
Chapter 2

Linear Systems

2.1 Gaussian Elimination with Partial Pivoting

The most commonly occurring problems in numerical analysis are the solution

of a linear system

Ax = b.

Here A is m× n (real) matrix and b ∈ R
n, but in most cases we assume A is

a square matrix.

Example 2.1.1. We write the system in the form of [A : b] and reduce it to

the form [U : b̃] (U is upper triangular) by elementary row operations:

(1) Subtracting a multiple of i-th row from j-th row.

(2) Interchange rows i and j

(3) Multiplying a row by a nonzero scalar.

These operations leave the system set unchanged and U is said to be (row)

equivalent. A ∼ U .

Assume A =

[

1 2

3 4

]

and b =

[

2

3

]

.

[

1 2 : 2

3 4 : 3

]

∼
[

1 2 : 2

0 −2 : −3

]

.

The elementary row operation involved here is R2 ← R2 − 1
3R1. The solution

of Ax = b is obtained by back substitution.

1
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Round off error amplified if divided by a small number

Problem with finite precision. Assume a computer can store only five decimal

digits.

Example 2.1.2.

a =
1

6
= 0.166666666..... will be stored as a = 0.16667

Now compute 10.001
a

. Its exact value is 60.006. However, in our computer it

will be computed as

10.001

0.16667
= 60.0047999 = 60.00480

An absolute error is 0.0012. A relative error of 0.0012/60.006 = 0.00002. Next

consider

b =
1

6000
= 0.00016666..... will be stored as 0.00017

Now compute 10.001
b

, whose exact value is 60006. But the computer arithmetic

gives
10.001

0.00017
= 58829.41177.

An absolute error is 1176.5882. A relative error of 1176.5882/60006 = 0.0196078.

Try dividing by a larger number:

Example 2.1.3. Let a = 100/6 = 16.66666... ≈ 16.66667 Now compute
10.001

a
. Its exact value is 0.60006. In our computer it will be computed as

10.001

16.66667
= 0.60005988

A relative error of

0.00000012/0.6 = 0.0000002

Why? Dividing by small number may induce relatively larger error due to

round off error(Finite precision). In fact the relative error of

1/6000 ≈ 0.00017

is

(0.00017 − 0.0001666666)/0.000166666 = 0.00000333/0.00016666 = 0.02
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the relative error of 1/6 ≈ 0.16667 = 0.00002 is

(0.16667 − 0.166666666)/0.16666666 = 0.00002

The relative error of 100/6 ≈ 16.66667 is

(16.66667 − 16.6666666)/16.6666666 = 0.0000002

much smaller!

Examples in the book

Multiplier, Pivot, Pivot Position

Gaussian Elimination with Partial Pivoting

1. For i = 1, · · · , n− 1.

2. Find the largest entry in column i from row i to row n.

If the largest value is zero, signal(flag) unique solution does not exists and stop.

3. If necessary, perform a row interchange

4. For j = i+ 1 to n perform Rj ← Rj −mj,iRi where mj,i = aj,i/ai,i.

5. If the (n, n) entry is zero, signal that a unique solution does not exist and stop.

Otherwise, solve the system by back substitution

Example 2.1.4. Use G-elim to solve the system Ax = b whereA = [122; 4412; 4812]

and b = [1, 12, 8]T







1 2 2 : 1

4 4 12 : 12

4 8 12 : 8






∼







4 4 12 : 12

1 2 2 : 1

4 8 12 : 8







∼







4 4 12 : 12

0 1 −1 : −2
0 4 0 : −4







∼







4 4 12 : 12

0 4 0 : −4
0 1 −1 : −2







∼







4 4 12 : 12

0 4 0 : −4
0 0 −1 : −1






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Multiplier: m21 = 1/4, m31 = 1, m32 = 1/4







1 0 0

m21 1 0

m31 m32 0







A complete pivoting is possible but it is rarely used.

2.2 LU-Decomposition

Apply the Gaussian Elimination to

A =













a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann













Step 1- Eliminating the first column

Assume a11 6= 0. Then by an elementary row operation E21, we have

E21A =













a11 a12 · · · a1n

0 a
(2)
22 · · · a

(2)
2n

...
...

...
...

an1 an2 · · · ann













Here

E21 =













1 0 · · · 0

−a21
a11

1 · · · 0
...

...
...

...

0 0 · · · 1













Similarly with

E31 =



















1 0 · · · 0

0 1 · · · 0

−a31
a11

0 · · · 0
...

...
...

...

0 0 · · · 1


















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we obtain

E31E21 =



















1 0 · · · 0

−a21
a11

1 · · · 0

−a31
a11

0 · · · 0
...

...
...

...

0 0 · · · 1



















.

Repeat this process

En1 · · ·E31E21A = A(2).

Let L1 = En1 · · ·E21. Then

L1A =













a11 a12 · · · a1n

0 a
(2)
22 · · · a

(2)
2n

0
...

...
...

0 a
(2)
n2 · · · a

(2)
nn













= A(2).

Step 2- Eliminating the second column

We repeat similar process to the (n − 1) × (n − 1) submatrix of A(2). Hence

we can find L2 = En2 · · ·E32 such that

L2A
(2) =



















a11 a12 · · · a1n

0 a
(2)
22 · · · a

(2)
2n

0 0 a
(3)
33 · · · a

(3)
3n

0 0
...

...
...

0 0 a
(3)
3n · · · a

(3)
nn



















.

Step 3- Eliminating the third column and more

We repeat step 2 to eliminate all the entries below diagonal to have

Ln−1 · · ·L2L1A = U

where

L = L−1
1 · · ·L−1

n−1. (2.1)
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Entries of L1 is −mi1 = − ai1
a11

, (2 ≤ i ≤ n). Similarly the entries of Lk is

−mi,k = − a
(k)
i,k

a
(k)
k,k

, (k + 1 ≤ i ≤ n) . Thus

L1 =



















1 0 · · · 0

−m21 1 · · · 0

−m31 0 · · · 0
...

