
Chapter 4

Polynomial Interpolation

4.1 Lagrange Interpolation

Definition 4.1.1. Interpolation of a given function f defined on an interval

[a, b] by a polynomial p: Given a set of specified points {(xi, f(xi)}
n
i=0 with

{xi} ⊂ [a, b], the polynomial p of degree n satisfying

p(xi) = f(xi), i = 0, · · · , n

is called an polynomial interpolation. The points {xi} are called nodes.

We let Pn(x) be the set of all polynomial of degree less or equal to n.

Nonpolynomial interpolation can be defined, but rarely used.

Here we shall use the semi-norm to measure the error:

|f |1 ≡

n
∑

i=0

|f(xi)|.

Theorem 4.1.2. For given f , there exist a unique p ∈ Pn(x) such that |f −

p|1 = 0.

Proof. If p = a0+ a1x+ · · ·+ anx
n. We want to find a polynomial of the form

p = a0 + a1x+ · · ·+ anx
n such that p(xi) = f(xi), for i = 0, . . . , n, i.e,

p(x0) = a0 + a1x0 + · · · + anx
n
0 = f(x0)

= · · ·

p(xn) = a0 + a1xn + · · ·+ anx
n
n = f(xn).

1

2 CHAPTER 4. POLYNOMIAL INTERPOLATION

In matrix form,












1 x0 · · · xn0
1 x1 · · · xn1

. . .

1 xn · · · xnn





















a0
...

an









=









f(x0)
...

f(xn)









(4.1)

The equation (4.1) involves a Van der Monde matrix whose determinant is
∏

i>j(xi−xj). Thus we see a unique solution exists as long as the interpolation

points are distinct.

A basis for V = Pn

A naive basis for Pn(x) is {1, x, x2, . . . , xn}. Is it convenient? No! There are

other bases, and usually other bases are better.

(1) To compute the coefficients in (4.1), one has to solve a linear system.

(2) Moreover, the Van der Monde matrix is ill-conditioned.

Example 4.1.3. Consider

x −y = 1 + ǫ

(1 + 10−9)x −y = 1.
(4.2)

Without ǫ, the exact solution is x = 0, y = −1, while with ǫ perturbation,

x = −109ǫ, y = −109ǫ− 1− ǫ!

Why Polynomial Interpolation ?

For example consider ex or sinx. How to evaluate or integrate them?

(1) On a computer we approximate a given function by only arithmetic

operations which is done by polynomial interpolation. Taylor series is

rarely used. So Find a polynomial p(x) s.t. p(xi) = exi for i = 1, 2, · · · .

This is better than Taylor series which loses accuracy when x is large.

(non uniform error) Taylor series requires higher order derivatives which

may be difficult to obtain or unavailable.

(2) It is easier to handle Polynomial interpolations systematically (in solving

the p.d.e. or integrations)

4.1. LAGRANGE INTERPOLATION 3

cos x

n = 0

n = 2

n = 4

n = 6

n = 8

Figure 4.1: Taylor expansion of cos x up to p8

Lagrange basis

Suppose we wish to construct a linear interpolation with two points x0 and

x1. Define

L0(x) =
x− x1
x0 − x1

, L1(x) =
x− x0
x1 − x0

.

Then
L0(x0) = 1, L0(x1) = 0

L1(x0) = 0, L1(x1) = 1.

Now given any data f(x0) = y0, f(x1) = y1, we can construct a linear inter-

polant by

ℓ(x) = y0L0(x) + y1L1(x). (4.3)

We now generalize this. Given distinct nodes x0, x1, · · · , xn, we construct

polynomials Ln,i(x)(i = 0, · · · , n) such that Ln,i(xj) = δij , j = 0, · · · , n. We

can easily see that Ln,i has the following form:

Ln,i(x) = C

n
∏

j 6=i

(x− xj), for some C.

We set

Ln,i(xi) = C
∏

j 6=i

(xi − xj) = 1.

4 CHAPTER 4. POLYNOMIAL INTERPOLATION

Then we obtain C = 1/
∏

j 6=i(xi − xj) and hence

Ln,i(x) =
∏

j 6=i

(x− xj)

(xi − xj)
.

These are the Lagrange basis polynomials. Now using these, one can

readily construction a polynomial interpolation.

