = 6(assuming one degree of freedom on each node), while if we enu-
merate horizontally, we would have d = 11. In a typical finite element method
with linear basis functions n = O(h−2) and d = O(h−1). Hence total cost is
O(nd2) = O(h−4).
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1

2

3

4

5

6

7

12

1 2 3 4 5 6 9 10 11

11 22

Figure 5.3: Numbering nodes horizontally or vertically

Storage of banded matrix

We store a banded matrix as a vector columnwise or alternatively as 2d − 1-
vectors (d-vectors for symmetric matrix). One can also store a matrix with
variable band width, in this case, one need store the index of diagonal entries
also, referred to as a skyline method of storage.

Fill in

During the elimination, matrix entries with zero elements are filled with nonzero
values. To avoid this, one can use Frontal methods or Nested dissection
method.

Exercise 5.2.28. (1) Let A,B are two n× n matrices. Show that

(2) Let

κ2 := ‖A‖2 · ‖A−1‖2 =
√

ρ(A∗A)ρ(A−1A∗−1).

Show that if µ is an eigenvalue of A∗A, µ 6= 0 then µ−1 is an eigenvalue

value of (A∗A)−1, thus, κ2 =
√

µ1

µn
, where µ1 ≥ · · · > µn are eigenvalues

of A∗A. Furthermore, if A is Hermitian, A∗ = A. Hence ‖A‖2 = ρ(A)
and

κ2 =

∣
∣
∣
∣

λ1

λn

∣
∣
∣
∣
, |λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 0.

If A is symmetric, positive definite, then κ2 =
λ1
λn

.

(3) Let D = diag(2, 11) and

A =

(
1 1
1 10

)

.

Calculating the condition numbers of A and D−1A, conclude that diag-
onal scale can improve the condition number.
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(4) However, for a matrix A satisfying

n∑

k=1

|ajk| = 1,

we have
κ∞(A) ≤ κ∞(D−1A)

for all diagonal matrix D.(It suffices to consider the case di ≥ 1 for all
i.)

‖(D−1A)−1‖∞ = ‖A−1D‖∞ = max
j

n∑

k=1

|a−1
jk ||dk| ≥ max

k
|dk|‖A−1‖∞.

Thus
κ∞(D−1A) = ‖D−1A‖∞‖A−1D‖∞ ≥ ‖A‖∞‖A−1‖∞.

(5) Show the tridiagonal matrix in Theorem 5.2.27 is nonsingular under the
following assumptions: |a1| > |c1| > 0, |an| > |bn| > 0 and

|ai| ≥ |bi|+ |ci|, bici 6= 0, i = 2, 3, · · · , n− 1.

(It suffices to consider the case ai > 0. Use induction.)

(6) Derive a LU-decomposition for the tridiagonal matrix in Theorem 5.2.27,
where L is the unit lower triangular matrix.

(7) Explain a similar algorithm for Cholesky decomposition as in Theorem
5.2.27.

(8) If f(x) =
∑n

i=0 x
i, then we have f = (

∑n
i=0

1
i+j+1)

n
j=0 in (5.21). Compute

c by solving the system by LU-decomposition (a) with no pivoting and
(b) with pivoting. Do this for n = 10 and n = 15 or larger. Measure the
maximum error of c by printing out the computed solution. Does the
partial pivoting work ? QR-decomposition may be better.

(9) Consider solving the two point boundary value problem

−u′′ = f on (0, 1)

with B.C.
u(0) = a, u(1) = b

by the finite difference method. First subdivide the interval by n-equal
intervals h = 1/n.

x0 = 0, x1 = h, · · · , xi = ih, · · · , xn = 1.
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0 1x1 xn−1

Figure 5.4: meshes for boundary value problem

We get
Auh = fh,

where Ah is (n− 1)× (n− 1) system given by

Ah =
1

h2









2 −1
−1 2

. . .
. . .

. . . −1
−1 2









and

fh =

(

f(x1) +
u(0)

h2
, f(x2), · · · , f(xn−1) +

u(1)

h2

)T

.

If f = x(x−1), we have u = −x4

12 +
x3

6 − x
12 . Eigenvalues and eigenvectors

of (n− 1)× (n− 1) matrix h2A are (with h = 1
n)

λj = 2(1−cos jπh), xj = (sin jπh, · · · , sin(n−1)jπh), j = 1, · · · , n−1.

For n = 10, the eigenvalues are

3.90211, 3.61803, 3.1755, 2.618, 1.9999, 1.3819, 0.8244, 0.38196, 0.9788.

(10) Prove Theorem 5.2.17.

(11) Solve (5.22) with u = (5x+ y)ex+2y and f = −(14 + 25x+ 5y)ex+2y.

5.3 Iterative method for large system of equation

Motive

This is exactly the idea behind iterative refinement:

(1) Get an approximate solution Ax̂1 = b.

(2) Compute the residual r = b−Ax̂1 (to good accuracy).
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(3) Approximately solve Aδx1 = r.

(4) Get a new approximate solution x̂2 = x̂1 + δx1; repeat as needed.

If we know A and b, a reasonable way to evaluate an approximate solution x̂
is through the residual r = b−Ax̂. The approximate solution satisfies

Ax̂ = b− r;

so if we subtract from Ax = b, we have

x− x̂ = A−1r.

We can use this to get the error estimate.

‖x− x̂‖ ≤ ‖A−1r‖.

This is exactly the idea behind iterative refinement:

(1) Get an approximate solution Ax̂1 ≈ b.

(2) Compute the residual r = b−Ax̂1 (to good accuracy).

(3) Approximately solve Aδx1 ≈ r.

(4) Get a new approximate solution x̂2 = x̂1 + δx1; repeat as needed.

Recall from last lecture that if we have a solver for Â = A+E with E small,
then we can use iterative refinement to clean up the solution. The matrix Â
could come from finite precision Gaussian elimination of A, for example, or
from some factorization of a nearby easier matrix. To get the refinement
iteration, we take the equation

Ax = Âx− Ex = b; (5.27)

and think of x as the fixed point for an iteration

Âxk+1 − Exk = b. (5.28)

Note that this is the same as

Âxk+1 − (Â−A)xk = b

or
xk+1 = xk + Â−1(b−Axk). (5.29)

Note that this latter form is the same as inexact Newton iteration on the
equation Axk − b = 0 where Jacobian matrix Â was replaced by Â. If we
subtract (5.27) from (5.28), we see

Â(xk+1 − x)− E(xk − x) = 0;
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or

xk+1 − x = Â−1E(xk − x).

Taking norms, we have

‖xk+1 − x‖ ≤ ‖Â−1E‖ ‖xk − x‖.

Thus, if ‖Â−1E‖ < 1, we are guaranteed that xk → x as k → ∞. At least,
this is what happens in exact arithmetic. In practice, the residual is usually
computed with only finite precision, and so we might expect to stop making
progress at some point.

This is a starting point of iterative refinement.

Jacobi - method

In this section we consider an iterative method to find the solution of Ax = b.
We start from a splitting of A as A = D − T . First observe

(D − T )x = b
Dx = Tx+ b
x = D−1Tx+D−1b.

We now define a sequence x(k) of approximation to x via

x(k) = D−1Tx(k−1) +D−1b

= D−1(D −A)x(k−1) +D−1b

= (I −D−1A)x(k−1) +D−1b.

Note

x(k) − x(k−1) = (−D−1A)x(k−1) +D−1Ax

= D−1(b−Ax(k−1))

is the form described in (5.29).

Question. Does x(k) → x ? and how fast? How to choose D − T ? The
idea is to choose D so that Dx = b can be solved easily. Diagonal of A is
a often a good choice for D(called a Jacobi method). If D is diagonal, the
Jacobi method is defined as

x
(k)
i =

1

aii

[
∑

j 6=i

−aijx(k−1)
j + bi

]

, i = 1, 2, . . . , n.
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Gauss-Seidel iterative method

Suggestion. In each computation of Jacobi method, x
(k−1)
i was already up-

dated for j < i. Why don’t we utilize the most recent information? The result
is

x
(k)
i =

1

aii

[ i−1∑

j=1

−aijx(k)j +

n∑

j=i+1

−aijx(k−1)
i + fi

]

.

If we use the splitting A = D − L− U , then the scheme is, in matrix form

x(k) = (D − L)−1Ux(k−1) + (D − L)−1f . (5.30)

Block Jacobi or block Gauss-Seidel method

x̄
(k)
i = A−1

ii

(
∑

j 6=i

−Aij x̄
(k−1)
j + k̄i

)

A =





A11 A12 A13

A21 A22 A23

A31 A32 A33





Successive over relaxation method (SOR)

(1) Given x(k)

(2) Compute x̃
(k+1)
i , the i-th entry of Gauss-Seidel

(3) Define x
(k+1)
i = (1− ω)x

(k)
i + ωx̃

(k+1)
i , ω: relaxation factor

Note: if ω = 1, SOR ≡ Gauss-Seidel

Algorithm:

aiix̃
(k+1)
i = −

i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j + fi, 1 ≤ i ≤ n,

aiix
(k+1)
i = (1− ω)aiix

(k)
i + ωaiix̃

(k+1)
i

= (1− ω)aiix
(k)
i + ω

{

−
∑

j≤i−1

aijx
(k+1)
j −

∑

j≥i+1

aijx
(k)
j + fi

}

= aiix
(k)
i + ω

{

−
∑

j≤i−1

aijx
(k+1)
j −

∑

j≥i+1

aijx
(k)
j + fi − aiix

(k)
i

}
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Let
D = diag{a11, . . . , ann}

L = −






0 . . . 0

a21
. . .

...
. . . 0




 , U = −






0 a12 . . . a1n
...

. . .

0 . . . . . . . . 0






In matrix form with the splitting A = D − L− U , we have

(D − ωL)x(k+1) = {(1 − ω)D + ωU}x(k) + ωf

x(k+1) = (D − ωL)−1{(1− ω)D + ωU}x(k) + (D − ωE)−1ωf .

This again is of the form,

x(k+1) = Lωx
(k) + g.

How “fast” does the iterative scheme converge? The convergence will depend
on ρ(Lω).

5.3.1 Convergence of iterative scheme

Theorem 5.3.1 (Gershgorin disk theorem). For A ∈ C
n,n, all the eigenvalues

of A satisfies

λ ∈
n⋃

i=1

{

ξ : |ξ − aii| ≤
∑

j 6=i

|aij |
}

:=
n⋃

i=1

Di(aii; ρi).

Each disk on the right hand side is called a Gershgorin disk. Furthermore,
if an eigenvalue lies on the boundary of a disk, then every such disk must pass
the eigenvalue.

Proof. We first normalize ‖x‖∞ = 1, so that |xr| = 1 for some r. Then since
∑

j aijxj = λxi, we have

(λ− arr)xr =
∑

j 6=r

arjxj (5.31)

|λ− arr| ≤
∑

j 6=r

|arj||xj | ≤
∑

j 6=r

|arj | := ρr. (5.32)

Thus all eigenvalue λ must belong to the union of disks:
⋃n

i=1Di(aii; ρi). The
rest of the proof is left as an exercise.

Definition 5.3.2. An n × n matrix A is called reducible if there exists a
permutation matrix P such that

PA =

(
A11 A12

0 A22

)

,

where A11 and A22 are square matrices. If a matrix is not reducible, it is called
irreducible.
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Lemma 5.3.3. A is reducible iff there is an index set J ⊂ {1, 2, · · · , n} such
that

akj = 0, for k ∈ J, j 6∈ J.

Definition 5.3.4 (diagonal dominance). If |aii| ≥
∑

j 6=i |aij |, i = 1, . . . , n,
and strict inequality holds at least for one i, then it is called weakly diago-
nally dominant. If the strict inequality holds for all i, it is called strictly
diagonally dominant.

Theorem 5.3.5. If A is strictly diagonally dominant, then A is nonsingular.

Proof. Use G-disk theorem to conclude λi 6= 0.

Theorem 5.3.6. If A is irreducible and weakly diagonally dominant, then A
is nonsingular.

Proof. Suppose Ax = 0 for some x 6= 0. Let m be the index such that

|amm| >
∑

j 6=m

|amj |. (5.33)

Let

J = {k : |xk| ≥ |xi|,∀i, |xk| > |xj | for some j}.

Clearly J is nonempty, for this would imply that |x1| = |x2| = · · · |xn| 6= 0.
Hence

|ammxm| ≤
∑

j 6=m

|amjxj|

which in turn implies

|amm| ≤
∑

j 6=m

|amj |

which is a contradiction to (5.33).

Now for any k ∈ J ,

|akk| ≤
∑

j 6=k

|akj||xj |/|xk| ≤
∑

j 6=k

|akj| ≤ |akk|,

where the second inequality is strict whenever |xk| > |xj|, (i.e., j 6∈ J). So
akj = 0 for all k ∈ J , j 6∈ J . Then A is reducible, a contradiction.

Corollary 5.3.7. If A is symmetric, irreducible and weakly diag. dominant
with nonnegative diagonal elements, then A is positive definite.

Proof. Since A is symmetric, eigenvalues are real and by G-disk theorem the
G-disks are lying in the right upper half plane and eigenvalues are nonzero,
hence all eigenvalues are positive.
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Convergence of Jacobi method

Let G = I −D−1A. Then we have

x(k) = Gx(k−1) +D−1b.

The true solution satisfies x = MGx+D−1b. Subtracting, we get

x(k) − x = G(x(k−1) − x).

Thus, the error ε(k) = x(k) − x satisfies

ε(k) = Gε(k−1) = · · · = Gkε(0).

The error approaches to 0 iff Gk → 0 iff ρ(G) < 1.

Theorem 5.3.8. If A is irreducible and weakly diagonally dominant(called
irreducibly diagonally dominant), then the Jacobi method converges.

Proof. If λ is an eigenvalue of G = I −D−1A, then

0 = det (G− λI) = det (I −D−1A− λI)

= det (D−1[L+ U − λD])

= λn det (D−1) det

(
L+ U

λ
−D

)

.

Suppose |λ| ≥ 1. then λ 6= 0, hence

det

(
L+ U

λ
−D

)

= 0.

Since |λ| ≥ 1, the matrix λ−1(L+ U)−D is weakly diagonal dominant since
the sum of absolute value of off-diagonal do note exceed the diagonal. Also
it is irreducible since A is(they have exactly the same structure!). Now by
Theorem 5.3.6 it is nonsingular and hence λ cannot be an eigenvalue of G.
This is a contradiction.

Example 5.3.9. Consider a partial differential equation on a square domain.

−∆u = f in Ω

u = g on ∂Ω.

We discretize it by the 5-point stencil, then we get

A =
[
0, 0,−1, 0, 0,−1, 4,−1, 0, 0,−1, 0, 0

]
.

A = D − T, D = 4I, G = D−1T.

Note that the iteration matrix for Jacobi method is G = I −D−1A = D−1T .
Even though Theorem 5.3.8 guarantees the convergence, in this special case
we can argue directly that the Jacobi method is convergent. In fact, by
Gershgorin-Disk theorem, all eigenvalues of G are ≤ 1 because all disks have
radius ≤ 1 with center at the origin. Assume λ = 1 is an eigenvalue of G.
Then since G is irreducible, all Gershgorin disk must pass through 1. This is
a contradiction to the Gershgorin disk theorem(part 2).
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Convergence of Gauss-Seidel method

Theorem 5.3.10. If A is irreducible and weakly diagonally dominant, then
the Gauss-Seidel method converges, i.e., ρ(G) < 1.

Proof. Note that with L̄ = D−1L, Ū = D−1U Gauss-Seidel iteration matrix
can be written as

G = (D − L)−1U = (D(I −D−1L))−1U = (I − L̄)−1Ū .