...
...

...

−mn1 0 · · · 1



















, L−1
1 =



















1 0 · · · 0

m21 1 · · · 0

m31 0 · · · 0
...

...
...

...

mn1 0 · · · 1



















L2 =























1 0 · · · 0 0

0 1 0 0 0

0 −m32 1 · · · 0

0 −m42 0 1 · · · 0

. · · · · · · · · · 0

0 −mn2 0 · · · 1























, L−1
1 L−1

2 =

















1 0 · · · 0 0

m21 1 · · · 0 0

m31 m32 · · · 0 0

. · · · · · · · · · 0

mn1 mn2 · · · 0 1

















L is unit lower triangular(sometimes called Doolittle method) and U is formed

as follows: Let A1, A2 denote the rows of A. Then U1 = A1, U2 = A2−m21A1.

Hence the rows of U are linear combinations of rows of A. Repaeting

A = A(1) → A(2) → · · · → A(n−1).

This continues as long as pivot entry is nonzero.

a
(k+1)
ij =















a
(k)
ij if i ≤ k

a
(k)
ij −

(

a
(k)
ik /a

(k)
kk

)

a
(k)
kj if i ≥ k + 1 and j ≥ k + 1

0 if i ≥ k + 1 and j ≤ k.

(2.2)

U = A(n) is an upper triangular matrix.

ℓik =











a
(k)
ik /a

(k)
kk if i ≥ k + 1

1 if i = k

0 if i ≤ k − 1.

(2.3)
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2.3 LU decomposition w/ partial pivoting

Numerical stability and partial pivoting

If a
(r)
rr is either zero or very small during the LU decomposition, the rounding

error is likely to be large. One way to correct this phenomenon is to interchange

the rows during the elimination so that the pivoting element is largest, called

partial pivoting.

Example 2.3.1. Consider solving

10−6x1 + x2 = 0.501 (2.4)

x1 − x2 = 999.5. (2.5)

Thr exact solution is x1 = 1, 000, x2 = 0.5, with 6 digit decimal arithmetic.

Eliminating x1 from the first row, we get

−(106 + 1)x2 = −500, 000.5.

Since 1/(106 + 1) = 10−6 with 6 digit decimal arithmetic, we have x2 =

500, 000.5 ∗ 10−6 = 0.5000005 = 0.500001 (rounded) Substituting into (2.4),

we obtain

10−6x1 = 0.501 − 0.500001 = 0.000999

and hence x1 = 999.

Partial pivoting

If some a
(k)
ii = 0 (zero pivot) or very small, we choose a j such that aji 6= 0(or

|aji| = maxj≥i |aji|. Such j exists since detA 6= 0.) We interchange i-th row

with j-th row including the right hand side vector b. (In the actual coding,

we do not interchange rows. Instead, we merely permute the index.)

Now the pseudo algorithm for Gaussian elimination with partial pivoting

is

For k = 1, · · · , n− 1 do

Determine p ≥ k so |apk| = maxi≥k |aik|
Swap akj and apj for j = k, · · · , n
for i = k + 1, · · · , n do
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mik = −a
(k)
ik

a
(k)
kk

;

a
(k)
ik = −mik (this is to overwrite L)

for j = k + 1, · · · , n do

a
(k+1)
ij ← a

(k)
ij +mika

(k)
kj

end

end

end

The result of partial pivoting is of the form

Ln−1Pn−1 · · ·L1P1A = U, (2.6)

where Pi are permutations. Is this LU decomposition ? No! clearly

(Ln−1Pn−1 · · ·L1P1)
−1

is not a lower triangular matrix. But by multiplying P = Pn−1 · · ·P1, we can

show it is an LU decomposition.

Theorem 2.3.2. Let P = Pn−1 · · ·P1. Then we have

PA = LU,

where

L = P (Ln−1Pn−1 · · ·L1P1)
−1

= Pn−1 · · ·P2P1P
−1
1 L−1

1 P−1
2 L−1

2 · · ·P−1
n−1L

−1
n−1

= (Pn−1 · · ·P3(P2L
−1
1 P−1

2 )L−1
2 · · ·P−1

n−1)L
−1
n−1

is a lower triangular matrix.

Proof. We see from (2.6) that

A = P−1
1 L−1

1 P−1
2 L−1

2 P−1
3 · · ·P−1

n−1L
−1
n−1U.

Thus

P2P1A = P2L
−1
1 P−1

2 L−1
2 P−1

3 · · ·P−1
n−1L

−1
n−1U.
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Observe that

L−1
1 =

[

1 0

m1 In−1

]

=







1 0 0

m1 1 0

m∗ 0 In−2






(2.7)

and P2 is a permutation of rows except the first row. Hence we see L′
2 :=

P2L
−1
1 P−1

2 has exactly the same form as L−1
1 .(By permuting rows and columns

of (n− 1) identity matrix, it does not change In−1). Now

P3P2P1A = P3L
′
2L

−1
2 P−1

3 · · ·P−1
n−1L

−1
n−1U.

Here L′
2L

−1
2 is the same form as (2.7). Again observe that P3 is a permutation

of rows but does not permute the first two rows. Hence L′
3 := P3L

′
2L

−1
2 P−1

3 is

exactly the same form as L−1
1 L−1

2 in step 2. Thus

P3P2P1A = L′
3L

−1
3 P−1

4 L−1
4 · · ·P−1

n−1L
−1
n−1U = L′′

3P
−1
4 L−1

4 · · ·P−1
n−1L

−1
n−1U.