Proposition 4.1.4. Let f ∈ C[a, b] and let pn be the unique element of Pn(x)

such that f(xi) = pn(xi), i = 0, 1, . . . , n. Then the Lagrange interpolating

polynomial is given by

pn(x) =

n
∑

i=0

f(xi)
∏

j 6=i

(x− xj)

(xi − xj)
.

(1) ‖f(x)− pn(x)‖∞?

(2) What happens if nodes are close?

(3) limn→∞ pn(x) =?

Polynomial of degree n has the tendency of n − 1 oscillation(where the

derivative vanishes). Thus, if the interval is fixed and n becomes larger, it

may oscillate. Indeed the following example by Runge shows it.

Example 4.1.5 (Runge).

f(x) =
1

1 + x2
on [−5, 5]

Given {(xi, f(xi)) | i = 0, 1, . . . , n}

h =
b− a

2n
, xk = kh, k = −n, . . . , n

Choose n = 5, 10, · · · for example, and interpolate f(x) by polynomial of

degree 2n.

p2n(
5

n
k) = f(

5k

n
), k = 0,±1, . . . ,±n.

Runge showed limn→∞ ‖f(x)− p2n(x)‖ = ∞.

Thus Runge’s example shows higher degree polynomial is not always good

for interpolation. This suggests us to use lower degree polynomial on each

subinterval.

4.1. LAGRANGE INTERPOLATION 5

1

1+x2

p6(x)

Figure 4.2: Runge function and a polynomial interpolation

Let f(x) on [−3, 3] with n = 3. Then

p6(x) = f(x0)
(x+ 2)(x + 1)x(x− 1)(x− 2)(x− 3)

(−3 + 2)(−3 + 1)(−3)(−4)(−5)(−6)

+f(x1)
(x+ 3)(x+ 1)x(x − 1)(x − 2)(x− 3)

(−2 + 3)(−2 + 1)(−2)(−3)(−4)(−5)

+f(x2)
(x+ 3)(x+ 2)x(x − 1)(x − 2)(x− 3)

(−1 + 3)(−1 + 2)(−1)(−2)(−3)(−4)

+f(x3)
(x+ 3)(x+ 2)(x + 1)(x − 1)(x− 2)(x− 3)

(0 + 3)(0 + 2)1(−1)(−2)(−3)

+f(x4)
(x+ 3)(x+ 2)(x + 1)x(x − 2)(x− 3)

(1 + 3)(1 + 2)(1 + 1)(1)(−1)(−2)

+f(x5)
(x+ 3)(x+ 2)(x + 1)x(x − 1)(x− 3)

(2 + 3)(2 + 2)(2 + 1)2(1)(−1)

+f(x6)
(x+ 3)(x+ 2)(x + 1)x(x − 1)(x− 2)

(3 + 3)(3 + 2)(3 + 1)3(2)(1)

= 1−
16x2

25
+

3x4

20
−

x6

100

Error Estimate

Theorem 4.1.6. Let f(x) ∈ Cn+1[a, b]. If a = x0, x1, . . . , xn = b are n + 1

distinct points and pn(x) is the Lagrange interpolating polynomial, then there

exists a function ξ(x) ∈ (a, b) such that

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

n
∏

i=0

(x− xi).

6 CHAPTER 4. POLYNOMIAL INTERPOLATION

Proof. Let d(x) =
∏n

i=0(x− xi) and define

Φ(x) ≡
f(x)− pn(x)

d(x)
. (4.4)

Let x be fixed number different from all xi’s. Then the function defined by

Ω(z) = f(z)− pn(z)− d(z)Φ(x) ∈ C(n+1)[a, b]

vanishes(as a function of z) at xi, i = 0, · · · , n (n+1 nodal points). But it also

vanishes at x by (4.4). Thus Ω(z) vanishes at n + 2 distinct points in (a, b).

Thus by Rolle’s Theorem,

Ω′(z) has n+ 1 distinct zeros in (a, b)

Ω′′(z) has n distinct zeros in (a, b)

· · ·

Ω(n+1)(z) has at least one zero in (a, b).

Thus there exists a point ξ(x) such that

Ω(n+1)(ξ(x)) = 0 = f (n+1)(ξ)− (n+ 1)!Φ(x).

Hence

Φ(x) ≡
f(x)− pn(x)

d(x)
=

f (n+1)(ξ)

(n+ 1)!

