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Chapter 1

Finite Difference Method

1.1 2nd order linear p.d.e. in two variables
General 2nd order linear p.d.e. in two variables is given in the following form:
Liu] = Augy + 2Bugy + Cuyy + Dug + Euy + Fu=G

According to the relations between coefficients, the p.d.es are classified into 3
categories, namely,

elliptic if AC—B? >0 i.e., A, C has the same sign
hyperbolic if AC—-B? <0
parabolic if AC—B =0

Furthermore, if the coefficients A, B and C are constant, it can be written as

0 0.[A B][%

B C By
Auxiliary condition
B.C.
Interface Cond
I.C.

we say “well posed” if a solution exists. There are basically two class of method
to discretize it,

(1) Finite Difference method

(2) Finite Element method
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1.2 Finite difference operator

Let u(x) be a function defined on 2 C R™. Let U; ; be the function defined over
discrete domain {(x;,y;)} such that U;; = u(z;,y;). Such functions are called
grid functions.

We introduce some operators on the grid functions.

Shift operator.

STU; =Uip1, S U =Ui—y, STSTU; = (ST)*U; = Uit
In case of two variables,
SyUij=Uit1j, Sy Uij=Ui 1

ta—-7r .
Sz Sy Uiy =Uiy1,j-1.

Averaging operator

U; U;
ptU; = %h, right average
U; + U;—
wU; = %, left average
U; U;_
pPU; %, central average
Difference operator
otU; = M, forward difference
hit1
U; —U;_ )
U = ZTI, backward difference
i
Uis1 — Ui
U, = Lll, central difference
hi + hita
26T -6~
82U, = g, central 2nd difference
hi + hita

Difference equation is an equation of type F(6U;, U;) = 0.
Difference scheme is a set of difference equations from which one can determine
the unknown grid functions.

Example 1.2.1. Consider the following second order differential equation :

—u"(z) = f(x),u(a) = c,u(b) = d.
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Given amesh a =29 <21 < --- < zy = b, Ax; = 2,41 — x; = h, we have

i1 — 2U; i .
_U 1 hU2+U+1 = fi=f(z), i=1,--N—-1Uy=c¢, Uy =d

which determines U; uniquely. We obtain an (N —1) x (/N — 1) matrix equations.
2 -1 Uy 1

= h2 . +

QUL O OO0

-1 2 Un-1 fn-1

Above equation can be written as LpU" = F", called a difference equation for a
given differential equation.

Exercise 1.2.2. Write down a matrix equation for the same problem with second
boundary condition changed to the normal derivative condition at b, i.e, u’(b) = d.

Example 1.2.3 (Heat equation). We consider

U = OUgg, TorO0<azx<l, 0<t<T
u(t,0) = wu(t,1)=0
u(0,z) = g(z), ¢(0)=g(1)=0

Let ; = ih,i =0,--- ,N,Az = 1/N and t,, = nAt, At = % Then we have the
following difference scheme
Ut U [UR, - 207+ U,
At 7 Aq? ’

fori=1,2,---,N—1landn=1,2,--- ,M — 1 where U = u(t;, z,). From the
boundary condition and initial condition we have

U = g(x;), Uy = 0,U% = 0.

(2

1 oAt
UPt = U + 3o (U = 208 + Ui
In vector notation At
+1 _ o
U}? =Uj — A—szU;Z

where A is the same matrix as in example 1. If n = 0, right hand side is known.

Thus At
Uy = (I — UEA)"G, G = (9(901), s ag(xN—1)>T'
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This is called forward Euler or explicit scheme. If we change the right hand
side to

oup oot g
At Ax?
gl — m oAt pntl _ ol | gt
i = i+_Ax2[ifl_ i +i+1}'

At
(I +o 5 A"Ui =G, G =(g(er), - glen-1)".

This is called backward Euler or implicit scheme.

1.2.1 Error of difference operator

For u € C?, use the Taylor expansion about z;

h?
wirr = w(@i 4 h) = ulzs) + hi! (@) + 0" (€), €€ (@i, wiga)
Wil U, @//

Expand about x;41,
i

h
Ui = Ujg]1 — hlu’(acz) + E’LL (9)

These are first order accurate. To derive a second order scheme, expand about

Lit1/2)
wivl = Ugajp+ 5 (@) + 5(5)21/'(%“/2) + 6(5)371(3) ()
Ui = Ui — Eul($i+1/2) + 5(5)211”(:0”1/2) — 6(5)311(3) ©).
Subtracting,
U; — Uy
HhA = u/(xi+1/2) +0(h}).

Thus we obtain a second order approximation to u’(x;,4 /2). By translation, we
have

u%+12;h“2—1 - ul(ﬂcz) = O(h?/6) if hy = hiy1.

