
Chapter 8

Finite Difference Method

8.1 2nd order linear p.d.e. in two variables

General 2nd order linear p.d.e. in two variables is given in the following form:

L[u] = Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G

According to the relations between coefficients, the p.d.es are classified into 3

categories, namely,

elliptic if AC −B2 > 0 i.e., A, C has the same sign

hyperbolic if AC −B2 < 0

parabolic if AC −B = 0

Furthermore, if the coefficients A,B and C are constant, it can be written as

[
∂

∂x
,
∂

∂y
]

[

A B

B C

][

∂u
∂x
∂u
∂y

]

+Dux + Euy + Fu = G.

Auxiliary condition



















B.C.

Interface Cond

I.C.

we say “well posed” if a solution exists. There are basically two class of method

to discretize it,
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2 CHAPTER 8. FINITE DIFFERENCE METHOD

(1) Finite Difference method

(2) Finite Element method

8.2 Finite difference operator

Let u(x) be a function defined on Ω ⊂ R
n. Let Ui,j be the function defined

over discrete domain {(xi, yj)} such that Ui,j = u(xi, yj). Such functions are

called grid functions. We introduce difference operators on the grid functions.

δ+Ui =
Ui+1 − Ui

hi+1
, forward difference

δ−Ui =
Ui − Ui−1

hi
, backward difference

δ0Ui =
Ui+1 − Ui−1

hi + hi+1
, central difference

δ2Ui =
2(δ+ − δ−)

hi + hi+1
, central 2nd difference

Example 8.2.1. Consider the following second order differential equation :

−u′′(x) = f(x), u(a) = c, u(b) = d.

Given a mesh a = x0 < x1 < · · · < xN = b,∆xi = xi+1 − xi = h, we have

−
Ui−1 − 2Ui + Ui+1

h2
= fi = f(xi), i = 1, · · ·N − 1, U0 = c, UN = d

which determines Ui uniquely. We obtain an (N−1)×(N−1) matrix equations.

















2 −1

−1 2 −1

. . .

−1 2 −1

−1 2

































U1

·

·

·

UN−1

















= h2

















f1

·

·

·

fN−1

















+

















c

0

0

0

d

















Above equation can be written as LhU
h = F h, called a difference equation for

a given differential equation.
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Exercise 8.2.2. Write down a matrix equation for the same problem with

second boundary condition changed to the normal derivative condition at b,

i.e, u′(b) = d. If one uses first order difference for derivative, we lose accuracy.

We need an extra equation in this case. There are several choices:

(1) Use first order backward difference scheme

U1 − Un−1

h
= d

and append this to the last eq.( first order)

(2) Use central difference equation by assuming a fictitious point UN+1 and

assume the D.E. holds at the end point: Use

−
1

h2
(UN−1 − 2UN + UN+1) = f(1) (8.1)

1

2h
(UN+1 − UN−1) = b. (8.2)

Solve the last eq. and substitute into first eq.

1

2h
(UN − UN−1) = −

b

h
+

1

2
f(1). (8.3)

Eq. 8.3 can be viewed as centered difference approximation to u′(xn−
h
2 )

and rhs as the first two terms of Taylor expansion

u′(xn −
h

2
) = u′(xn)−

h

2
u′′(xn) + · · ·

(3) Use

u′′ ≈
u′N − u′N−1

h
=

d−
uN−uN−1

h

h
= −f(1)

so that
uN − uN−1

h
= d+ hf(1).

This is interpreted as using Taylor series of u′(1− h) = u′(1) + hf(1) =

u′(1)−hu′′(1) But lhs is centered difference to u(1− h
2 ). So not consistent.