∴ f(x)− pn(x) =
f (n+1)(ξ(x))

(n+ 1)!

n
∏

i=0

(x− xi).

Newton’s form of interpolating polynomial

We now describe an efficient way of calculating the coefficients of an interpo-

lating polynomial.

There are three typical basis for polynomial space. First,

{1, x, x2, · · · , xn}

4.1. LAGRANGE INTERPOLATION 7

is the natural basis. Next, with Li(x) =
∏j=n

j 6=i
x−xj

xi−xj
the Lagrangian basis is

{L0, L1, · · · , Ln}

The Lagrangian form is useful for analysis, but not efficient for computation.

In the Newton form of interpolating polynomial the following basis is taken:

{1, (x − x0), (x− x0)(x− x1), · · · , (x− x0)(x− x1) · · · (x− xn−1)}

We compute pn(x) by induction. Since pn(x) is one degree higher than pn−1(x),

one can set

pn(x) = pn−1(x) + qn(x)

with qn(xj) = 0, j = 0, 1, . . . , n− 1. Thus qn(x) = an
∏n−1

i=0 (x− xi) and

pn(x) = pn−1(x) + an

n−1
∏

i=0

(x− xi)

= pn−2(x) + an−1

n−2
∏

i=0

(x− xi) + an

n−1
∏

i=0

(x− xi)

· · ·

= a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · · + an

n−1
∏

i=0

(x− xi).

If we denote f [x0, . . . , xk] for ak, then

pn(x) =

n
∑

k=0

ak

k−1
∏

i=0

(x− xi) ≡

n
∑

k=0

f [x0, . . . , xk]

k−1
∏

i=0

(x− xi). (4.5)

This is called the Newton’s form of interpolation and f [x0, . . . , xk] are

called the divided difference. Now we study how to compute ak.

Computing the divided difference

Now we show how to compute f [x0, . . . , xk] efficiently. One can write pn(x) in

two ways(by reordering the points starting from xn),

pn(x) = a0 + a1(x− x0) + · · ·+ an(x− x0)(x− x1) · · · (x− xn−1)

pn(x) = b0 + b1(x− xn) + · · ·+ bn(x− xn)(x− xn−1) · · · (x− x1),

8 CHAPTER 4. POLYNOMIAL INTERPOLATION

where bn = f [xn, . . . , x0] by definition. Comparing the highest order term, we

get

an = f [x0, . . . , xn] = bn = f [xn, . . . , x0].

Reordering the points, we also see that

bn := f [xn, . . . , x0] = f [xi(0), . . . , xi(n)]

for any permutation i(k) of numbers {0, 1, · · · , n}. Hence the divided dif-

ference is independent of the order of its arguments xi.

Subtracting the two expressions for the same polynomial pn,

0 = an[(x− x0)− (x− xn)](x− x1) · · · (x− xn−1) + (an−1 − bn−1)x
n−1 + · · ·

Comparing the coefficients of xn−1, we see

an(xn − x0) + (an−1 − bn−1) = 0.

Since bn−1 = f [xn, . . . , x1] = f [x1, . . . , xn] and an−1 = f [x0, . . . , xn−1](∵

bn−1 is defined using n points xn, · · · x1 and an−1 is defined using n points

x0, · · · xn−1), we see

an = f [x0, . . . , xn] =
bn−1 − an−1

xn − x0
=

f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

Thus Newton’s formula is useful when a new point of interpolation is added

to an existing interpolation.

Example 4.1.7. Suppose we are given x0, . . . , xn and pn. If we have one more

point xn+1. Then pn+1 is constructed by adding one more term to pn:

pn(x) = pn−1(x) + f [x0, . . . , xn−1, xn]

n−1
∏

i=0

(x− xi). (4.6)

Example 4.1.8. (1) f [xi] = f(xi).

(2) f [x0, x1] =
f [x1]−f [x0]

x1−x0
= f(x1)−f(x0)

x1−x0
.

(3) f [x0, x1, x2] =
f [x1,x2]−f [x0,x1]

x2−x0
.

(4) p2(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1).

4.2. PIECEWISE LINEAR APPROXIMATION 9

x0 f [x0] | f [x0, x1] f [x0, x1, x2] f [x0, x1, x2, x3]

x1 f [x1] | f [x1, x2] f [x1, x2, x3]

x2 f [x2] | f [x2, x3]

x3 f [x3] |

4.2 Piecewise linear approximation

We have seen from the Runge example, that higher degree polynomial can be

a bad choice. We thus consider a different method. One is to use piecewise

linear functions, another is spline functions.