If λ is an eigenvalue of G, then

0 = det (G− λI) = det ((I − L̄)−1Ū − λI)

= det ((I − L̄)−1[Ū − λ(I − L̄)])

= det (I − L̄)−1 det (Ū − λ(I − L̄))

= det (Ū + λL̄− λI).

Let Ḡ = 1
λ Ū + L̄− I. If |λ| ≥ 1, then λ 6= 0 and

det

(
1

λ
Ū + L̄− I

)

= 0.

The matrix 1
λ Ū+L̄−I is weakly diagonally dominant since the sum of absolute

value of off-diagonal do note exceed the diagonal. Also Ḡ is irreducible since
A is. Now by Theorem 5.3.6 Ḡ is nonsingular and hence λ cannot be an
eigenvalue of G. This means |λ| < 1 for all λ, thus completes the proof of the
theorem.

Some general convergence theory

Definition 5.3.11 (Partial ordering for vectors). For any two vectors x,y ∈
R
n, We write

x ≤ y if and only if xi ≤ yi, i = 1, · · · , n.
Analogously, we compare two matrices whenever possible, i.e,

A ≤ B, if and only if aij ≤ bij .

Definition 5.3.12 (nonnegative matrix). A matrix A is nonnegative if A ≥ 0.

Definition 5.3.13 (M-matrix). A matrix A is an M(onotone)-matrix if A is
invertible, A−1 ≥ 0 and aij ≤ 0 for all i, j = 1, · · · , n, i 6= j. A symmetric
M-matrix is a Stieltjes matrix.

The following result can be found in R.A. Horn and C.R. Johnson, Topics
in Matrix Analysis, Cambridge University Press, 1991.

Theorem 5.3.14. Let A be real n × n matrix with nonpositive off-diagonal
entries. The followings are equivalent:
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(1) A is an M -matrix;

(2) A is nonsingular and A−1 ≥ 0;

(3) All eigenvalues of A have positive real part;

(4) Every real eigenvalue of A is positive.

Lemma 5.3.15. A nonnegative matrix preserves partial ordering.

For a vector x, let us denote |x| = (|x1|, · · · , |xn|).

Lemma 5.3.16. If G is irreducible and satisfies

n∑

j=1

|gij | ≤ 1, for all i (5.34)

and strict inequality holds at least for one i, then ρ(G) < 1.

Proof. Clearly ρ(G) ≤ ‖G‖ ≤ 1. Let λ(|λ| = 1) be an eigenvalue of G. Then
λI −B is singular, but

|λ− gii| ≥ 1− |gii| ≥
n∑

j 6=i

|gij |

by the hypothesis, and a strict inequality holds for some i. Hence λI − G is
weakly diag. dominant. Of course is irreducible. Hence λI −G is nonsingular
by theorem 5.3.6, which is a contradiction.

Remark 5.3.17. This lemma prove the convergence of Jacobi and G-S method
at one stroke.

Theorem 5.3.18. Let A ∈ Rn,n with aij ≤ 0, i 6= j. Then A is an M-matrix
if and only if

(1) the diagonal entries are positive and

(2) the matrix G = I −D−1A,D = diag(a11, · · · , ann) satisfies ρ(G) < 1.

Proof. Suppose (1) and (2) are satisfied. Then G = D−1(D − A) ≥ 0 by (1).
Since ρ(G) < 1, I − G is invertible, A−1 exists and (I − G)−1 = (D−1A)−1.
By Neumann lemma, (I −G)−1 ≥ 0. and since D ≥ 0, we have A−1 ≥ 0.

Conversely, if A is an M-matrix, then the diagonal entries are positive, for if
some aii ≤ 0, then the i-th column ai is nonpositive and hence ei = A−1ai ≤ 0.
This is a contradiction. Hence D > 0 and D is invertible. It follows that
(I − G) = D−1A is invertible and (I − G)−1 = A−1D ≥ 0 and again by
Neumann lemma,we have ρ(G) < 1.

Corollary 5.3.19. If A is an M-matrix, then Jacobi method converges.
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A criterion for M-matrix is the following.

Theorem 5.3.20. Let A be strictly diagonally dominant, or weakly diagonally
dominant and irreducible and assume aij ≤ 0 i 6= j and that aii > 0, for
i = 1, · · · , n then A is an M-matrix.

Proof. Define G = I −D−1A. Then it suffices to show ρ(G) < 1. By diagonal
dominance of A, the condition (5.34) holds for G. If A is strictly diagonally
dominant, a strict inequality holds in (5.34) in which case, ‖G‖∞ < 1. If A
is weakly diagonally dominant and irreducible, the result follows from Lemma
5.3.16.

Theorem 5.3.21 (Perron-Frobenius). If A, aij ≥ 0, irreducible, then

(1) A has a simple positive eigenvalue ρ(A) (called the Perron root of A).

(2) |λi| ≤ ρ for every eigenvalues of A.

(3) Ax = ρx for some positive vector x.

See R. Varga “matrix iterative analysis.”

Theorem 5.3.22 (Neumann Lemma). Let B ∈ C
n,n and assume ρ(B) < 1.

Then (I −B)−1 exists and

(I −B)−1 = lim
k→∞

k∑

i=0

Bi.

Proof. Since ρ(B) < 1, (I − B) has no zero eigenvalues and hence invertible.
To show the series note

(I −B)(I +B + · · ·+Bk−1) = I −Bk.

Thus
I +B + · · · +Bk−1 = (I −B)−1 − (I −B)−1Bk.

Since ρ(B) < 1, there exists a norm ‖ · ‖β such that ‖B‖β < 1. For this norm,
we see limk→∞Bk = 0 and hence the above series converges to (I − B)−1.
Hence

lim
k→∞

‖
k∑

i=0

Bi − (I −B)−1‖β = 0.

Since all norms are equivalent in finite dimensional space, we see the conver-
gence is guaranteed for any norm.

As a consequence, we see that if ‖B‖ < 1, I −B is invertible and

‖(I −B)−1‖ ≤
∞∑

i=0

‖B‖i = 1

(1− ‖B‖) .
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Theorem 5.3.23 (Neumann Lemma, positive entry). Let B ∈ R
n,n and as-

sume that B ≥ 0. Then (I − B)−1 exists and nonnegative if and only if
ρ(B) < 1.

Proof. If ρ(B) < 1 then Neumann Lemma assures the existence of (I−B)−1 =
∑∞

i=0B
i and each term of the sum is nonnegative. Hence (I − B)−1 ≥ 0.

Conversely, assume (I − B)−1 ≥ 0 and let λ be any eigenvalue of B with
eigenvector x. Then |λ||x| ≤ B|x| so that

(I −B)|x| ≤ (1− |λ|)|x|.

Consequently,

|x| ≤ (1− |λ|)(I −B)−1|x|,

from which it follows that |λ| < 1 since (I −B)−1 ≥ 0 and x 6= 0.

Theorem 5.3.24. If D,L are nonnegative, D is diagonal and invertible, and
L is strictly lower triangular, then (D − L)−1 ≥ 0.

Proof. Use above Theorem.

Theorem 5.3.25 (Perturbation lemma). Let A,C ∈ C
n,n and assume A is

invertible with ‖A−1‖ ≤ α. If ‖A − C‖ ≤ β and βα < 1, then C is invertible
and

‖C−1‖ ≤ α

1− αβ
.

Proof. Since ‖I − A−1C‖ = ‖A−1(A − C)‖ ≤ αβ < 1 and A−1C = I − (I −
A−1C), it follows from Neumann lemma that A−1C is invertible. Since

C = AA−1C = A[I − (I −A−1C)],

we have C−1 = (A−1C)−1A−1 = [I − (I −A−1C)]−1A−1 and

‖C−1‖ = ‖[I − (I −A−1C)]−1A−1‖ ≤ α
∞∑

i=0

(αβ)i =
α

1− αβ
.

Average reduction of a iterative method

The error of the linear iteration x(k) = Gx(k−1) + b satisfies e(k) = Gke(0)

hence ‖e(k)‖ ≤ ‖Gk‖‖e(0)‖ or

‖e(k)‖
‖e(0)‖ ≤ ‖G

k‖ ≤ ‖G‖k
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which suggests us to define: σ =

(‖e(k)‖
‖e(0)‖

)1/k

: The average reduction per

iteration for k iterations

σ ≤ ‖Gk‖ 1
k = e

1
k
ln ‖Gk‖.

Thus, the decay rate is − ln ‖Gk‖ 1
k ≡ R(Gk). ”The bigger the better.”

Theorem 5.3.26 (Stein-Rosenberg Theorem). Let J be the Jacobi iteration
matrix. G be Gauss-Seidel iteration matrix. If J ≥ 0 (which is often the case),
then one of the following holds:

(1) ρ(J) = ρ(G) = 0

(2) 0 < ρ(G) < ρ(J) < 1 (i.e., when they converges G-S is faster)

(3) ρ(G) = ρ(J) = 1

(4) 1 < ρ(J) < ρ(G) (i.e., where they diverge, G-S diverges faster).

The hyposthesis is satisfied if A is an L-matrix, i.e, aii > 0 and ai,j ≤ 0
for i 6= j.

Theorem 5.3.27 (Kahan’s Theorem). In SOR iteration, we have ρ(Lω) ≥
|ω − 1|, for all ω real.

Proof. Recall the SOR iteration is given by

x(k+1) = (D − ωL)−1{(1 − ω)D + ωU}x(k) + (D − ωE)−1ωf .

The eigenvalues µi of Lω are the zeros of characteristic polynomials, thus
satisfy

n∏

i=1

µi = det(Lω).

Since the matrix (D − ωL)−1{(1 − ω)D + ωU} is triangular, we see

n∏

i=1

µi = det(Lω) = (1− ω)n.

Thus ρ(Lω) ≥ |1− ω|.

Corollary 5.3.28. SOR Converges only when 0 < ω < 2.

For a class of matrices the best parameter is attained at ωb =
2

1+
√

1−ρ2(J)
,where

J is the iteration matrix for the Jacobi method. There are many case that
ρ2(J) is close to 1 so that ωb is close to 2.

R. S. Varga: Matrix Iterative Analysis, 1965, Prentice Hall. D. M. Young:
Iterative Solution of Large Linear Systems, AP, 1971.
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Direct Iterative

Gaussian Elim. Jacobi(Parellel), Gauss-Seidel, SOR(sequential)

Deterministic Stopping criterior

Costly Capitalize on sparseness

Generally Applicable Convergence restricted to certain classes

only small # of unknowns large # of unknowns allowed

Table of Comparison

Exercise 5.3.29. (1) Extend the Neumann Lemma to the Banach space as
follows: Let B : X → X be a bounded linear operator on a Banach space
X with ‖B‖ < 1 and let I be the identity on X. Then for each f ∈ X
the successive approximation

xn+1 = Bxn + f, n = 0, 1, 2, · · · ,

with arbitrary x0 converges to an element x ∈ X and this x satisfies the
equation

x−Bx = f.

In other words, the mapping (I −B) is onto. Furthermore, we have

‖xn − x‖ ≤ 1

1− ‖B‖‖x1 − x0‖.

(Hint. Use Banach theorem and proof used there.)

(2) Prove part 2 of Theorem 5.3.1(Gershgorin disk theorem): If an eigen-
value λ lies on the boundary of a disk, then every disk must pass through
λ.

(3) Let A = (aij) be a n × n nonnegative matrix and let ρ(A) < 1. Show
that (I −A)−1 is nonnegative.



Chapter 6

Algebraic eigenvalue problem

Eigenvalue problem has many important applications other than the eigen-
value itself. For example, we convert problem of finding zeros of polynomial
equation p(x) = xn + an−1x

n−1 · · · + a0 = 0 to an eigenvalue problem: Let

C =









0 1 0
. . .

. . .

. . . 1
−a0 · · · −an−1









be the companion matrix. Then det (xI −C) = p(x).(Expand with respect to
first column) We solve this eigenvalue problem to find zeros of a polynomial
but we never solve polynomial equation to find eigenvalues of a matrix.

6.1 Inclusion or exclusion theorem

Theorem 6.1.1 (Gershgorin disk theorem). A ∈ C
n,n, Ax = λx, x 6= 0.

λ ∈
⋃
{

ξ | |ξ − aii| ≤
∑

j 6=i

|aij |
}

.

Example 6.1.2.

A =







3 + 4i 1 0 2
1 −3 + 4i 2 0
1 3 −4− 3i 2
3 1 2 4− 3i







ρ1 = 1 + 2 = 3, ρ2 = 3, ρ3 = 6, ρ4 = 6.

Theorem 6.1.3. If the union of m disks are disjoint from the other disks,
then the union contains precisely m eigenvalues.

121
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Proof. Let Γ =
⋃n

i Di, Di = {ξ | |ξ − aii| ≤ ρi} and Γ1 =
⋃m

j=1Dj be a union
of disks disjoint from Γ2 =

⋃

k Dk, i.e,

Γ1 ∩ Γ2 = φ, Γ1 ∪ Γ2 = Γ.

Set for 0 ≤ ε ≤ 1

A(ε) = ε[A− diag{a11, . . . , ann}] + diag{a11, . . . , ann}.

Then

A(1) = A,

A(0) = diag{a11, . . . , ann}.

i.e, A(ε) is a homotopy and the eigenvalues of A are exactly
⋃m

1 Di(0). The
G-disks of A(ε) are

Di(ε) = {ξ | |ξ − aii| ≤ ερi} ⊂ Di(1), i = 1, 2, . . . , n.

Thus, Γ1(ε) =

m⋃

1

Di(ε) ⊂ Γ1 ≡ Γ1(1).

From the first Gershgorin theorem, the eigenvalues of A(ε) varies within Γ1(ε)∪
Γ2(ε) as ε varies from 0 to 1. But any eigenvalue of A(ε) for ε < 1 contained
in Γ1(ε) ⊂ Γ1(1) must stay there Γ1(1) as ε increases. (The eigenvalues are
continuous function of ε and A(0) has exactly m-eigenvalues in Γ1(0))

Isolation of eigenvalues

Eigenvalues are contained in the union of G-disks, i.e,

λ ∈
⋃

i

Gi, Gi = {ξ : |ξ − aii| ≤ ρi =
∑

j 6=i

|aij |}.

Note that D−1AD has the same eigenvalues as A. Set D = diag{d1, . . . , dn}
di 6= 0, i = 1, . . . , n and apply G-disk theorem to D−1AD so that for any
eigenvalue λ of A,

λ ∈
⋃

i

G∗
i =

⋃

i

{z | |z − aii| ≤ ρ∗i =
1

|di|
∑

j 6=i

|aijdj |}.

This is called ’isolation’ or ’contraction’ of Gershgorin disks. See Varga’s book.
exer. Find a better estimate of eigenvalues for Example 6.1.2.

Theorem 6.1.4. Assume A ∈ C
n,n. Then all the eigenvalues of A belong to

the union of sets cij(called Cassini ovals) given by

cij = {ξ | |ξ − aii| · |ξ − ajj| ≤ ρiρj}, ρi =
∑

j 6=i

|aij |.
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Proof. Assume |xs| = max1≤i≤n |xi|, |xr| = maxi 6=s |xi|. Then we see

(λ− arr)xr =
∑

j 6=r

arjxj.

Hence

|λ− arr| · |xr| ≤
∑

j 6=r

|arj | |xj | ≤ ρr|xs|.

By the same way

|λ− ass| · |xs| ≤
∑

j 6=s

|asj | · |xj | ≤ ρs|xr|.

Multiplying two equations, we have

|λ− arr| · |λ− ass| ≤ ρrρs.

Theorem 6.1.5. The union of the ovals is always contained in the union of
G-disks.

Eigenvalue problem

Object: Construct a sequence of easily invertible matrices {Pk} in the sequence
{Ak} given by Ak+1 = P−1

k AkPk, where the eigenvalue problem for Ak+1 is
more easily solved than that for Ak.