(4) Approximate u′(1) by higher order scheme such as

uN−2 − 4uN−1 + 3uN
h

= b.
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Example 8.2.3 (Heat equation). We consider

ut = σuxx, for 0 < x < 1, 0 < t < T

u(t, 0) = u(t, 1) = 0

u(0, x) = g(x), g(0) = g(1) = 0

Let xi = ih, i = 0, · · · , N,∆x = 1/N and tn = n∆t,∆t = T
J . Then we have

the following difference scheme

Un+1
i − Un

i

∆t
= σ

[

Un
i−1 − 2Un

i + Un
i+1

∆x2

]

,

for i = 1, 2, · · · , N − 1 and n = 1, 2, · · · ,M − 1 where Un
i ≈ u(ti, xn). From

the boundary condition and initial condition we have

U0
i = g(xi), U

n
0 = 0, Un

N = 0.

Un+1
i = Un

i +
σ∆t

∆x2
[

Un
i−1 − 2Un

i + Un
i+1

]

.

In vector notation

Un+1
h = Un

h −
σ∆t

∆x2
AUn

h

where A is the same matrix as in example 1. If n = 0, right hand side is

known. Thus

Un
h = (I − σ

∆t

∆x2
A)nG, G = (g(x1), · · · , g(xN−1))

T .

This is called forward Euler or explicit scheme. If we change the right

hand side to

Un+1
i − Un

i

∆t
= σ

[

Un+1
i−1 − 2Un+1

i + Un+1
i+1

∆x2

]

Un+1
i = Un

i +
σ∆t

∆x2
[

Un+1
i−1 − 2Un+1

i + Un+1
i+1

]

.

(I + σ
∆t

∆x2
A)nUn

h = G, G = (g(x1), · · · , g(xN−1))
T .

This is called backward Euler or implicit scheme.
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8.2.1 Error of difference operator

For u ∈ C2, use the Taylor expansion about xi

ui+1 = u(xi + hi) = u(xi) + hiu
′(xi) +

h2i
2
u′′(ξ), ξ ∈ (xi, xi+1)

∴

ui+1 − ui
hi

− u′(xi) =
hi
2
u′′(ξ).

Expand about xi+1,

ui = ui+1 − hiu
′(xi) +

hi
2
u′′(θ).

These are first order accurate. To derive a second order scheme, expand about

xi+1/2,

ui+1 = ui+1/2 +
hi
2
u′(xi+1/2) +

1

2
(
hi
2
)2u′′(xi+1/2) +

1

6
(
hi
2
)3u(3)(ξ)

ui = ui+1/2 −
hi
2
u′(xi+1/2) +

1

2
(
hi
2
)2u′′(xi+1/2)−

1

6
(
hi
2
)3u(3)(ξ).

Subtracting,
ui+1 − ui

hi
= u′(xi+1/2) +O(h2i ).

Thus we obtain a second order approximation to u′(xi+1/2). By translation,

we have
ui+1 − ui−1

2hi
− u′(xi) = O(h2i /6) if hi = hi+1.

Assume hi = hi+1 and we substitute the solution of differential equation

into the difference equation. Using −u′′ = f we obtain

(−ui−1 + 2ui − ui+1)

h2
− f(xi)

=
1

h2
(−ui + hu′i −

h2

2
u′′i +

h3

6
u(3) −

h4

24
u(4)(θ1) + 2ui)

+
1

h2
(−ui − hu′i −

h2

2
u′′i −

h3

6
u(3) −

h4

24
u(4)(θ2))− f(xi)

= −u′′i − f(xi)−
h2

24
(u(4)(θ1) + u(4)(θ2)) truncation error

=
h2

12
max |u(4)|.

We let τh = Lhu − F h and call it the truncation error(discretization
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error).

Definition 8.2.4. We say a difference scheme is consistent if the truncation

error approaches zero as h approaches zero, in other words, if Lhu− f → 0 in

some norm.

Truncation error measures how well the difference equation approximates

the differential equation. But it does not measure the actual error in the

solution.

Use of different quadrature for f . Instead of f(xi) we can use

1

12
[f(xi−1) + 10f(xi) + f(xi+1)] =

5

6
f(xi) +

µ0

6
f(xi)

where µ0f(xi) is the average of f which is f(xi) +O(h2).

