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Chapter 2

Finite Element Methods

2.1 Model examples

One dim’l problem

−u′′ = f on (0, 1), with B.C. u(0) = u(1) = 0.

Multiply a test function v ∈ H1
0 (I) and integrate

(−u′′, v) = −
∫ 1

0
u′′vdx

= −[u′v]10 +
∫ 1

0
u′v′dx =

∫

fvdx.

Thus we have
(u′, v′) = (f, v), v ∈ V = H1

0 (I).

If the space H1
0 (I) is replaced by a finite dimensional space Sh(I) of piecewise

continuous, linear functions on I with uniform spacing, then we get

Auh = fh

where a typical row is [· · · , 0,−1, 2,−1, 0 · · · ]. FDM gives rise to similar matrix
equation.

Two dimensional case - Poisson problem

−∆u = f in Ω
u = g on ∂Ω
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FDM

Assume uniform meshes with hx = hy = h. The stencil for x direction is
[−1, 2,−1]. Likewise the stencil for the y direction is also [−1, 2,−1]. Hence
the 2-D stencil is





−1
−1 4 −1

−1





FEM

Let S0h(Ω) be the space of continuous, piecewise linear on each element satisfying
zero boundary condition. Let uh =

∑

uiφi where φi is the tent shape basis
function satisfying φi(xj) = δij . Then by multiplying φj and integrate by part to
get

∫

Ω

∑

i

ui∇φi · ∇φj dxdy =

∫

Ω
fφj dx, for each j = 1, 2, · · ·

Writing a(φi, φj) =
∫

Ω∇φi · ∇φjdxdy we get

∑

i

a(φi, φj)ui = (f, φj)

In matrix form, it is

Au = f, Aij = a(φj , φi)

A is called a ’stiffness’ matrix.

−∆u+ u = f in Ω
∂u
∂n = g on Γ

(2.1)

Note in this case u is unknown at the boundary. So V = H1(Ω) not H1
0 (Ω). If

g = 0, we have an insulated boundary.

(−∆u, v) + (u, v) = (∇u,∇v) + (u, v)− < g, v >Γ= (f, v)

So the variational problem is: (V) Find u ∈ H1 such that

a(u, v) = (f, v)+ < g, v >, v ∈ H1

where a(u, v) = (∇u,∇v) + (u, v). This is equivalent to (M) Find u ∈ H1 such
that F (u) ≤ F (v) for all v where F (v) = 1

2a(v, v) − (f, v)− < g, v >. Also, if
u ∈ C2 the solution of (M) and (V) are the solution of (2.1)



2.2. REMARKS ON PROGRAMMING 41

Proof . Let u be the solution of (V). Then

a(u, v) = (−∆u, v) =
∫

Γ

∂u

∂n
v + (u, v) = (f, v)+ < g, v >

∫

(−∆u+ u− f)v =

∫

Γ
(g − ∂u

∂n
)vds, v ∈ H1

Restrict to v ∈ H1
0 . Then we get

−∆u+ u− f = 0 in Ω

Hence we have
∫

Γ
(g − ∂u

∂n
)vds = 0, v ∈ H1

which proves g = ∂u
∂n . The condition ∂u

∂n = g is called the natural boundary
condition. (Look at (V), we did not impose any condition, but we got B.C
naturally from the variational formulation.)

2.2 Remarks on Programming

We consider Neumann problem (2.1). Let Th = {K`}be a triangulation of the
domain Ω and let Vh be the space of continuous, piecewise linear functions.

Aξ = b, aij =
∑

K

aKij , bi =
∑

K

bKi

aKij =
∫

K(∇φj · ∇φi + φjφi), b
K
i =

∫

K fφi +
∫

K∩Γ gφi ds.

(1) Input data : f, g,Ω and coefficients.

(2) Construction and representation of Th

(3) Computation of element stiffness matrix aK and bK

(4) Assembly of global stiffness matrix A, b

(5) Solution of Aξ = b

(6) Presentation of result.

