
Chapter 3

Iterative Methods

3.1 Iterative method for large system of equation

In this section we consider an iterative method to find the solution of Ax = b.

We start from a splitting of A as A = D − T . First observe

(D − T)x = b

Dx = Tx+ b

x = D−1Tx+D−1b.

We now define a sequence x(k) of approximation to x via

x(k) = D−1Tx(k−1) +D−1b

= D−1(D −A)x(k−1) +D−1b

= (I −D−1A)x(k−1) +D−1b.

Jacobi method

Question. Does x(k) → x ? and how fast? How to choose D − T ? The idea

is to choose D so that Dx = b can be solved easily. Diagonal of A is a often

a good choice for D(called a Jacobi method). If D is diagonal, the Jacobi

method is defined as

x
(k)
i =

[

∑

j 6=i

−aijx
(k−1)
j + bi

]/

aii, i = 1, 2, . . . , n. (3.1)

1

2 CHAPTER 3. ITERATIVE METHODS

If we use the splitting A = D + L+ U , then the scheme is, in matrix form

x(k) = −D−1(U + L)x(k−1) +D−1b. (3.2)

This form is used for analysis only; instead (3.1) is used for actual implemen-

tation.

Convergence

Definition 3.1.1. We say a sequence of vectors xk converges to x if for

some norm ‖ · ‖

lim
k→∞

‖xk − x‖ → 0.

Similarly, we say a sequence of matrices Mk converges to M if for some

matrix norm ‖ · ‖

lim
k→∞

‖Mk −M‖ → 0.

Let us write the Jacobi algorithm as

x(k+1) = Mx(k) + b̃. (3.3)

x(k+1) = Mx(k) + b̃

= M(Mx(k−1) + b̃) + b̃

= M2x(k−1) + (M + I)b̃

= · · ·

= Mk+1x(0) + (M (k) + · · ·+M + I)b̃.

So we need to see the behavior of M (k) as k → ∞. Suppose ‖M‖ < 1 for

some norm. Then the eigenvalues of I −M are all nonzero and hence I −M

is invertible. We see

(M (k) + · · ·+M + I)(I −M) = I −M (k+1)

→ I.

Hence the matrix sum (I + M + · · · +M (k)) converges to (I − M)−1. More

3.1. ITERATIVE METHOD FOR LARGE SYSTEM OF EQUATION 3

precisely we see

(M (k) + · · ·+M + I)− (I −M)−1 = [(M (k) + · · ·+M + I)(I −M)− I](I −M)−1

‖(M (k) + · · ·+M + I)− (I −M)−1‖ ≤ ‖[(M (k) + · · ·+M + I)(I −M)− I]‖‖(I −M)−1‖

→ 0.

Hence we have ∞
∑

i=0

Mk = (I −M)−1.

Thus in this case,

lim
k→∞

x(k+1) = lim
k→∞

(Mk+1x(0) + (M (k) + · · ·+M + I)b̃)

= (I −M)−1b̃

for any initial guess x0. Since the exact solution x satisfies x = Mx + b̃, we

subtract it from (3.3) to get

x− x(k) = M(x− x(k−1)). (3.4)

Thus

x− x(k) = M(x− x(k−1))

= Mk(x− x(0))

→ 0.

Definition 3.1.2. We say a matrix is diagonally dominant if

|aii| ≥

n
∑

j 6=i

|aij|, for all i = 1, 2, · · · , n.

If the inequality is strict for all i, then we say strictly diagonally dominant

and if the inequality is weak, we say it is weakly diagonally dominant

If A is strictly diagonally dominant, then the Jacobi method is convergent.

Often weak diagonally dominant matrices are also convergent.

Another way to check ρ(M). It is well known that

ρ(M) ≤ ‖M‖

4 CHAPTER 3. ITERATIVE METHODS

for any norm.

Gauss-Seidel iterative method

Suggestion. In each computation of Jacobi method, x
(k−1)
i was already up-

dated for j < i. Why don’t we utilize the most recent information? The result

is

x
(k)
i =

[i−1
∑

j=1

−aijx
(k)
j +

n
∑

j=i+1

−aijx
(k−1)
i + bi

]/

aii. (3.5)

If we use the splitting A = D + L+ U , then the scheme is, in matrix form

x(k) = −(D + L)−1Ux(k−1) + (D + L)−1b. (3.6)

Block Jacobi or block Gauss-Seidel Method

x̄
(k)
i = A−1

ii

(

∑

j 6=i

−Aij x̄
(k−1)
j + k̄i

)

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

D =

A11 0 0

0 A22 0

0 0 A33

so that D contain as many element of A as possible.

