Chapter 8

Finite Difference Method

8.1 2nd order linear p.d.e. in two variables
General 2nd order linear p.d.e. in two variables is given in the following form:
Llu] = Augy + 2Bugy + Cuyy + Duy + Euy + Fu =G

According to the relations between coefficients, the p.d.es are classified into 3

categories, namely,

elliptic if AC—B? >0 i.e., A, C has the same sign
hyperbolic if AC—-B? <0
parabolic ifAC—B =0

Furthermore, if the coefficients A, B and C' are constant, it can be written as

A B| |
[3,2] 9z | + Duy + Euy + Fu = G.
ox' 0y |B C g—z

Auxiliary condition

B.C.
Interface Cond

I.C.

we say “well posed” if a solution exists. There are basically two class of method

to discretize it,
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(1) Finite Difference method

(2) Finite Element method

8.2 Finite difference operator

Let u(x) be a function defined on @ C R". Let U;; be the function defined
over discrete domain {(z;,y;)} such that U; ; = u(z;,y;). Such functions are

called grid functions. We introduce difference operators on the grid functions.

Uit1 — U;

otU; = L forward difference
hit1
U, —U;— .
U = Tl, backward difference
U, = M, central difference
hi + hitq
_l’_ _ —
U, = M, central 2nd difference
hi + hit1

Example 8.2.1. Consider the following second order differential equation :

Given amesh a =29 <21 < --- <axy =b,Ax; = 2441 — x; = h, we have

Ui_1 —2U; + U; .
_ 1 h2+ +1 fi=flx;), i=1,---N—-1Uy=¢c,Uy=d

which determines U; uniquely. We obtain an (IV—1)x (N —1) matrix equations.

2 -1 Uy f c
-1 2 -1 0
. = h? +10

-1 2 -1 0

-1 2 Un-1 fN—1 d

Above equation can be written as L,U" = F", called a difference equation for

a given differential equation.
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Exercise 8.2.2. Write down a matrix equation for the same problem with

second boundary condition changed to the normal derivative condition at b,

i.e, u/(b) = d. If one uses first order difference for derivative, we lose accuracy.

We need an extra equation in this case. There are several choices:

(1)

(4)

Use first order backward difference scheme

Ui — U,

217l g
h

and append this to the last eq.( first order)

Use central difference equation by assuming a fictitious point Un41 and
assume the D.E. holds at the end point: Use

1

r3(Un—1 = 2Un +Un+1) = f(1) (8.1)
%(UNH Uva) = b (8.2)

Solve the last eq. and substitute into first eq.

%(UN —Un-1) = —% + %f(l)' (8.3)

Eq. 8.3 can be viewed as centered difference approximation to u'(z, — %)

and rhs as the first two terms of Taylor expansion

h h
Wz — 3) = () — S zn) + -

Use
Ty d— N1
ul/ ~ N N-1 h —f(l)

~ f— p—

h h

so that

UN 7 UN—1 _h“N‘1 = d+ hf(1).

This is interpreted as using Taylor series of u/(1 —h) = u/(1) + hf(1) =
/(1)—hu" (1) But lhs is centered difference to u(1—2%). So not consistent.

Approximate /(1) by higher order scheme such as

UN—9 — 4uN_1 + 3UN
h

=b.
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Example 8.2.3 (Heat equation). We consider

U = OUge, for0<z<l, 0<t<T
u(t,0) = wu(t,1)=0
u(0,2) = g(z), ¢(0)=g(1)=0

Let z; = ih,i = 0,--- ,N,Azx = 1/N and t, = nAt, At = % Then we have

the following difference scheme

Ut U UL - U7 U,
At Ax? ’

fori=1,2,---,N—1landn =1,2,--- ,M — 1 where U" = u(t;,z,). From

the boundary condition and initial condition we have

UL = g(x), Uy = 0,U% = 0.

7

1 O'At
In vector notation AL
1 g

where A is the same matrix as in example 1. If n = 0, right hand side is

known. Thus

At
Up = - UA—QQA)"G’ G = (g9(z1), - ,Q(ZEN—l))T-
This is called forward Euler or explicit scheme. If we change the right

hand side to

gt oup ot -t s oy
At Ax?
U; = Ui + Az2 [Uz’—+11 —2U; oy Uz’++11] :
At nym T
(I + UEA) Uy =G, G=(g(x1),---,9(xn-1))" .