H.W Let −u′′ = f . Show the following for uniform grid

−ui−1 + 2ui − ui−1

h2
=

1

12
[f(xi−1) + 10f(xi) + f(xi+1)] + Ch4max |u(6)(x)|.

Definition 8.2.5. Lh is said to be stable if

‖Uh‖ ≤ C‖LhU
h‖ ≤ C‖F h‖ for all h > 0

where Uh is the solution of the difference equation, LhU
h = F h. Also note

that Lh is stable if and only if L−1
h is bounded.

Definition 8.2.6. A finite difference scheme is said to converge if

‖Uh − u‖ → 0 as h → 0.

‖Uh − u‖ is called a discretization error.

Theorem 8.2.7 (P. Lax). Given a consistent scheme, stability is equivalent

to convergence.

Proof. Assume stability. From Lhu− f = τh, LhU
h−F h = 0, we have Lh(u−

Uh) = τh. Thus,

‖u− Uh‖ ≤ C‖Lh(u− Uh)‖ = C‖τh‖ → 0.

Hence the scheme converges. Obviously a convergent scheme must be stable.



8.3. ELLIPTIC EQUATION 7

From the theory of p.d.e, we know ‖u‖ ≤ C‖f‖. Hence

‖Uh‖ ≤ ‖Uh − u‖+ ‖u‖ ≤ O(τh) + C‖f‖ ≤ C‖f‖ ≤ C‖F h‖.

8.3 Elliptic equation

8.3.1 Basic finite difference method for elliptic equation

In this chapter, we only consider finite difference method. First consider the

following elliptic problem:(Dirichlet problem by Finite Difference Method)

−∆u = f in Ω

u = g on ∂Ω

(1) Approx. D.E. −(uxx + uyy) = f at each interior mesh pt.

(2) The unknown function is to be approximated by a grid function u

(3) Replace the derivative by difference quotient.

u(x+ h) = u(x) + hux(x) +
h2

2 uxx(x) +
h3

6 uxxx(x) +O(h4)

u(x− h) = . . .

u(x+ h)− 2u(x) + u(x− h)

h2
= uxx(x) +O(h2)

uxx(x, y)
.
= [u(x+ h, y)− 2u(x, y) + u(x− h, y)]/h2

uyy(x, y)
.
= [u(x, y + h)− 2u(x, y) + u(x, y − h)]/h2

This picture is called, Molecule, Stencil, Star, etc. For each point (interior

mesh pt), approx ∇2u = ∆u by 5-point stencil. By Girshgorin disc theorem,

the matrix is nonsingular. L[u] is called differential operator while Lh[u] is

called finite difference operator, e.g.,

Lh[u] =
1

h2
[−4u(x, y) + u(x+ h, y) + u(x− h, y) + u(x, y + h) + u(x, y − h)]
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××

×

×

(x− h, y) (x, y) (x+ h, y)

(x, y − h)

(x, y + h)

Figure 8.1: 5-point Stencil

or more generally,

L[u] = −[
∂

∂x
,
∂

∂y
] Diag{a11, a22}

[

∂u
∂x
∂u
∂y

]

+ cu = −(a11ux)x − (a22uy)y + cu

Uniform meshes

ux
.
= u(x+h)−u(x−h)

2h

(ux)x
.
=

ux(x+
h
2
)−ux(x−

h
2
)

h Central difference

ux(x+ h
2 ) = u(x+h)−u(x)

h

ux(x− h
2 ) = u(x)−u(x−h)

h

(a11ux)x = [(a11ux)(x+
h

2
)− (a11ux)(x−

h

2
)]/h

Assume the differential operator is of the form(with c > 0)

L[u] ≡ −(uxx + uyy) + cu = f

whose discretized form

Lh[U ] = a0U(x, y)− a1U(x+ h, y) + · · · = F (x, y)

1

h2













4 + ch2 −1 −1 0

−1 4 + ch 0 −1

−1 0 4 + ch2 −1

0 −1 −1 4 + rch2

























U1

U2

U3

U4













= f
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satisfies

(1) Lh[u] = L[u] +O(h2) as h → 0. u is true solution.