Repeating this process, we see

L = Pn−1 · · · (P2L
−1
1 P−1

2 L−1
2 · · ·P−1

n−1)L
−1
n−1 = Pn−1L

′
n−2P

−1
n−1L

−1
n−1 = L′

n−1L
−1
n−1.

Here the product of last matrices is a lower triangular matrix.

pseudo code

input n, (aij)

for k = 1, 2, · · · , n do

pi ← i

end do

for k = 1, 2, · · · , n− 1 do

select j ≥ k so that

|apj ,k| ≥ |api,k| for i = k, k + 1, · · · , n
pk ↔ pj

for i = k + 1, k + 2, · · · , n do

m← api,k/apk,k; api,k ← m(saving multiplier in lower diag)

forj = k + 1, k + 2, · · · , n do

api,j ← api,j −mapk,j —- (*)

end

end
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end

output (aij), (pi)

Remark 2.3.3. We do not actually move the rows of A. We merely change

the order of elimination process according to the pivot row.

2.3.1 Keeping track of Permutation

Note P = Pn−1 · · ·P1 is the product of permutation matrices involved in the

pivoting process. We do not save all the P ′
is. Instead, we star with a pivot

vector p = [1, 2, 3, · · · , n] and permute it according to P .(The i-th component

pi denotes the i-th pivot row) Since the system Ax = b is changed to PAx =

Pb, we need to permute b accordingly to form Pb.

Example 2.3.4. If the final p is [2, 4, 3, 1], then we see that the rows of PA

are the rows of A in the order of 2, 4, 3, 1. So the right hand side b can be

permuted in the same way, i.e., Pp = (b2, b4, b3, b1).

2.3.2 Back -substitution

From

Ax = b

PAx = Pb⇒ LUx = d.

Solving consists of two steps :

Ly = d and Ux = y.

First step is to solve for y from Ly = d.(Elimination of right hand side —

this could have been done during the Elimination step, (*) above)

input (aij), (pi), (bi)

for k = 1, 2, · · · , n− 1 do

for i = k + 1, · · · , n do

bpi ← bpi −mpi,kbpk = bpi − api,kbpk ;

end

end

Now get x from Ux = y(Backward substitution)



2.4. CHOLESKY DECOMPOSITION 11

for i = n, n− 1, · · · , 1 do

for j = i+ 1, · · · , n do

temp = bpi −mpi,jxj ;

xi ← temp/api,i

end

end output (xi)

Storage

To save the storage, we use the memory that was used to save A to record L

and U(i.e, when A is not needed anymore, we overwrite it.) Since we do not

need to store 1’s on the diagonal, we store

A→ [L\U ] =

























u11 u12 · · · u1,n−1 u1n

m21 u22 · · · u2,n−1 u2n

m31 m32
. . . u3,n−1 u3n

...
...

...
...

...

. ... · · · un−1,n−1 .

mn1 mn2 · · · mn,n−1 unn

























2.4 Cholesky Decomposition

When we know some special property of a matrix, we often would like to

exploit it. Those are typically

(1) Sparseness

(2) Symmetry

(3) Positive definiteness

A symmetric matrix A is said to be positive definite1 if for any nonzero

vector x

xTAx > 0.

The quantity xTAx > 0 is called a quadratic form. A matrix is positive

definite if and only if it is symmetric and all the eigenvalues are positive.

For a symmetric matrix, the storage is about the half of general matrix.

1Most authors do not include the symmetry in the definition of positive definite matrix
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In the case of LU decomposition A = LU of a symmetric matrix, L, U are

not symmetric. Even we do not have LT = U , since L is unit lower triangular.

How can we make the decomposition as symmetric as possible so that we can

at least save some storage and efficiently apply the algorithm?

Theorem 2.4.1. If A is real, symmetric and positive definite matrix, then

it has a unique factorization A = LcL
T
c where L is a lower triangular matrix

with positive diagonal.

It is called Cholesky decomposition or Cholesky factorization.

Let us see how to accomplish it. Since A is symmetric, we have an orthog-

onal diagonalization

A = SDST ,

where columns of S are orthonormal eigenvectors and D = diag(λ1, · · · , λn).

Since λi > 0, we may define H = diag(
√
λ1, · · · ,

√
λn) and

A = SHHTST

= (SH)(SH)T

= MMT .

Certainly M is not a lower triangular matrix. It is more useful to write it in

the form

A = SHHTST

= (SH)(STS)HST

= (SHST )(SHST )

= H2
0 .

H0 = SHST is called the square root of A. H0 is SPD. The matrix square

root appears in many physical applications, and we use this to derive Cholesky

decomposition.

Let E be the elementary row operation involved in LU decomposition.

Then EAET = EH0H
T
0 E

T . Repeating the process as in step (1), we obtain

En1 · · ·E31E21A = L1A.
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Here multiplying the matrices En1 · · ·E31E21 on the left has the effect of row

reducing. Since A is symmetric, multiplying ET
21E

T
31 · · ·ET

n1 on the right will

have similar effect(column reducing effect) on the columns of A.

En1 · · ·E31E21AE
T
21E

T
31 · · ·ET

n1 = L1AL
T
1

will have the following (symmetric) form













a11 0 · · · 0

0 a
(2)
22 · · · a

(2)
2n

0
...

...
...

0 a
(2)
n2 · · · a

(2)
nn













Similarly, we repeat the same process to obtain a diagonal matrix:

Ln−1 · · ·L2L1AL
T
1 L

T
2 · · ·LT

n−1 = D0.

LetH0 =
√
D0 which is again a diagonal matrix. Then with L̃ = Ln−1 · · ·L2L1

we have L̃AL̃T = D0 and with H0 :=
√
D0

A = L̃−1D0(L̃
T )−1

= L̃−1H2
0 (L̃

−1)T

= (L̃−1H0)(L̃
−1H0)

T

= LcL
T
c .