Ideal Algorithm: For some finite value of k, this algorithm yields a trian-
gular matrix.

Remark 6.1.6. Such {Pk} does not exists in general.

6.2 Jacobi algorithm (Hermitian case)

In 1846, Jacobi found a method of annihilating off diagonal elements by sim-
ilarity transform using elementary rotation. As a motive, we can imagine
removing the cross term in the equation of quadratic curves by rotating the
axes. For simplicity, we assume A is real symmetric. It is easily generalized
to Hermitian case.
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Let R(p, q) be the (plane) rotation matrix with p < q(in Y-G book, the
order is reversed), called ’elementary rotation matrix’(corresponding to coun-
terclockwise direction)

R(p, q) =












1
...

...
. . . c . . . −s . . .

... 1
...

. . . s . . . c . . .
...

... 1












Recall 2 × 2 case: Any quadratic form ax2 + bxy + cy2 can be transformed
into a′ξ2 + b′η2 = 1 by a rotation matrix R(RT · R = I). Let A = {aij} be
symmetric, then A1 = RTAR is also symmetric. Let R(p, q) be the (plane)
rotation matrix (same as Givens) with p < q, called ’elementary rotation
matrix’(corresponding to counterclockwise direction)

Rpq =

[
cos θ − sin θ
sin θ cos θ

]

RT
pqARpq =

[
c s
−s c

] [
app apq
apq aqq

] [
c −s
s c

]

=

[
d1 0
0 d2

]

The entries of RTAR are computed as follows:

a′pi = (RTAR)p,i =
∑

k,ℓ

rkpakℓrℓi.

Since rpp = cos θ, rpq = − sin θ, rqp = sin θ, rqq = cos θ, rii = 1 and rij = 0 for
all other i, j, we see a′pi =

∑

k rkpaki. Hence we have

a′pi = api cos θ + aqi sin θ,

a′qi = −api sin θ + aqi cos θ,
i 6= p, q. (6.1)

Similarly, from

a′ip = (RTAR)i,p =
∑

k,ℓ

rkiakℓrℓp,

we have

a′ip = aip cos θ + aiq sin θ,

a′iq = −aip sin θ + aiq cos θ,
i 6= p, q (6.2)
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and

a′pq = (RTAR)p,q =
∑

k,ℓ

rkpakℓ rℓq

=
∑

k

rkp[akp(− sin θ) + akq cos θ]

= cos θ[app(− sin θ) + apq cos θ] + sin θ[aqp(− sin θ) + aqq cos θ]

= (aqq − app) sin θ cos θ + apq(cos
2 θ − sin2 θ)

=
(aqq − app)

2
sin 2θ + apq cos 2θ.

(6.3)

If we choose θ so that cot 2θ = (app − aqq)/2apq, the transformation(plane
rotation) annihilates the (p, q) element of A. (If app − aqq = 0, we choose
θ = π/4). Let φ ≡ cot 2θ, t = s/c then

φ =
c2 − s2

2sc
⇒ t2 + 2φt− 1 = 0⇒ t = −φ±

√

φ2 + 1. (6.4)

To avoid the cancelation we choose the sign so that following holds.

t = −φ±
√

φ2 + 1 =
1

φ±
√

φ2 + 1
=

sgn (φ)

|φ|+
√

φ2 + 1
. (6.5)

If φ is so large that φ2 would overflow, we use the relation

1

φ
= tan 2θ ≈ 2 tan θ

so set t = 1/(2φ). Hence

c =
1√

t2 + 1
, s = tc. (6.6)

The square sum of all other elements do not change as the following theorem
shows.

Theorem 6.2.1. The plane rotation reduces the sum of squares of off-diagonal
elements of A by 2a2pq.

Proof. See (6.1)-(6.3) and note that for i 6= p, j 6= q,

(a′pi)
2 + (a′qi)

2 = a2pi + a2qi
(a′ip)

2 + (a′iq)
2 = a2ip + a2iq

a′pq = a′qp = 0.

All other elements aij , for i 6= p, j 6= q do not change. Hence the square sum
is reduced by 2a2pq.
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As a reference, the values a′pp, a
′
qq are computed as

a′pp = (app cos θ + apq sin θ) cos θ

+(apq cos θ + aqq sin θ) sin θ

= app cos
2 θ + 2apq sin θ cos θ + aqq sin

2 θ,

a′qq = (−aqp sin θ + aqq cos θ) cos θ

+(−app sin θ + aqp cos θ)(− sin θ)

= app sin
2 θ − 2aqp cos θ sin θ + aqq cos

2 θ.

Theorem 6.2.2 (Jacobi). Let A be symmetric. If a sequence is given by

Ak+1 = RT (pk, qk)AkR(pk, qk)

which annihilates off diagonal element of Ak of largest modulus, then Ak ap-
proaches a diagonal matrix.

Theorem 6.2.3 (Goldsteine, Murray, Neumann,1959). The sequence above
converges to a diagonal matrix when the order is chosen so that Ak+1 annihi-
lates off diagonal element of Ak whose entry is greater than the average of off
diagonal elements.

Remark 6.2.4. In practice, the search for largest off-diagonal element is
costly (O(n2) more than updating). So use cyclic Jacobi. The Jacobi method
is essential eclipsed by (symmetric) QR(below), it is efficient in parallel com-
putation. It is also useful to find eigenvalues of nearly diagonal matrices.
Advantage of Jacobi method is that it produces eigenvector at the same time,
since

Am+1 = RTAmR ∼ Λ

so that AR ∼ RΛ.

Special cyclic Jacobi- Henrici 1958

An alternative of selecting the order of elimination is ”Typewriter fashion”:
(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), · · · , (n, 1), (n, 2), · · · , (n, n−1). It is known
to converges, as long as we can choose |θ| ≤ π/4.









∗ ∗ · · · ∗ ∗
0→ ∗ · · · ∗ ∗
0→ 0→ · · · ∗ ∗
0→ 0→ → ∗ ∗
0→ 0→ · · · 0→ ∗









Remark 6.2.5. In Jacobi algorithm the 0’s created by a plane rotation do
not in general remain zeros in the subsequence rotations. This motivated
Givens(1954) to introduce an algorithm (see section 6.3) which keeps the zeros
once they are created.
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Givens rotation

Consider the plane rotation R(p, q) introduced in Jacobi. Let y = R(p, q)x.
Then

yj =







cxp − sxq, j = p

sxp + cxq, j = q

xj , j 6= p, q.

If we choose c := cos θ, s := sin θ, where

c =
xp

(x2p + x2q)
1/2

, s =
−xq

(x2p + x2q)
1/2

, (6.7)

then we have yq = 0. Thus we arrived at a (onesided) method of annihilating
the q-th entry of a vector using p and q-th entries. The angle is chosen to
satisfy tan θ = −xq/xp.1

[
c −s
s c

] [
xp
xq

]

=

[
α
0

]

Here

c =
xp

(x2p + x2q)
1/2

, s =
−xq

(x2p + x2q)
1/2

.

Note that this Givens rotations are usually used for QR decomposition as a

one sided rotation to transform [xp, xq] to [α, 0] (α =
√

x2p + x2q). The matrix

has the same form as jacobi rotation but the way to choose the pivot and the
angle is different.

6.3 Givens algorithm for tridiagonalization

As mentioned in the previous section, Givens(1954) proposed an algorithm
for tridiagonalizing a symmetric matrix, which preserves the zeros in the off
diagonal positions once they are created by using the plane rotation. Instead,
we have to be content to stop when the matrix is tridiagonal. This allows
the procedure to be carried out in a finite number of steps, unlike the Jacobi
method, which requires iteration to convergence.

Example 6.3.1. We choose the rotation angle in equation (6.3) so as to zero
an element that is not at one of the four corners, i.e., not app, apq or aqq in
equation (11.1.3). Specifically, we first choose R23 to annihilate a31 (and, by
symmetry, a13). Choose angle so that

a′31 = ca31 − sa21 = 0.

1Note that in Jacobi, we choose tan 2θ = 2apq/(app − aqq) to diagonalize by similarity
transform.
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Hence tan θ = a31
a21

. Next we choose R24 to annihilate a41. Once a31 has
been changed to 0, the rotation R24(annihilating a41) do not change 3rd row.
Hence a31 entry remain 0. Similarly, the subsequence rotations R25, · · · , R2n

annihilate a51, a61, ... ,an1 while they do not change 4-th row element, 5-th
row, etc. Hence the first column below the subdiagonal element is annihilated.

R23A =







1 0 0 0
0 c −s 0
0 s c 0
0 0 0 1













a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44






=







a11 a12 a13 a14
a′21 a′22 a′23 a′24
0 a′32 a′33 a′34
a41 a42 a43 a44






= A1

R24A1 =







1 0 0 0
0 c 0 −s
0 0 1 0
0 s 0 c













a11 a12 a13 a14
a′21 a′22 a′23 a′24
0 a′32 a′33 a′34
a41 a42 a43 a44






=







a11 a12 a13 a14
a′21 a′22 a′23 a′24
0 a′32 a′33 a′34
0 a′42 a′43 a′44







Also, the transpose of the same matrix has to be multiplied on the right.

In general, we choose the sequence

R23, R24, · · · , R2n, R34, · · · , R3n, · · · , Rn−1,n

where Rjk annihilates ak,j−1.











× × × . . . × ×
× × × . . . × ×
× × × . . . × ×
× × × . . . × ×
× × × . . . × ×
× × × . . . × ×











=⇒
(3,1)

(4,1)
···

(n,1)











× × 0 . . . 0 0
× × × . . . × ×
0 × × . . . × ×
0 × × . . . × ×
0 × × . . . × ×
0 × × . . . × ×











=⇒
(4,2)

(5,2)
···

(n,2)











× × 0 0 0 0
× × × 0 0 0
0 × × . . . × ×
0 0 × . . . × ×
0 0 × . . . × ×
0 0 × . . . × ×











This is called the Givens algorithm (for tridiagonalization). This procedure
has the advantage that it requires only a finite number of similarity trans-
formations. (Next step is to compute eigenvalues of a tridiagonal matrix by
a root finding algorithm-’bisection’.) Evidently, of order n2/2 rotations are
required, and the number of multiplications in a straightforward implementa-
tion is of order 4n3/3, not counting those for keeping track of the product of
the transformation matrices, required for the eigenvectors.

Later Householder(1958) proposed an algorithm which is just as stable as
the Givens and twice as fast as Givens algorithm, so the Givens method is not
generally used.

Remark 6.3.2. Recent work has shown that the Givens reduction can be
reformulated to reduce the number of operations by a factor of 2, and also
avoid the necessity of taking square roots. This appears to make the algo-
rithm competitive with the Householder reduction. However, this fast Givens
reduction has to be monitored to avoid overflows, and the variables have to
be periodically rescaled. There does not seem to be any compelling reason to
prefer the Givens reduction over the Householder method.
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Summary of Givens algorithm

(1) Tridiagonalization by a finite number of similarity transformation (Orig-
inally by Givens later improved by Householder- See next section). It
takes (n− 1)(n − 2)/2 rotations to produce a tridiagonal matrix.

(2) A simple root finding algorithm (bisection see below) for the eigenvalues
of tridiagonal matrix.

Definition 6.3.3. A matrix A = {aij} is called an Upper-Hessenberg
matrix if aij = 0 for i > j + 1. i.e., the following type is an upper-Hessenberg
matrix. A Symmetric upper Hessenberg matrix is a tridiagonal matrix.









× × . . . ×
× × . . . ×
0 × . . . ×
0 0 . . .
0 0 . . . × ×









6.4 Householder transformations

Now we provide a tridiagonalization by similarity transformation modified by
Householder. Instead of using n−k−1 plane rotations to create n−k−1 zeros
in the k-th column of A as Givens does, Householder uses a single orthogonal
similarity transform to do the job(as in Schur’ lemma). In this way, tri-
diagonalization can be completed in exactly n−2 Householder transformations.
This is twice as fast as the original Givens algorithm.

Householder transformations introduces many zeros at once. Although
efficient, this approach is too heavy for selectivity is needed. So it is sometimes
better to use Givens rotations which introduces zeros one at a time.

6.4.1 Reduction to U-H form by elementary reflector

Let H = I − 2ww∗ be an elementary reflector(w∗w = I). It satisfies H∗ =
H−1 = H. Let us write A in a block matrix form:

A = A(0) =





× × ×
× × ×
× × ×



 =

[

A
(0)
11 A

(0)
12

A
(0)
21 A

(0)
22

]

,

where A
(0)
11 = a11 and A

(0)
21 denotes the first column of A less a11, and A

(0)
22

denotes the (n − 1) × (n − 1) submatrix of A obtained by deleting first row
and column etc.

Let P1 =

[
1 0
0 I − 2ww∗

]

, where w ∈ R
n−1 satisfies ‖w‖2 = 1. Then we

see P ∗
1P1 = I.(an elementary reflector) We seek to determine w such that
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P1A0 =








a11 A
(0)
12

y A
(1)
22







=










× × × ×
× × × ×
0 × × ×
... . . . . . ×
0 . . . . . ×










, (6.8)

where y = (I−2ww∗)A(0)
21 = [∗, 0, · · · , 0]T ∈ R

n−1 and A
(1)
22 = (I−2ww∗)·A(0)

22 .

Thus if we can determine w such that

(I − 2ww∗)A(0)
21 = − sgn (a21)‖A(0)

21 ‖2 · e1, (6.9)

then the 1st column of P1A is U-H form. (The sign of ‖A(0)
21 ‖2 is determined

so that subtractive cancelation would not occur. i.e, we choose the opposite

sign of the first entry of A
(0)
21 .) Let a2 = [a21, a31, · · · , an1] be the first column

of A without the first entry and α = − sgn a21‖a2‖. As discussed earlier, we
set

w =
a2 − αe1
‖a2 − αe1‖

∈ R
n−1.

Then we have

(I − 2ww∗)a2 = αe1. (6.10)

This is exactly the inverse case of Schur lemma, (except that we are working
in R

n−1, see (5.1)). Thus

(I − 2ww∗)e1 = a2. (6.11)

Also, note that the first row of P1A
(0) is the same as that of A(0). Hence if we

apply P T
1 on the right, we get

P1A
(0)P T

1 =









a11 a′2
α
0

· A
(1)
22

0
















1 0

0
... I − 2ww∗

0







=









a11 a′2(I − 2ww∗)
α
0

· A
(1)
22 (I − 2ww∗)

0









.

(6.12)

Thus for A
(1)
22 ∈ R

(n−1)×(n−1)

P1A0 =










× . . . ×
× . . . ×
0
... A

(1)
22

0
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Write

A
(1)
22 =







× . . . ×

A
(1)
21 Ã

(1)
22






,

where Ã
(1)
22 ∈ R

(n−2)×(n−2). Next we put

P2 =









1 0 0
0 1 0

0 0
· · I − 2ww∗

0 0









and find w ∈ R
n−2 exactly the same way as above. i.e,

P2P1A0 =










× . . . ×
× . . . ×
0
... y A

(2)
22

0










=










× × . . . ×
× × . . . ×
0 ×
... 0 A

(2)
22

0 0










where y = (I − 2ww∗)A(1)
21 = [∗, 0 · · · , 0]T and A

(2)
22 ∈ R

(n−2)×(n−2). Ap-
ply P T

1 P T
2 to the right, we still obtain an (semi) upper Hessenberg form

P2P1A
(0)P T

1 P T
2 . Repeating the process, we arrive at an upper-Hessenberg

form

Pn−1 · · ·P1AP
T
1 · · ·P T

n−1, (A(k) := Pk · · ·P1AP
T
1 · · ·P T

(k), ).