(2) AU = F +B.C., Au = [∆u− cu+O(h2)] +B.C.

A(U − u) = O(h2) = ε.

Then the discretization error U − u = A has the form −1ε(depends on h) and

satisfies

‖U − u‖ ≤ ‖A−1‖ · ‖ε‖ ≤ ‖A−1‖O(h2)

More generally when the unit square is divided by n = 1/h equal intervals

along x-axis and y-axis, then the corresponding matrix A(with c = 0) is (n−

1)× (n− 1) block-diagonal matrix of the form:

A =
1

h2



















B −I 0 · · ·

−I B −I 0

−I
. . .

. . .

. . . B −I

· · · 0 −I B



















(8.4)

where

B =



















4 −1 0 · · ·

−1 4 −1 0

−1
. . .

. . .

. . . 4 −1

· · · 0 −1 4



















is (n − 1) × (n − 1) matrix. If we put D = diagA = {a11, . . . , ann}, then

D−1A(U − u) = D−1ε. Write D−1A = I + B, where B is off diagonal. Then

we know ‖B‖∞ = 4
4+ch2 < 1 if c > 0. Thus (D−1A)−1 = (I +B)−1 exists and

‖(D−1A)−1‖∞ = ‖(I +B)−1‖∞ ≤
1

1− ‖B‖∞
≤

4 + ch2

ch2
.

Hence

‖U −u‖∞ ≤ ‖(D−1A)−1‖∞ · ‖D−1ε‖∞ ≤
4 + ch2

ch2
·

h2

4 + ch2
O(h2) = O(h2) → 0
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Thus, we have proved the following result.

Theorem 8.3.1. Let

(1) u ∈ C4(Ω)

(2) r > 0

(3) uniform mesh

Then ‖U − u‖∞ = O(h2) as h → 0.

8.4 Parabolic p.d.e’s

Consider a heat equation on a bar.

ut = uxx, 0 ≤ x ≤ 1, 0 < t ≤ T.

1
f(x)

g(t) h(t)

T

Ω

Figure 8.2: Domain

Theorem 8.4.1 (Maximum principle). If u satisfies the above condition for

t ≤ T , then

min{f, g, h} = m ≤ min
0≤x≤1,0≤t≤T

u ≤ max
0≤x≤1,0≤t≤T

u ≤ M = max{f, g, h}

Proof. Put v = u+ Ex2, E > 0

∂v

∂t
−

∂2v

∂x2
= −2E < 0
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If v attains a maximum at Q ∈ int Ω, then

vt(Q) = 0,

vxx(Q) ≤ 0.

Thus (vt−vxx)(Q) ≥ 0, a contradiction. Hence v has maximum at a boundary

point of Ω

u(x, t) ≤ v(x, t) ≤ max v(x, t) ≤ M +E.

Since E was arbitrary, the proof is complete. For minimum, use −E instead

of E.

More general parabolic p.d.e.

ut = Auxx +Dux + Fu+G

F.D.M







Explicit · · ·write down the values of grid function

Implicit · · · variables implicitly representing the value

Let the grid be given by

0 = x0 < x1 < x2 < · · · < xN+1 = 1, xi = ih, uniform grid

0 = t0 < t1 < · · · , tj = jk

h 2h 3h 4h

u = g1(y) u = g2(y)

u = f(x)

Figure 8.3:
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Explicit method







Ui,j+1−Ui,j

k
.
= ut

Ui+1,j−2Ui,j+Ui−1,j

h2

.
= uxx

∴ Ui,j+1 = λUi−1,j + (1− 2λ)Ui,j + λUi+1,j

where λ = k/h2.

Stability: Error doesn’t accumulate. In this case solution remains bounded

as time goes on.