Let f ∈ C0[a, b] and let K = {x0, x1, . . . , xn} ⊂ [a, b]. Define V ≡

PL(a, b ; K): the set of continuous functions which is piecewise linear on each

subintervals (xi, xi+1). Then dimV = n+ 1 and basis functions are

Ti(x) =























x− xi−1

xi − xi−1
on [xi−1, xi]

x− xi+1

xi − xi+1
on [xi, xi+1]

0 elsewhere.

In this case ∃ unique p ∈ V such that ‖f − p‖t = 0.

Given {(xi, f(xi)}
m
i=0 we want to approximate f(x) for x /∈ {x0, . . . , xm}

by some piecewise linear approximation. It will be good if

(1) f is continuous.

(2) xk+1 − xk are small for k = 0, . . . ,m− 1.

(3) f ′′(x) (curvature) is small.

For x ∈ (xk, xk+1) define

F (x) ≡ f(xk) +
f(xk+1)− f(xk)

xk+1 − xk
(x− xk)

=
xk+1 − x

xk+1 − xk
f(xk) +

x− xk
xk+1 − xk

f(xk+1)

= w0(x)f(xk) + w1(x)f(xk+1), w0 + w1 = 1, 0 ≤ w0, w1 ≤ 1

Then limm→∞ F (x) = f(x) if mesh → 0 uniformly and f ∈ C0[a, b].

10 CHAPTER 4. POLYNOMIAL INTERPOLATION

xk−1 xk xk+1
Ik

Sk−1

Sk

xk−1 xk xk+1
Ik

Figure 4.3: Piecewise Linear basis Λk(x) and S′′
k (x)

Proof.

f(x)− F (x) = f(x)− w0(x)f(xk)− w1(x)f(xk+1)

= w0[f(x)− f(xk)] + w1[f(x)− f(xk+1)]

|f(x)− F (x)| ≤ |w0| |f(x)− f(xk)|+ |w1| |f(x)− f(xk+1)]

≤ max{|f(x)− f(xk)|, |f(x) − f(xk+1)|}

Moreover, we have the following result.

Theorem 4.2.1. Let f(x) ∈ C2[a, b], x ∈ (a, b). If F (x) = f(a)+
f(b)− f(a)

b− a
(x−

a) then ∃ c(x) ∈ (a, b) such that

f(x)− F (x) =
(x− a)(x− b)

2
f ′′(c(x)).

Moreover, if |f ′′(x)| ≤ M2, then |f(x)− F (x)| ≤ (b−a)2

8 M2.

4.3 Piecewise Cubic Approximation

The drawback of piecewise linear approximation is that it is not differentiable.

Thus we may try piecewise quadratic approximation. But we will soon there

are some problems.

Example 4.3.1. Suppose on each subinterval [xi, xi+1] we have data

{f(x0), f
′(x0), f(x1), f

′(x1)}.

Then we can find a cubic polynomial which fits the given data.(called piece-

wise Hermite interpolations) Even though there are some ad hoc choices of

4.3. PIECEWISE CUBIC APPROXIMATION 11

degrees of freedom for piecewise quadratics, they are seldom used. In general,

we can consider odd degree piecewise polynomials.

In applications, there are instances to require twice differentiable functions,

because it has the physical meaning of acceleration. However, derivative in-

formation usually is not provided in advance. Thus we consider

4.3.1 Piecewise polynomials without derivative information

Consider the problem of interpolating the data {(x0, f(x0), (x1, f(x1), (x2, f(x2))}

by a C2 piecewise polynomial. We must have a polynomial p1 on [x0, x1] and

another polynomial p2 on [x1, x2] such that

p1(x0) = f(x0), p1(x1) = f(x1)

p′1(x1) = p′2(x1), p′′1(x1) = p′′2(x1)

p2(x1) = f(x1), p2(x2) = f(x2).

We can use quadratic polynomials. But if we have three intervals, the extra

conditions are

p3(x2) = f(x2), p3(x3) = f(x3)

p′2(x2) = p′3(x2), p′′2(x2) = p′′2(x2).