If A is symmetric we arrive at a tridiagonal matrix: Thus we only need to
compute the eigenvalues of an upper Hessenberg form(or tridiagonal if A is
symmetric).

Remark 6.4.1. In actual computation, one never form the product Pm · · ·P1AP
T
1 · · ·P T

m.

Instead, in each step one computes w and compute A
(1)
22 by

A
(1)
22 = (I − 2ww∗) ·A(0)

22 = A
(0)
22 − 2ww∗A(0)

22 .

Here one first computes uT := w∗A(0)
22 by vector-matrix multiplication and

then computes 2ww∗A(0)
22 by the vector-vector multiplication 2wuT . So the

cost (multiplication only) is 2(n − k)2, k = 1, 2 · · · , n− 1, total of 4n3/3.

Remark 6.4.2. Reduction to upper Hessenberg form by elementary matri-
ces(permutation plus Mi like matrices in Gaussian elimination) are also pos-
sible and costs half of Householder’s transformation. (See Y-G. p. 924)
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Remark 6.4.3. As a global orthogonal transform, Householder is faster then
Jacobi(Givens), but when we need to zero in a particular element, Jacobi(Givens)
is better.

Remark 6.4.4. a′2 = aT2 if A is symmetric and hence

aT2 (I − 2ww∗) = αeT1 .

Hence we have a = b = 0. If we were to transform the first column of A to αe1
instead of αe2, it would change the first row, hence the post multiplication by
P T
1 would not, in general produce αeT1 . This is why we can only suffice with

tri-diagonal(or U-H) form.

6.4.2 Reduction to tridiagonal matrix when A is symmetric

Now assume A is symmetric. Change the notation: With w above being

replaced by v, we have P1 =

[
1 0
0 I − 2vvT

]

. Let P̄1 = (I − 2vvT ) ∈ R
n−1.

Then we see

(I − 2vvT )A(1)(I − 2vvT ) = A(0) − 2v(vTA(0))− 2(A(0)v)vT + 4v[(vTA(0))v]vT

= A(0) − vpT − pvT + 2(pTv)vvT

= A(0) − v(p − (pTv)v)T − (p− (pTv)v)vT

= A(0) − vwT −wvT (w = p− (pTv)v).

For i = 1 : n− 2

(1) v = A(i−1)e1 ∈ R
n−i (first column of A(i−1) from i+ 1-th entry to n)

(2) µ = vTv

(3) v[1] = v[1] + sign(v(1))
√
µ (v − αe1, α = − sgn v1‖v‖)

(4) p = 2
vTv

A(i−1)v and w = p− pTv

vTv
v

(5) P̄ T
k A(i−1)P̄k = A(i−1) − vwT −wvT

Note

φ2 := ‖v − αe1‖2 = ‖v‖2 − 2αv[1] + α2

= 2µ+ 2|v[1]|√µ
= 2(µ + |v[1]|√µ).

Using this we normalize v in 3rd step. Then next step is simpler.
For i = 1 : n− 2

(1) v = A(i−1)e1 ∈ R
n−i (first column of A(i−1) from i+ 1-th entry to n)
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(2) µ = vTv

(3) v[1] = v[1] + sign(v(1))
√
µ (v − αe1, α = − sgn v1‖v‖)

(4) φ =
√

2(µ+ |v[1]|√µ)

(5) Set v = v/φ

(6) p = 2A(i−1)v/φ and w = p− (pTv)v

(7) Then P̄ T
i A(i−1)P̄i = A(i−1)−vwT−wvT is the (n−i)×(n−i) submatrix

of A(i).

6.5 Eigenvalues of symmetric tridiagonal matrix(Givens)

As we have seen in the previous section, we can use the similarity transform
by Householder to reduce A to a U-H form (tridaigonal when A is symmet-
ric). Now we turn to Givens procedure for finding eigenvalues of a symmetric
tridiagonal matrix.

T =












a1 b1 0 . . . 0

b1 a2
. . .

. . .

0
. . .

. . .
. . . 0

...
. . .

. . . bn−1

0 0 bn−1 an












Pn(λ) = det (T − λI)

If any one of bi is 0, we decompose T =

[
× 0
0 ×

]

. Thus we may assume bi 6= 0

for all i.

Let Pi(λ) = det












a1 − λ b1 0 . . . 0

b1 a2 − λ
. . .

0
. . .

. . .
. . . 0

...
. . .

. . . bi−1

0 . . . 0 bi−1 ai − λ












= det of principal

minor.

Theorem 6.5.1. We have

Pi(λ) = (ai − λ)Pi−1(λ)− b2i−1Pi−2(λ),

where we define P−1(λ) = 0, P0(λ) = 1, b0 = 0(orP1(λ) = a1 − λ). For
derivatives we have(Wilkinson 423 or T.Y. Li paper)

P ′
i (λ) = (ai − λ)P ′

i−1(λ)− Pi−1(λ)− b2i−1P
′
i−2(λ), i = 2, 3, · · ·
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P1

P2
P3

Separation of roots of Pi

where we define P ′
0(λ) = 0, P ′

1(λ) = −1.

P ′′
i (λ) = (ai − λ)P ′′

i−1(λ)− 2P ′
i−1(λ)− b2i−1P

′′
i−2(λ), i = 2, 3, · · ·

where we define P ′′
0 (λ) = 0, P ′′

1 (λ) = 0. But direct use of these relation suffer
from severe under-overflow.

The Laguerre Iteration in Solving the Symmetric Tridiagonal Eigenprob-
lem, Revisited, T. Y. Li and Zhonggang Zeng, SIAM J. Sci. Comput., 15(5),
1145-1173.

Proof. Expand and use induction.

We note that the eigenvalues of each principal submatrix of T are real.

Definition 6.5.2. Let A(λ) be the number of sign changes between consecu-
tive members of the sequence.

Theorem 6.5.3 (Givens-The Sturm sequence property). The roots of Pi(λ)
are distinct (because bi 6= 0) for each i and are separated by the roots of
Pi−1(λ). Furthermore, A(λ), the number of sign changes between consecutive
members of the following sequence is equal to the number of eigenvalues strictly
less than λ.

{P0(λ), P1(λ), · · · , Pn(λ)}.

Proof. First we show Pi−1(λ) and Pi−2(λ) cannot have common roots. If
Pi−2(λ

∗) = Pi−1(λ
∗) = 0, then Pi−3(λ

∗) = 0 · · · ⇒ P1(λ
∗) = a1 − λ∗ = 0. But

then P2(λ
∗) = 0 = (a1 − λ∗)(a2 − λ∗)− b21 = −b21 < 0, contradiction.

Now separation property: Let us use an induction on i, Pi.
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i = 1:

P1(λ) = a1 − λ

P2(λ) = (a2 − λ)(a1 − λ)− b21.

Therefore, the roots of P2 are clearly separated by the root of P1. So the roots
of P2 are distinct.

Assume the roots of Pi−2(λ) separates the roots of Pi−1(λ). Let r1 < r2 <
· · · < ri−1 be the roots of Pi−1(λ). Then from recurrence formula,

Pi(rk) = (ai − rk)Pi−1(rk)− b2i−1Pi−2(rk) = −b2i−1Pi−2(rk), 1 ≤ k ≤ i− 1.
(6.13)

Thus Pi(rk) and Pi−2(rk) have opposite sign for all k. But Pi−2(x) changes
sign between rk and rk+1 for k = 1, 2, · · · , i−2. Hence Pi(λ) also changes sign
because it has opposite signs. In other words, Pi(λ) = 0 has a root between
each pair of adjacent roots of Pi−1(λ) = 0.

We have to find two more roots outside the interval (r1, ri−1). We see
from (6.13), it holds that Pi(r1) · Pi−2(r1) < 0 but Pi(λ)Pi−2(λ) → +∞ as
λ → −∞ as a polynomial of even degree. Hence Pi(λ)Pi−2(λ)(hence Pi(λ))
must change sign on (−∞, r1). By the same reason Pi(λ) must change sign
on (ri−1,∞).

Computing eigenvalues by solving Pn(λ) = 0

In general, finding all the the zeros of a polynomial is not easy. But if we know
the approximate interval where the roots belong, we can find them relatively
easily. One way of obtaining such interval is as follows. Since ρ(T ) ≤ ‖T‖β
for any norm, all eigenvalues lie in the interval [−‖T‖∞, ‖T‖∞]. One can use
bisection method,(since all roots are distinct) to narrow down the interval in
which the eigenvalue we seek belong to. In this algorithm, we may find one
eigenvalue at a time. Another way is to use G-disk theorem, which tells us
that eigenvalues lies in the interval

[a1 − |b1|, a1 + |b1|]

[ai − |bi−1| − |bi|, ai + |bi−1|+ |bi|], i = 2, 3, · · · , n− 1.

[an − |bn−1|, an + |bn−1|].
For eigenvectors it seems best to use inverse power method. But Jacobi

algorithm is good in the sense that it produces all eigenvalues and eigenvectors
together.

Remark 6.5.4. A remark from ’An Accelerated Bisection Method for the Cal-
culation of Eigenvalues of a Symmetric Tridiagonal Matrix Herbert J. Bern-
stein, Numer. Math. 43, 153-160 (1984) Numerische.’ .... Indeed, many
obvious techniques for converging to eigenvalues faster than with bisection
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turn out to take fewer steps, but considerably more time, because so much
more has to be done in the inner loop. Further, when calculations to near the
limiting accuracy of the machine used are required, bisection has the distinct
advantage of avoiding convergence questions. We can retain the guaranteed
convergence of bisection.

...........

6.6 Eigenval of symm. tridiag by bisection-Wilkinson

6.6.1 The Sturm sequence property

T =












a1 b1 0 . . . 0

b1 a2
. . .

. . .

0
. . .

. . .
. . . 0

...
. . .

. . . bn−1

0 0 bn−1 an












fn(λ) = det (T − λI)

Then the Sturm sequence is

f0(λ) = 1,

f1(λ) = a1 − λ

fi(λ) = (ai − λ)fi−1(λ)− b2i−1fi−2(λ) (3)

Associate a sign with each of the fi(λ) as follows. If fi(λ) 6= 0, then this sign
is the true sign of fi(λ). If fi(λ) = 0 we take its sign to be the opposite of
that of fi−1(λ)(a convention).

With this interpretation the number, recall the result above:

Theorem 6.6.1 (Givens). The roots of fi(λ) are separated by the roots of
fi−1(λ). Furthermore, A(λ), the number of sign changes between consecutive
members of the sequence (3) is equal to the number of eigenvalues strictly less
than λ.

The condition bi = 0 considerably simplifies the statement of the theo-
rem. It ensures that there are no true multiple eigenvalues and that no two
consecutive members of the sequence are both zero.

The theorem may be applied to unsymmetric tridiagonal matrices with
upper off-diagonal elements ai and lower off-diagonal elements bi provided
aibi > 0 for all i. We merely replace b2i−1 in (3) by ai−1bi−1.
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6.6.2 The bisection process-Wilkinson original method

J. H. Wilkinson, Numer Math 4, 362–367 (1962) (In practice, we use the
stabilized version developed by Barth wilkin 1967 see below.) Suppose the
eigenvalues are ordered so that λ1 > λ2 > · · · > λn. (Equality is excluded
since we are assuming bi 6= 0) and it is known that for some g0 and h0

g0 ≥ λr > h0, (4) (6.14)

so that

A(h0) ≥ r; A(g0) < r (5). (6.15)

Then in t bisection steps we can locate λi in an interval (hi, gi) of width
(g0 − h0)/2

t as follows. Suppose in i steps we have established that

A(hi) ≥ r; A(gi) < r, (6.16)

gi − hi = (g0 − h0)/2
i. (6.17)

In the i+ 1-th step we compute A[12(gi + hi)]. Then:

if A[
1

2
(gi + hi)] ≥ r; we take hi+1 =

1

2
(gi + hi); gi+1 = gi, (8)(6.18)

if A[
1

2
(gi + hi)] < r; we take gi+1 =

1

2
(gi + hi); hi+1 = hi.(9)(6.19)

In either ease we have

(gi+1 − hi+1) =
1

2
(gi − hi) (10) (6.20)

A(hi+1) ≥ r; A(gi+1) < r (11) (6.21)

so that λr is in the interval (hi+1, gi+1).

Values g0 and h0 satisfying (4) and (5) are given by

h0 = −norm; g0 = norm (12), (6.22)

where norm is the infinity norm of the tridiagonal matrix.

Note that if a general matrix is reduced to tridiagonal form by orthogonal
similarity transformations, then for exact computation multiple eigenvalues
imply that some off-diagonal elements must be zero.

6.6.3 A modified method to avoid under/overflow

”Calculation of the Eigenvalues of a Symmetric Tridiagonal Matrix by the
Method of Bisection” W. Barth, R. S. Martin and J. H. Wilkinson, Numer
Math 9, 386– 393 (1967) This algorithm seems best for single process and
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the algol code included there. For a slight improved version see ”An Accel-
erated Bisection Method for the Calculation of Eigenvalues of a Symmetric
Tridiagonal Matrix”, Herbert J. Bernstein, Numer. Math. 43, 153-160 (1984).

Let (see the index change from above b1 => b2)

T =












c1 b2 0 . . . 0

b2 c2
. . .

. . .

0
. . .

. . .
. . . 0

...
. . .

. . . bn
0 0 bn cn












fn(λ) = det (T − λI)

Givens’ method is numerically very stable. The error in the eigenvalues
is no worse than 15 times the truncation error 2t, for t-bit mantissa binary
machines, independent of the order of T . However, the direct calculation of
the sequence f(v) can easily lead to underflow or overflow. Barth, Martin and
Wilkinson [1] avoid the need to rescale by using the sequence

gi(v) = fi(v)/fi−1(v), i = 1, ...., n (6.23)

alternatively given as

g1(v) = c1 − v, (6.24)

gi(v) = (ci − v)− b2i /gi−1(v), i = 2, ..., n, (6.25)

with zeros replaced by small non-zero quantities. Counting positive gi is the
same as counting sign agreements of fi, which yields the count of the number
of eigenvalues of A ≥ v. Equivalently, counting negative gi is the same as
counting sign disagreements of fi, which yields the count of eigenvalues of
A < v.

find eigenvalues λm1, · · · , λm2(λi+1 ≥ λi) a symm. tridiag matrix of order
n.
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Input to procedure bisect

c an n× 1 array giving the diagonal elements of a tridiagonal matrix.
b an n× 1 array giving the subdiagonal elements of a tridiagonal matrix.
β an n× 1 array giving β[i] = b2[i]
m1 ≤ m2 the eigenvalues λm1, · · · , λm2 are calculated
ǫ1 a quantity affecting the precision to which the eigenvalues are computed.
relfeh the smallest number for which 1 + relfeh > 1 on the computer.