Theorem 8.4.2. If u is sufficiently smooth, then

∣

∣

∣

∣

uxx −
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2

∣

∣

∣

∣

= O(h2) as h → 0

and
∣

∣

∣

∣

ut −
u(x, t+ k)− u(x, t)

k

∣

∣

∣

∣

= O(k) as k → 0

Theorem 8.4.3. Suppose u is sufficiently smooth, and satisfies

ut = uxx 0 < x < 1, t > 0

u(x, 0) = f(x)

u(0, t) = g(t)

u(1, t) = h(t).

If Ui,j is the solution of the explicit finite difference scheme, then for 0 < λ ≤
1
2 ,

max
i, j

|ui,j − Ui,j |
.
= O(h2 + k) as h, k → 0,

i.e, finite difference solution converges to the true solution.

Proof. Put uij ≡ u(xi, tj). Then from

(1)
ui,j+1 − ui,j

k
= ut +O(k)

(2)
ui+1,j − 2ui,j + ui,j

h2
= uxx +O(h2)

we get

ui,j+1 = ui,j +
k

h2
(ui+1,j − 2ui,j + ui−1,j) + k(O(k) +O(h2)).
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Hence

ui,j+1 = λui−1,j + (1− 2λ)ui,j + λui+1,j + Ck(k + h2).

Let the discretization error be wi,j = uij − Uij so that

wi,j+1 = λwi−1,j + (1− 2λ)wi,j + λwi+1,j +O(k2 + kh2).

Since 0 < λ ≤ 1
2 , 0 ≤ 1 − 2λ < 1, three coefficient are positive and their sum

is 1. (convex combination) We see

|wi,j+1| ≤ λ|wi−1,j |+(1−2λ)|wi,j |+λ|wi+1,j |+M(k2+kh2) for some M > 0.

If we define ‖wj‖ = max1≤i≤N |wi,j|, then

‖wj+1‖ ≤ ‖wj‖+M(k2 + kh2)

≤ ‖wj−1‖+ 2M(k2 + kh2) ≤ · · · ≤ ‖w0‖+ (j + 1)M(k2 + kh2).

Since ‖w0‖ = 0,

‖wj+1‖ ≤ (j + 1)kM(k + h2) ≤ TM(k + h2), (j + 1)k ≤ T.

In fact,

M = max
0≤x≤1, 0≤t≤T

(
1

2
|utt|+

k2

12
|uxxxx|).

Remark 8.4.4. If λ > 1
2 , the solution may not converge.

0 ǫ 0
∗ ∗ ∗∗

∗ ∗∗ ∗ ∗

Figure 8.4: Nonzero point
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Exercise 8.4.5. Prove the formula is unstable for λ > 1
2 . Let

u(x, 0) =







ε, x = 1
2

0, x 6= 1
2

with g = h = 0

Ui,j+1 = λUi+1,j + (1− 2λ)Ui,j + λUi−1,j, λ = k/h2

|Ui,j+1| = λ|Ui+1,j |+ (2λ− 1)|Ui,j |+ λ|Ui−1, j|, 1 ≤ i ≤ N − 1.

Hence

N−1
∑

i=1

|Ui,j+1| = λ

N−2
∑

i=1

|Ui+1,j |+ (2λ− 1)

N−1
∑

i=1

|Ui,j |+ λ

N
∑

i=2

|Ui−1,j|,

since U(xi, t) = 0, i = 1, N .

Let S(tj) =
∑N

i=1 |U(i, j)|. Then

S(tj+1) = (4λ−1)S(tj) = (4λ−1)2S(tj−1) = · · · = (4λ−1)j+1S(0) = (4λ−1)j+1ε.

Since the number of nonzero Ui,j for each j is 2j + 1(Check the numerical

scheme, you will see solution is alternating along x-direction dispersing both

direction) there is a point (xp, tj) such that

|U(xp, tj)| ≥
1

2j + 1
S(tj) =

1

2j + 1
(4λ− 1)j · ε

which diverges as j → ∞ since 4λ− 1 > 1.