Comparison between Jacobi and Gauss-Seidel Method

(1) Generally, Gauss-Seidel method is faster than Jacobi method

(2) On parallel machine Jacobi method is faster than Gauss-Seidel method

(3) When p, the number of processor is not large compared to n, the number

of unknowns, one might try some combinations.

3.2 Sparsity

The iterative method is usually fast only if the matrix is sparse. Examples of

sparse matrix arises in solving partial differential equations.

3.2. SPARSITY 5

(1) Structured sparse matrix

(2) Tridiagonal matrix

(3) Block Tridiagonal matrix

(4) Unstructured sparse matrix

Issues: How to perform Ax effectively(fast) ? We do not want to do some-

thing like because it is costly.

For i = 1, 2, . . . , n

temp = 0

For j = 1, 2, . . . , n

temp = temp+ aijxj

bi = temp

end

end

Total cost is n2.

If A is tridiagonal, we have ai,j = 0 for j 6∈ {i − 1, i, i + 1}. Thus we can

proceed as follows: (with some modification when j = 1 or j = n)

For i = 1, 2, . . . , n

temp = 0

For j = i− 1, i, i + 1

temp = temp+ ai,jxj

bi = temp

end

end

Total cost is 3n.

Unstructured sparse matrix

Read the book.

8 7 0 0 0 8

0 0 0 0 0 7

0 9 0 0 8 0

8 0 7 0 0 7

0 0 0 9 0 8

0 7 9 0 0 0

6 CHAPTER 3. ITERATIVE METHODS

we store row index vector r, column index vector c, and vector v of values:

r = (1, 1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6)

c = (1, 2, 6, 6, 2, 5, 1, 3, 6, 4, 6, 2, 3)

v = (8, 7, 8, 7, 9, 8, 8, 7, 7, 9, 8, 7, 9).

(3.7)

These are called packed form. Assume x = (x1, x2, · · · , x6)(nonpacked form

for simplicity). Then y = Ax can be computed by

y1 = v1x(c(1)) + v2x(c(2)) + v3x(c(3))

y2 = v4x(c(4))

y3 = v5x(c(5)) + v6x(c(6))

= · · ·

yi =
∑

vjx(c(j))

Example 3.2.1. Assume we have

2.1 3.5 0 0 0 0 1.7

0 0 0 2.4 0 0 0

3.2 5 0 0 0 0 2.7

0 0 0 0 0 0 9.1

1 3.5 0 0 0 0 0

2.4 0 0 6.2 5.2 0 0

We store row index vector r, column index vector c, and vector v of values:

r = (1, 1, 1, 2, 2, 3, 3, 3, 5, 6, 6, 7, 7, 7)

c = (1, 2, 7, 4, 1, 2, 7, 7, 1, 2, 1, 4, 5)

v = (2.1, 3.5, 1.7, · · · , 2.4, 6.2, 5.2).

(3.8)

Complete the multiplication Ax.

Other ways are also possible, see the book.

3.3. ITERATIVE REFINEMENT 7

Tridiagonal matrix

A =

a1 c1

b2 a2
. . .

. . .
. . . cn−1

bn an

=

α1 0

b2 α2
. . .

. . .
. . . 0

bn αn

1 γ1

1
. . .

. . . γn−1

1

α1 = a1, α1 · γ1 = c1 ∴ γ1 = c1
α1
, αi 6= 0

b2γ1 + α2 = a2 ∴ α2 = a2 − b2γ1

α2γ2 = c2 ∴ γ2 = c2/α2

In general, with γ0 = 0, we have

αi = ai − biγi−1, i = 1, . . . , n

γi = ci/αi, i = 1, . . . , n − 1, 2(n − 1) mult. and div.

Back substitution

Ly = b · · · forward-elimination 2(n − 1) + 1

Ux = y · · · back-substitution n− 1

∴ Total 5n− 4.

3.3 Iterative Refinement

Start with some initial guess x0 and try to improve it by solving the residual

equation:

r = b−Ax0

= A(x− x0).

With e = x− x0 we have

Ae = r. (3.9)

We can solve (3.9) and have

x = x0 + e.