Output of procedure bisect

ǫ2 gives information concerning the accuracy of results
z total number of bisections to find all required eigenvalues.
x array x[m1 : m2] contains the computed eigenvalues.
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procedure bisect (c, b, etc)

begin real h, xmin, xmax; int i;
β[1] := b[1] = 0;
xmin := c[n]− abs(b[n]); xmax := c[n] + abs(b[n]);

for i := n− 1 to 1
begin h := abs(b[i]) +abs(b[i+ 1]);
if c[i] + h > xmax then xmax := c[i] + h;
if c[i]− h < xmin then xmin := c[i]− h;

end i;
ǫ2 := rel × temp (if xmin+ xmax > 0 then temp = xmax else − xmin);
if ǫ1 ≤ 0 then ǫ1 = ǫ2;
ǫ2 := 0.5ǫ1 + 7ǫ2
innerblock compute λm1, · · · , λm2

begin int a, k; real q, x1, xu, xo; array wu[m1 : m2];
xo := xmax;
for i := m1 to m2
begin x[i] := xmax; wu[i] := xmin; end i;
z := 0;
for k := m2 to m1 (k-th eigen)
begin xu := xmin;

for i := k to m1
begin if xu < wu[i] then

begin xu := wu[i]; go to contin
end

end i;
contin: if xo > x[k] then xo := x[k]; (interval (xu, xo) chosen)

for x1 := (xu+ xo)/2(initializa) while xo− xu >
2× rel × (abs(xu) + abs(xo)) + ǫ1 do

begin z := z + 1; ( #of bisections needed )
a := 0; q := 1;
for i := 1→ n do (Sturm sequence)
begin

q := c[i]− x1− (if q 6= 0 then β[i]/q
else abs(b[i])/rel);

if q < 0 then a := a+ 1; (#of eig less than x1)
end i;
if a < k then
begin if a < m1 then

xu := wu[m1] := x1;
else
begin xu := wu[a+ 1] := x1;

if x[a] > x1 then x[a] := x1;
end

end
else xo := x1;

end x1;
x[k] := (xo+ xu)/2; (k-th eigvalue found)

end k;
end inner block

end bisect;
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Remark 6.6.2. Other way of finding eigenvalues of tri diagonal matrix —
QR algorithm with origin shift to find eigenvalues of tridiagonal matrix. Stew-
art[1970] applied this method for symmetric matrices after Householder’s al-
gorithm to tridiagonalize the matrix.

Remark 6.6.3. Jacobi Method works only for symmetric matrix. RT
mARm →

diag(λ1, . . . , λn), Rm =
∏m

1 Ri, Ri are orthogonal matrix. This produces
eigenvalues altogether and eigenvectors are displayed as columns of R. Givens-
Householder works for non symmetric case, but used only for symmetric case.
In general, QR method (below) is preferred after reducing the matrix to U-H
form to save computational times.

Eigenvectors

For symmetric matrices, Givens-Householder algorithm produces eigenvectors.
We have

A = PTP T ,

where T is tridiagonal. If λ is an eigenvalue of T corresponding to eigenvector
y(relatively easy), then Ty = λy. Hence λ(Py) = PTy = PTP T (Py) =
A(Py). Thus λ is an eigenvalue of A with corresponding eigenvector x = Py.
Then use power or inverse power method to find eigenvectors of T .

Non Hermitian case can be handled similarly, except that we have for some
unitary matrix U and an upper Hessenberg matrix H,

A = UHUH .

If λ is an eigenvalue of H corresponding to eigenvector y, then Hy = λy,
hence λ(Uy) = UHy = UHUH(Uy) = A(Uy). Thus λ is an eigenvalue of A
with corresponding eigenvector x = Uy.

Recall that in the QR -iteration, when the sequence {Ak} converges to
a diagonal matrix, the product Q0Q1Q2 · · ·Qk converges to a matrix whose
columns are eigenvectors. (costly!)

However, if eigenvalues are known, finding the corresponding eigenvector
x is relatively easy, for example by (inverse) power method to be described
below.

6.7 Gram-Schmidt Orthogonalization and the QR

Decomposition

6.7.1 Classical Gram-Schmidt

Given k linearly independent vectors {v1, · · · ,vk}, we consider the span V =
span{v1, · · · ,vk} and we would like to find an orthonormal basis for V . The
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usual Gram-Schmidt process is to find u1, · · · ,uk as follows:

u1 = v1
‖v1‖

u′
2 = v2 − (v2,u1)u1, u2 =

u′

2
‖u′

2‖
u′
3 = v3 − (v3,u2)u2 − (v3,u1)u1, u3 =

u′

3
‖u′

3‖
= · · ·

u′
k = vk −

∑k−1
j=1(vk,uj)uj , uk =

u′

k

‖u′

k
‖ .

(6.26)

Suppose A is an m× k matrix with full column rank(this requires m ≥ k)
whose successive column vectors are {w1, · · · ,wk}. If Gram-Schmidt process
is applied to these vectors to produce an orthonormal basis {q1, · · · ,qk} for the
column space of A, and Q is the matrix whose column vectors are {q1, · · · ,qk}
in order, what is the relationship between A and Q ?

Let A and Q be the matrices having wi and qi as columns, i.e.,

A = [w1,w2, · · · ,wk], Q = [q1,q2, · · · ,qk].

We can express the vector wi in terms of orthonormal column vectors of Q as

wi =

k∑

j=1

cijqj.

By orthonormal property of qj’s, we see cij = wi · qj and hence

w1 = (w1 · q1)q1 + (w1 · q2)q2 + · · ·+ (w1 · qk)qk

w2 = (w2 · q1)q1 + (w2 · q2)q2 + · · ·+ (w2 · qk)qk

= · · ·
wk = (wk · q1)q1 + (wk · q2)q2 + · · · + (wk · qk)qk.

Note qj is orthogonal to wi when i < j. Hence we have

w1 = (w1 · q1)q1

w2 = (w2 · q1)q1 + (w2 · q2)q2

= · · ·
wk = (wk · q1)q1 + (wk · q2)q2 + · · · + (wk · qk)qk.

Let us form the upper triangular matrix

R =








(w1 · q1) (w2 · q1) · · · (wk · q1)
0 (w2 · q2) · · · (wk · q2)
...

...
...

...
0 0 · · · (wk · qk)








(6.27)
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Then we can see that AQ = R, i.e.,

[w1,w2, · · · ,wk] = [q1,q2, · · · ,qk]








(w1 · q1) (w2 · q1) · · · (wk · q1)
0 (w2 · q2) · · · (wk · q2)
...

...
...

...
0 0 · · · (wk · qk)








A = Q R. (6.28)

Theorem 6.7.1. If A is an m×n(m ≥ n) matrix with full column rank, then
A can be factored as

A = QR, (6.29)

where Q is m×n matrix whose column vectors form an orthonormal basis for
the column space of A, and R is a n× n invertible upper triangular matrix.

In general a matrix factorization of the form A = QR, where column
vectors of Q are orthonormal and R is invertible, upper triangular is called a
QR-decomposition.

CGS-Algorithm: Given v1, · · · ,vn ∈ R
m

for k = 1, 2, . . . , n
for i = 1, 2, . . . , k − 1

rik = qT
i vk,

vk ← vk − rikqi

end
rkk = ‖vk‖,
qk = vk

rkk
end k-loop

Here Q = (qij) and R = (rij).

Example 6.7.2. Find a QR-decomposition of the following matrix using the
Gram-Schmidt process.

A =





1 −1 0
0 1 1
1 1 1
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sol.
w1 = [1, 0, 1]T , w2 = [−1, 1, 1]T , w3 = [0, 1, 1]T

v1 = w1 = [1, 0, 1]T

v2 = w2 −
w2 · v1

‖v1‖2
v1 = [−1, 1, 1]T − 0

v3 = w3 −
w3 · v1

‖v1‖2
v1 −

w3 · v2

‖v2‖2
v2 = [0, 1, 1]T − 1

2
· [1, 0, 1]T − 2

3
[−1, 1, 1]T

= [
1

6
,
1

3
,−1

6
]T

q1 =
1√
2
[1, 0, 1]T , q2 =

1√
3
[−1, 1, 1]T , q3 =

1√
6
[1, 2,−1]T

R =





(w1 · q1) (w2 · q1) (w3 · q1)
0 (w2 · q2) (w3 · q2)
0 0 (w3 · q3)



 =






√
2 0 1√

2

0
√
3 2√

3

0 0 1√
6






6.7.2 Other Ways to Obtain QR-decomposition

We study (Modified) Gram-Schmidt, Givens Rotation and Householder Re-
flection here.

R =








↓ ↓ · · · ↓
0 ↓ · · · ↓
...

...
...

...
0 0 · · · ↓







, R =








→ → · · · →
0 → · · · →
...

...
...

...
0 0 · · · →








CGS vs. MGS

It is known that the classical Gram-Schmidt QR-decomposition (6.27) pro-
duces large round off error numerically. Hence it is not recommended to use
in numerical purpose. One remedy is to rearrange the order of orthogonaliza-
tion. Note that the order of generating R is columnwise in (6.27). If we change
the order row wise, we get Modified Gram-Schmidt. Another method is
to use Householder transformation. Still another method is to use the Givens
rotation.

Modified Gram-Schmidt

Unfortunately, this is a numerically bad procedure: Large round off errors
and hence loss of orthogonality of Q. For better numerical behavior, use the
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following modified Gram-Schmidt. The idea is to orthogonalize all vectors
w.r.t orthogonal vector qi as soon as they are available.

Given linearly independent vectors {v1,v2, · · · ,vn},
To save space A is overwritten by Q-orthogonal vectors.

Modified-GS Algorithm -vector version: Given v1, · · · ,vn ∈ R
m

for k = 1, 2, . . . , n
rkk = ‖vk‖
qk = vk

rkk
(normalize k-th vector vk)

for j = k + 1, . . . , n (row wise)

rkj = qT
k · vj

vj ← vj− < qk,vj > qk

end j-loop
end k-loop

Here Q = {qij} and R = {rij}.

QR by Householder reflection

Recall that one way of expressing the Gaussian elimination algorithm is in
terms of Gauss transformations that serve to introduce zeros into the lower
triangle of a matrix. Householder transformations are orthogonal transfor-
mations (refections) that can have similar effect. Reflection across the plane
orthogonal to a unit normal vector w(Householder reflection, elementary
reflector) can be expressed in a matrix form as

Hw = I − 2ww∗ = I − 2projw.

This is symmetric and orthogonal(H∗
w = Hw and H∗

wHw = I). The idea is :

q

v

u

Pwu

−2Pwu

w

w = u−v

‖u−v‖

Figure 6.1: Action of an elementary reflector Hw

Given u, v with ‖u‖ = ‖v‖, find an orthogonal matrix Hw so that Hwu = v.
Thus from the figure 6.7.2 we can see

w =
u− v

‖u− v‖ . (6.30)
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By multiplying a sequence of Householder transformations we turn all the
subdiagonal elements into zeros. This leads us to the following algorithm to
compute the QR decomposition: For simplicity assume m = n here. But the
QR transform is valid for the case n ≤ m also. Now the first step of QR is
to reduce the first column to a multiple of e1: Let A = [a1, A2]. Then we can
find an orthogonal matrix Q1 = Hw, which maps the first column of A onto
αe1. Since ‖Hwa1‖ = ‖a1‖ = ‖αe1‖, we have α = ±‖a1‖. Thus w is given by

w =
a1 − αe1
‖a1 − αe1‖

. (6.31)

and

Q1A =








α b2 . . . bn
0
... A12

0







.

We repeat the same process. If (n−1)×(n−1) matrix Q′
2 is the elementary

reflector used to reduce the first column of A12, then the matrix

Q2 =

(
1 0
0 Q′

2

)

makes

Q2Q1A =








α b2 . . . bn
0 α2 ∗ ∗
... 0 A′

23

0 0







.

How to choose the sign of α? The idea is to let we have less round off
error (i.e, to induce less subtractive cancelation). Thus we choose the sign as
− sgn a11.

Continuing this process, we arrive at

Qn · · ·Q2Q1A = R( upper triangular).

Hence the QR is obtained as:

A = RQn · · ·Q2Q1( upper triangular).

In fact, we can use QR transform to a m×n(m ≥ n) matrix A. The following
algorithm is from Heath book.

QR transform by Householder : Given a1, · · · ,an ∈ R
m

for k = 1, 2, . . . ,min(n,m− 1)

αk = −sgn(akk)
√

a2kk + · · ·+ a2mk

wk = [0, · · · , 0, akk, · · · , amk]
T − αkek (compute αe1 − a1)
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βk = wT
kwk (compute ‖w‖)

If βk = 0, continue with next k (current column is zero)
else for j = k to n

γj = wT
k · aj

aj = aj − (2γj/βk)wk (perform (I − 2wwT )aj)
end j-loop

end k-loop

We write above decomposition by Q1R1. Then we can extend the QR decom-
position. Let Q = [Q1 Q2], where Q1 is the m × n matrix (first n columns
just computed above) and the columns of Q2 form an orthonormal basis for
the orthogonal complement of span(A). Then we have

A = QR =
[
Q1 Q2

]
[
R1 0
0 R2

]

=
[
Q1R1 Q2R2

]

QR by Givens rotation for upper-Hessenberg form

When H is an upper-Hessenberg matrix, the Givens rotation is cheaper than
Householder transform to form a QR-factorization.

6.8 Subspace Iterations

6.8.1 Power method - a few extreme eigenvalues

Hypothesis :

(1) A is diagonalizable, i.e, Av(i) = λiv
(i) for linearly independent eigenvec-

tors v(i).

(2) |λ1| > |λj |, j = 2, . . . , n(i.e, λ1 is a dominant eigenvalue.)

Power method consists of generating sequences of vector converging to an
eigenvector and a sequence of scalar converging to dominant eigenvalue λ1.
We assume {v(i)}ni=1 is a normalized sets with respect to some norm ‖ · ‖.

Let y ∈ C
n be any vector whose projection against {v(1)} is nonzero. Then

one write y =
∑n

1 civ
(i) with c1 6= 0. With y(0) = y, set

y(k) = Ay(k−1), k = 1, 2, . . .

Then

y(k) = Aky(0) = Ak(
∑

civ
(i)) =

∑

ciλ
k
i v

(i)

= λk
1

[

c1v
(1) +

n∑

2

ci(
λi

λ1
)kv(i)

]

≈ λk
1c1v

(1),
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since |λ1| > |λi|, i = 2, . . . , n. Similarly, y(k−1) ≈ λk−1
1 c1v

(1). Hence we see

y(k) ≈ λ1y
(k−1)

from which we may compute λ1. Let w be any vector not orthogonal to v(1).
Then

λ1 ≈
(w,y(k))

(w,y(k−1))
+O(

λ2

λ1
)k.

But, this process is unstable numerically because it may happen that
y(k) → 0 or ∞. To avoid it, we normalize the vector at each step.

Power method is especially useful when the matrix is sparse.

x(0) arbitrary
for k = 1, 2, · · · , n do

y(k) = Ax(k−1)

x(k) = yk

‖yk‖2
λ(k) = (w,y(k))

(w,y(k−1))
.

In practice we use the following variation(Rayleigh quotient): Setting w =
y(k−1) we get

for k = 1, 2, · · · , n do

y(k) = Ax(k−1)

x(k) ← y(k)

‖y(k)‖2
λ(k) = (x(k−1),y(k)) = (x(k−1), Ax(k−1))

One can easily show the error is O(λ2
λ1
)2k for general matrix and cubic for

normal (and symmetric) matrix.

Some problems related with power method

(1) What if c1 = 0 ?

(2) What if λ1/λ2 ≈ 1 ?

(3) What about λj for j 6= 1 ?

Roots of same modulus

We assume full linearly independent eigenvectors exist corresponding to the
multiple eigenvalues.

The case |λ1| = |λ2|
(Faddeev, Faddeeva.) Suppose |λ1| = |λ2| > |λ3| · · · and λ2 = ±λ1. Then

y
(k+2)
j

y
(k)
j

=
λk+2
1 [c1v

(1) + c2(−1)k+2v(2) + ε(k+2)]j

λk
1 [c1v

(1) + c2(−1)kv(2) + ε(k)]j
→ λ2

1.
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λ1

q

1

λ2+λn

2

bb

λ2λn

Figure 6.2: Graph of λ2−q
λ1−q = 1 + λ2−λ1

λ1−q

If three eigenvalues have same modulus, and ( λi

λ1
)3 = 1, i = 1, 2 then

y
(k+3)
j

y
(k)
j

=
λk+3
1 [c1v

(1) + c2(
λ2
λ1
)k+3v(2) + c3(

λ3
λ1
)k+3v(3) + ε(k + 3)]j

λk
1 [c1v

(1) + c2(
λ2
λ1
)kv(2) + c3(

λ3
λ1
)kv(3) + ε(k)]j

→ λ3
1.