Considering the alternating sign, one can see the solution alternates: For

j = 1, we see

Ui,1 = (1− 2λ)ǫ, Ui−1,1 = λǫ, Ui+1,1 = λǫ

Ui,2 = 2λ2ǫ+ (1− 2λ)2ǫ, Ui−1,2 = (1− 2λ)ǫ+ (1 − 2λ)ǫ = 3λǫ(1 − 2λ) < 0.

Stability of linear system









U1,j+1

...

UN−1,j+1









=















1− 2λ λ . . . 0

λ 1− 2λ
. . .

0
. . . λ

λ 1− 2λ























U1,j

...

UN−1,j









+



















g(tj)

0
...

0

h(tj)


















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In vector form, Uj+1 = AUj +Gj. Assume Gj = 0, j = 1, 2, . . . . Let µ be

an eigenvalue of A. Then by G-disk theorem,

|1− 2λ− µ| ≤ 2λ

−2λ ≤ 1− 2λ− µ ≤ 2λ

−2λ ≤ −1 + 2λ+ µ ≤ 2λ

1− 4λ ≤ µ ≤ 1

If 0 < λ ≤ 1
2 , then −1 ≤ µ ≤ 1, hence stable. If λ > 1

2 , then |µ| > 1 is

possible. So the scheme may be unstable. The following example show it is

actually unstable.

Example 8.4.6 (Issacson, Keller). Try v(x, t) = Re(eiαx−wt) = cosαx · e−wt.

vt − vxx
.
=

v(x, t+∆t)− v(x, t)

∆t
−

v(x+∆x, t)− 2v(x, t) + v(x−∆x, t)

∆x2

= v(x, t)

(

e−w∆t − 1

∆t

)

−
cos(αx+ α∆x)− 2 cosαx+ cos (αx− α∆x)

∆x2
e−wt

= v(x, t)

(

e−w∆t − 1

∆t
−

2 cosα∆x− 2

∆x2

)

= v(x, t)
1

∆t
{e−w∆t − [(1− 2λ) + 2λ cosα∆x]}

= v(x, t)
1

∆t

[

e−w∆t −

(

1− 4λ sin2
α∆x

2

)]

Thus v is a solution of the difference equation provided w and α satify e−w∆t =

1− 4λ sin2 α∆x
2 .

With I.C. v(x, 0) = cosαx, solution becomes

v(x, t) = cosαxe−wt = cosαx

(

1− 4λ sin2
α∆x

2

)
t

∆t

Clearly, for all λ ≤ 1
2 , |v(x, t)| ≤ 1. However, if λ > 1

2 , then for some ∆x, we

have
∣

∣1− 4λ sin2 α∆x
2

∣

∣ > 1. So v(x, t) becomes arbitrarily large for sufficiently

large t/∆t. Since every even function has a cosine series, we may give any even

function f(x) of the form f(x) =
∑

n αn cos(απx) to get an unstable problem.



16 CHAPTER 8. FINITE DIFFERENCE METHOD

Implicit Finite Difference Method.

Given a heat equation

ut = uxx

u(0, t) = g(t), t > 0

u(1, t) = h(t)

u(x, 0) = f(x), 0 ≤ x ≤ 1.

We discretize it by implicit difference method.

Ui,j+1 − Ui,j

∆t
=

Ui+1,j+1 − 2Ui,j+1 + Ui−1,j+1

∆x2
i = 1, . . . , N − 1.

Multiply by ∆t, then with λ = ∆t/∆x2, we have

Ui,j+1 − Ui,j = λUi+1,j+1 − 2λUi,j+1 + λUi−1,j+1

−Ui,j = λUi+1,j+1 − (1 + 2λ)Ui,j+1 + λUi−1,j+1 j = 1, . . . , N − 1.

This yields a system of N − 1 unknowns in {Ui,j+1}
N−1
i=1 .



