8 CHAPTER 3. ITERATIVE METHODS

But solving (3.9) is a s costly as solving the original problem and it again

introduces some error. So we want to solve it approximately by a cheap

method and set

x1 = x0 + ẽ.

This type of method is called an iterative refinement. We will not pursue

this topic here.

3.4 Preconditioning

Ax = b (3.10)

can have an equivalent form(Preconditioning)

M1AM2y = M1b, (3.11)

where y M−1
2 x. If we can choose M1,M2 so that

κ(M1AM2) << κ(A)

it would be cheaper to solve the latter system. We shall study some of these

technique. Assume M2 = I. Consider

P−1Ax = P−1b. (3.12)

If P = D the diagonal of A, then it is called a Jacobi preconditioner

Example 3.4.1 (Diagonal preconditioner).

A =

[

2 1

0.1 0.01

]

, A−1 =
−1

0.08

[

0.01 −1

−0.1 2

]

.

Thus the ‖A‖∞ = 3(maximum row sum) and ‖A−1‖∞ = 26.25(maximum row

sum). Thus κ(A)=̇78.75

D−1A =

[

1 0.5

10 1

]

, (D−1A)−1 =
−1

4

[

1 −0.5

−10 1

]

.

3.4. PRECONDITIONING 9

Thus ‖D−1A‖∞ = 11(maximum row sum) and ‖(D−1A)−1‖∞ = 11/4. Thus

κ(D−1A)=̇30.25, while in book we have κ(A)=̇62 and κ(D−1A)=̇26.

Thus the diagonal preconditioner is good in this case. In fact, it has the

effect of equilibrating(balancing) the rows of a matrix.(This tactic seems useful

when the matrix is diagonally dominant.)

ILU Preconditioner

When A is large and sparse what keeps us from using LU -decomposition?

LU are apt to be dense even if A is sparse.

One remedy is to replace the LU by its approximation L̃Ũ . Strategy to com-

pute L̃Ũ :

(1) Allow entries of L̃ or Ũ is nonzero when the corresponding entry of A is

nonzero.

(2) Specify a range of entries of L̃ and Ũ that can be nonzero(e.g, a few sub

and super diagonals).

Any such L̃Ũ is called an incomplete LU preconditioner-ILU. See example

3.4.2 where κ(A)=̇103 but κ((L̃Ũ)−1A)=̇1.03.

Using the Preconditioner

When we use the preconditioner P , we usually do not form P−1A. Consider

P−1Ax = P−1b. Instead of solving it, we observe an iterative scheme where

we need the residual

r = P−1Ab− P−1Ax0

= P−1(b−Ax0).

Thus we solve the following easier system

Pr = b−Ax0.

10 CHAPTER 3. ITERATIVE METHODS

3.5 Krylov Space Methods

Many iterative method for solving Ax = b are based on the Krylov Space

Kk = span{b, Ab, A2b, · · · , Ak−1b}. (3.13)

Since we have

Kn = R
n

in many cases, it appears we can find a good approximation in Kk for k << n.

Given an initial value x0 of the solution of Ax = b, we define

Vk = x0 +Kk.

This is an affine space.

Minimizing the Residual

A natural way to define an approximation from Vk is to let xk be the minimizer

of the residual

‖b−Ax‖.

Equivalently

xk = argminx∈Vk
‖b−Ax‖2. (3.14)

Let zk = xk − x0. Then zk ∈ Kk and

zk = argminz∈Kk
‖b−A(z+ x0)‖

2

= argminz∈Kk
‖b−Ax0 −Az‖2

= argminz∈Kk
‖r0 −Az‖2 (3.15)

where r0 is the initial error.

GMRES

We will solve (3.15) for k = 1, 2, 3, · · · . But the point here is to stop for k << n

and for a large class of problems, this yields an acceptable solution, known

as GMRES(General minimized residual method). One common stopping

3.5. KRYLOV SPACE METHODS 11

criterion is that the relative residual

‖rk‖

‖b‖

be less than some tolerance. How can we solve least square problem? It is

natural to think QR decomposition. Define the Krylov matrix

Γk ≡ [b |Ab |A2b | · · · |Ak−1b].

Since every vector in Kk is a linear combination of columns of Γk, there exists

some vector y such that

xk − x0 = Γky.

In terms of (3.15) this problem becomes finding the solution y of

y = argminy∈Rk‖r0 −AΓky‖
2. (3.16)

This is a standard minimization problem over R
k which could be solved by

QR decomposition.