Hence the quadratic would not work.

In general, we have data {(x0, y0), (x1, y1), · · · , (xn, yn)} and we use cubic

in each subinterval. Count the unknowns: We have 4n parameters. How many

conditions?

• Each of n cubic function interpolates at two end points gives 2n

• Two derivative conditions at each n − 1 internal points, which gives

2(n − 1) conditions.

We need two more conditions to determine a unique interpolant.

Boundary conditions

Free or natural boundary condition:

p′′0(x0) = 0, p′′n−1(xn) = 0.

12 CHAPTER 4. POLYNOMIAL INTERPOLATION

The clamped boundary condition:

p′0(x0) = s0, p′n−1(xn) = sn.

The not-a knot boundary condition:

p0(x) = p1(x), pn−2(x) = pn−1(x).

The last conditions are equivalent to requiring S is three times continuously

differentiable.

4.4 Computation of Cubic splines

Let y = f ∈ C2[a, b], x0 = a < x1 < . . . < xn−1 < xn = b. We wish

to construct a C2[a, b], piecewise cubic polynomial S(x) on Ik = [xk, xk+1]

interpolating f , i.e, construct S(x) satisfying

(1) S(xk) = yk for k = 0, · · · , n,

(2) S′(x−k) = S′(x+k) for k = 1, · · · , n− 1,

(3) S′′(x−k) = S′′(x+k) for k = 1, · · · , n− 1.

Thus we have 2n+ 2(n− 1) = 4n − 2 conditions in 4n unknowns.

Now we show how to construct S(x). Let Λk(x) be the continuous, piece-

wise linear hat function on [xk−1, xk+1] for k = 0, · · · , n.(When the interval

falls out of [x0, xn], we just cut out.) We write pk(x) ≡ S(x)|Ik . Since p′′k(x)

is linear, we may write

S′′(x) =
n
∑

k=0

σkΛk(xk). (4.7)

On the interval Ik = [xk, xk+1],(k = 0, · · · , n− 1) we have

p′′k(x) = σk(
xk+1 − x

hk
) + σk+1(

x− xk
hk

), hk = xk+1 − xk. (4.8)

Hence

p′k(x) = −σk
(xk+1 − x)2

2hk
+ σk+1

(x− xk)
2

2hk
+ τk (4.9)

pk(x) = σk
(xk+1 − x)3

6hk
+ σk+1

(x− xk)
3

6hk
+ τk(x− xk) + κk. (4.10)

4.4. COMPUTATION OF CUBIC SPLINES 13

Since S(x) interpolates f(x) at xk and xk+1, we see

pk(xk) = σk
h2k
6

+ κk = yk, pk(xk+1) = σk+1
h2k
6

+ τkhk + κk = yk+1.

Thus κk = yk −
σkh

2
k

6 , τk =
yk+1−yk

hk
− hk

6 (σk+1 − σk). Now compute the

derivative at xk: We see from (4.9)

p′k(xk) = −
σkhk
2

+ τk (4.11)

= −
σkhk
3

−
σk+1hk

6
+ (

yk+1 − yk
hk

). (4.12)

On the other hand, we consider p′k−1(xk). Replacing k by k − 1 in (4.9) and

evaluating at xk, we get

p′k−1(xk) =
σkhk−1

2
+ τk−1

=
σkhk−1

3
+

σk−1hk−1

6
+ (

yk−1 − yk
hk−1

). (4.13)

The continuity of derivative: Equating (4.12) with (4.13) and arranging in

terms of unknowns σk, k = 0, 1 · · · , n

hk−1

6
σk−1+

hk + hk−1

3
σk+

hk
6
σk+1 =

yk+1 − yk
hk

−
yk − yk−1

hk−1
, 1 ≤ k ≤ n−1.

We see two more conditions are needed to guarantee the existence of the

solution. A common choice is to let σ0 = σn = 0(The natural spline). In

this case, we obtain a (n − 1) × (n − 1) tridiagonal system Do not divide the

entry as in Leader book. The original system is symmetric.

A =















h0 + h1 h1 . . .

h1 h1 + h2 h2
...

...
. . .

. . . hn−2

0 . . . hn−2 hn−2 + hn−1















Definition 4.4.1. We say a matrix is irreducibly diagonally dominant if

|aii| ≥
n
∑

j 6=i

|aij |, for all i = 1, 2, · · · , n

14 CHAPTER 4. POLYNOMIAL INTERPOLATION

and a strict inequality holds at least for one i.