Remark on (2): quasi uniform—essentially the same size. Or often desirable to
vary the size of triangle—adaptive or successive refinement. Conforming: vertex
should not lie in the interior of an edge.
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Matrix assembly

We need to compute a(φi, φj)
Compute

a(φi, φj) =

∫

Ω
∇φi · ∇φj dxdy =

∑

K

∫

K
∇φi · ∇φj dxdy

where the summation runs through the common support of φi and φj . We find
this by computing the contribution of aK(φi, φj) :=

∫

K ∇φi · ∇φj dxdy called
the element stiffness matrix. Let us divide a unit square by 4 × 4 uniform
meshes where each small rectangle is cut through a line of slope 1. Label all
the vertex nodes 1, 2, 3, · · · , 25 lexicographically. Label the element as K1/K2,
K3/K4, · · · ,K7/K8,· · ·

Let us list some notations:

• L number of elements

• M number of nodes including the Dirichlet boundary

• N number of nodes excluding the Dirichlet boundary(same as number of
unknowns)

• Γ0 the part of boundary where Dirichlet condition is imposed

• Γ1 the part of boundary where Neumann condition is imposed

• J0 the index set where Dirichlet condition is imposed

• J1 the index set where Neumann condition is imposed

Compute element stiffness matrix for each triangle, and add all the contribution
to three vertices as K runs through all element. If i = j, K runs through all
element having the node i as a vertex. If i 6= j, K runs through all element
having īj as an edge. In this way, we assemble the global matrix A all together(
not for each entry )

Consider K = K12. Its vertices are 7, 8 and 13. For the element matrix we
need to compute aK(φi, φj) for i, j = 7, 8, 13.

aK(φ7, φ7) =

∫

K
(−1

h
, 0) · (− 1

h
, 0) =

1

2

aK(φ7, φ8) =

∫

K
(−1

h
, 0) · (− 1

h
,−1

h
) = −1

2

aK(φ7, φ13) =

∫

K
(−1

h
, 0) · (0, 1

h
) = 0
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K1

K2

K3

K4

K12

v1 v2 v3 v4 v5

v6

v11

v10

v7 v8 v9

v11 v13 v14

Figure 2.1: Label of elements and vertices

aK(φ8, φ8) =

∫

K
(
1

h
,−1

h
) · ( 1

h
,−1

h
) = 1

aK(φ8, φ13) =

∫

K
(
1

h
,−1

h
) · (0, 1

h
) = −1

2

aK(φ13, φ13) =

∫

K
(0,

1

h
) · (0, 1

h
) =

1

2

The element stiffness matrix AK12
(corresponds to the vertices 7,8 and 13) is





1
2 , −12 , 0
−12 , 1, −12
0, −12 , 12



 = a12α,β

Generate element matrices for all element K = 1, 2 · · · , add its contribution to
all pair of vertices (i, j). Let L be the number of elements and let T be the 3×L
matrix whose `-th column denotes the three numbers of vertices of `-th element.
For example, T (·, 12) = [7, 8, 13]t. Then the assembly of global stiffness matrix
is as follows: Let A(L,L), b(L) be arrays.

Set A(i, j) = 0, b(i) = 0, i, j = 1, · · · , L.
For each ` = 1, 2, · · · , L

A(T (α, `), T (β, `))+ = a`βα α, β = 1, 2, 3

b`(T (α, `))+ = (b`α), α = 1, 2, 3.

Comment on solving algebraic equation.

(1) Use banded storage
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(2) Iterative method or direct method ?

(3) Use as many modules as possible.

(4) Input appropriate data. (0 < c0 ≤ p(x, y) < c1)

(5) Check the error by discrete L2, H1 inner product.

Some notations:

L: number of triangles(elements)

n: number of nodes

K`, ` = 1, · · · , L: the elements

Z: 2× n matrix, Z(j, i), j = 1, 2 coordinates of node i.

T : 3 × L matrix, T (j, `), j = 1, 2, 3 denotes the global node numbering of
`-th triangle

A triangulation may be represented by two matrices such as 2 × n matrix Z,
and 3× L matrix T : Z(j, i), j = 1, 2 represents the (x, y)-coordinate of node Ni,
i = 1, · · · , n, while T (j, `), j = 1, 2, 3 denote the vertex numbering of the `-th
triangle. Node ordering is important if we want to use Gaussian elimination( For
instance, we intend to store A as a banded matrix, hopefully with small band)

(3) Computation of element stiffness matrix.
Let K` ∈ Th. Then T (α, `), α = 1, 2, 3 are the number of vertices of K`. The

xi-coordinates of vertices are Z(i, T (α, `)), i = 1, 2

a`α,β =

∫

K`

(∇φα · ∇φβ + φαφβ)dx

φα satisfies
φα(NT (β,`)) = δα,β , α, β = 1, 2, 3

b`α =

∫

K`

fφα dx+

∫

Γ∩K`

gφα ds, α = 1, 2, 3.