In practice this process is unstable and inefficient because Krylov matrix

Γk is very ill-conditioned. A remedy is to use the Gram-Schmidt method to

orthogonalize the bases of Krylov space. When the Gram-Schmidt method is

used to the Krylov space, it is called the Arnoldi process:

Arnoldi -Algorithm:

Set q1 =
b−Ax0

‖b−Ax0‖ .

For m = 1, 2, . . . , k − 1

Set vm+1 = Aqm −
∑m

i=1 < qi, Aqm > qi.

Set qm+1 =
vm+1

‖vm+1‖
.

End loop

The resulting set {q1, · · · ,qk} is an orthonormal basis forKk. With SpanΓk =

SpanQk

Qk ≡ [q1 |q2 |q3 | · · · |qk].

Thus we can rephrase as

y = argminy∈Rk‖r0 −AQky‖
2. (3.17)

This behaves much better because now Qk has normalized columns.

12 CHAPTER 3. ITERATIVE METHODS

Example 3.5.1 (Simple GMRES with Arnoldi process). Let A =

2 1 −1

0 2 2

−2 1 2

and b = [2, 4, 1]. We solve Ax = b with x0 = 0....... Then r0 = b and Γ1 = b.

So the first vector is q1 = b/‖b‖ = 1√
21
[2, 4, 1]T . Hence for k = 1, we must

solve

y1 = argminy∈Rk‖r0 −AQ1y‖
2

= argminy∈Rk‖r0 −Aq1y‖
2.

Here k = 1 so y1 ∈ R and Aq1 =
1√
21
[7, 10, 2]T =̇(1.5275, 2.1822, 0.4364)T .

sol. We need to solve least square problem:

1.527

2.183

0.436

y1 =

2

4

1

We can use QR decomposition of (1.5275, 2.1822, 0.4364)T , which is

Q=̇

−0.5659

−0.8085

−0.1617

(3.18)

and R=̇(−2.6992)(From Matlab). To solve this least square problem, see QR

in section 2.6, 2.7.

y1=̇R−1QT r0.

We can continue to iterate. We need v2 (in Arnoldi) ... The only skipped

details are QR decomposition.

Improving Efficiency

From the third line of Arnoldi algorithm, we see

vm+1 = Aqm −
m
∑

i=1

< qi, Aqm > qi.

3.5. KRYLOV SPACE METHODS 13

Or

Aqm =
m
∑

i=1

qT
i Aqmqi + vm+1. (3.19)

The summation on the right hand side is nothing but a linear combination of

columns of qi, (i = 1, 2, · · · , n) with coefficients him = qT
i Aqm. Hence

m
∑

i=1

qT
i Aqmqi = [q1 |q2 |q3 | · · · |qm]QT

mAqm = QmQT
mAqm.

Thus

Aqm = QmQT
mAqm + ‖vm+1‖qm+1. (3.20)

Hence with m = k

AQk = [AQk−1, Aqk] = Qk[Q
T
kAQk−1, Q

T
kAqk] + ‖vk+1‖qk+1e

T
k

= Qk[Q
T
kAQk] + ‖vk+1‖qk+1e

T
k

= [Qk,qk+1]

[

Hk

‖vk+1‖e
T
k

]

= Qk+1H̃k,

whereQk+1 = [Qk,qk+1] and H̃k is obtained by augmenting [0, · · · , 0, hk+1,k], hk+1,k =

‖vk+1‖ after the last row of Hk. Substituting in (3.17) we get

yk = argminy∈Rk‖r0 −Qk+1H̃ky‖
2.

This can be simplified as

yk = argminy∈Rk‖r0 −Qk+1H̃ky‖
2

= argminy∈Rk‖Qk+1(Q
T
k+1r0 − H̃ky)‖

2

= argminy∈Rk‖QT
k+1r0 − H̃ky‖

2

= argminy∈Rk‖ρe1 − H̃ky‖
2.

Here e = (1, 0, · · · , 0) ∈ R
k+1, and we used the form

QT
k+1r0 =

[

QT
k

qT
k+1

]

r0 = ‖r0‖e1 = ρe1.

14 CHAPTER 3. ITERATIVE METHODS

We can use QR decomposition to solve the least square problem

y = argminy∈Rk‖ρe1 − H̃ky‖
2 (3.21)

and set xk = x0 +Qkyk.