If λ1 = 1, λ2 = 1, λ3 = −1, try y
(k+6)
j /y

(k)
j .

Speed up of power method-origin shift

Lemma 6.8.1. If (λ,v) is an eigenpair of A, then (λ− q,v) is an eigenpair
of A− qI. If the eigenvalues of A satisfy 0 < λn ≤ λn−1 ≤ · · · ≤ λ1, then for
any real number q, the dominant eigenvalue of A− qI is λ1 − q or λn − q.

The convergence ratio of power method depends on the ratio of second
largest to largest eigenvalue. Thus, we have the following result.

Theorem 6.8.2. The value q = 1
2(λ2 + λn) gives the best rate of convergence

for λ1− q, while q = 1
2 (λ1+λn−1) gives the best rate of convergence to λn− q.

In general, the idea is to find an optimum q such that

max
2≤i≤n

|λi − q|
|λ1 − q| or max

1≤i≤n−1

|λi − q|
|λn − q|

is minimum.

Proof. For the sake of simplicity, we may assume 0 < λn ≤ λn−1 ≤ · · · ≤ λ1.
It suffices to seek λn < q < λ1. Case II: |λn − q| ≥ |λ2 − q|, i.e, q ≥ λ2+λn

2 .
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6.8.2 Inverse power method

Assume 0 < |λ1| < |λ2| ≤ |λ3| · · · . Then the power method applied to A−1

lead to the computation of the smallest eigenvalue. Start from any y(0) and
define

Ay(k) = y(k−1), k = 1, 2, · · · .

Then

y(k) = A−ky(0) = A−k(
∑

civ
(i)) =

∑

ciλ
−k
i v(i)

= λ−k
1

[

c1v
(1) +

n∑

2

ci(
λi

λ1
)−kv(i)

]

≈ λ−1
1 y(k−1).

In practice, we always normalize y(k−1) each step, so that if ‖y(k−1)‖2 =

|y(k−1)
j | = 1 for some j, then y

(k)
j ≈ 1

λi
y
(k−1)
j .

The following algorithm is based on Rayleigh Quotient:

Algorithm: Basic Inverse power method
For k = 1, 2, · · · , do

Solve Ay(k) = x(k−1)

x(k) ← y(k)

‖y(k)‖2
λ(k) = 1

(x(k−1),y(k))

6.8.3 Inverse power method with origin shift

Now we present a method to find any eigenvalue by shifting the origin and
then using the inverse power method. Assume we know q ≈ λi and y(0) has a
nonzero component along v(i). Then

y(k) = (A− qI)−1y(k−1)

. . .

= (A− qI)(−k)y(0) = (A− qI)−k(
∑

civ
(i)) =

n∑

1

ci
(λi − q)k

v(i)

=
1

(λi − q)k

[

c1

(
λi − q

λ1 − q

)k

v(1) + · · ·+ civ
(i) + · · ·+ cn

(
λi − q

λn − q

)k

v(n)

]

=
1

(λi − q)k
[civ

(i) + ε(k)] ≈ 1

(λi − q)
y(k−1)

since we assumed λi is closest to q.
This method finds an eigenvalue closest to q. Thus inverse power method

with origin shift useful when one knows an approximate value.
In practice, we use the following variation: The following algorithm is the

shifted inverse power method based on Rayleigh Quotient iteration:
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Shifted Inverse power method- Rayleigh quotient iteration

For k = 1, 2, · · · , do
σ(k) =

xT
(k−1)

Ax(k−1)

xT
(k−1)

x(k−1)

Solve (A− σ(k)I)y(k) = x(k−1)

x(k) ←
y(k)

‖y(k)‖2
Here σ(k) → λ.

Remark 6.8.3. One can use a variable shift by taking q ≈ λ(k−1). This yields
a rapid convergence.

Advantage of inverse power method.

(1) We can find any eigenvalue.

(2) Each iteration takes more time than the direct power method. However,
if we have an approximate value of λi, the inverse power method will
yields λi in a few steps.

6.8.4 Deflation method

Suppose A is symmetric and some eigenpair {(λ1,x1)} is known. Choose a
matrix H s.t. Hx1 = αe1 (Householder is good). Then (HW. Show this)

Ax1 = λ1x1 ⇒ HAx1 = λ1αe1 ⇒ αHAH−1e1 = λ1αe1

Hence

HAH−1 =

[
λ1 bT

0 B

]

,

where B has eigenvalues λ2, · · · , λn.

Let By2 = λ2y2 and set x2 = H−1

[
γ
y2

]

and determine γ so that x2 is the

eigenvector of A corresponding to λ2. We have

Ax2 = λ2x2 ⇒ AH−1

[
γ
y2

]

= λ2H
−1

[
γ
y2

]

HAH−1

[
γ
y2

]

= λ2

[
γ
y2

]

[
λ1 bT

0 B

] [
γ
y2

]

=

[
λ1γ + bTy2

λ2y2

]

Thus λ2γ = λ1γ + bTy2. We can continue deflation. But this process loses
stability and is not recommended. Instead use the following simultaneous
Iteration.
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6.8.5 Simultaneous Iteration

Read Understanding the QR Algorithm, David S. Watkins SIAM Review, Vol.
24, No. 4 (Oct., 1982).

Now consider a method to compute several eigenvalues simultaneously.
Simplest way is to use power method with several starting vectors called si-
multaneous iteration. This is a generalizes the power method.

Algorithm 4.5: Simultaneous iteration
1. X0 arbitrary n× p matrix of rank p
2. for k = 1, 2, · · · do
3. Xk := AXk−1 Normalize once in a while
4. end

Let S0 = span(X0) and let S be the invariant subspace spanned by
v1, · · · ,vp corresponding to the p largest eigenvalues λ1, · · · , λp. The columns
of Xk = AkX0 will form a basis for p-dim subspace Sk = AkS0 provided
|λp| > |λp+1|. Hope that this subspaces converge to S. But there are a num-
ber of problems associated with this approach:

(1) Normalization of columns are necessary to avoid overflow

(2) Each column ofXk tends to converge a multiple of dominant eigenvector,
so the condition number will grow quickly.

• Both of these problems can be partly resolved by orthogonalization such as
QR.

So we suggest the following

Algorithm 4.6-1: Orthogonal iteration w/ shift 2
1. X0: arbitrary n× p matrix of rank p
2. for k = 1, 2, · · · do
3. Xk−1 = Q̂kRk (once in a while is enough, see the ppt of Hammarling)

4. Xk = (A− σkI)Q̂k

5. End
:

(1) choose p larger than the number of required eigenvalues.

(2) Extraction by Rayleigh Ritz

(3) When a eigenvector is converged, lock it.(probably small ones near p.
Then the rest of iteration converges much faster, since the ratio λp/λp+k

is much better than λp/λp+1)

(4) If (A− σI) is easily factorized, use inverse simul. iteration (A− σI)−1

(5) reliable for symmetric/Hermitian matrices
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It can be shown that the sequence converges to AQ = QB. Then

(A− σIn)Q = QB − σpQ = Q(B − σIp).

(From Kubong Note on invariant space) Apply the result to (A − qI) to
see (A− qI)k converges to the invariant subspace Vq := span{vi(1), · · · ,vi(p)}.
Here the order was chosen so that

|λi(1) − q| ≥ |λi(2) − q| ≥ · · · ≥ |λi(p) − q| · · · ≥ |λi(n) − q|.

So if n = 100 and p = 50 we get λ1 − q, · · · , λ25 − q and λ100 − q, · · · , λ75 − q.
But after a few step we may deflate the smallest ones, say, λ25− q and λ75− q.
As in power method, the subspace iteration converges to the space generated
by the 50 largest eigenvalues, but among them the vectors associated with
the smallest one converges first.(Like QR-explain) Same idea may apply to
Arnoldi method.

| | ◦ | |
λ1 λ50 λ51q λ100

Figure 6.3: distribution of λi − q

Here Q̂k is n×p matrix having orthonormal columns and Rk is p×p upper
triangular matrix. Q̂kRk is the reduced QR. For the time being assume the
shift σk = 0. Under certain conditions, Xk converge to a n×pmatrix X whose
columns form a basis for the invariant subspace spanned by the p dominant
eigenvectors. Hence the matrix Q̂k will converge to Q̂ whose columns form
a basis for the invariant subspace S. Hence there exists a p × p matrix B
(Section 4.4.1) s.t.

AQ̂ = Q̂B.

Assume |λj| > |λj+1| for all j = 1, 2, · · · , p. Then AQ̂j ⊂ Span(Q̂j) := S(j),
and

AQ̂j = Q̂jBj ,

Then for any j, 1 ≤ j ≤ p the first j columns of Q̂ are the same as if the itera-
tion had been executed on only the first j columns of A. Hence by considering
the following multiplication diagram for j = 1, 2, · · · , p in the order,

AQ̂j = A
[
q1,q2, · · · ,qj

]
=
[
∑j

i=1 qibi1,
∑j

i=1 qibi2, · · · ,
∑j

i=1 qibij

]

= Q̂Bj .

Note that for each j, AS(j) ⊂ S(j), hence reading the above equation column-
wise, we see

Aq1 ∈ S(1), Aq2 ∈ S(2), · · · , Aqj ∈ S(j).
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The first relation implies Aq1 is a multiple of v1 (hence a multiple of q1),
and the second relation implies Aq2 = c21v1 + c22v2. Since span{q1,q2} =
span{v1,v2} we have Aq2 = b21q1 + b22q2 for some coefficients b21, b22. Con-
tinue this process, we see

Aq1 = b11q1, (6.32)

Aq2 = b21q1 + b22q2, (6.33)

Aq3 = b31q1 + b32q2 + b33q3, (6.34)

· · · , (6.35)

Aqj =

j
∑

i=1

qibij . (6.36)

Hence we conclude that B is a triangular matrix for all j = 1, 2, · · · , p. By
adding any complementary vectors we can assume

A
[

Q̂1 Q̂2

]
=
[

Q̂1 Q̂2

]
[
B ∗
0 C

]

Hence the diagonals of B are eigenvalues of A. If some eigenvalues are multiple,
then B will be a block triangular matrix.

Assume A is symmetric. Then by multiplying q2 to the first equation and
q1 to the second equation of (6.32), etc., we see

qT
2 Aq1 = b11q

T
2 q1 = 0, (6.37)

0 = qT
1 Aq2 = b21q

T
1 q1 + b22q

T
1 q2 = b21, (6.38)

qT
3 Aq1 = b11q

T
3 q1 = 0, (6.39)

qT
1 Aq3 = b31q

T
1 q1, (6.40)

· · · , (6.41)

(6.42)

Thus B is diagonal.

Example 6.8.4. aij =
1

1+i+j , 10 ≤ i, j ≤ 50

Now we consider general nonsymmetric case. First we recall the QR-
decomposition studied before.

Theorem 6.8.5 (1961, Francis, Kublanovskaya). Let A be a n×n nonsingular
matrix. Then ∃! Q, R such that

(1) A = QR

(2) Q is unitary

(3) R is upper triangular



6.8. SUBSPACE ITERATIONS 155

(4) rii > 0.

Uniqueness : Assume rii are chosen to be positive. If Q1R1 = Q2R2,
Qi unitary, Ri upper triangular with positive diagonal. Then Q∗

2Q1 = R2R
−1
1

is unitary upper triangular with positive diagonal. Since Q = H∗
n . . . H

∗
1 is

Hermitian, so is R2R
−1
1 . Therefore, R2R

−1
1 is diagonal, unitary, with positive

diagonal part, R2R
−1
1 = diag(d1, · · · , dn). This means d2i = 1, ∀ i and hence

di = 1.

6.8.6 QR - Iteration

Now we introduce a QR - Iteration. In principle, it is the simultaneous itera-
tion in the above case, n = p with X0 = I. The QR factorization X0 = Q̂0R0

gives Q̂0 = R0 = I. So X1 = AQ̂0 = A. For next, we need to form a QR
factorization of X1 := Q̂1R1 = A. Define for k = 0, 1, 2, · · · ,

Ak = Q̂H
k AQ̂k. (6.43)

Thus we get

A1 = Q̂H
1 AQ̂1 = Q̂H

1 Q̂1R1Q̂1 = R1Q̂1,

hence A1 is the product of the QR factorization of A in the reverse order.

Induction

Let A0 = A and for k = 1, 2, · · · , assume QkRk = Ak−1 is given with Q̂0 =
I, Q̂1 = Q1. Then simultaneous iteration becomes

Xk = AQ̂k−1 = Q̂k−1Q̂
H
k−1AQ̂k−1 = Q̂k−1Ak−1 = Q̂k−1QkRk := Q̂kRk

Thus the QR factor of Ak−1 gives the QR factor of Xk. Meanwhile

Ak = Q̂H
k AQ̂k = (Q̂k−1Qk)

HA(Q̂k−1Qk)

= QH
k Q̂H

k−1AQ̂k−1Qk

= QH
k Ak−1Qk

= QH
k QkRkQk

= RkQk. (6.44)

Thus the reverse product RkQk from QkRk = Ak−1 gives Ak, from which we
can continue QR factorization of Xk+1.

Xk+1 = Q̂k+1Rk+1 = Q̂kQk+1Rk+1 = · · · = Q1Q2 · · ·QkQk+1Rk+1.

Summarizing, we have

Ak−1 = QkRk, Xk = Q1Q2 · · ·Qk−1QkRk, Ak = RkQk (6.45)
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This shows the relation between two QR- decompositions as well as the relation
between Ak−1 and Ak.

We can repeat this process to obtain the following QR-iteration.

QR-iteration:
Let A0 = A
For k = 1, 2, . . . .

factor Ak−1 = QkRk

form reverse product Ak = RkQk.

In general, we have

Ak = RkQk = Q−1
k Ak−1Qk

= QH
k Ak−1Qk

= QH
k QH

k−1Ak−2Qk−1Qk

= · · ·
= (Q1Q2 · · ·Qk)

HA(Q1Q2 · · ·Qk).

The matrices Ak converge at least to block triangular form (Schur form).

Computation of eigenvectors -symmetric case

Eigenvectors are bi-product in the Jacobi iteration. But with QR -iterations,
the eigenvectors are not directly obtained. We need some extra work. Note
that in case of symmetric matrix without multiple eigenvalues, the columns
of Q := Q1Q2 · · ·Qk converge to the eigenvectors, but very impractical to
compute such products!!!

Assume A is symmetric. If A = PTP T (T is tridiagonal) where PP T = I,
then

Ty = λy⇒ APy = λPy

To find the eigenvectors of T , use inverse power with shift σ close (not not
equal) to λ. Since T is tridiagonal, Gauss elimination is quick. Also if P =
P2P3 · · ·Pn−1, the the evaluation

x = P2P3 · · ·Pn−1y = [I − α2v2v
T
2 ] · · · [I − αn−1vn−1v

T
n−1]y

can be carried out quickly since

[I − αvvT ]y = y − α(vTy)v.

QR-algorithm with origin shift

From here and thereafter we assume A is reduced to upper Hessenberg form
of matrix H and discuss matters on H. It should be pointed out that when
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the algorithm converges(see Naiser[1967], p.40) it is observed that the con-
vergence of subdiagonal entries hi,i−1 (of a Hessenberg form) depends on the
ratio |λi|/|λi−1|. In this discussion, we are assuming

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.
By shifting the origin, i.e, for A − qI, the convergence will depends on

|λi − q|/|λi−1 − q|. By suitable shifting we can accelerate the convergence.
Now consider a QR-factorization to Ak − qkI:

Shifted QR-Algorithm:
Put A0 = A
For k = 1, 2, . . . .