Store A` = (a`αβ), b
` = (b`α) for all K` in a scratch space.

(4) Assembly of global stiffness matrix: Let A(n, n), b(n) be arrays. Initially
set A(i, j) = 0, b(i) = 0, i, j = 1, · · · , n. For each ` = 1, 2, · · · , L, compute
A` = (a`αβ) and b` = (b`α) and set

A(T (α, `), T (β, `))+ = a`αβ , α, β = 1, 2, 3

b(T (α, `))+ = b`α, α = 1, 2, 3.
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Remark 2.2.1. In practice we do not use the full array A(n, n). Instead use
either banded matrix if Gaussian elimination is used(How big is the band and
what happens to the band during the elimination ?) or store only nonzero element
if iterative methods are used.

For FEM software site; see //free.kaist.ac.kr www.netlib.org, http://gams.nist.gov
( ) http://www.ms.uky.edu/ skim/LectureNotes/

Treatment of nonhomogeneous Boundary Condition

• Dirichlet condition

• Neuman condition

Example 2.2.2.

−∇ · p∇u = f, in Ω

u = u0 on Γ1 (2.2)

∂u

∂n
= g on Γ2

Let V1 = {v ∈ H1(Ω), v|Γ1
= 0}. If v ∈ V1

(−∇ · p∇u, v) = −
∫

Γ
p
∂u

∂n
vds+

∫

Ω
p∇u · ∇vdxdy

= −
∫

Γ2

p
∂u

∂n
vds+

∫

Ω
p∇u · ∇v dxdy

The variational formulation is: Find u satisfying the Dirichle condition such that

a(u, v) = `∗(v), ∀v ∈ V1 (2.3)

where a(u, v) = (p∇u · ∇v) and `∗(v) = (f, v)+ < pg, v >Γ2
.

Remark 2.2.3. For a minimization formulation, set

F (v) =
1

2
a(v, v)− (f, v)− < pg, v >Γ2

Take derivative of F (u+ εv) w.r.t ε and set it to 0 at ε = 0 to obtain (2.3).

Exercise 2.2.4. Show the solution of (2.3) satisfies ∂u
∂n = 0.
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Exercise 2.2.5. 1. Consider solving for G ∈ H1
0 (I)

(G′, v′) = v(xi), v ∈ H1
0 (I). (2.4)

Let G = ax on (0, xi) and G = b(1− x) on (xi, 1).
Above equation is

∫ xi

0
av′dx+

∫ 1

xi

−bv′dx = av(xi) + bv(xi) = v(xi)

Thus a + b = 1 and by continuity axi = b(1 − xi). so b = xi, a = 1 − xi.
Integrating (2.4) by part formally,

−(G′′, v) = v(xi).

This means
−G′′(x) = δ(xi)

So we have a Green’s function.
Choosing v = u− uh, where uh finite element approximation of u. we see

(u− uh)(xi) = (G′, (u− uh)
′) = 0.

So in one dimensional case, uh(xi) = u(xi) for each node. This is no longer true
for higher dimensional case.

2. For a unit square Ω show that
(
∫

Γ
v2ds

)1/2

≤ C‖v‖H1 , ∀v ∈ H1(Ω).

Proof . (Assume the existence of trace in L2 space) Choose any point (x, y) on
a vertical line x = 1, we see

v(1, y) =

∫ 1

x
vt(t, y)dt+ v(x, y)

v2(1, y) ≤ 2

(
∫ 1

x
v2t (t, y)dt

)

+ 2v2(x, y)

∫ 1

0
v2(1, y)dy ≤ 2

∫ 1

0

∫ 1

0
v2t (t, y)dtdy + 2

∫ 1

0
v2(x, y)dy

∫ 1

0
v2(1, y)dy ≤ 2

∫ 1

0

∫ 1

0
v2x(t, y)dxdy + 2

∫ 1

0

∫ 1

0
v2(x, y)dxdy

Other integrals are easily treated.