This is called backward Euler or implicit scheme.
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8.2.1 Error of difference operator

For u € C?, use the Taylor expansion about z;

h2
Uj41 = u(ml + hz) = u(azz) + hzu'(a:,) + EZUH(S), f S (mi,xiﬂ)
i1~ Ui h;
L (@) = ),
Expand about x;41,

h;
U; = Uj41 — h,u’(mz) + E’U//(Q)

These are first order accurate. To derive a second order scheme, expand about

Tit1/2s
hi L hi 1 h;
Uity = Uipijz T+ gul(xi+l/2) + 5(5)2?//(351'“/2) + 6(5)%(3) (&)
hi L hi 1 h
Ui = Uiz — §U,($i+1/2) + 5(5)22/'(331“/2) - 6(5)%(3) (6).
Subtracting,

w = Ul($i+1/2) +O(h).

Thus we obtain a second order approximation to u/(z;4q /2)- By translation,

we have

% —/(z;) = O(h7/6) if hi = hit1.

Assume h; = h;11 and we substitute the solution of differential equation

into the difference equation. Using —u” = f we obtain

(—wi_1 + 2u; — uipq)

72 — f(xi)

= —(—u; + hu; — S ui + YL (01) + 2u;)
2 3 4
(g — i — ! = Teu® 2 0)) — f(a)

2
= —u! — f(x;) — h—(u(4) (61) + ul? (6)) truncation error

We let 7, = Lpu — F" and call it the truncation error(discretization
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error).

Definition 8.2.4. We say a difference scheme is consistent if the truncation
error approaches zero as h approaches zero, in other words, if Lyu — f — 0 in

some norm.

Truncation error measures how well the difference equation approximates
the differential equation. But it does not measure the actual error in the
solution.

Use of different quadrature for f. Instead of f(x;) we can use

1) + 107 + fwien)] = 2 f) + 2 (o)

where juof(x;) is the average of f which is f(z;) + O(h?).
H.W Let —u” = f. Show the following for uniform grid

—Uj—1 + 2u; — Ui—1
2

1
= Sl (@ie) +10f (@i) + f(2ip)] + O max [u® ().
Definition 8.2.5. L is said to be stable if
U]l < CIILRU"|| < C||F"|| for all h >0

where U" is the solution of the difference equation, LyU" = F". Also note
that Ly is stable if and only if L;l is bounded.

Definition 8.2.6. A finite difference scheme is said to converge if
|U" —ul| -0 ash—0.

|U" — u| is called a discretization error.

Theorem 8.2.7 (P. Lax). Given a consistent scheme, stability is equivalent

to convergence.

Proof. Assume stability. From Lyu— f = 7", L,U" — F" = 0, we have Ly (u —
UMy = 7h. Thus,

lu = UMl < CllLn(u — UM = Cllr*] - 0.

Hence the scheme converges. Obviously a convergent scheme must be stable.
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From the theory of p.d.e, we know |[u|| < C||f||. Hence

IT* ) < U™ = ull + [[ul] < OG*) + CIfll < ClIfI < CIF.

8.3 Elliptic equation

8.3.1 Basic finite difference method for elliptic equation

In this chapter, we only consider finite difference method. First consider the

following elliptic problem:(Dirichlet problem by Finite Difference Method)

—Au = fin
u =g on Jf)

(1) Approx. D.E. —(uge + uyy) = f at each interior mesh pt.
(2) The unknown function is to be approximated by a grid function u

(3) Replace the derivative by difference quotient.

2

w4+ h) = u(@) + htg(2) + Lt (1) + Bttges () + O(h%)
u(lz —h) =...

u(x 4+ h) — 2u(x) + u(x — h)

- = Ugg(x) + O(h2)

Upe (2,y) = [u(z + h,y) — 2u(z, y) + u(z — h,y)]/h?
Uyy(z,y) = [u(z,y + h) — 2u(z,y) +u(z,y — h)]/h?