Choose shift σk.
Factor Ak−1 − σkI = QkRk

Form Ak = RkQk + σkI.
Then

Ak = RkQk + qkI

= QH
k (Ak−1 − qkI)Qk + qkI

= QH
k Ak−1Qk.

From the factorization Ak−1 = QkRk, we observe

A−H
k−1 = QkR

−H
k hence A−H

k = R−H
k Qk

Also from Ak = Q̂kR̂k, we have

(A−H)k = Q̂kR̂
−H
k .

Note that R−H
k is a lower-triangular matrix. So the QR- decomposition is the

same as the inverse QL- iteration (i.e., from column n to column 1) to AH .
The columns of Q̂k are the same as those produced by inverse iteration to AH

k .
Now we know the QR iteration is an implicit form of inverse iteration (to

AH). Since inverse iteration converges very fast with suitable choice of shift,
this fact can be exploited to choose the shift σk.

Lower right corner entry of Ak−1, a
(k−1)
n,n is an approximate eigenvalue, since

it is the Rayleigh quotient corresponding to the last columns of Q̂k. From
these, we can see the QR produce smaller eigenvalues more quickly. Once
it is obtained within the machine accuracy, we can deflate it and work with
leading submatrix of size n − 1 (See M. Heath book p. 185 for details.) See
the Example 4.16. It produces 1, then 2 etc.

A more effective shift is Wilkinson shift defined as the eigenvalue of
[
an−1,n−1 bn

bn ann

]

which is closer to ann. Thus it is

µ = ann + d− sgn(d)
√

d2 + b2n where d = (an−1,n−1 − ann)/2. (6.46)
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Implementation of QR-U-Hessenberg form

An upper-Hessenberg form: hij = 0 if i > j + 1.

H =













h11 h12 . . . . . . h1n
h21 h21 . . . . . . h2n
0 h32 . . . . . .
0 0 . . . . . .
0 0 hi,i−1 . . .
0 0 . . . . . .
0 0 0 hn,n−1 hnn













Theorem 6.8.6. The upper Hessenberg form of a matrix is preserved under
a QR transformation.

Thus according to the remark and the Theorem it is practical to perform
the QR algorithm in two steps: First reduce the matrix to an U-H form (by
Householder), then apply the QR algorithm.

Remark 6.8.7. Two step QR algorithm : First reduce the matrix to an U-H
form (by Givens-Householder), then apply the QR algorithm. It is cheaper to
use Givens rotation than Householder to apply QR to U-H form.

Theorem 6.8.8. If Ak = Q̂H
k AQ̂k converges, it converges to a block triangular

matrix U whose diagonal block is either 1× 1 or 2× 2 matrices.

Theorem 6.8.9. If A is nonsingular and its eigenvalue have distinct moduli,
then Ak = Q̂H

k AQ̂k → U(upper triangular) essentially displaying eigenvalues
on the diagonal. The columns of the product Q1Q2 · · ·Qk are the eigenvectors.
So A ∼ Q̂kUQ̂H

k is the Schur decomposition.

Remark 6.8.10. (1) A single factorization of QR costs 2n3/3 and n · n2/2
for RQ product, total 7n3/6 FLOPS. It is still impractical to use QR
directly.

(2) For upper-Hessenberg matrix, one QR step (Givens rotation is cheaper
than Householder’s elementary reflector, in this case) costs 2n2 together
with RQ factorization (2n2). Hence total cost is 4n2.

(3) Noting that an upper-Hessenberg matrix form is preserved under QR
transformation(Exercise), we usually transformA by Householder’s method
to an U-Hessenberg form and then use QR (with n2 multip.) method.

(4) The computational complexity in step (3) is 2{n2+(n−1)2+ · · ·+12} =
n(n+1)(2n+1)

3 (to reduce to upper Hessenberg form) and 4(n + n − 1 +
· · · + 1) = 2n(n + 1) for QR factorization plus 2n2 for RQ.

(5) If the upper-Hessenberg form H is reducible(i.e, having zeros on the
subdiagonal) then we can apply QR to each sub matrices.
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(6) One advantage of QR is that if H is unreduced(i.e., every subdiagonal
element is nonzero) singular Hessenberg matrix, the zero eigenvalue is
revealed after one step.(Parlett 1966).

(7) Note a similarity between QR factorization and Gram-Schimdt process.
(They both orthogonalize the given set of vectors, columns of A). That
is, Span Col(A) = Span Col(Qk).

6.8.7 Krylov Subspace Methods

QR is based on the simultaneous iteration starting with an orthonormal set
(columns of identity matrix). An alternative is to build a subspace incremen-
tally.

Kk = [x0, Ax0, · · · , Ak−1x0]

For k = n, we have

AKn = [Ax0, Ax1, · · · , Axn−1]

= [x1, · · · ,xn−1,xn]

= Kn[e2, · · · , en,a] := KnCn

where a = K−1
n xn. Therefore

K−1
n AKn = Cn

where Cn is upper Hessenberg form (in fact it is a companion matrix). Thus
we derived a method for similarity transform to an Hessenberg form. But due
to the illcondition problem we orthogonalize it each step by QR

QnRn = Kn.

QH
n AQn = (KnR

−1
n )−1AKnR

−1
n = RnK

−1
n AKnR

−1
n = RnCnR

−1
n := H

since the Hessenberg form of Cn is preserved under pre-post multiplication by
an upper triangular matrix, RnCnR

−1
n is an Hessenberg form.

Equating k th column of AQn = QnH, we obtain

Aqk = (QnH)k = Qnhk = h1kq1 + · · ·+ hkkqk + hk+1,kqk+1,

where hk is the k-th column of H. Premultiplying by qH
k we see hjk = qH

j Aqk,
j = 1, · · · , k. With normalization, this yields Arnoldi process.

We can obtain eigenvalue and eigenvector at a given step k using Rayleigh
-Ritz procedure, which projects the matrix A onto the Krylov subspace Kk.
Let

Qk = [q1, · · · ,qk]

contain first k Arnoldi vectors, let n× (n− k) matrix

Uk = [qk+1, · · · ,qn]
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the remaining Arnoldi vectors to be computed. Let Qn = [Qk, Uk]. Then

H = QH
n AQn =

[
QH

k

UH
k

]

A[Qk, Uk] =

[
QH

k AQk QH
k AUk

UH
k AQk UH

k AUk

]

=

[
Hk M

H̃k N

]

where M,N are yet to be computed. Since H is upper Hessenberg, so is
Hk := QH

k AQk and H̃k has only one nonzero entry hk+1,k. The eigenvalues of
Hk (Ritz value) converges to the eigenvalues of A and Qky, y eigenvectors of
Hk (Ritz vector), converges to the eigenvectors of A.

One must still compute eigenvalues and eigenvectors of Hk by some other
methods (QR). This process produces extreme eigenvalues quickly. One needs
to store Qk of Arnoldi vectors and Hk. Restart once in a while.

Arnoldi

q1 arb. normalized vector
for k = 1, 2, . . .

uk = Aqk (generate next vector)
for j = 1, 2, · · · k (Gram Schmidt)

hj,k = qH
j uk (orthogonalize new vector)

uk = uk − hj,kqj (against previous vector)
end
hk+1,k = ‖uk‖2
If hk+1,k = 0 stop (Reducible)
qk+1 = uk/hk+1,k

end

Lanczos algorithm (Symmetric version of Arnoldi)

The Arnoldi algorithm becomes much simpler if A is symmetric. H)k is now
becomes tridiagonal, denoted by Tk. Hence the algorithm is

q0 = 0, β = 0 arb. normalized vector
q1 arb. normalized vector
for k = 1, 2, . . .

uk = Aqk (generate next vector)
αk = qH

j uk (orthogonalize new vector)

uk = uk − βk−1qk−1 − αkqk (against previous two vectors)
βk−1 = ‖uk‖2 (against previous vector)
If βk = 0 stop (Reducible)
qk+1 = uk/βk

end

Not that the orthogonalization step is three term relationship. The αk and
βk are diagonal and subdiagonal entries, resp. of Tk(= Hk), whose eigenvalues
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and eigenvectors must be computed by some other methods (QR using Givens,
say).

This process generates extreme eigenvalues rapidly (either end), Fig 4.4

(1) In QR, one needs reduce A to U-H form, then use shifted QR(Rayleigh)

(2) Arnoldi(Lanczos), one computes Hk (Tk) by uk = Aqk and then use
shifted QR(Rayleigh)

Bisection or Spectrum-Slicing

(1) Let A be symmetric. Then inertia of A is a triple (p, n, z) consisting of
the number of positive, negative and zero eigenvalues of A.

(2) SAST is a congruence transformation

(3) Sylvester law of inertia says, a congruence transformation preserve the
inertia.

(4) Find a good congruence transformation that makes the inertia easy to
determine.

(5) Apply it to A−σI to determine the number of eigenvalues to the left or
right of σ

(6) LDLT is a good candidate

(7) Bisection method to find good σ

Divide and Conquer

(1) Assume a rank one modification of a diagonal matrix D + βvvT .

D + βvvT − λI = (D − λI)(I + β(D − λI)−1vvT )

Hence p(λ) =
∏

i(λ− di) det(I + β(D − λI)−1vvT ) and by exer. 4.25

det(I + β(D − λI)−1vvT ) = (1 + βvT (D − λI)−1v) = 1 + β

n∑

j=1

v2j
dj − λ

Then apply bisection method to find zeros of this function.

(2) Any real symmetric tri-diagonal matrix can be written as a rank one
modification of a block tridiagonal matrix of the form T + βuuT , where

T =

[
T1 0
0 T2

]

, where β = tk,k+1 = tk+1,k, T1 is k×k, T2 is (n−k)×(n−k)
tridiagonal, u = ek + ek+1.
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(3) Compute eigenvalues/eigenvectors of smaller matrices T1 and T2 to get

QT
1 T1Q1 = D1 and QT

2 T2Q2 = D2,

then

(4) with D = diag(D1,D2), Q = diag(Q1, Q2), we have

QTTQ = D + βvvT

where v = QTu. Now we can apply the previous method.

This Divide and Conquer method is often significantly faster than QR iteration
if all the eigenvalues and eigenvectors of a symmetric matrix are needed.

Relatively Robust Representation

Eigenvalues of a tri-diagonal matrix is sensitive to perturbations of its entries,
but much less sensitive to LDLT factors. Use twisted factorization.

6.9 Generalized Eigenvalue Problems

Ax = λBx

A naive approach is to convert it to the standard problem as

B−1Ax = λx or A−1Bx = 1/λx

But such methods are not recommended since it may cause

(1) Loss of accuracy due to the rounding error

(2) Loss of symmetry when A and B are symmetric.

If A and B are symmetric and one of them is positive definite, then symmetry
still can be retained by Cholesky decomposition. Example, if B = LLT , then
the eigenvalue problem can be transformed into (LTx = y)

L−1AL−Ty = λy

Still loss of accuracy etc.
A better method is QZ algorithms. Idea: transform A,B simultaneously

to upper triangular form by orthogonal transform.

(1) Apply an orthogonal transform Q0 to reduce B to a upper triangular
form.

(2) Apply a sequence of orthogonal transforms Qk to reduce A to an upper
Hessenberg form.

(3) ....
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6.10 Stability and Condition number for the eigen-
value problem

Eigenvalues are continuous functions of the entries. However, they can be
sensitive with small change. We will see some example.

Example 6.10.1. Let A and its small perturbation A+E are given as follow.

A =












a

1
. . . 0
. . .

. . .

0
. . .

. . .

1 a












A+E =












a ε

1
. . . 0
. . .

. . .

0
. . .

. . .

1 a












Let CA+E denote the characteristic polynomial of A+ E. Then

CA+E(λε) = (a− λε)
n + ε(−1)n−1,

Hence

λε = a± ωr · ε1/n, r = 1, · · · ,
where ω = 2π

n + i sin 2π
n is the root of unity. Even if ε is very small, ε1/n can be

non negligible. For example, ε = 10−10 and n = 100, then ε1/100 = 10−1/10 ≈
1. Error is close to 1.

Example 6.10.2. Eigenvectors are not continuous functions of ε(even for
Hermitian matrix).

A(ε) =

[
1 + ε cos 2

ε −ε sin 2
ε

−ε sin 2
ε 1− ε cos 2

ε

]

, A(0) = I

eigenvalues of A(ε) satisfies (1 + ε cos 2
ε − λ)(1 − ε cos 2

ε − λ)− ε2 sin2 2
ε = 0.

(1− λε)
2 − ε2 = 0 ∴ λε = 1± ε

Eigenvectors are

X(1) =

[
sin(1ε )
cos(1ε )

]

, X(2) =

[
− cos(1ε )
sin(1ε )

]

limε→0X
(1) does not exist!! Extremely ill-conditioned.

We want to investigate what kind of things influence the change in the
eigenvalues when entries are perturbed a bit. Consider the case of a simple
eigenvalue

Ax1 = λ1x1, λ1 6= λj, j = 2, . . . , n.
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Its perturbed problem is

(A+ εB)x1(ε) = λ1(ε)x1(ε), (6.47)

where |Bij | < 1. Assume

λ1(ε) = λ1 + k1ε+ k2ε
2 + · · ·

k1 : This number is important. Try to make it small.

x1(ε) = x1 +E1ε+ E2ε
2 + · · ·

and A has linear elementary divisors, i.e., diagonalizable.

Theorem 6.10.3. Let A be diagonalizable. Then there exist n linearly inde-
pendent right and left eigenvectors xj and yi such that

P−1AP = Λ

where

xj = colj(P ) yT
i = Rowi(P

−1)

and Λ is the diagonal matrix displaying eigenvalues.

Assume ‖xi‖2 = ‖yj‖2 = 1 for the time being. Note that xT
i yi 6= 1.

Lemma 6.10.4. yT
i xj = 0 if λi 6= λj.

Proof. Axj = λjxj ⇒ yT
i Axj = λjy

T
i xj . But yT

i A = λiy
T
i ⇒ yT

i Axj =
λiy

T
i xj . Therefore, (λi − λj)y

T
i xj = 0. Therefore we conclude yT

i xj = 0.

Expand Ei and x1(ε) in terms of eigenvectors of A.

Ei =

n∑

j=1

sjixj , i = 1, 2, . . . ,

x1(ε) = x1 + ε

(
∑

j

sj1xj

)

+ ε2
(
∑

j

sj2xj

)

+ . . .

= (1 + εs11 + ε2s12 + · · · )x1 + (εs21 + ε2s22 + · · · )x2 + (εs31 + ε2s32 + · · · )x3 · · ·

Normalize x1(ε) by dividing by (1 + εs11 + ε2s12 + · · · ),

x
(ε)
1 = x1 + (εt21 + ε2t22 + · · · )x2 + · · ·+ (εtn1 + ε2tn2 + · · · )xn

and substitute into the perturbed equation (6.47) to get

(A+ εB)[x1 + ( )x2 + · · ·+ ( )xn] = λ1(ε)[x1 + ( )x2 + · · ·+ ( )xn]

where λ1(ε) = λ1 + k1ε+ k2ε
2 + · · ·
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Equating the 0-th order term (i.e, terms with no ε factor)

Ax1 = λ1x1.

Equating 1-st order term

A

( n∑

j=2

tj1xj

)

+Bx1 = λ1

( n∑

j=2

tj1xj

)

+ k1x1.

Therefore,
∑n

j=2(λj − λ1)tj1xj + Bx1 = k1x1. Here k1 measures error size.

