
Chapter 5

Numerical integration

In this chapter, we study how to approximate the definite integral of some

smooth functions. An idea is to use an interpolating polynomial F (x) to

evaluate the integral. Thus we have

∫ b

a
f(x) dx ≈

∫ b

a
F (x) dx.

Our purpose is how to design such an interpolation so that the error is mini-

mized.

5.1 Closed Newton-Cotes Formulas

We would like to design a quadrature for the following integral:

∫ b

a
f(x) dx.

One point formula: If F (x) is a constant interpolation at x0, then the above

integral is approximated by (b − a)f(x0) called a rectangle rule. One can

show that there exist ξ0 and ξ0 in [a, b] such that the following hold.

∫ b

a
f(x) dx =







(b− a)f(x0) +
(b−a)2

2 f ′(ξ0), if x0 6= b+a
2

(b− a)f(x0) +
(b−a)3

24 f ′′(ξ1), if x0 =
b+a
2 .

(5.1)

Thus one point formula is exact for constant polynomial(except mid point

rule), so it is called a 0-th order method.
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Two point formula-trapezoidal rule:

∫ b

a
f(x) dx =

b− a

2
(f(a) + f(b))− (b− a)3

12
f ′′(ξ). (5.2)

This is exact for linear polynomials, hence it is a first order method.

Newton-Cotes Rules

Assume we have nodes x0, · · · , xn in [a, b] are equally spaced. We use an

interpolating polynomial p(x) to replace the integral.

∫ b

a
f(x) dx ≈

∫ b

a
p(x) dx =

n
∑

i=0

cip(xi) =
n
∑

i=0

cif(xi).

For example, if we use the Lagrange interpolating polynomial, we have

pn(x) =

n
∑

i=0

f(xi)Ln,i(x), (5.3)

where

Ln,i(x) =

n
∏

i 6=i

(x− xj)

(xi − xj)
, 0 ≤ i ≤ n.

We let
∫ b

a
f(x) dx ∼

n
∑

i=0

f(xi)

∫ b

a
Ln,i(x) dx =

n
∑

i=0

Bn,if(xi),

where

Bn,i =

∫ b

a
Ln,i(x) dx.

This is the Newton-Cotes formula. If x0 = a and xn = b, then we say

it is a closed Newton-Cotes formula. Otherwise, it is called an open

Newton-Cotes formula. Mid point rule is an open Newton-Cotes formula.

Three point formula-Simpson rule

Use an interpolation at three equally spaced points x0, x1, x2 : Let

∫ x2

x0

f(x) dx ≈
∫ x2

x0

p2(x) dx, (5.4)
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where p2(x) is the Lagrange interpolation. For simplicity, we assume x0 =

−h, x1 = 0 and x2 = h. Then

p2 = f(x0)
x(x− h)

2h2
+ f(x1)

(x+ h)(x − h)

−h2
+ f(x2)

(x+ h)x

2h2
.

Integrating, we obtain

=

∫ h

−h

1

2h2
[

(f0 − 2f1 + f2)x
2 + (−hf0 + hf2)x+ 2h2

]

dx

=
1

2h2

[

h3

3
(f0 − 2f1 + f2) + 4h3f1

]

=
h

3
(f0 + 4f1 + f2).

Hence we get the following rule, called the Simpson’s rule

∫ x2

x0

f(x) dx ∼ h

3
(f(x0) + 4f(x1) + f(x2)) ≡ s1(f). (5.5)

One can readily check that this is exact for a polynomial up to degree three,

even if we used a quadratic polynomial approximation. Hence this is a third

order method. In fact one can show that

∫ x2

x0

f(x) dx =
h

3
(f(x0) + 4f(x1) + f(x2))−

h5

90
f (4)(ξ1), ξ1 ∈ [x0, x2]. (5.6)

Similar phenomenon arises for all even n. Derive formula for n = 3 and n = 4.

Error of numerical integration

We consider Newton-Cotes formula. We assume the following situation:

Let a ≤ x0 < x1 < · · · < xn ≤ b, xi−xi−1 = h and consider an approximation

of
∫ b
a f(x)dx by some quadrature based on the data (x0, f(x0), · · · , (xn, f(xn)).