This picture is called, Molecule, Stencil, Star, etc. For each point (interior
mesh pt), approx V?u = Au by 5-point stencil. By Girshgorin disc theorem,
the matrix is nonsingular. L[u] is called differential operator while Lj[u] is

called finite difference operator, e.g.,

Liy[u] = %[—%(w, y) +u(@ +hy) +ule —hy) +u(z,y+h) +ule,y —h)]
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(z,y th)

(l’—h,y) (Evy) (1’—|—h,y)

(x7y— h)

Figure 8.1: 5-point Stencil

or more generally,

0 0 Qu
Llu] = —[5=, -] Diag{a11, age} | 97| + cu = —(a11us)s — (agauy)y + cu
Ox’ Oy o
Uniform meshes
- u(z+h)—u(z—h
Uy = ( )}2h (z=h) }
(Uz)y = UI(HE);M(QE—E) Central difference
uy(z+24) = _U(Hh’)L_U(:)
U (z — %) _ U(x)—z(x— )

(anta)e = (@)@ + 5) — () (@ — 5))/h

Assume the differential operator is of the form(with ¢ > 0)
Liu] = —(ugy + uyy) +cu=f

whose discretized form

Lp[U] = aoU(z,y) —arU(z + h,y) + - = F(z,y)

44ch? -1 1 0 U,
i -1 4+ ch 0 -1 Us _
h? -1 0  4+ch? ~1 Us |

0 -1 -1 4 + rch? Uy
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satisfies

(1) Lyu] = L[u] + O(h?) as h — 0. u is true solution.

(2) AU = F + B.C., Au = [Au — cu + O(h?)] + B.C.

AU —u) = O(h?) =e.

Then the discretization error U — u = A has the form ~'e(depends on h) and

satisfies
JU —ul| < A7 - Jlell < [[A7HO(R?)

More generally when the unit square is divided by n = 1/h equal intervals
along z-axis and y-axis, then the corresponding matrix A(with ¢ =0) is (n —

1) x (n — 1) block-diagonal matrix of the form:

(B -1 0 i
-I B -1 0
1 . .
B I
| 0 —-I B
where ) )
4 -1 0
-1 4 -1 0
B = -1
4 -1
i 0 -1 4|

is (n —1) x (n — 1) matrix. If we put D = diagA = {ai1,...,ann}, then
D™YA(U —u) = D~ 'e. Write D™'A = I + B, where B is off diagonal. Then
we know ||Blloc = ﬁ <1life¢>0. Thus (D71A)~! = (I + B)7! exists and
1 4 + ch?

DA Yo = [T+ B) Y < <
¢ )l I(I+B)" STTB. S o

Hence

2 2
U —tfloe < (D7 A) Moo [ D elo < 2ET D

= S —gE TraeO) =0 =0
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Thus, we have proved the following result.
Theorem 8.3.1. Let

(1) u e C*Q)

(2) r>0

(3) uniform mesh

Then |U — u|loo = O(h?) as h — 0.

8.4 Parabolic p.d.e’s

Consider a heat equation on a bar.

Ut = Uge, 0< <1, 0O0<t<T.

g(t) Q h(t)

f()

Figure 8.2: Domain

Theorem 8.4.1 (Maximum principle). If u satisfies the above condition for
t<T, then

min hl=m< min u < max u < M = max h
{f.9.1} T 0<e<1,0<t<T T 0<z<1,0<t<T {f.9.1}

Proof. Put v =u+ Ex?, E >0

v 0%
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If v attains a maximum at @ € int (), then

u(Q) =0,
vz (Q) < 0.

Thus (v —v44)(Q) > 0, a contradiction. Hence v has maximum at a boundary
point of €
u(z,t) <wv(x,t) < maxv(x,t) < M+ E.

Since E was arbitrary, the proof is complete. For minimum, use —F instead
of F. O

More general parabolic p.d.e.
up = Augy + Dugy + Fu+ G

Explicit - - - write down the values of grid function
F.D.M

Implicit - - - variables implicitly representing the value

Let the grid be given by

0 = p<z1<a2<---<axNy1=1, x;=1h, uniform grid
0 = to<ti <---, tj=7jk
u=g1(y) u = g2(y)
b Ph Bh b

u = f(z)

Figure 8.3:
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Explicit method

Uiji1—Uij -
1 ] k 1 j = ut
Uir1, =20 j+Ui15 -
h2 = Uz

Uijt1 = AU;—1,j + (1-— 2)\)Ui,j + AUit,5

where \ = k/h?.
Stability: Error doesn’t accumulate. In this case solution remains bounded

as time goes on.