Hence A is irreducibly diagonally dominant and thus nonsingular. (It is

known that a irreducibly diagonally dominant and thus nonsingular). For such

matrix, Gauss elimination can be performed without pivoting.

This is a system of n − 1 unknowns.(Recall we have started with 4n un-

knowns.) To find it, one has to solve a system of linear equations. Fortunately,

the system is tridiagonal, which is easy to solve.

A tridiagonal system has a LU-decomposition of the following form:















b1 c1 . . . 0

a1 b2 c2
...

...
. . .

. . . cn−1

0 . . . an−1 bn















=















1 0 . . . 0

ℓ1 1 0
...

...
. . .

. . . 0

0 . . . ℓn−1 1





























d1 c1 . . . 0

0 d2 c2
...

...
. . .

. . . cn−1

0 . . . 0 dn















LU decomposition. cost: 2(n − 1) multiplication n− 1 addition.

◦































d1 = b1

For i = 1, . . . , n− 1

ℓi = ai/di

di+1 = bi+1 − ℓici

Forward substitution Ly = k. cost: n− 1 mult. n− 1 add.

◦



















y1 = k1

For i = 2, . . . , n

yi = ki − ℓi−1yi−1

Back substitution Ux = y. cost: 2(n− 1) + 1 mult. n− 1 add.

◦



















xn = yn/dn

For i = n− 1, . . . , 1

xi = (yi − ciyi+1)/di

It requires (5n − 4) multiplication and 3n− 3 addition.

Theorem 4.4.2. (Holliday) Among all C2-function which interpolate f at

{xi}
n
i=0, the natural cubic spline has smallest curvature (minimal energy-smooth),

4.4. COMPUTATION OF CUBIC SPLINES 15

i.e., if g(x) is any C2-interpolant, then

∫ b

a
[s′′(t)]2 dt ≤

∫ b

a
[g′′(t)]2.

Proof. We see, for any C2-interpolant g(x) that

0 ≤

∫ b

a
[g′′(t)−s′′(t)]2 dt =

∫ b

a
[g′′(t)]2−2

∫ b

a
[g′′(t)−s′′(t)]s′′(t)−

∫ b

a
[s′′(t)]2 dt.

We will show the second term is zero, which completes the proof,

∫ b

a
[g′′ − s′′]s′′ =

n−1
∑

i=0

∫ xi+1

xi

[g′′ − s′′]s′′ =

n−1
∑

i=0

[(g′ − s′)s′′
∣

∣

∣

∣

xi+1

xi

−

∫ xi+1

xi

(g′ − s′)s′′′]

=
n−1
∑

i=0

[(g′(xi+1)− s′(xi+1))s
′′(xi+1)− (g(x) − s(x))s′′′(x)]

∣

∣

∣

∣

xi+1

xi

.

By telescoping series, the first term equals (g′(xn)− s′(xn))s
′′(xn)− (g′(x0)−

s′(x0))s
′′(x0) = 0 by the assumption s′′(x0) = s′′(xn) = 0. Since s′′′ is constant

on each interval, the second one is also zero by the assumption g(xi) = s(xi).

Remark 4.4.3. There are other choices of σ0 and σn. Suppose the values

f ′(x0), f
′(xn) are known. Then we obtain so called a clamped spline.

Exercise 4.4.4. Put s′(x0) = f ′(x0), s
′(xn) = f ′(xn) (clamped)

Theorem 4.4.5. Let f ∈ C2[a, b] and s be the natural cubic spline with node

{xi}
n
i=0, then with h = maxk hk

‖f − s‖∞ ≤ h3/2
(
∫ b

a
|f ′′|2

)1/2

and

‖f ′ − s′‖∞ ≤ h1/2
(
∫ b

a
|f ′′|2

)1/2

.

Thus cubic spline is also good to approximate f ′.