Use Taylor formula with remainder:

f(x) = f(x0)+f ′(x0)(x−x0)+ · · ·+ f (n)(x0)

n!
(x−x0)

n+
f (n+1)(ξ)

(n+ 1)!
(x−x0)

n+1

or Newton’s interpolating polynomial

pn(f) = f(x0)+f [x0, x1](x−x0)+ · · ·+f [x0, x1, · · · , xn](x−x0) · · · (x−xn−1).
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By the error formula, we have

f(x) = pn(f) + f [x0, x1, · · · , xn, x](x− x0) · · · (x− xn).

Integrating the error term of Newton’s formula we have

E(f) =

∫ b

a
f [x0, x1, · · · , xn, x]

n
∏

i=0

(x− xi)dx =

∫ b

a

f (n+1)(ξ)

(n+ 1)!

n
∏

i=0

(x− xi)dx.

Since the term
∏n

i=0(x−xi) does not change sign on each subinterval (xs, xs+1),

we can use mean value theorem to see the above quantity is

f (n+1)(ξ̄s)

(n+ 1)!

∫ xs+1

xs

n
∏

i=0

(x− xi)dx =
f (n+1)(ξ̄s)

(n + 1)!
×O(hn+2),

for some ξ̄s ∈ (xs, xs+1). A more precise error formula is as follows:(See

Issacson-Keller)

Theorem 5.1.1. The error by Newton-Cotes formula is

E(f) =























f (n+2)(ξ̄)

(n+ 2)!

∫ b

a
(x− x0)

n
∏

i=0

(x− xi)dx, if n is even

f (n+1)(ξ̄)

(n+ 1)!

∫ b

a

n
∏

i=0

(x− xi)dx, if n is odd.

(5.7)

As noted earlier, we have one higher order of accuracy for even n.

Semi-Simpson rule

If n is odd, we can approximate

∫ xn−1

x0

f(x) dx

by Simpson’s rule, but to apply Simpson’s rule to

∫ xn

x0

f(x) dx

we split the integral into two parts:

∫ xn

x0

f(x) dx =

∫ xn−1

x0

f(x) dx+

∫ xn

xn−1

f(x) dx
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and we can apply Simpson’s rule to the first integral. But how to approximate

the second integral (we need the same order method)?

One idea is to add an extra point, say xn−2 and use a quadratic interpo-

lation:

p2(x) = fn−2
(x− xn−1)(x− xn)

(−h)(−2h)
+fn−1

(x− xn−2)(x− xn)

(h)(−h)
+fn

(x− xn−2)(x− xn−1)

(2h)(h)
.

Change of variable: x− xn−1 = th gives

p2(x) = fn−2
(t− 1)(t− 2)

2
− fn−1t(t− 2) + fn

t(t− 1)

2
.

Thus

∫ xn

xn−1

f(x) dx ≈ h

∫ 2

1
fn−2

(t− 1)(t− 2)

2
− fn−1t(t− 2) + fn

t(t− 1)

2
dt

=
h

12
(−f(xn−2) + 8f(xn−1) + 5f(xn)).

Ex. Derive an integration rule for
∫ x1

x0
f(x) dx using the data at x0, x1 and

x2(assume h = x1 − x0 = x2 − x1.)

Composite Simpson’s rule

If the domain is large, divide it by even number of intervals and applying

Simpson’s rule to a pair of subintervals, one can find a more accurate approx-

imation. Let xi = a+ ih, h = (b− a)/2n. Then

∫ b

a
f(x) dx =

∫ x2

x0

f(x) dx+

∫ x4

x2

f(x) dx+ · · ·+
∫ x2n

x2n−2

f(x) dx.

If Simpson’s rule is used for each integral, we obtain

∫ b

a
f(x) dx ∼ h

3

n
∑

i=1

[f(x2i−2) + 4f(x2i−1) + f(x2i)].

To avoid repetitions it is rearranged as

h

3

[

f(x0) + 2

n
∑

i=2

f(x2i−2) + 4

n
∑

i=1

f(x2i−1) + f(x2n)

]

.
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5.2 Open Newton-Cotes Formulas

We consider approximation of integral
∫ b
a f(x)dx by interpolating at n + 1

interior points

x0 = a+ h, x1 = a+ 2h, · · · , xn = a+ (n+ 1)h.

Here h = (b−a)/(n+2).This rule is useful when we cannot use or do not want

to use end points.

(1) n = 0 :
∫ b
a f(x)dx ≈ 2hf(x0). Error:

h3

3 f
′′(ξ)

(2) n = 1 :
∫ b
a f(x)dx ≈ 3h

2 (f(x0) + f(x1)). Error:
3h3

4 f ′′(ξ)

(3) n = 2 :
∫ b
a f(x)dx ≈ 4h

3 (2f(x0)− f(x1) + 2f(x2)). Error:
14h5

45 f (4)(ξ)

Notice that even cases are more accurate.