Since L̃−1 is the unit lower triangular L in (2.1), we have

U = H0(H0L̃
−T ) = H0H0L

T . (2.8)

Since L is a unit lower triangular matrix and H0 is diagonal, we see that H2
0

is the diagonal of U . One can show the decomposition is unique. In fact by

uniqueness,

A = LU = LDŨ = L
√
D
√
DŨ = LcL

T
c . (2.9)

Thus the Cholesky decomposition is obtained from LU -decomposition by tak-

ing square root of diagonals of U.
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2.5 Condition Numbers

Vector Norms

Definition 2.5.1. A vector norm ‖ · ‖ : Cn → R
1 is a function satisfying

(1) ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0

(2) ‖αx‖ = |α| ‖x‖ for all scalar α

(3) ‖x+ y‖ ≤ ‖x‖ + ‖y‖

Example 2.5.2. (1) ‖x‖1 =
∑ |xi|

(2) ‖x‖p = (
∑ |xi|p)

1
p

(3) ‖x‖2 = (
∑

|xi|2)
1
2 = (xH · x) 1

2 ≡ (x,x)
1
2

(4) ‖x‖∞ = maxi |xi|

Theorem 2.5.3. We have

(1) ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤ n‖x‖∞

(2) ‖x‖2 ≤ n
1
2‖x‖∞

(3) n− 1
2‖x‖1 ≤ ‖x‖2.

Definition 2.5.4. We say f : Cn → R is uniformly continuous, if for each

x ∈ C
n, and given ε > 0 there exists a δ > 0 such that |f(x) − f(y)| < ε,

whenever ‖x− y‖∞ < δ.

Theorem 2.5.5. If ‖ · ‖ is any norm, then it is a continuous function.

Proof.

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ =
∥

∥

∥

∥

∥

n
∑

i=1

(xi − yi)ei

∥

∥

∥

∥

∥

≤ max |xi − yi|
n
∑

i=1

‖ei‖

= ‖x− y‖∞
n
∑

i=1

‖ei‖.

Thus if we choose δ < ǫ∑n
i=1 ‖ei‖

, then we see

| ‖x‖ − ‖y‖ | < ǫ.
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Definition 2.5.6. We say two norms ‖ · ‖α and ‖ · ‖β are equivalent if there

exist positive constants C0, C1 such that

C0‖x‖α ≤ ‖x‖β ≤ C1‖x‖α, for all x ∈ V.

Theorem 2.5.7. In a finite dimensional vector space V , all norms are equiv-

alent. In other words, if ‖ · ‖α and ‖ · ‖β are any two norms, then there exist

positive constants m, M such that C0‖x‖α ≤ ‖x‖β ≤ C1‖x‖α for all x ∈ V .

Proof. We shall show every norm is equivalent to ‖ · ‖∞. First let S = {y ∈
V : ‖y‖∞ = 1}. Then S is closed and bounded. Let ‖ · ‖ be any other norm.

Since any norm is a continuous function, it assumes a positive max and min

on S, i.e., 0 < m ≤ ‖y‖ ≤ M on S. Then for any x 6= 0 ∈ C
n, x

‖x‖∞ ∈ S.

Hence m ≤
∥

∥

∥

x
‖x‖∞

∥

∥

∥ ≤M . In other words,

m‖x‖∞ ≤ ‖x‖ ≤M‖x‖∞.

This inequality obviously holds for x = 0. Finally transitivity of equivalence

relation proves the result.

Matrix Norms

Definition 2.5.8. A real-valued function ‖ · ‖ defined for all n × n matrices

is said to be a matrix norm if it satisfies

(1) ‖A‖ ≥ 0 and ‖A‖ = 0 iff A ≡ 0

(2) ‖cA‖ = |c| ‖A‖

(3) ‖A+B‖ ≤ ‖A‖+ ‖B‖

(4) ‖A · B‖ ≤ ‖A‖ · ‖B‖

(5) ‖Ax‖ ≤ ‖A‖ · ‖x‖

If ‖ · ‖v is a vector norm on R
n and ‖ · ‖M is a matrix norm on n × n

matrices, then we say they are consistent (or compatible) if

‖Ax‖v ≤ ‖A‖M‖x‖v .
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Example 2.5.9. (1) A natural way to consider a norm on n×n matrices is to

treat the set of n×n matrices as a vector space R
n×n and consider Euclidean

norm:

‖A‖F =

√

∑

i,j

a2ij.

This is called a Frobenius norm It can be shown that

‖A‖F =
√

tr(ATA),

where tr(M) is the trace of M , the sum of diagonal entries of M .

(2) However, the most important norm is the spectral norm:

‖A‖s =
√

ρ(ATA)

where ρ(M) is the spectral radius of M , that is the largest eigenvalue of M.

Let ‖ · ‖v be a vector norm. Then the norm ‖A‖M of A defined by

‖A‖M := sup
x 6=0

‖Ax‖v
‖x‖v

≡ sup
‖x‖v=1

‖Ax‖v

is called the induced, or natural norm. An induced norm is always consis-

tent with the vector norm that induces it. In other words

‖Ax‖v ≤ ‖A‖M‖x‖v .

In addition, if ‖ · ‖µ is any other matrix norm consistent with ‖ · ‖v then for

every n× n matrix A,

ρ(A) ≤ ‖A‖M ≤ ‖A‖µ. (2.10)

Prove it. Thus ρ(A) is a lower bound. One can show that the spectral norm

is the norm induced by Euclidean norm. We also have

‖A‖M ≤ ‖A‖F . (2.11)

Frobenius norm is easier to compute

Theorem 2.5.10. Let A = [aij ] ∈ C
n,n. Then we have

(1) ‖A‖1 = maxj
∑

i |aij |,(maximum column sum),

(2) ‖A‖2 =
√

ρ(AHA), ‖A‖2 = ρ(A) if A = AH ,
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(3) ‖A‖∞ = maxi
∑

j |aij |, (maximum row sum).