Proof. We prove the second estimate first. Fix x ∈ [xk−1, xk] = Ik. By Rolle’s

theorem, there exists τ ∈ Ik such that f ′(τ)− s′(τ) = 0. Then we have

∫ x

τ
[f ′′(t)− s′′(t)] dt = f ′(t)− s′(t)|xτ = f ′(x)− s′(x)

16 CHAPTER 4. POLYNOMIAL INTERPOLATION

and by the proof of Holliday’s Theorem,

|f ′(x)− s′(x)| = |

∫ x

τ
(f ′′ − s′′) dt| ≤

(
∫ x

τ
|f ′′ − s′′|2dt

)1/2

(

∫ x

τ
dt)1/2

≤ h1/2
(
∫ b

a
|f ′′ − s′′|2dt

)1/2

= h1/2
(
∫ b

a
(|f ′′|2 − |s′′|2)dt

)1/2

≤ h1/2
(
∫ b

a
|f ′′|2dt

)1/2

.

Now for the first estimate we see, for x ∈ [xi, xi+1]

|f(x)− s(x)| =

∣

∣

∣

∣

∫ x

xi

(f ′(t)− s′(t)) dt

∣

∣

∣

∣

≤

∫ x

xi

|f ′(t)− s′(t)| dt

≤ h‖f ′ − s′‖∞ = h3/2
(
∫ b

a
|f ′′|2

)1/2

.

Example 4.4.6. Consider the data {(−1, y0), (0, y1), (1, y2)}. Find the nat-

ural spline to fit these data. Since n = 2 and σ0 = σ2 = 0, we have from

(4.14),(4.15)

ω1σ0 + 2σ1 + (1− ω1)σ2 = r0 =
3

1

(

y2 − y1
1

−
y1 − y0

1

)

(4.14)

σ1 =
3

2
(y2 − 2y1 + y0).

From (4.9), (4.10)

pk(x) = σk
(xk+1 − x)3

6hk
+ σk+1

(x− xk)
3

6hk
+ τk(x− xk) + κk.

κk = yk −
σkh

2
k

6 , τk =
yk+1−yk

hk
− hk

6 (σk+1 − σk). Hence

p0(x) = σ1
(x+ 1)3

6
+ (y1 − y0 −

σ1
6
)(x+ 1) + y0.

p1(x) = σ1
(1− x)3

6
+ (y2 − y1 +

σ1
6
)x+ y1 −

σ1
6
.

Thus if y0 = −1, y1 = 1, y2 = 1, σ1 = −3, we obtain the same solution as the

book.

4.4. COMPUTATION OF CUBIC SPLINES 17

Not-a-knot Boundary Condition

We take p0(x) ≡ p1(x) and pn−2(x) ≡ pn−1(x). Then the nodes x1 and xn−2

are not considered as a knot. Since p
(j)
0 (x1) = p

(j)
1 (x1), j = 0, 1, 2, it suffices

to impose the same condition for j = 3. We impose the same condition at

xn−1. Hence the two extra equations are

−σ1 + σ2
6h1

=
−σ0 + σ1

6h0
,

−σn−2 + σn−1

6hn−2
=

−σn−1 + σn
6hn−1

.

Clamped Spline

If s0, sn(derivatives at end points) are available, one can also construct a spline

satisfying the derivative condition: Applying (4.12), (4.13) for k = 0 and k = n

resp., we obtain

s0 =
y1 − y0

h0
−

σ0h0
3

−
σ1h0
6

and

sn =
yn−1 − yn

hn−1
+

σnhn−1

3
+

σn−1hn−1

6
.

Appending these equations to the previous equations, we get























2 1 0 0 0

ω1 2 1− ω1 0 . . . 0

0 ω2 2 1− ω2 . . . 0
...

...
. . .

. . .
. . . 0

0 ωn−1 2 1− ωn−1

0 0 . . . 0 1 2









































σ0

σ1
...

σn−1

σn



















=



















r0

r1
...

rn−1

rn



















where r0 and rn are appropriate functions of y0, y1, h0, s0 and yn−1, yn, hn−1, sn,

etc.

Homework

Construct a spline approximation to f(x) = 1
1+x2 on [−5, 5] with n = 10, 20, 30, · · ·

with equally spaced subintervals. Estimate ‖s(x) − f(x)‖∞ and ‖s′(x) −

f ′(x)‖∞ (compute these norms by choosing sufficiently many points in each

sub-interval). Compare with theoretical bound. Also compare with earlier

results with p2n using Chebysheff points. Draw graphs.

18 CHAPTER 4. POLYNOMIAL INTERPOLATION

Do the same for f(x) = e0.8x on [−3, 3].