−λU0,j+1

0
...

0

−λUN,j+1



















+









−U1,j

...

−UN−1,j









= −





























(1 + 2λ) −λ 0

−λ (1 + 2λ) −λ

0
. . .

. . .

. . .
. . .

. . . −λ

0 −λ (1 + 2λ)





























×









U1,j+1

...

UN−1,j+1









Theorem 8.4.7. The implicit finite difference scheme is stable for all λ =

∆t/∆x2. (solution remains bounded).

Proof. For each j, let Uk(j),j be chosen so that |Uk(j),j| ≥ |Ui,j|, i = 1, . . . , N −

1. We choose i0 = k(j + 1) in the following relation.

Ui,j+1 = Ui,j + λ{Ui+1,j+1 − 2Ui,j+1 + Ui−1,j+1}.
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Then

(1 + 2λ)Ui0,j+1 = Ui0,j + λ{Ui0+1,j+1 + Ui0−1,j+1}

for 1 ≤ i ≤ N − 1. Taking absolute values,

(1 + 2λ)|Ui0,j+1| ≤ |Ui0,j|+ λ(|Ui0+1,j+1|+ |Ui0−1,j+1|) ≤ |Ui0,j|+ 2λ|Ui0,j+1|.

Thus |Ui0,j+1| ≤ |Ui0,j| ≤ |Uk(j),j| and hence |Ui,j+1| ≤ |Ui0,j+1| ≤ |Uk(j),j| for

1 ≤ i ≤ N − 1, and |Ui,j+1| ≤ M = max{f, g, h}, for i = 0 or N , by boundary

condition. Repeat the same procedure until we hit the boundary.

|Ui,j+1| ≤ |Uk(j),j| ≤ · · · ≤ |Uk(0),0| ≤ M = max(f, g, h)

Using the matrix formulation: We check the eigenvalues of the system

AUj+1 = Uj +Gj

Eigenvalue of A satisfies |µ + (1 + 2λ)| ≤ 2λ by G-disk theorem. From this,

we see |µ| ≥ 1 and hence the eigenvalues of A−1 is less than one in absolute

value. Thus

Uj+1 ≤ A−1(Uj +Gj) = · · · = A−j−1U0+A−j−1G0+A−j−2G1+ · · ·+A−1Gj .

‖Uj+1‖ ≤ ‖A−j−1‖ ‖U0‖+ ‖A−1‖ ·
1

1− ‖A−1‖
max ‖Gj‖

remain bounded. Note. A does not have −1 as eigenvalues and all the

eigenvalues are positive real.

Theorem 8.4.8. For sufficiently smooth u, we have

|uij − Uij | = O(h2 + k) as h and k → 0 (for all λ)

Proof. Let uij = u(xi, tj) be the true solution. Then we have

ui,j+1 − ui,j
k

=
1

h2
{ui+1,j+1 − 2ui,j+1 + ui−1,j+1}+O(h2 + k)
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Let wi,j = ui,j − Ui,j be the discretization error. Then

wi,j+1 = wi,j + λ{wi+1,j+1 − 2wi,j+1 + wi−1,j+1}+O(kh2 + k2)

(1 + 2λ)wi,j+1 = wi,j + λwi+1,j+1 + λwi−1,j+1 +O(kh2 + k2)

Let ‖wj‖ = maxi |wi,j |. Then

(1 + 2λ)|wi,j+1| ≤ ‖wj‖+ 2λ‖wj+1‖+O(kh2 + k2)

and so

(1 + 2λ)‖wj+1‖ ≤ ‖wj‖+ 2λ‖wj+1‖+O(kh2 + k2).

Thus

‖wj+1‖ ≤ ‖wj‖+ C(kh2 + k2)

≤ · · · ≤ ‖w0‖+ C(j + 1)k(k + h2)

≤ ‖w0‖+ CT (k + h2) = CT (k + h2)

for t = (j + 1)k ≤ T .