3. Show that the solution of the variational problem :Find u ∈ V1, such that

a(u, v) = (f, v), ∀v ∈ v ∈ V1 (2.5)

solves (2.2) with u0 = g = 0.
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2.3 Iterative method for SPD system

We consider solving the following equation

Ax = b (2.6)

by an iterative method, where A : R
n → R

n is SPD. Let σ(A) ⊂ [λ0, λN ] be the
spectrum of A. Let R be another SPD matrix and define

M = I −R−1A.

Let ρ(M) = maxσ(M) |λ| and suppose ρ(M) < 1. We may rewrite (2.6) as

x = Mx+R−1b.

Define
xk+1 = Mxk + b̃, b̃ = R−1b,

or
xk+1 = xk +R−1(b−Axk),

where x0 is arbitrary.
Set ek = xk − x. Then

ek = Mek−1 = Mke0.

Now M is symmetric with respect to the inner product [·, ·] which is either (A·, ·)
or (R·, ·). Hence for ‖ · ‖ = ‖ · ‖A or ‖ · ‖ = ‖ · ‖R, we have

‖ek‖ = ‖Mke0‖ ≤ ρ(M)k‖e0‖ → 0.

Example 2.3.1 (Choice of R). (1) R = λNI (Richardson)

(2) R = D (diagonal of A)– Jacobi

(3) domain decomposition

(4) multigrid methods

2.3.1 Acceleration of convergence

For x0, · · · , xk defined above, we consider

ym =
m
∑

j=0

νjx
j .
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Then if
∑m

j=0 νj = 1 we have

ẽm = ym − x =
m
∑

j=0

νje
j =

m
∑

j=0

νjM
je0

Thus
ẽm = Pm(M)e0.

where Pm is a polynomial of degree m and Pm(1) = 1.(If M = I, Pm(I) = I).
Let Mφj = λjφj be an orthonormal system of eigenvectors with respect to [·, ·].
Then

ẽm =
N
∑

j=1

[ẽm, φj ]φj =
N
∑

j=1

[Pm(M)e0, φj ]φj (2.7)

=
N
∑

j=1

[e0, Pm(M)φj ]φj =
N
∑

j=1

[e0, Pm(λj)φj ]φj (2.8)

=
N
∑

j=1

Pm(λj)[e
0, φj ]φj (2.9)

Thus

‖ẽm‖2 =
N
∑

j=1

P 2m(λj)[e
0, φj ]

2 ≤ max
λi∈σ(M)

P 2m(λj)‖e0‖2 (2.10)

For the case Pm(M) = Mm, we have ẽm = em, and hence

max
λj∈σ(M)

P 2m(λj) = max
λj∈σ(M)

λ2mj ≤ ρ2m

as before. We can do better by making a judicious choice of Pm. Let ρ(M) denote
the spectral radius of M and σ(M) denote the set of all spectrum. Since

‖ẽm‖ ≤ sup
|λ|≤ρ(M)

|Pm(λ)|‖e0‖.

We have to choose Pm such that Pm(1) = 1 and Pm minimizes sup|λ|≤ρ(M) |Pm(λ)|.
The solution of this is well known and is given by Chebyshev polynomials. The
Chebyshev polynomials are defined by

Cm(x) =

{

cos(m cos−1 x), |x| ≤ 1

cosh(m cosh−1 x), |x| > 1.
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Clearly,
Cm+1(x) = 2xCm(x)− Cm−1(x).

Since C0(x) = 1, C1(x) = x, Cm is a polynomial of degree m. Define

Pm(x) = Cm(
x

ρ
)/Cm(

1

ρ
)

ρ = ρ(M) < 1. This is the solution of the minimization problem.
Let ẽm = Pm(M)e0. Then

‖ẽm‖ ≤ sup
|x|≤ρ

|Pm(x)|‖e0‖ = [Cm(
1

ρ
)]−1‖e0‖.