Theorem 8.4.2. If u is sufficiently smooth, then

h2

and

=0(k) as k—0

Uy —

u(z, t + k) —u(z,t) ‘

Theorem 8.4.3. Suppose u is sufficiently smooth, and satisfies

Uy = Ugy O<z<l, t>0
u(z,0) = f(z)
u(0,t) = ¢

(t
(

t

>

u(l,t) =

If U; ; is the solution of the explicit finite difference scheme, then for 0 < A <

1
27

max lwij —Uijl =O(h*+k) as hk—0,
i.e, finite difference solution converges to the true solution.
Proof. Put u;; = u(x;,t;). Then from
(1) STy +O(k)

(2) =g = gy + O()

we get

k
Ujj1 = Ui 5+ ﬁ(uﬂ_u — QUZ‘,]‘ + ui_l,j) + k‘(O(k‘) + O(h2))
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Hence
Ui jr1 = )\ui_Lj + (1 — 2)\)114'7]' + )\ui+1,j + Ck‘(k + h2).

Let the discretization error be w; ; = u;; — U;; so that
Wi j+1 = )\wi_m + (1 — 2)\)11)@‘,]' + )\w,-+17j + O(k2 + k‘h2).

Since 0 < A < %, 0 <1-—2X< 1, three coeflicient are positive and their sum

is 1. (convex combination) We see
|wi7j+1| < )\|wi_17j|+(1—2)\)|wi,j|—|—/\|wi+1,j|—|—M(k:2+kh2) for some M > 0.
If we define ||w;|| = maxi<ij<n |w; ;|, then

lwistll < llwjll + M(E? + kh?)
< lwjoa || +2M (K + kh?) < -+ < Jlwol| + (7 + )M (K> + kh?).

Since ||wpl| =0,
wjall < (G + D)EM(k + %) < TM(k+ %), (j+1)k<T.
In fact,

1 k2
M= 1 k2 |
OSwg%);th(2 e + 10 |Uaaaal)

Remark 8.4.4. If A > %, the solution may not converge.

%

D %
&
D %

Figure 8.4: Nonzero point
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Exercise 8.4.5. Prove the formula is unstable for A > % Let

e, xT=

0, =z

u(z,0) = with g=h=0

N
Nl D=

Uijsr = Mg+ (1= 20U + AUiz1, - A= k/h?
Uijail = AMUisrl + (22 = D|Usj| + AlUi-1, 5], 1<i<N -1

Hence

N-1 N-2 N-1 N
o Uigral = A Uisrl + @A =1) Y [Uigl + A [Uiea gl
i=1 i=1 =1 =2

since U(z;,t) =0,i=1,N.
Let S(t;) = 32, [U (i, ). Then

S(tis1) = (A=1)S(t;) = (A—1)28(t; 1) = - = (AA—1)7*15(0) = (AA—1)7*1e.

Since the number of nonzero U;; for each j is 2j 4+ 1(Check the numerical
scheme, you will see solution is alternating along x-direction dispersing both
direction) there is a point (x,,t;) such that

1 1

\U(wp,tj)] = 5-—=S(t;) = T

a4\ — 1) -
25 + 1 ( y e

which diverges as j — oo since 4\ — 1 > 1.

Considering the alternating sign, one can see the solution alternates: For
7 =1, we see
UZ’71 = (1 - 2)\)6, UZ’_171 = )\6, Ui+171 = )Xe

Uia =2\ + (1 — 20?6, U;_12 = (1 — 2\)e + (1 — 2\)e = 3Ae(1 — 2)) < 0.

Stability of linear system

1—2x A ... 0 9(t5)
VLo A 1-2) Vid 0
. — . + .
0 S
Un-1j+1 N UNn-1, 0
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In vector form, Uj1q = AUj + Gj. Assume G; =0, j = 1,2,.... Let u be
an eigenvalue of A. Then by G-disk theorem,

[T—=2X—pu| < 2X
—2X < 1-2X—p<2)
—2X < 1420+ p<2)
1—4x < p<1

Ifo < X< %, then —1 < pu < 1, hence stable. If A > %, then |u| > 1 is
possible. So the scheme may be unstable. The following example show it is

actually unstable.

Example 8.4.6 (Issacson, Keller). Try v(x,t) = Re(e’*®~*!) = cos az - e L.