Condition Number

Let us apply the matrix norm to see how the property of A affect the computed

solution x̂ of Ax = b. We will measure the relative error

‖x− x̂‖
‖x‖ .

Consider the residual error

r = b−Ax̂

= Ax−Ax̂

= A(x− x̂).

Take the norms

‖r‖ = ‖A(x − x̂)‖
≤ ‖A‖‖x − x̂‖.

This does not help since we want to estimate ‖x− x̂‖. So let go the other way.

r = b−Ax̂

= Ax−Ax̂

A−1r = x− x̂

‖x− x̂‖ ≤ ‖A−1‖‖r‖.

Divide by ‖x‖

‖x− x̂‖
‖x‖ ≤ ‖A−1‖‖r‖

‖x‖ . (2.12)

On the left, we have a quantity we want to estimate, while on the right we

need to replace it by something we can estimate(the relative error of input

data). From Ax = b, we have

‖b‖ ≤ ‖A‖‖x‖
‖b‖
‖A‖ ≤ ‖x‖.
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Underestimating ‖x‖ from below, we have from (2.12)

‖x− x̂‖
‖x‖ ≤ ‖A−1‖‖r‖

‖x‖ ≤ ‖A
−1‖‖r‖
(

‖b‖
‖A‖

) . (2.13)

Thus

‖x− x̂‖
‖x‖ ≤ ‖A‖‖A−1‖ ‖r‖‖b‖ . (2.14)

We define the condition number of A by

κ(A) = ‖A‖‖A−1‖.

The condition number depends on the particular norm we choose. The condi-

tion number is always greater than or equal to 1.(Show it)

This estimate is often (almost) sharp. i.e, if κ(A) ≈ 1 the error is small

but if κ(A) >> 1 the error is usually large.

Example 2.5.11. The solution of Ax = b for certain matrix A depending on

ǫ and a unit vector b, we have

x =
1

ǫ2

(

1

1

)

Assume 16 digit machine. With ǫ = 0.1, κ(A) ≈ 104 and the exact solution

x1 and approximate solution x̂1 are

x1 = 70.71067811865474, x̂1 = 70.71067811864299.

The accurate up to 12 digits(70.7106781186) and the error is

x1 − x̂1 ≈ 1.175 × 10−11,
x1 − x̂1

x1
≈ 1.66 × 10−13

Now with ǫ = 0.01, κ(A) ≈ 108 and we have

x1 = 7071.067811865475, x̂1 = 7071.06791978500.

x1 − x̂1 ≈ 7.2× 10−4,
x1 − x̂1

x1
≈ 2.16 × 10−8.

The accuracy of x is only seven digits (7071.067). We say this is sensitive.
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Another view is this: we usually are apt to commit some errors in the A

and b so that we are solving

A1ξ = b1.

Then the error is
‖ξ − x‖
‖x‖ ≈ κ(A)ǫ.

Again the error seems to be amplified by the amount of the condition number.

Example 2.5.12. The exact solution of the system

3x+ 5y = 8

2x+ 3.3333y = 5.3333

is (1, 1). We use Gaussian elimination to solve it. With a calculator having

5 significant digits, we have(by rounding) 2/3 = .66667. Thus the multiplier

m21 = .66666̇ ≈ 0.66667 × 5 = 3.333335 and .66667 × 8 = 5.33336. Hence

eliminating x we obtain

−0.000035y = −0.00006

which gives y = 1.7.

Example 2.5.13. The exact solution of the system

3x+ 5y = 8

2x+ 3.3333333y = 5.3333333

is (1, 1). With a calculator having 10 significant digits, we have(by chopping)

2/3. = 0.666666666(9 digits).

Thus the coefficient of y in the second row is

3.3333333 − 5m21 = 3.3333333 − 0.666666666 × 5 = −0.00000003

and 0.666666666 × 8 = 5.333333328. Hence eliminating x

3x+ 5y = 8

−0.00000003y = −0.000000028

which gives y = 0.93333333. What happened ? Now let us change the order

of elimination. Multiplying the second equation by 3/2, the exact equation
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after one step of elimination is

3x+ 5y = 8

3x+ 4.99999995y = 7.99999995

Thus eliminating x, we have

−0.00000005y = −0.00000005.

Hence y = 1. Thus we see the result depends on the method of elimination.

Ill-conditioned system: Least square approximation

Given f(x) ∈ L2(0, 1), find a polynomial of degree n such that

∫ 1

0
(f(x)− pn(x))

2dx

is minimum. Let pn(x) =
∑n

i=0 cix
i. Then the minimum is attained when

∂

∂cj

∫ 1

0
(f(x)− pn(x))

2dx = 0, for j = 0, 1, · · · , n.

Hence, we get

n
∑

i=0

ci

∫ 1

0
xixj dx =

∫ 1

0
f(x)xj dx, j = 0, 1, · · · , n

which can be written as

Ac = f ,

where Aij =
1

i+j+1 , i, j = 0, · · · , n, c = (c0, · · · , cn) and

f =

(∫ 1

0
f(x)x0dx, · · · ,

∫ 1

0
f(x)xndx

)

.

This matrix is called Hilbert matrix and is extremely ill-conditioned! If we

choose f(x) = Qn(x) =
∑n

i=0 qix
i, then ci = qi, so that one can compare the

numerical solution.

Example 2.5.14. If f(x) =
∑n

i=0 x
i, f = (

∑n
i=0

1
i+j+1)

n
j=0. Compute c and

compare with exact solution (1, · · · , 1).
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Exercise 2.5.15. (1) Consider solving

−u′′ = f on (0, 1), with B.C u(0) = a, u(1) = b (2.15)

by finite difference method or finite element method. First subdivide the

interval by n-equal intervals of length h = 1/n.

x0 = 0, x1 = h, · · · , xi = ih, · · · , xn = 1.