Let σ = cosh−1(1ρ)

Cm(
1

ρ
) =

emσ + e−mσ

2
= emσ

[

1 + e−2mσ

2

]

also

σ = ln

(

1

ρ
+

√

1

ρ2
− 1

)

.

Hence

Cm(
1

ρ
)−1 = e−mσ

[

2

1 + e−2mσ

]

≤ 2e−mσ (2.11)

= 2

(

1

ρ
+

√

1

ρ2
− 1

)−m

= 2

(

ρ

1 +
√

1− ρ2

)m

. (2.12)

If ρ is near 1 this is better than ρm for large m.
Suppose ρ = 1−ε

1+ε , with ε small. Then

ρ

1 +
√

1− ρ2
=

1−√ε
1 +

√
ε
.

This means that we have accelerated the convergence. The number of iteration
to reduce the initial error by a factor of δ is

2

(

1−√ε
1 +

√
ε

)n

≤ δ

from which we see n ≈ ln δ
2/ ln

(

1−√ε
1+
√
ε

)

≈ ln δ
2/
√
ε.
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2.3.2 Computation of the iterates

ẽm = Pm(M)e0 ⇒ ym = x+ Pm(M)e0.

We note the recurrence relation

Cm+1(
M

ρ
) =

2M

ρ
Cm(

M

ρ
)− Cm−1(

M

ρ
)

Cm+1(
1

ρ
)Pm+1(M) =

2M

ρ
Cm(

1

ρ
)Pm(M)− Cm−1(

1

ρ
)Pm−1(M)

Apply this to e0, x then subtract to get

Cm+1(
1

ρ
)ẽm+1 =

2

ρ
Cm(

1

ρ
)Mẽm − Cm−1(

1

ρ
)ẽm−1

Noting that Mx = x− b̃ we have

Cm+1(
1

ρ
)ym+1 =

2

ρ
Cm(

1

ρ
)(Mym + b̃)− Cm−1(

1

ρ
)ym−1

Thus

ym+1 =
2

ρ

(

Cm(
1

ρ
)/Cm+1(

1

ρ
)

)

(Mym + b̃)−
(

Cm−1(
1

ρ
)/Cm+1(

1

ρ
)

)

ym−1

Let

y0 = x0 (2.13)

y1 = Mx0 + b̃ = x1, (2.14)

and set

wm+1 =
2Cm(1ρ)

ρCm+1(
1
ρ)

= 1 +
Cm−1(1ρ)

Cm+1(
1
ρ)
, w1 = 2 (2.15)

Then the iterative method becomes

ym+1 = wm+1{Mym + b̃− ym−1}+ ym−1 (2.16)

wm+1 =
1

1− ρ2

4 wm

. (2.17)

Then the Chebyshev iterates are as simple to compute as the iterates xm+1 =
Mxm + b̃.



2.3. ITERATIVE METHOD FOR SPD SYSTEM 51

In order to apply this method we need to estimates ρ or λ0, λN .(Depending
on the choice of R) If σ(A) ⊂ [λ0, λN ] then we may choose R = λ0+λN

2 I. Thus

M = I − 2
λ0+λN

A and σ(M) ⊂ [−ρ, ρ] where ρ = λN−λ0

λN+λ0
< 1. Since ρ = κ−1

κ+1 , the
convergence of

xk+1 = Mxk + b̃

is determined by

‖ek‖ = ‖Mke0‖ ≤ ρk‖e0‖ =
(

κ− 1

κ+ 1

)k

‖e0‖.

But in the Chevysheff iteration, ẽk satisfies

‖ẽk‖ ≤ 2

(

ρ

1 +
√

1− ρ2

)k

‖ẽ0‖

Hence we have the bound

‖ẽk‖ = 2

(√
κ− 1√
κ+ 1

)k

‖ẽ0‖

which is much better for large k.

Solution by Minimization

Definition 2.3.2. A quadratic functional

f(x) =
1

2
xTAx− bTx+ c.

where A is n× n symmetric positive definite.

Theorem 2.3.3. x0 is a stationary point of f if and only if Ax0 = b.