How to find the coefficients? One way is to integrate the Lagrange inter-

polation
∫ b

a
f(x) dx ∼

n
∑

i=0

wif(xi), (5.8)

where

wi =

∫ b

a
Ln,i(x) dx.

Another method is to let the formula (5.8) be exact for all monomials xi,

(i = 0, 1, · · · , n.) For n = 3

∫ b

a
f(x) dx ∼ 5h

24
(11f(x0) + f(x1) + f(x2) + 11f(x3)) (5.9)

Remark 5.2.1. In general, open Cotes rules are used much less than the

closed rule. However, there are instances where end points not available.

5.3 Gaussian quadrature-unequal intervals

We now consider a quadrature with unequal intervals. Check that the quadra-

ture
∫ 1

−1
f(x) dx

.
= f(−

√

1

3
) + f(

√

1

3
)
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is exact up to degree 3. The degree of precision of the following quadrature is

5.
∫ 1

−1
f(x) dx

.
=

5

9
f(−

√

3

5
) +

8

9
f(0) +

5

9
f(

√

3

5
).

General three point formula with weight is of the form:

α0f(β0) + α1f(β1) + α2f(β2).

More generally, we consider

∫ b

a
f(x)w(x)dx ≈

n
∑

i=0

Aif(xi), (5.10)

where w is a fixed positive weight function. Here we have freedom of choice of

xi as well as the coefficients. This weight may be useful if we need to evaluate

an integral of functions of the form g(x) = f(x)w(x).

This formula is exact for polynomial of degree up to n if and only if(let

f(x) = Ln,i(x))

Ai =

∫ b

a
w(x)

n
∏

j 6=i

x− xj
xi − xj

dx.

Note that there are no restrictions on the nodes. By placing nodes at proper

places, we can obtain 2n+ 1 order of approximation.

Example 5.3.1. Let w(x) = (1− x2)−1/2. Then

∫ 1

−1

f(x)

(1− x2)1/2
dx ≈ π

n+ 1

n
∑

k=0

f(xk)

with xk = cos( (k+1/2)π
n+1 ), k = 0, · · · , n is exact for a polynomial degree up to

2n+ 1.

Example 5.3.2. With n = 1 on [−1, 1], x0 = cos(π/4) = 1/
√
2 and x1 =

cos(3π/4) = −1/
√
2. So

∫ 1

−1

x2

(1− x2)1/2
dx ≈ π

2
(f(x0) + f(x1))

=
π

2
(
1

2
+

1

2
)

=
π

2
.



8 CHAPTER 5. NUMERICAL INTEGRATION

It can be shown that this is exact.

Inner Product Space

We define the inner product of functions w.r.t a (positive) weight function

w(x) over an interval [a, b]. Given f, g ∈ V (V is a vector space of functions

defined over [a, b]), let

(f, g) =

∫ b

a
f(x)g(x)w(x) dx. (5.11)

It can easily be shown that it satisfies usual properties of inner product:

(1) (f, f) ≥ 0 for all f and (f, f) = 0 only if f = 0.

(2) (f, g) = (g, f)

(3) (αf + βf, h) = α(f, h) + β(g, h) for scalar α, β.

If V = Pn the set of all polynomials degree less than equal to n. The obvious

basis for V is {1, x, x2, · · · , xn}. But we would like to have an orthogonal basis.

Thus we use Gram-Schmidt process. Let w(x) = 1, [a, b] = [−1, 1] and

m0 = 1,m1 = x,m2 = x2, · · · ,mn = xn.

We find p0 = 1 and

p1(x) = m1 −
(p0,m1)

(p0, p0)
p0(x)

= x− 1

2
(

∫ 1

−1
1 · xw(x) dx) · 1

= x

p2(x) = m2 −
(p0,m2)

(p0, p0)
p0(x)−

(p1,m2)

(p1, p1)
p1(x)

= x2 − 1

2
(

∫ 1

−1
1 · x2 dx) · 1− 1

(p1, p1)
(

∫ 1

−1
p1 · x2 dx) · p1(x)

= x2 − 1

3

Note these are not normalized.
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Theorem 5.3.3. Let q be a nonzero polynomial of degree n + 1 which is

orthogonal to Pn(the set of all polynomials of degree ≤ n) with respect to the

weight w, i.e, we have

∫ b

a
q(x)p(x)w(x)dx = 0, for all p(x) ∈ Pn.