We shall get

Auh = fh,

where Ah is (n− 1)× (n− 1) system given by

Ah =
1

h2















2 −1
−1 2

. . .

. . .
. . . −1
−1 2















and

fh =

(

f(x1) +
u(0)

h2
, f(x2), · · · , f(xn−1) +

u(1)

h2

)T

.

When f = x(x− 1), the exact solution is u = −x4

12 + x3

6 − x
12 . Solve the BVP

(2.15) with n = 10, 20, 30, 40, etc. and compare with exact solution(Check

‖uh − u‖ :=
√
∑

i((uh − u)(xi))2h— This is a kind of discrete L2-norm) and

find a pattern how the error is decreasing.

Eigenvalues of (n − 1) × (n − 1) matrix h2A are λj = 2(1 − cos jπh), and

eigenvectors are xj = (sin jπh, · · · , sin(n−1)jπh). For n = 10, the eigenvalues

are

3.90211, 3.61803, 3.1755, 2.618, 1.9999, 1.3819, 0.8244, 0.38196, 0.9788

Solve

Example 2.5.16 (2 D). A typical 2nd order elliptic differential equation is

−∆u = f on Ω

u = g on ∂Ω
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0 1x1 xn−1

Figure 2.1: meshes for boundary value problem

where f and g are given. We take Ω = [0, 1]2. With h = 1/n, the derivatives

are approximated by

uxx(x, y)
.
= [u(x+ h, y)− 2u(x, y) + u(x− h, y)]/h2

uyy(x, y)
.
= [u(x, y + h)− 2u(x, y) + u(x, y − h)]/h2.

◦ ◦◦

◦

◦

(x, y) (x + h, y)(x − h, y)

(x, y + h)

(x, y − h)

Figure 2.2: 5-point Stencil

The figure is called a Molecule, Stencil. For each point (interior mesh

pt), approximate ∇2u = ∆u by 5-point stencil. By Gershgorin disc theorem,

the matrix is nonsingular.

When the unit square is divided by n = 1/h equal intervals along x-axis

and y-axis, then the corresponding matrix A is (n−1)×(n−1) block-diagonal

matrix of the form:

A =
1

h2



















B −I 0 · · ·
−I B −I 0

−I . . .
. . .

. . . B −I
· · · 0 −I B



















(2.16)
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where

B =



















4 −1 0 · · ·
−1 4 −1 0

−1 . . .
. . .

. . . 4 −1
· · · 0 −1 4



















is (n− 1)× (n− 1) matrix. The eigenvectors of (n− 1)2× (n− 1)2 matrix h2A

are

xhνµ(xi, yj) = sin(νπxi) sin(µπyj), (xi, yj) = (hi, hj) ∈ Ωh (2.17)

with the corresponding eigenvalues

λh
νµ = 4h−2(sin2(νπh/2) + sin2(µπh/2)), 1 ≤ ν, µ ≤ n− 1. (2.18)

Note that the eigenvalues of Laplace equation for the domain [0, a]× [0, b] are

λµν = (
µ2

a2
+

ν2

b2
)π2, µ, ν = 1, · · · , . (2.19)

2.6 The QR decomposition

When A is m× n matrix (m ≥ n), we can still consider a solution of Ax = b.

The following QR decomposition is possible:

A = QR

where Q is m ×m orthogonal matrix(QT = Q−1) and R is an m × n upper

triangular matrix. For example if A is 5× 3, then

A =

















X X X

X X X

X X X

X X X

X X X

















=

















X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

































X X X

0 X X

0 0 X

0 0 0

0 0 0
















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SupposeA is a square and have aQR decomposition, then we can solve Ax = b

:

Ax = b

QRx = b

Rx = QTb

Since R is upper triangular, this is easy to solve provided that diagonal entries

of R are nonzero. Note that

det(A) = det(QR)

= det(Q)det(R)

= ±det(R)

Thus det(A) 6= 0 if and only det(R) 6= 0. Since R is an upper triangular

matrix, its determinant is product of diagonal entries.

Now consider the case of nonsquare matrix. The case m > n(more equa-

tions than the unknowns) is more interesting. Since the product Ax is a linear

combination of columns of A, the system Ax always has a solution when b

can be written as a linear combinations of columns of A or

b ∈ Col(A)( consistency )

or b must be in the range of A.

What can we do if the system is inconsistent?

Least Square Methods

Consider the following data:

(x1, f(x1)), · · · , (xn, f(xn)).

What is the closest linear function to f?

The idea is to find a linear function L(x) = mx+ d such that

‖L(x) − f(x)‖

is minimized! Here x = (1, 2, 3, 4, 5). But in what sense?
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0 1 2 3 4 5
0

1

2

3

Figure 2.3: fitting by linear function using least square method

Let use use L2-norm. Thus we want to minimize

E =

√

√

√

√

5
∑

i=1

|L(xi)− f(xi)|2 or

5
∑

i=1

|L(xi)− f(xi)|2.

Written as linear system in (m,d) -unknowns, we have

min
m,d

∥

∥

∥

∥

∥

A

(

m

d

)

− f(x)

∥

∥

∥

∥

∥

where

A =













x1 1

x2 1

· · ·
x5 1













, f(x) =













f(x1)

f(x2)

· · ·
f(x5)













.