Proof. Necessity is clear. For sufficiency, using Ax0 = b, we rewrite f(x) =
1
2(x − x0)

TA(x − x0) + ĉ. Since A is diagonalizable, there exists an orthogonal
matrix V such that AV = ΛV or V TAV = Λ, where Λ = diag{λ1, · · · , λk} and
λi > 0. Then if we let z = V T (x− x0),

f̂(z) =
1

2
zTΛz + ĉ

=
1

2

∑

λiz
2
i + ĉ.

Thus z = 0, x = x0 is a stationary point.
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2.3.3 Method of steepest descent

We would like to find the minimizer of f(x) = 1
2x

TAx − bTx + c. Let x0 be
arbitrary initial guess. We try to find the next approximation in the form

xk+1 = xk + τkd
k (2.18)

dk is called search direction where τk is chosen to minimize, or reduce f(x) on
some interval near xk in that direction. We need to choose dk and τk.

Definition 2.3.4. If f(x+τd) < f(x), 0 < τ ≤ τ0, then d is a descent direction
for f at x.

Theorem 2.3.5. If f ∈ C1 and ∇f(x)T · d < 0, then d is a descent direction for
for f at x.

Proof. f(x + τd) = f(x) + τ∇f(x) · d + o(τ). If τ is small enough, the second
term dominates the third term.

Theorem 2.3.6. d = −∇f(x) = b−Ax is the direction of steepset descent.

To determine the parameter τk, we see

f(x+ τd) =
1

2
τ2dTAd+ τdT∇f(x) + ĉ =

1

2
τ2(Ad, d) + τ(d,∇f(x)) + ĉ.

minτ f(x + τd) is obtained when d
dτ f(x + τd)|τ=0 = τ(Ad, d) + (d,∇f(x)) = 0.

Thus, τ = − (d,∇f(x))
(Ad,d) and given xk, the next search direction is given by

dk+1 = b−Axk+1 = b−A(xk + τkd
k) = dk − τkAd

k.

Now the method of steepset desecnt is described as follows:

dk = b−Axk (2.19)

xk+1 = xk + τkd
k (2.20)

τk =
(dk, dk)

(Adk, dk)
(2.21)

dk+1 = dk − τkAd
k. (2.22)
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Convergence analysis

We introduce a norm (·, ·)A by (x, y)A = (Ax, y). When A is symmetric, positive
definite, (·, ·)A becomes a true norm (called energy norm) on R

n.

Theorem 2.3.7. We have

‖xk − x‖A ≤
(

κ(A)− 1

κ(A) + 1

)k

‖x0 − x‖A,

where κ(A) is the spectral condition number of A. Further the number of iteration
to reduce the error by a factor ε is

N ≥ κ(A) ln(1/ε).

2.3.4 Conjugate gradient

In the beginning, we start as in method of steepest descent to find the minimizer
of f(x) = 1

2x
TAx − bTx + c or the zero of −∇f(x) = b − Ax = 0. Let x0 = 0.

Then d0 = r0 = b, and we let

xk+1 = xk + αkd
k (2.23)

rk = b−Axk.( this was dk in steepest descent method) (2.24)

We choose, as in the method of steepest descent, αk so that f(xk + αdk) is
minimized. Thus,

αk = (dk, rk)/(Adk, dk) (2.25)

It also makes the residual rk+1 to be orthogonal to the search direction dk,

(dk, rk+1) = (dk, b−Axk+1) = (dk, b−Axk − αkAd
k) = 0. (2.26)

Now try a new search direction :

dk+1 = rk+1 − βkd
k. (2.27)

(If βk = 0, it is steepest descent.) We choose βk so that

(Adj , dk) = 0, j ≤ k − 1 (2.28)

and we choose dk+1 so that

(Adk, dk+1) = (Ark+1 − βkAd
k, dk) = 0. (2.29)

Thus
βk = (Adk, rk+1)/(Adk, dk). (2.30)

Let
Vk = SPAN{b, Ab, · · · , Ak−1b} = SPAN{d0, d1, · · · , dk−1}.
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Proposition 2.3.8. We have

(Adk+1, y) = 0, ∀y ∈ Vk+1 and (2.31)

(Adj , rk+1) = 0, j ≤ k − 1. (2.32)

i.e.,

dk+1 ⊥ Vk+1 with respect to (A·, ·) (2.33)

rk+1 ⊥ Vk with respect to (A·, ·) (2.34)

Proof . Use induction. For k = 0, we see (Ad0, d1) = (Ad0, r1 − β0d
0) =

(Ad0, r1)− β0(Ad
0, d0) = 0 by choice of β0. The Hypothesis for (2.32) is empty.