Remark 3.5.2.

rk = b−Axk

= b−A(x0 +Qkyk)

= r0 −AQkyk

= r0 −Qk+1H̃kyk

= Qk+1(ρe1 − H̃kyk).

So in checking the residual, we do not need to form xk until the convergence

is obtained.

GMRES -Algorithm:

Set r0 = b−Ax0, ρ = ‖r0‖,q1 = r0
ρ
.

For k = 1, 2, . . . , n

For i = 1, 2, . . . , k

Set hik = qT
i Aqk

End i-loop

Set vk+1 = Aqk −
∑k

i=1 hikqi.

Set hk+1,k = ‖vk+1‖.

Set qk+1 =
vk+1

hk+1,k
.

Find the minimizer of ‖ρe1 − H̃kyk‖ by finding QR -factorization of H̃k

If stopping criterion is met, then set xk = x0 +Qkyk.

End k-loop

Do not confuse the Q with Qk, which is a factor of Krylov matrix Γk.

Reorthogonalization

We should use the Modified Gram Schmidt in the Arnoldi. Even then we lose

orthogonality. Thus we reorthogonalize the basis for Γk periodically (applying

the MGS again to existing (semi) orthogonal basis).

3.6. EIGENVALUE PROBLEMS 15

Advantage: Applicable wide class of matrices without having special prop-

erties.

Disadvantage: We have to store a basis for Kk during the computation.(In

the CPU memory! not in the disk)

Restarting

We periodically stop the process (empty the memory except the current xk),

which we take as a new initial guess and start over.

Example 3.5.3. A = [−1, 3; 2, 6; 2, 3]

Q =

−0.3333 −0.8666 0.3714

0.6667 −0.4952 −0.5571

0.6667 0.0619 0.7428

R =

3.0000 5.0000

0 −5.3852

0 0

Updating QR

See p. 606 Golub’s book. Let B has QR decomposition B = QR and B is

updated by B + uvT .

3.6 Eigenvalue Problems

Ax = λx.

Here λ is the root of a characteristic polynomial

c(λ) = λn + an−1λ
n−1 + · · · a1λ+ a0.

3.6.1 Power method to find a few extreme eigenvalues and

eigenvectors

Hypothesis :

(1) A is diagonalizable, i.e, Av(i) = λiv
(i) for linearly independent eigenvec-

tors v(i).

(2) |λ1| > |λj |, j = 2, . . . , n(i.e, λ1 is a dominant eigenvalue.)

16 CHAPTER 3. ITERATIVE METHODS

Power method consists of generating sequences of vector converging to an

eigenvector and a sequence of scalar converging to dominant eigenvalue λ1.

We assume {v(i)}ni=1 is a normalized sets with respect to ‖ · ‖∞.

Let y ∈ C
n be any vector whose projection against {v(1)} is nonzero. Then

one write y =
∑n

i=1 civ
(i) with c1 6= 0(In practice, we may always assume this).

With y(0) = y, set

y(k) = Ay(k−1), k = 1, 2, . . .

Then

y(k) = Aky(0) = Ak(
∑

civ
(i)) =

∑

ciλ
k
i v

(i)

= λk
1

[

c1v
(1) +

n
∑

2

ci(
λi

λ1
)kv(i)

]

.

Since |λ1| > |λi|, i = 2, . . . , n,

y
(k)
j

y
(k−1)
j

= λ1

c1v
(1)
j + ε

(k)
j

c1v
(1)
j + ε

(k−1)
j

if y
(k)
j 6= 0.

Thus y
(k)
j /y

(k−1)
j → λ1 as k → ∞.

But, this process is unstable numerically because y(k) → 0 or ∞. To avoid

it, we normalize the vector at each step. Since y(k−1)

‖y(k−1)‖∞ ≈ v(1), we define

y(k) = A(
y(k−1)

‖y(k−1)‖∞
)
.
= Av(1) = λ1v

(1).

Then ‖y(k)‖∞
.
= |λ1|. If y(k−1) .

= y∗, then y(k) .
= λ1y

∗ and λ1y
∗ .
= Ay∗, i.e,

y∗ is an approximate eigenvector corresponding to λ1. Power method is useful

when the matrix is sparse.