S v(z,t +At) —v(z,t)  v(r+ Az, t) — 2v(x,t) +v(z — Az, t)
t — Uz — -

At Az?

e"wAt 1 cos(ax + aAx) — 2 cos ax + cos (ax — aAx)
= e —x ) - A

e”WAt _ 1 2cosalAx —2
B G v S v=>

= vz, t)é{e‘wm — [(1T = 2X) + 2\ cos aAz]}

= v(a:,t)é [e_wm - <1 — 4\ sin? aTAx>]

Thus v is a solution of the difference equation provided w and « satify e~
1 — 4)\sin? 252,

wAt _

With I.C. v(x,0) = cos auz, solution becomes
Az At
v(x,t) = cos axe ! = cos ax <1 — 4\ sin? %)

Clearly, for all A < %, |v(x,t)] < 1. However, if A > %, then for some Az, we
have ‘1 — 4\ sin? O‘TM| > 1. So v(x,t) becomes arbitrarily large for sufficiently
large ¢/At. Since every even function has a cosine series, we may give any even

function f(x) of the form f(x) =), oy, cos(amx) to get an unstable problem.

e—wt
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Implicit Finite Difference Method.

Given a heat equation

u(0,t) = g¢g(t), t>0
u(l,t) = h(t)
u(z,0) = f(z), 0<x<1.

We discretize it by implicit difference method.

Uij+1 = Uij _ Uip1+1 = 2Ui j11 + Uic 41 .
: == : : : =1,...,N—-1
At Az? TR

Multiply by At, then with A = At/Ax?, we have

Uijr1 — Uiy = AUit1j41 — 20U i1 + AUi—1,j+1
-U,; ; = Ait1,j+1 — (L + 20U j11 + AUi-1 41 j=1...,N-L

This yields a system of N — 1 unknowns in {U; j41 ZJ\; _11.

1420 A 0
=AU, j+1
0 oy, A (1420 A
+ o | =-
0 —Un-1 0
—AUN j+1 S -
I 0 X (1420
Ut,j+1
" )
UNn-1j+1

Theorem 8.4.7. The implicit finite difference scheme is stable for all A =
At/Az?. (solution remains bounded).

Proof. For each j, let Uy ; be chosen so that |Uy;) ;| > [Uijl,i=1,...,N —
1. We choose ig = k(j + 1) in the following relation.

Uijtr = Uij + MUit1j41 = 2Ui o1 + Uiy }-
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Then
(1 + 2N Ui j+1 = Uigj + MUig+1,j+1 + Uig—1,j+1}

for 1 <i < N — 1. Taking absolute values,
(1 +2M)|Uig j+1| < |Uig 5| + AM|Uig+1,541] + [Uig—1,5+11) < |Uig 5| + 2A[Uig j+1]-

Thus |Ui0,j+1| S |Ui07j| § |Uk(j),j| and hence |Ui7j+1| § |Ui0,j+1| S |Uk(j),j| fOI"
1<i<N-1,and |U;j4+1| < M = max{f, g, h}, for i =0 or N, by boundary

condition. Repeat the same procedure until we hit the boundary.

\Uij+1l < Uiyl < -+ < U)ol £ M = max(f, g,h)

Using the matrix formulation: We check the eigenvalues of the system

Eigenvalue of A satisfies |u + (1 + 2))| < 2\ by G-disk theorem. From this,
we see |p| > 1 and hence the eigenvalues of A~! is less than one in absolute

value. Thus
U1 <A WU +Gj) = = AT WU+ A7 1Go + A772G + -+ A71G.

Ul < AT HToll + 1A7H] - max || Gy |

1
1—[lA-Y
remain bounded. Note. A does not have —1 as eigenvalues and all the

eigenvalues are positive real.
Theorem 8.4.8. For sufficiently smooth u, we have
luij — Uij| = O(h* + k) as h and k—0  (forall)\)

Proof. Let u;j = u(x;,t;) be the true solution. Then we have

Uij+1 — Wi

1
k = p{uz’+1,j+1 —2u; 41 + ui_l,jﬂ} + O(h2 + k)
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Let w; ; = u; ; — U; j be the discretization error. Then

wigr1 = Wij+ Mwisj = 2wij +wicga} + O(kR +k?)
I+ 2Nwijr1 = wij+ Mg 1+ Mwim i1 + O(kh? + k?)
Let [Jw;|| = max; |w; ;|. Then

(1 + 20wl < gl + 27wy || + O(kh? + k)
and so
(L4 20) | < gl + 2oy || + O + K2).
Thus
lwgall <yl + COR> + 1)

< s < woll + CG + DE(K + 1?)
< |lwoll + CT(k + h?) = CT(k + h?)

N

fort=(G+1)k<T. O