If x0, x1, · · · , xn are the zeros of q, then the quadrature formula (5.10) is exact

for all f ∈ P2n+1.

Proof. Let f ∈ P2n+1. Dividing f by q, we obtain the quotient p and remainder

r. Hence

f = qp+ r (degree of p and , r < n+ 1)

and f(xi) = r(xi). Since q is orthogonal to p with respect to w and the formula

(5.10) is exact for polynomial of degree n, we have

∫ b

a
fw dx =

∫ b

a
rw dx =

n
∑

i=0

Air(xi) =

n
∑

i=0

Aif(xi).

Now the remaining task is to find orthogonal polynomials and their zeros.

Fortunately, some cases are well-known: Let [−1, 1]. Then with w = 1, the

Legendre polynomials are ortho-normal polynomials on [−1, 1]. i.e,

∫ 1

−1
pn(x)pm(x) dx = δnm.

p0(x) =
1√
2
, p1(x) =

√

3

2
x

p2(x) =

√

5

2

1

2
(3x2 − 1), p3(x) =

√

7

2

1

2
(5x3 − 3x)

p4(x) =

√

9

2

1

8
(35x4 − 30x2 + 3), p5(x) =

√

11

2

1

8
(63x5 − 70x3 + 15x)

p6(x) =

√

13

2

1

24
(7 · 33x6 − 63 · 5x4 + 35 · 3x2 − 5)

, . . . ,

pn(x) =

(

n+
1

2

)1/2 1

n! 2n
dn

dxn
(x2 − 1)n.
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Exercise 5.3.4. Let

Φn(x) =
1

n! 2n
dn

dxn
(x2 − 1)n

Then

(1) Φn(1) = 1, Φn(−1) = (−1)n

(2) Φn is generated by the recursive formula

Φn+1 =
2n + 1

n+ 1
xΦn − n

n+ 1
Φn−1, Φ0 = 1, Φ1 = x

(3) Φn(x) is a solution of Legendre differential equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0.

5.3.1 Error of Gaussian quadrature

Lemma 5.3.5. In Gaussian quadrature, the coefficients are positive and their

sum is
∫ b
a w(x)dx. In particular, if [a, b] = [−1, 1] and w ≡ 1, then

∑n
i=0 Ai =

2.

Proof. Fix n and let q be a polynomial of degree n+1 which is orthogonal to

Pn. The zeros of q are denoted by x0, · · · , xn. Let p(x) = q(x)/(x − xj) for

some j. Since p2 is of degree at most 2n, Gaussian quadrature with x0, · · · , xn
will be exact for p2. Hence

0 <

∫ b

a
p2(x)w(x)dx =

n
∑

i=0

Aip
2(xi) = Ajp

2(xj)

so that Aj > 0. Now use Gaussian quadrature for f(x) = 1 to see

∫ b

a
w(x)dx =

n
∑

i=0

Ai.

Theorem 5.3.6. For any f ∈ C2n+2[a, b], the error term E in the Gaussian

quadrature
∫ b

a
f(x)w(x)dx =

n
∑

i=0

Aif(xi) + E
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satisfies

E =
f (2n+2)(ξ)

(2n + 2)!

∫ b

a
q2(x)w(x)dx

for some a < ξ̄ < b and q(x) =
∏n

i=0(x− xi).
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5.4 More on Gauss type quadrature

We now consider the case w(x) 6= 1. One example is w(x) = exp(−x)(Gauss-

Laguerre) which is useful in
∫∞
0 f(x)exp(−x)dx.

Let Φi(x) for i = 0, · · · , n be orthonormal polynomials w.r.t weight w(x).

Observe

Φn+1(x)− axΦn(x) =

n
∑

i=0

αiΦi(x) (5.12)

for some scalar a and αi. HW. Determine a and αi using the orthogonality.

Show that αi = 0 for i = n− 2, n− 3, · · · , 0.
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General Gauss Chebysheff quadrature

If we use w(x) = 1√
1−x2

the corresponding orthogonal polynomials are the

Chebysheff polynomial of first kind and using these, we obtain the Gauss

Chebysheff quadrature. The nodes xi are the zeros of orthogonal polynomial

w.r.t. w(x) = 1√
1−x2

.