So both of the hypothesis holds for k = 0.
We shall prove (2.32) first. Consider

(Adj , rk+1) = (Adj , rk − αkAd
k) = (Adj , rk)− αk(Ad

j , Adk), for j ≤ k − 1.

The first term is zero by induction and the second term is zero by induction since
Adj ∈ Vk for j ≤ k − 1. For (2.31) we see

(Adj , dk+1) = (Adj , rk+1)− βk(Ad
j , dk) = (Adj , rk+1) = 0,

by induction again. Hence we proved (Adj , dk+1) = 0 for j ≤ k−1. This together
with (2.29) shows (2.31).

Remark 2.3.9. Note that since

(dk−1, A(x− xk)) = A(dk−1, ek) = 0

(2.26) means
ek = xk − x ⊥ Vk w.r.t (A·, ·) (2.35)

And (2.28) means dk ⊥ Vk with respect to (A·, ·). Thus the new search direc-
tion is always orthogonal to the previous vectors(directions)

The algorithm is:
Let x0 = 0, d0 = r0 = b, and

rk = b−Axk (2.36)

xk+1 = xk + αkd
k, αk = (dk, rk)/(Adk, dk) (2.37)

dk+1 = rk+1 − βkd
k, βk = (Adk, rk+1)/(Adk, dk). (2.38)

Note that since rk+1 = rk −αkAd
k, only one evaluation of A is necessary and no

need to estimate βk.
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2.3.5 Error analysis

By (2.35) and Cauchy Schwarz inequality,

(Aek, ek) = (Aek, yk − y + y − x) = (Aek, y − x), ∀y ∈ Vk (2.39)

(Aek, ek) ≤ (A(x− y), x− y), ∀y ∈ Vk. (2.40)

Since y ∈ Vk is arbitrary, we can set

y = Pk−1(A)b,

for some polynomial Pk−1(t) of degree k − 1. Hence

(A(x− y), x− y) = (A−1(I −APk−1(A))b, (I −APk−1(A))b)

≤ ‖I −APk−1(A)‖2A(Ax, x).
Since Pk−1 is arbitrary

(Aek, ek) ≤ min
Pk−1

‖I −APk−1(A)‖2A(Ax, x).

Let Qk(t) = Qk((1− τ)/c)(change of variable). Then Qk(t) = Q̂(τ) Then Qk is a
polynomial of degree k such that Qk(0) = 1 and Q̂k is a polynomial of degree k
such that Q̂k(1) = 1. If t ∈ σ(A) ⊂ [λ0, λN ], choose c = 2

λ0+λN
. Then τ ∈ [−ρ, ρ],

where ρ = λN−λ0

λ0+λN
= κ−1

κ+1 , κ = λN
λ0

. So

min
Pk
‖I −APk−1(A)‖A (2.41)

= min
Qk(0)=1

‖Qk(A)‖A (2.42)

= min
Qk(0)=1,

max
λ∈σ(A)

|Qk(λ)| (2.43)

= min
Q̂k(1)=1

max
λ∈σ(I−cA)

|Q̂k(λ)| (2.44)

≤ min
Q̂k(1)=1

max
λ∈[−ρ,ρ]

|Q̂k(λ)| (2.45)

≤ 2

(√
κ− 1√
κ+ 1

)k

. (2.46)

The minimum is obtained when Q̂k(x) = Ck(
x
ρ )/Ck(

1
ρ) is Chebyshev polyno-

mial.(By theory in Chebysev acceleration)

Remark 2.3.10. Conjugate gradient method ends in finite steps: If we choose
PN so that 1 − λjPN (λj) = 0, ∀λj ∈ σ(A), then A(eN , eN ) = 0 and hence
xN = x.
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λs−1 λs λN

Figure 2.2: Eigenvalues accumulated near λ0

Accumulated eigenvalues

If the eigenvalues are accumulated near λ0 so that

λ0 < · · · < λs−1 << λs < · · · < λN

then one can get better estimate. In fact, typical matrix A from finite element
methods satisfies σ(A) ⊂ [Ch2, C1]. So they are accumulated near λ0