To get the minimum, we take derivative with respect to m and b. ( ∂E
∂m

=

0, ∂E
∂d

= 0. ) Thus

2
∑5

i=1(mxi + d− f(xi))xi = 0

2
∑5

i=1(mxi + d− f(xi)) = 0.
=⇒ m

∑5
i=1 x

2
i + d

∑5
i=1 xi =

∑5
i=1 f(xi)xi

m
∑5

i=1 xi + 5d =
∑5

i=1 f(xi)
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In its least square equation, we have ATAm = AT f . In its entry

(

x1 x2 · · · x5

1 1 · · · 1

)













x1 1

x2 1

· · ·
x5 1













(

m

d

)

=

(

x1 x2 · · · x5

1 1 · · · 1

)













f(x1)

f(x2)

· · ·
f(x5)













Changing to ordinary notation, we want to find minimizer x of

‖Ax− b‖

which is equivalent to minimizing

(Ax− b)T (Ax− b) = xTATAx− bTAx− xTATb+ bTb.

Taking the derivative w.r.t x, we have

xTATA− bTA = 0 or ATAxT = ATb.

Another interpretation: Since Ax lies in R
n(represented by the x-axis in the

b

Pb = Ax

r

R
m−n

R
n

Figure 2.4: least square fit

figure), the minimum is attained when Ax is the projection of b on the R
n

space. Thus r is orthogonal to R
n(the column space of A). In algebraic

notation, we must have

rTA = 0.

AT r = 0

AT (b−Ax) = 0

ATAx = ATb.
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This is called the normal equation. From now on we assume m ≥ n and

the rank of A is n. Solving such problems, one could consider using LU

decomposition, in this case Cholesky decomposition. However, experience

says it is expansive and very sensitive.

Solving with QR

Consider solving ATAx = ATb. If we have a QR decomposition,

(QR)T (QR)x = (QR)Tb

RTQT (QR)x = RTQTb

RTRx = RTQTb.

Can we solve this ? Note R is m× n upper triangular matrix. Thus

R =

(

R1

0

)

where R1 is n× n upper triangular matrix and 0 is (m− n)× n zero matrix.

(

R1

0

)T (

R1

0

)

x =

(

R1

0

)T

QTb

(

RT
1 0T

)

(

R1

0

)

x =
(

RT
1 0T

)

QTb

RT
1 R1x =

(

RT
1 0T

)

QTb.

Since R1 is nonsingular, we have

R1x =
(

In 0T
)

QTb,

that is,

R1x = (QTb)n.(first n components of QTb) (2.20)

This is a square system with nonsingular upper n × n triangular matrix R1.

This can be solved by backward substitution.
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q

uw

v

Figure 2.5: Action of an elementary reflector Hw

Uniqueness of QR

In general, QR decomposition is not unique, as we can see with QR =

(−Q)(−R). But if we assume(we usually do) the diagonal entries of R are

positive, the QR decomposition is unique.

2.7 Householder Triangularization and the QR de-

composition

Let use Householder reflection, elementary reflector which is given by

Hw = I − 2wwT

for some unit vector w ∈ R
n. They are symmetric and orthogonal(wT = w

and wTw = I).

The idea is : Given u, v find a w so that Hwu = v. Thus from the figure

we can see

w =
v − u

‖v − u‖ . (2.21)

Now the first step of QR is to reduce the first column to a multiple of e1:

Let A = [a1, A12]. Then we can find an orthogonal matrix Q1 = Hw, which

maps the first column of A onto αe1. Since ‖Hwa1‖ = ‖a1‖ = ‖αe1‖, we have
α = ±‖a1‖. Thus w is given by

w =
αe1 − a1
‖αe1 − a1‖

. (2.22)
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and

Q1A =













α b2 . . . bn

0
... A12

0













We repeat the same process. If (n−1)×(n−1) matrix Q′
2 is the elementary

reflector used to reduce the first column of A12, then the matrix

Q2 =

(

1 0

0 Q′
2

)

makes

Q2Q1A =













α b2 . . . bn

0 α2 ∗ ∗
... 0 A′

23

0 0













How to choose the sign of α ? The idea is to let we have less round off

error (i.e, to induce less subtractive cancelation). Thus choose the sign as

− sgn a11.

QR with Householder matrix-general

[

Ir 0

0 Hr+1

] [

Xa Xb

0 Xc

]

=

[

Xα Xβ

0 Xγ

]

where Hr+1 is an (m−r)×(m−r) elementary reflector. We choose the sign of

α1 opposite to that of the first entry of a1 for stability(less round off errors).

2.8 Gram-Schmidt Orthogonalization and the QR

Decomposition

Classical Gram-Schmidt

Given n linearly independent vectors {v1, · · · ,vn}, we consider the span V =

span{v1, · · · ,vn} and we would like to find an orthonormal basis for V . The
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usual Gram-Schmidt process is to find u1, · · · ,un as follows:

u1 = v1
‖v1‖

u′
2 = v2 − (v2,u1)u1, u2 =

u′

2
‖u′

2‖
u′
3 = v3 − (v3,u2)u2 − (v3,u1)u1, u3 =

u′

3
‖u′

3‖
= · · ·

u′
n = vn −

∑n−1
j=1 (vk,uj)uj , un = u′

n

‖u′
n‖ .

(2.23)

Assume A is a m×m square matrix whose columns are {v1, · · · ,vm}. Writing

this process in the matrix form, we see AR = Q where columns of Q are

u1, · · · ,um and columns of R are r1, r2, · · · , which form a triangular matrix.

Thus A = QR′ is another QR-decomposition of A.

Modified Gram-Schmidt

Unfortunately, this is numerically bad procedure: round off errors and loss

of orthogonality of Q. For better numerical behavior, use the following mod-

ified Gram-Schmidt. The idea is to use the orthogonalize all vectors w.r.t

orthogonal vector qi as soon as they are available.