It is known that the Chebysheff polynomial satisfies

∫ 1

−1
Tm(x)Tn(x)

1√
1− x2

dx = cmnδmn

and hence the interpolating points are the Chebysheff points:

xk = cos

(

2k + 1

2(n + 1)
π

)

, k = 0, · · · , n

Thus Gauss Chebysheff quadrature with weight w(x) = 1√
1−x2

based on

n+ 1 points for [−1, 1] is

∫ 1

−1
f(x)w(x) dx =

n
∑

i=0

Aif(xi),

where xi, i = 0, · · · , n are the zeros of Tn+1(x) and it can be shown that

Ai =

∫ 1

−1

Ln,i(x)√
1− x2

dx =
π

n+ 1
, i = 0, · · · , n

Remark 5.4.1. The first two Chebysheff polynomials are T0(x) = 1, T1(x) =

x and in general

Tn(x) =
1

2n−1
cos(n cos−1(x)) (5.13)

and hence

xk = cos

(

2k + 1

2n
π

)

.

Notice the points are densely packed near the boundary; thus it may be good

for function which is unbounded near the boundary. Find the coefficients in

Tn+1(x) = axTn(x) + αTn−1(x) (5.14)

for n ≥ 2. If we use w(x) =
√
1− x2 instead, we obtain Chebysheff polynomial

of second kind and hence obtain Gauss Chebysheff quadrature of second kind
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which will not be discussed further.

Theorem 5.4.2. If q(x) is a monic polynomial of degree n then

max
[−1,1]

|Tn(x)| =
1

2n−1
≤ max

[−1,1]
|q(x)|.

Thus Tn(x) has the ’smallest’ size(measured in maximum norm) among all

polynomial of degree n. Stated another way, its deviation from 0 is smallest.

Proof. Suppose there is a monic poly. p(x) such that

|p(x)| < 21−n, |x| ≤ 1.

Let yi = cos(iπ/n), 0 ≤ i ≤ n. Then Tn(yi) = (−1)i21−n. Since Tn is a monic

poly. of degree n

(−1)ip(yi) ≤ |p(yi)| < 21−n = (−1)iTn(yi).

Hence

(−1)i(Tn(yi)− p(yi)) > 0 (0 ≤ i ≤ n).

This means the polynomial Tn(x)−p(x) oscillates n+1 times in sign and hence

must have at least n roots in (−1, 1). This is impossible since Tn(x)− p(x) is

degree n− 1.

Recall

f(x)− pn(x) =
f (n+1)(ξ(x))

(n+ 1)!

n
∏

i=0

(x− xi). (5.15)

We cannot control the coefficient term. However, we can control

ω(x) = (x− x0)(x− x1) · · · (x− xn).

This is minmized over [−1, 1] by choosing the nodes the n + 1 Chebysheff

points.

The use of Chebysheff points gives the interpolating polynomial that min-

imizes the maximum |f(x)− p(x)| (‖f − p‖∞). It can be shown that

wi =

∫ 1

−1

Li(x)√
1− x2

dx =
π

n+ 1
, i = 0, · · · , n
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Proof. Observe that for all k = 0, 1, · · · , n

(x− xk)Lk(x) = ckpn+1(x)

Thus

wi =

∫ 1

−1
Li(x) dx

=

∫ 1

−1

cipn+1(x)

(x− xi)
dx

Example 5.4.3. Use G-Chebysheff quadrature n = 4 to approximate
∫ 1
−1 cos(πx) dx.

∫ 1

−1
cos(πx) dx =

∫ 1

−1
cos(πx)

√

1− x2
1√

1− x2
dx

=

∫ 1

−1
f(x)w(x) dx

=
π

5

[

f(cos(
π

10
)) + f(cos(

3π

10
)) + f(cos(

5π

10
)) + f(cos(

7π

10
)) + · · ·

]

It is always possible to generate orthogonal polynomials by

pn+1(x) = xpn(x)− αn+1pn(x)− βn+1pn−1(x), (5.16)

where

αn+1 =
(pn, xpn)

(pn, pn)

βn+1 =
(pn, xpn−1)

(pn−1, pn−1)

and p−1(x) = 0.

Gauss Lobatto quadrature

Let φn be the Legendre polynomial of degree n on [−1, 1] and let xi, i =

0, · · · , n be the zeros of p = φn+1(x) + λφn(x) + µφn−1(x). Here λ, µ are

chosen so that p(−1) = p(1) = 0. Then we have x0 = −1 and xn = 1. Now
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consider the following quadrature

A0f(x0) +Anf(xn) +

n−1
∑

i=1

Aif(xi) (5.17)

to approximate
∫ 1
−1 f(x)dx. Here we Ai’s are determined by letting the above

quadrature is exact for f = 1, x, · · · , xn.