Let Q(t) = Q1(t)Q2(t), where Q2(t) =
∏N

j=s

(

λj−t
λj

)

is a polynomial of lower

degree which is bounded by one at all eigenvalues λ0 < · · · < λs−1 and vanishes
on λs+1 < · · · < λN . Hence

max
σ(A)

|Q| ≤ max
σ(A)

|Q1(t)|max
σ(A)

|Q2| ≤ max
[λ0,λs−1]

|Q1(t)|

Now take minimum w.r.t. all polynomials of degree k − k0(k0 = N − s+ 1) such
that Q1(1) = 1. Hence again we choose Chebyshev polynomial to see

min
Q1

max
[λ0,λs−1]

|Q1(t)| ≤
(√

κ0 − 1√
κ0 + 1

)k−k0

where κ0 = λs−1/λ0 << κ. This is less than
(√

κ−1√
κ+1

)k
for large k.

2.3.6 Preconditioning

Consider Ax = b which is equivalent to

R−1Ax = R−1b. (2.47)

we introduce an inner product [·, ·] as either (A·, ·) or (R·, ·). Then the operator
R−1A is symmetric with respect to [·, ·],i.e.

[R−1Ax, y] = [x,R−1Ay].
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R−1 is called a preconditioner for A. Two properties of preconditioner is desirable:

(1) The action of R−1 on an arbitrary vector is in some sense ”easy” to compute.

(2) Since A and R are both SPD, there exist λ̃0, λ̃N such that

λ̃0(Rx, x) ≤ (Ax, x) ≤ λ̃N (Rx, x).

The condition number of R−1A = λ̃N/λ̃0 should be smaller than that of A.

With M = I −R−1A we can change (2.47) into the form

xk+1 = Mxk +R−1Ax, (2.48)

Lemma 2.3.11. Suppose σ(M) ⊂ (−ρ0, ρ1), ρ = max(ρ0, ρ1) < 1. Then R−1 is
a preconditioner for A with condition number κ(R−1A) = 1+ρ0

1−ρ1
.

Proof . Since

−ρ0(Ry, y) ≤ (RMy, y) ≤ ρ1(Ry, y)

Then
−ρ1(Ry, y) ≤ (Ay, y)− (Ry, y) ≤ ρ0(Ry, y)

(1− ρ1)(Ry, y) ≤ (Ay, y) ≤ (1 + ρ0)(Ry, y)

Remark 2.3.12. Suppose σ(A) ⊂ [λ0, λN ]. Then Choose c so that σ(I − cA) ⊂
[1− cλN , 1 − cλ0]. Choose c so that the spectral radius of M becomes smallest.
We choose c so that

1− cλN = 1− cλ0.

This gives the choice c = 2/(λN + λ0). Typically, λN ≈ diagonal of 2A. So
damped Jacobi is good preconditioner.

2.3.7 Application to Conjugate Gradient Method

With z0 = R−1r0 = d0 = b̃−R−1Ax0, the algorithm is

xk+1 = xk + αkd
k, αk = (dk, rk)/(Adk, dk) (2.49)

rk+1 = rk − αkAd
k (2.50)

zk+1 = R−1rk+1 (2.51)

dk+1 = zk+1 − βkd
k, βk = [R−1Adk, zk+1]/[R−1Adk, dk] (2.52)

With [·, ·] = (R·, ·), we obtain a preconditioned conjugate gradient method:
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Let z0 = R−1r0 = d0 = b̃−R−1Ax0

xk+1 = xk + αkd
k, αk = (dk, rk)/(Adk, dk) (2.53)

rk+1 = rk − αkAd
k (2.54)

zk+1 = R−1rk+1 (2.55)

dk+1 = zk+1 − βkd
k, βk = (Adk, zk+1)/(Adk, dk) (2.56)

Remark 2.3.13. (1) To determine αk we do not use weighted inner product.

(2) It is easy to show (dk, rk) = (rk, rk).

(3) Alternatively, αk, βk can be computed as

αk = (zk, rk)/(Adk, dk)

βk = −(rk+1, zk+1)/(rk, zk)