In practice we use the following variation(Rayleigh quotient):

for k = 1, 2, · · · , n do

z(k) = Ay(k−1)

y(k) = z(k)

‖z(k)‖2
λ(k) = y(k)TAy(k)

3.6. EIGENVALUE PROBLEMS 17

Roots of same modulus

We assume full linearly independent eigenvectors exist corresponding to the

multiple eigenvalues.

The case |λ1| = |λ2|

(Faddeev, Faddeeva.) Suppose |λ1| = |λ2| > |λ3| · · · and λ2 = ±λ1. Then

y
(k+2)
j

y
(k)
j

=
λk+2
1 [c1v

(1) + c2(−1)k+2v(2) + ε(k+2)]j

λk
1 [c1v

(1) + c2(−1)kv(2) + ε(k)]j
→ λ2

1.

If three eigenvalues have same modulus, and (λi

λ1
)3 = 1, i = 1, 2 then

y
(k+3)
j

y
(k)
j

=
λk+3
1 [c1v

(1) + c2(
λ2
λ1
)k+3v(2) + c3(

λ3
λ1
)k+3v(3) + ε(k + 3)]j

λk
1 [c1v

(1) + c2(
λ2
λ1
)kv(2) + c3(

λ3
λ1
)kv(3) + ε(k)]j

→ λ3
1.

If λ1 = 1, λ2 = 1, λ3 = −1, try y
(k+6)
j /y

(k)
j .

3.6.2 Inverse power method

Assume 0 < |λ1| < |λ2| ≤ |λ3| · · · . Then the power method applied to A−1

lead to the computation of the smallest eigenvalue. Start from any y(0) and

define

Ay(k) = y(k−1), k = 1, 2, · · · .

Then

y(k) = A−ky(0) = A−k(
∑

civ
(i)) =

∑

ciλ
−k
i v(i)

= λ−k
1

[

c1v
(1) +

n
∑

2

ci(
λi

λ1
)−kv(i)

]

.

Since |λ1| < |λi|, i = 2, . . . , n,

y
(k)
j

y
(k−1)
j

=
1

λ1

c1v
(1)
j + ε

(k)
j

c1v
(1)
j + ε

(k−1)
j

if y
(k−1)
j 6= 0.

Thus y
(k)
j /y

(k−1)
j → 1

λ1
as k → ∞.

18 CHAPTER 3. ITERATIVE METHODS

In practice, we always normalize y(k−1) each step, so that if ‖y(k−1)‖∞ =

|y
(k−1)
j | = 1 for some j, then y

(k)
j ≈ 1

λi
y
(k−1)
j .

The following algorithm is based on Rayleigh Quotient:

Algorithm: Inverse power method

For k = 1, 2, · · · , do

Solve Az(k) = y(k−1)

y(k) = z(k)

‖z(k)‖2
Solve Aw(k) = y(k)

1
λ(k) = y(k)w(k) = y(k)A−1y(k)

Inverse power method with origin shift

Now we present a method to find any eigenvalue by shifting the origin and

then using the inverse power method. Assume we know q ≈ λi and y(0) has a

nonzero component along v(i). Then

y(k) = (A− qI)−1y(k−1)

. . .

= (A− qI)(−k)y(0) = (A− qI)−k(
∑

civ
(i)) =

n
∑

1

ci
(λi − q)k

v(i)

=
1

(λi − q)k

[

c1

(

λi − q

λ1 − q

)k

v(1) + · · ·+ civ
(i) + · · ·+ cn

(

λi − q

λn − q

)k

v(n)

]

where we assumed λi is closest to q

=
ci

(λi − q)k
[v(i) + ε(k)].

∴

y
(k)
j

y
(k−1)
j

≈
1

λi − q
, j = 1, . . . , n.

This method finds an eigenvalue closest to q. Thus inverse power method with

origin shift useful when one knows an approximate value.

In practice, we use the following variation:

3.6. EIGENVALUE PROBLEMS 19

Algorithm: Inverse power method with origin shift

For k = 1, 2, · · · , do

Solve (A− qI)z(k) = y(k−1)

y(k) = z(k)

‖z(k)‖2
Solve (A− qI)w(k) = y(k)

1
λ(k)−q

= y(k)w(k) = y(k)(A− qI)−1y(k)

Remark 3.6.1. One can use an updated shift by taking q ≈ λ(k). This yields

a rapid convergence.

Advantage.

(1) We can find any eigenvalue.

(2) Each iteration takes more time than the direct power method. However,

if we have an approximate value of λi, the inverse power method will

yields λi in a few steps.