Theorem 5.4.4. The quadrature (5.17) is exact for polynomials degree up to

2n− 1.

Proof. First λ, µ are determined by p(−1) = p(1) = 0. Assume the formula is

exact for Pn. Let f be in P2n−1. Then dividing f by p, we can write f = pq+r

for some q ∈ Pn−2 and r ∈ Pn.

∫ 1

−1
f(x)dx =

∫ 1

−1
pq dx+

∫ 1

−1
r dx

= 0 +

∫ 1

−1
r dx( orthogonality )

=

n
∑

i=0

Air(xi)( since r is degree n )

=
n
∑

i=0

Aif(xi)( since p(xi) = 0 for i = 0, · · · , n).

Some difficulty may arise if one tries to find the interpolation points xi.

Example 5.4.5. For n = 3, we first note that

p = 35x4 − 30x2 + 3 + λ(5x3 − 3x) + µ(3x2 − 1).

Using p(±1) = 0, we get λ = 0, µ = −4. Hence

p(x) = 35x4 − 42x2 + 7 = 7(5x2 − 1)(x2 − 1).

Thus x1 = − 1√
5
, x2 =

1√
5
.

When n = 3, there is a special method to find the formula. Assume the

following symmetric formula:

A0f(−1) +A1f(−x1) +A1f(x1) +A0f(1).
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By symmetry, it is exact for any odd degree polynomial. We can find A0, A1

and x1 by imposing the condition that it is exact for f = 1, x2, x4.

A0 +A1 = 1

A0 +A1x
2
1 =

1

3

A0 +A1x
4
1 =

1

5
.

Solving we get x1 = − 1√
5
. Thus, the Gauss-Lobatto formula in this case is

1

6
f(−1) +

5

6
f(− 1√

5
) +

5

6
f(

1√
5
) +

1

6
f(1).

(For other general formula, See p355 Num. anal. by Jeffery Leader, Addison

Wesley or Beurling’s book.)

Assume the formula

A0f(−1) +Anf(−x1) +

n
∑

i=1

Aif(xi)

is exact up to degree 2n− 1. where the sum is up to n/2 for n even and up to

(n+ 1)/2 for n odd.

f = 1 : A0 +An +

n−1
∑

i=1

Ai = 2

f = x : −A0 +An +

n−1
∑

i=1

Aixi = 0

: · · ·

f = xk : A0 +An +

n−1
∑

i=1

Aix
k
i =

2

k + 1

· · ·

f = xn : A0 +An +

n−1
∑

i=1

Aix
n
i =

2

n+ 1

for even k.
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Weight and points of Gauss Lobatto quadrature

Let Φn(x) be the unnormalized Legendre polynomial of degree n and let

φn(x) be its normalized(leading coefficient is 1) Legendre polynomial. Let

kn = (2n)!
2n(n!)2 be the leading coefficients of Φn(x). Then general Gauss Lobatto

quadrature based on n+ 1 points for [−1, 1] is

∫ 1

−1
f(x)dx =

2

n(n+ 1)
(f(−1) + f(1)) +

n−1
∑

i=1

Aif(xi),

where xi, i = 1, · · · , n− 1 are zeros of φ′
n(x), the derivative of Legendre poly-

nomial of degree n and

Ai =
2

n(n+ 1)k2nφ
2
n(xi)

The error is of the form

E = cnf
(2n)(ξ)

which is exact up to degree 2n−1 compared to the 2n+1(Gauss quadrature);

we have given up the freedom of location of points.

General Gauss Radau quadrature

Let Φn(x) be the unnormalized Legendre polynomial of degree n and let φn(x)

be its normalized(leading coefficient is 1) Legendre polynomial. Let kn =
(2n)!

2n(n!)2
be the leading coefficients of Φn(x). Then the general Gauss Radau

quadrature based on n + 1 points(the point −1 plus n points in the open

interval) for [−1, 1] is

∫ 1

−1
f(x)dx =

2

(n + 1)2
f(−1) +

n
∑

i=1

Aif(xi)

where xi, i = 1, · · · , n are the zeros of

knφn(x) + kn+1φn+1(x)

x− 1

and

Ai =
1− xi

(n + 1)2k2nφ
2
n(xi)

, i = 1, · · · , n
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The error is of the form

E = dnf
(2n+1)(ξ).