Given linearly independent vectors {v1,v2, · · · ,vn},

{v1,v2, · · · ,vn}
normalize
———— > {q1,v2, · · · ,vn}
apply P⊥q1
———— > {q1, P⊥q1v2, · · · , P⊥q1vn}
normalize
———— > {q1,q2,v3, · · · , P⊥q1vn}
apply P⊥q2
———— > {q1,q2, P⊥q2P⊥q1v3, · · · , P⊥q2P⊥q1vn}
normalize
———— > {q1,q2,q3, · · · , P⊥q2P⊥q1vn}

...
...
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CGS-Algorithm: Given v1, · · · ,vn ∈ R
m

For k = 1, 2, . . . , n

sik = qT
i vk, (i = 1, 2, . . . , k − 1)

vk ← vk −
k−1
∑

i=1

sikqi(vk ← vk −
∑k−1

i=1 < qi,vk > qi)

rkk = ‖zk‖, qk = vk

rkk

rik =
sik
rkk

, (i = 1, 2, . . . , k − 1)

Modified-GS Algorithm: Given v1, · · · ,vn ∈ R
m

For k = 1, 2, . . . , n

rkk = ‖vk‖
For i = 1, 2, . . . ,m

qik = vik
rkk

(qk = vk

rkk
normalize k-th vector vk)

End i-loop(Note the whole process ends here)

For j = k + 1, . . . , n

rkj =

m
∑

i=1

qikvij (= qT
k · vj)

For i = 1, 2, . . . ,m

vij ← vij − vikrkj (vj ← vj− < qk,vj > qk)

End i-loop

End j-loop

Here Q = {qij} and R = {rij}. To save space A is overwritten by Q-orthogonal

vectors.
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Example 2.8.1. Apply MGS to A find the QR-decomposition, where

A =







1 −1 0

0 1 1

1 1 1






.

Note that v1 = (1, 0, 1)T ,v2 = (−1, 1, 1)T ,v2 = (0, 1, 1)T .

Modified-GS Algorithm for A

k = 1. Normalize first column. r11 = ‖v1‖ =
√
2. So q1 =

1√
2
(1, 0, 1)T .

j = 2

r12 = qT
1 · v2 = 1√

2
(1, 0, 1) · (−1, 1, 1) = 0.

v2 ← v2 − 0 · q1

j = 3

r13 = qT
1 · v3 = 1√

2
(1, 0, 1) · (0, 1, 1) = 1√

2
.

v3 ← v3 − r13q1 = (0, 1, 1)T − 1√
2

1√
2
(1, 0, 1)T = (−1

2 , 1,
1
2)

T

k = 2. Normalize second column. r22 = ‖v2‖ =
√
3. So q2 =

1√
3
(−1, 1, 1)T .

j = 3

r23 = qT
2 · v3 = 1√

3
(−1, 1, 1) · (−1

2 , 1,
1
2) =

2√
3
.

v3 ← v3 − r23q2 = (−1
2 , 1,

1
2)

T − 2√
3

1√
3
(−1, 1, 1)T = 1

6(1, 2,−1)T

k = 3. Normalize third column. r33 = ‖v3‖ = 1√
6
.

So q3 =
1√
6
(1, 2,−1)T .

At the end of each k = 1, 2, 3, we have

AR1 = Q=









1√
2
−1 −1

2

0 1 1
1√
2

1 1
2









, R1 =







1√
2

0 0

0 1 0

0 0 1













1 0 − 1√
2

0 1 0

0 0 1






=







1√
2

0 −1
2

0 1 0

0 0 1







AR1R2 = Q2 =









1√
2
− 1√

3
−1

2

0 1√
3

1
1√
2

1√
3

1
2









, R2 =







1 0 0

0 1√
3

0

0 0 1













1 0 0

0 1 − 2√
3

0 0 1






=







1 0 0

0 1√
3
−2

3

0 0 1







AR1R2R3 = Q3 := Q =









1√
2
− 1√

3
1√
6

0 1√
3

2√
6

1√
2

1√
3
− 1√

6









, R3 =







1 0 0

0 1 0

0 0
√
6






.
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Hence

A = QR−1
3 R−2

1 R−1
1 =









1√
2
− 1√

3
1√
6

0 1√
3

2√
6

1√
2

1√
3
− 1√

6









·









√
2 0 1√

2

0
√
3 2√

3

0 0 1√
6









Here

R−1
3 R−1

2 R−1
1 =







1 0 0

0 1 0

0 0 1√
6













1 0 0

0
√
3 2√

3

0 0 1













√
2 0 − 1√

2

0 1 0

0 0 1






=









√
2 0 1√

2

0
√
3 2√

3

0 0 1√
6









Thus, the entries of R−1
3 R−1

2 R−1
1 coincides with above R = {rij}, i.e,

R =







r11 r12 r13

0 r22 r23

0 0 r23






=









√
2 0 1√

2

0
√
3 2√

3

0 0 1√
6









2.9 SVD

Theorem 2.9.1 (Singular value decomposition). If A ∈ R
m×n then there

exists orthogonal matrices U ∈ R
m×m and V ∈ R

n×n such that

U tAV = Σ = diag(σ1, σ2, · · · , σp) (2.24)

where Σ is m× n matrix and p = min(m,n) and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

U
t A

V

=

m > n

or
U

t A

V
=

n > m

Figure 2.6: Σ of SVD

The σi are the singular values of A and vectors ui and vi are left singular
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and right singular vectors. We see

Avi = σiui

ATui = σivi

, i = 1, · · · , p

Consider solving an over-determined system Ax = b by least square method.

We need to solve a normal equation ATAx = ATb. Thus

(UΣV T )TUΣV Tx = (UΣV T )Tb

V ΣTUTUΣV Tx = V ΣTUTb

V ΣTΣV Tx = V ΣTUTb

ΣTΣV Tx = ΣTUTb

V Tx = Σ−1UTb

x = V Σ−1UTb.

In general, SVD is expansive.