Multiply by yT
1 , to obtain

n∑

j=2

(λj − λ1)tj1y
T
1 xj + yT

1 Bx1 = k1y
T
1 x1.

Since yT
1 xj = 0 for J = 2, · · · , n, we have

k1 =
yT
1 Bx1

yT
1 x1

, |k1| ≤
‖y1‖2‖B‖2‖x1‖2
|yT

1 · x1|
=

√

ρ(BTB)

|yT
1 · x1|

Since we do not have any information on the spectral radius of B, we can only
see the effect of |yT

1 · x1|−1. Thus we define it as the condition number of A
(with respect to) λ1 when xi, yi are normalized.

In general,
1

|si|
=

1

|yT
i xi|

are defined as condition numbers for the eigenvalue problem.

Theorem 6.10.5. We have |si| ≤ 1.

Proof. |si| = |yT
i xi| ≤ ‖yi‖ · ‖xi‖ = 1. Thus, |si|−1 ≥ 1.

Theorem 6.10.6. If AH = A, then P−1AP = PHAP = Λ. Therefore,
yT
i = xH

i and hence si = yT
i ·xi = xH

i ·xi = 1. ∴ Hermitian matrix is perfectly
conditioned for eigenvalue problem.

6.10.1 Error bound of eigenvalues

Assume A is diagonalizable i.e., P−1AP = Λ (diagonal). Suppose A+ E is a
perturbation of A and let (µ,y) be an eigenpair of A+ E. Then

(A+ E)y = µy⇒ (µI −A)y = Ey

For now assume µ is not an eigenvalue of A. Then

P−1(µI −A)PP−1y = P−1EPP−1y
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(µI − Λ)P−1y
w

= P−1EP · P−1y
w

, (µI − Λ)w = P−1EP ·w.

Since µI − Λ is invertible, w = (µI − Λ)−1P−1EP ·w and thus

‖w‖ ≤ ‖(µI − Λ)−1‖ · ‖P−1EP‖ · ‖w‖
1 ≤ ‖(µI − Λ)−1‖ · ‖P−1EP‖.

Choose L2 norm

‖(µI − Λ)−1‖2 = max
i
|µ− λi|−1 = 1/min

i
|µ− λi|

∴ min
i
|µ − λi| = ‖(µI − Λ)−1‖−1

2 ≤ ‖P−1‖2 · ‖P‖2‖E‖2 = κ2(P )‖E‖2.

Here λi is the eigenvalue of A closest to µ.

Theorem 6.10.7. If A is diagonalizable, any eigenvalue µ of A+E satisfies

|µ− λ| ≤ κ2(P )‖E‖2

for some eigenvalue λ of A. i.e., if µ is an eigenvalue of a perturbed matrix,
it lies in a disk center at some eigenvalue of A of radius κ2(P )‖E‖2.

* Above theorem holds even when µ is an eigenvalue of A.
* Thus the condition # of P has some effect on the condition # of A’s

eigenvalue problem.

Corollary 6.10.8. If A is Hermitian, then P is unitary and hence ‖P‖2 =
‖P−1‖2 = 1 and so, mini |µ − λi| = |µ− λp| ≤ ‖E‖2.

Each disk of radius ‖E‖2 contains an eigenvalue of A+E (may be complex).
In other word, the eigenvalue of A is stable under perturbation and further-
more, its error is less than the L2 norm of perturbation matrix.

Recall Perron-Frobenius theorem: If A ≥ 0, irreducible, then ρ(A) is a
simple eigenvalue and |λj| < ρ(A), j = 2, . . . , n. Thus, if A is not irreducible,

we apply (P-F) to P TAP =

[
A11 A12

0 A22

]

, block matrix with

Spec(A) = Spec(A11) ∪ Spec(A22).

Thus we have the same result for any nonnegative matrix A except that ρ(A)
may be an eigenvalue of multiplicity greater than 1.

Let ℓ(v) be a linear ftnal such as e1(v) or e∞(v).

Algorithm: Inverse power method with fixed shift
For k = 1, 2, · · · , do

v(i+1) = (A− σI)−1ui and ki+1 = ℓ(vi+1)
Set ui+1 = vi+1/ki+1

Convergence rate is
∣
∣
∣
λ1−σ
λ2−σ

∣
∣
∣.
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Exercise 6.10.9. (1) The eigenvalue problem, Ax = λx, xTx = 1 can be
regarded as nonlinear system of equations f(x, λ) = 0 where

f(x, λ) =

(
Ax− λx
xTx− 1

)

Write down a Newton’s method to solve this system. Or Ax = λx,
ℓT (x) = 1 (ℓT is a fixed linear ftnal) can be regarded as nonlinear system
of equations f(x, λ) = 0 where

f(x, λ) =

(
Ax− λx
ℓT (x) − 1

)

Ans:

Df =

(
A− λI −x

ℓT 0

)

The Newton can be written by component

(A− λiI)xi+1 = (λi+1 − λi)xi (6.48)

ℓT (xi+1) = 1 (6.49)

Let

vi+1 =
xi+1

λi+1 − λi
.

Substituting into (6.48) we get,

(A− λiI)vi+1 = xi

by (6.49)

ki+1 = ℓT (vi+1) =
ℓT (xi+1)

λi+1 − λi
=

1

λi+1 − λi

It follows that

λi+1 = λi +
1

ki+1

A good initial guess is x0, ‖x0‖ = 1, λ0 = xT
0 Ax0. Thus (6.48) and (6.49) are

identified with inverse power (variant shift) of the following:

Algorithm: Inverse power method with variant shift
For k = 1, 2, · · · , do

v(i+1) = (A− σiI)
−1ui and ki+1 = ℓ(vi+1)

Set ui+1 = vi+1/ki+1 and σi+1 = σi + 1/ki+1.
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6.11 Least Square Methods - by QR

When A is m× n matrix (m ≥ n), the system Ax = b usually does not have
solution. In this case we can consider a least square solution of Ax = b. The
following QR decomposition is possible:

A = QR,

where Q is m ×m orthogonal matrix(QT = Q−1) and R is an m × n upper
triangular matrix. Suppose A is a square and have a QR decomposition, then
we can solve Ax = b :

Ax = b

QRx = b

Rx = QTb

Since R is upper triangular, this is easy to solve provided that diagonal entries
of R are nonzero.

Now consider the case of nonsquare matrix. The case m > n(more equa-
tions than the unknowns) is more interesting. Since the solution of Ax = b
does not exist in general, we are forced to find a best alternative: i.e., the
minimizer x of

‖Ax− b‖2

which is equivalent to minimizing

(Ax− b)T (Ax− b) = xTATAx− bTAx− xTATb+ bTb.

Taking the derivative w.r.t x, we have

xTATA− bTA = 0 or ATAx = ATb.

Interpretation:

Since Ax lies in R
n(represented by the x-axis in the figure 6.11), the mini-

mum is attained when Ax is the projection of b on the R
n space. Thus r is

orthogonal to R
n(the column space of A). In algebraic notation, we must have

rTA = 0 which is equivalent to

AT (b−Ax) = 0

ATAx = ATb.

This is called the normal equation. From now on we assume m ≥ n and
the rank of A is n. Solving such problems, one could consider using LU
decomposition, in this case Cholesky decomposition. However, experience
says it is expensive and very sensitive. So we solve it by QR as follows:
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b

Pb = Ax

r

R
m−n

R
n

Figure 6.4: least square fit

Solving with QR

Consider solving ATAx = ATb. If we have a QR decomposition A = QR,
Two ways:
(a) (Q is m×m, QTQ = Im and R is m× n)(Leader book) or
(b) (Q is m× n, QTQ = In and R is n × n-Givens rotation, See Golub p

226) This one takes much less space and time.

(QR)T (QR)x = (QR)Tb

RTQT (QR)x = RTQTb

RTRx = RTQTb.

Note that R is m× n upper triangular matrix. Thus

R =

(
R1

0

)

,

where R1 is n× n upper triangular matrix and 0 is (m− n)× n zero matrix.

(
R1

0

)T (
R1

0

)

x =

(
R1

0

)T

QTb

(
RT

1 0T
)
(
R1

0

)

x =
(
RT

1 0T
)
QTb

RT
1 R1x =

(
RT

1 0T
)
QTb.

Since R1 is nonsingular, we have

R1x =
(
In 0T

)
QTb.

That is,

R1x = (QTb)n(first n components of QTb) (6.50)

This is a square system with nonsingular upper n × n triangular matrix R1.
Thus it can be solved by backward substitution.
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6.12 Singular Value decomposition

SVD of Rectangular Matrix

As we go from Gauss Elim to Gauss-Jordan, we can further transform QR
to have R as diagonal for, by right multiplying an orthogonal matrix, we can
obtain the following.

Theorem 6.12.1 (Singular value decomposition). For A ∈ R
m×n, there exists

orthogonal matrices U ∈ R
m×m and V ∈ R

n×n such that

A = UΣV T or AV = UΣ, (6.51)

where Σ is m× n matrix and k is the rank of A and σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0.

Proof. Let x ∈ R
n and y ∈ R

m such that ‖x‖2 = ‖y‖2 = 1 and Ax = σy with
σ = ‖A‖2. Let

V = (x, V1) ∈ R
n×n

and
U = (y, U1) ∈ R

m×m

be orthogonal. Thus UTAV has the following form:

A1 = UTAV =

[
σ wT

0 B

]

1 n−1

1
m− 1

Since ∥
∥
∥
∥
A1

(
σ
w

)∥
∥
∥
∥

2

2

≥ (σ2 +wTw)

it follows that ‖A1‖22 ≥ σ2 + wTw. But since σ2 = ‖A‖22 = ‖A1‖22, we must
have w = 0. Now induction proves the argument.

The values σi are the singular values of A and vectors ui and vi(columns
of U and V ) are left singular and right singular vectors. We see

Avi = σiui

ATui = σivi
, i = 1, · · · , p

SVD to Least Square problem

SVD provides another way of solving least square problem. Consider solving
an over-determined system Ax = b by least square method (Although it is
possible to form SVD for any m,n, we assume m > n(over-determined) and
the rank of A is n). The the reduced SVD is

A = UΣV T =
[
U1 U2

]
[
Σ1

0

]

V T = U1Σ1V
T , (6.52)
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UA
V T

=
Σ

m > n

Figure 6.5: Σ of SVD

where U1 is an m × n, Σ1 is n × n nonsingular. Using this, we can solve the
normal equation ATAx = ATb. We have

V ΣT
1 U

T
1 U1Σ1V

Tx = V ΣT
1 U

T
1 b

Σ1V
Tx = UT

1 b

V Tx = Σ−1
1 UT

1 b

x = V Σ−1
1 UT

1 b.

The solution with minimal norm is given by

x = Σσi 6=0
uT
i b

σi
vi

If SVD is useful for ill-conditioned or nearly singular problem, since we can
drop the term of small singular values.

Other Applications of SVD

We see from (6.52), that A = UΣV T equals

[
u1, · · · ,un

]








σ1
. . .

σn
0















vT
1

vT
2
...
vT
n







=
[
u1, · · · ,un

]








σ1v
T
1

σ2v
T
2

...
σnv

T
n







=

n∑

i=1

σiuiv
T
i

(6.53)
If the entries σj (j = k+1, · · · , n) are small compared with σj for j = 1, · · · , k,
we can drom them and obtain

A=̇

n∑

i=k+1

σiuiv
T
i ≡ A1 (6.54)

and see that

‖A−A1‖E ≤
n∑

i=k+1

σi‖ui‖2‖vT
i ‖2 ≤

n∑

i=k+1

σi.
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Thus we have restored A from the vectors

σi,ui,vi, i = 1, · · · , k

The total storage is (2m+1)k while the whole storage of A requires mn. The
number k indicates the (essentially) linearly independent vectors among the
column vectors of A. This technique is used in the image compression.

You may try to us MGS with column pivoting to get similar result.

6.13 Solving linear system by minimizing the resid-
ual

We will consider an iterative method to solve a nonsymmetric linear problem
Ax = b. Given an initial guess x0, using the same notation for space and the
corresponding matrix, define

Kk = [x0, Ax0, · · · , Ak−1x0] = span{x0, Ax0, · · · , Ak−1x0}

Vk = x0 +Kk.

This is an affine space.
A natural way to define an approximation from Vk is to let xk be the

minimizer of the residual
‖b−Ax‖.

Equivalently
xk = argminx∈Vk

‖b−Ax‖2. (6.55)

Let zk = xk − x0. Then zk ∈ Kk and

zk = argminz∈Kk
‖b−A(z+ x0)‖2

= argminz∈Kk
‖b−Ax0 −Az‖2

= argminz∈Kk
‖r0 −Az‖2 (6.56)

where r0 is the initial error.

GMRES

We will solve (6.56) for k = 1, 2, 3, · · · . GMRES(General minimized residual

method). stopping criterion is the relative residual ‖rk‖
‖b‖ . We solve least square

problem by QR decomposition. Define the Krylov matrix

Γk := Kk ≡ [b |Ab |A2b | · · · |Ak−1b].

Since every vector in Kk is a linear combination of columns of Γk, there exists
some vector y such that

xk − x0 = Γky.
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In terms of (6.56) this problem becomes finding the solution y of

y = argminy∈Rk‖r0 −AΓky‖2 = argminy∈Rk‖r0 −AQky‖2. (6.57)

This is a standard minimization problem over R
k which could be solved by

QR decomposition.

Implementation of GMRES

From the Arnoldi algorithm, we set q1 = r0/‖r0‖ then QT
k r0 = ρe1. We

observe

uk+1 = Aqk −
k∑

j=1

< qj , Aqk > qj.

Or

Aqk =
k∑

j=1

qT
j Aqkqj + uk+1. (6.58)

The summation on the right hand side is nothing but a linear combination of
columns of qj, (j = 1, 2, · · · , k) with coefficients hjk = qT

j Aqk. Hence

k∑

j=1

qT
j Aqkqj = [q1 |q2 |q3 | · · · |qk]Q

T
kAqk = QkQ

T
kAqk.

Thus, with hk := k-th column of Hk,

Aqk = QkQ
T
kAqk + ‖uk+1‖qk+1 = Qkhk + ‖uk+1‖qk+1. (6.59)

Hence

AQk = QkHk + ‖uk+1‖qk+1e
T
k = QkHk + [0, · · · ,0,uk+1]

= [Qk,qk+1]

[
Hk

‖uk+1‖eTk

]

= Qk+1H̃k,

whereQk+1 = [Qk,qk+1] and H̃k is obtained by augmenting [0, · · · , 0, hk+1,k], hk+1,k =
‖uk+1‖ after the last row of Hk. Substituting in (6.57) we get

yk = argminy∈Rk‖r0 −Qk+1H̃ky‖2.

Since the LS solution is solved on the orthogonal projection onto column space,
this can be simplified as

yk = argminy∈Rk‖QT
k+1(r0 −Qk+1H̃ky)‖2

= argminy∈Rk‖QT
k+1r0 − H̃ky‖2

= argminy∈Rk‖ρe1 − H̃ky‖2.
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Here e = (1, 0, · · · , 0) ∈ R
k+1, and we used the form

QT
k+1r0 =

[
QT

k

qT
k+1

]

r0 = ‖r0‖e1 = ρe1.

We can use QR decomposition (say, Givens rotation) to solve the least
square problem

y = argminy∈Rk‖ρe1 − H̃ky‖2 (6.60)

and set xk = x0 +Qkyk.

GMRES -Algorithm:
Set r0 = b−Ax0, ρ = ‖r0‖,q1 = r0

ρ .

For k = 1, 2, . . . ,
For i = 1, 2, . . . , k

Set hik = qT
i Aqk

End i-loop

Set uk+1 = Aqk −
∑k

i=1 hikqi.
Set hk+1,k = ‖uk+1‖.
Set qk+1 =

uk+1

hk+1,k
.

Find the minimizer of ‖ρe1 − H̃kyk‖ by QR -factorization (Givens)
If stopping criterion is met, then set xk = x0 +Qkyk.

End k-loop