H.W. Do the same for irregular mesh.(use weighted difference)
Assume h; = h;y1 and we substitute the solution of differential equation into
the difference equation. Using —u” = f we obtain

(—wi—1 + 2u; — uit1)

12 - f($z>
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1 h? h3 ht

- _ = Za® @ Qi
23(— u; + hj 2u '+ G gt (01) + 2ui)
(s = ey = S = el = S (02)) — S ()

2

= —u! — f(x;) — 2—4( @ (6,) + u™(6y)) truncation error

h?
(4)
5 Tax |ut™.

We let 7, = Lyu — F" and call it the truncation error(discretization error).

Definition 1.2.4. We say a difference scheme is consistent if the truncation
error approaches zero as h approaches zero, in other words, if Lyu — f — 0 in
some norm.

Truncation error measures how well the difference equation approximates the
differential equation. But it does not measure the actual error in the solution.
Use of different quadrature for f. Instead of f(x;) we can use

Sl @) +10£(@) + flzi)] = o) + 2 4w

where juof(x;) is the average of f which is f(z;) + O(h?).
H.W Show for uniform grid( use —u” = f)

—Ui—1 + 2u; — ui— 1
- hgu . - = (i) +10£ (@) + f(@i)] + Ch* max [ul®) (2)].

Nonuniform grid(irregular mesh)

We use central difference scheme to get

ul($i+1/2> ~ u’%;ul and Ul(xzel/z) ~ Ufhiqufl Thus,
u”(l'i) ~ (m;;l:luz o ui*h'U;ifl )/(hi+gi+1 )

H.W. Find truncation error for u”(x;) in case of nonuniform grid.

Lyu—f = 2[=hjuir1 + (hi + hiv1)ui — higiui1]/hihia (b + hiv1) — f(x:)

h? h3
= 2 =hiu; + hip + = ;’+%1u§3)+O(h4))+(hi+hi+1)ui
—h: — h_2 i () OO hihis (B + hise) — ,
H—l( u + 2“ 6 + ( ))]/ 1 H—l( i+ H—l) f(xz)

= —fi+ ( i1 — hi) + O(h7 + hyy).
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H.W Use 3[f(z;) + f(®it1) + f(xi—1)] for the right hand side. What is the
truncation error?

Definition 1.2.5. L, is said to be stable if
|UL|| < C||LyU"|| < C||F"|| for all h > 0

where U" is the solution of the difference equation, L,U" = F*. Also note that
Ly, is stable if and only if Lgl is bounded.

Definition 1.2.6. A finite difference scheme is said to converge if
U™ —ul| =0 ash — 0.
|U" — w]| is called a discretization error.

Theorem 1.2.7 (P. Lax). Given a consistent scheme, stability is equivalent to
convergence.

. Assume stability. From Lyu — f = 7", L,U" — F" = 0, we have Lp(u—
UMy = rh. Thus,

lu = U™ < Ol L(u = UM)|| = ClIr"|| — 0.

Hence the scheme converges. Obviously a convergent scheme must be stable.
From the theory of p.d.e, we know ||u|| < C||f||. Hence

1T < 0" = wll + [[ull < O@") +ClIf|| < CIIfIl < CIF".

1.3 Elliptic equation

1.3.1 Basic finite difference method for elliptic equation

In this chapter, we only consider finite difference method. First consider the
following elliptic problem:(Dirichlet problem by Finite Difference Method)

—Au = fin Q
u =g on Jf)

(1) Approx. D.E. —(ugs + uyy) = f at each interior mesh pt.

(2) The unknown function is to be approximated by a grid function u
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(3) Replace the derivative by difference quotient.

uE:c + ;3 = u(@) + hug () + By (z) + Bt (z) + O(hY)
u(z + h) — 2u(z) + u(x — h)

h2
uxw(l‘a y) = [U(IE + ha y) - QU(QZ, y) + u(‘r - ha y)]/h2
uyy(2,y) = [u(z,y +h) = 2u(2,y) +u(z,y — h)]/h?

= Uz () + O(h?)

(z,y th)

(x—h,y) ( 7y) (x—l—h,y)

(I’y_h)

Figure 1.1: 5-point Stencil

13

This picture is called, Molecule, Stencil, Star, etc. For each point (interior
mesh pt), approx V2u = Au by 5-point stencil. By Girshgorin disc theorem, the
matrix is nonsingular. L[u] is called differential operator while L [u] is called

finite difference operator, e.g.,

Ly[u)(z,y) = [~4u(z,y) +u(z + h,y) + w(z = h,y) +u(z,y +h) +u(z,y — h)]/h?

or more generally,

Ll = (525

0y
Uniform meshes

Uy (JI) - u(a:+h)2—hu(w—h)

h h
(Uz)a(z) = UI(HE);%(JE—?) Central difference

du
Diag{ai1, a2} [%} +cu = —(anug)e — (a2uy)y + cu
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ux(x—l— %) _ u(m—&-h}z—u(aﬁ)
g (z — %) _ u(x)*z(x*h)
h h
(a11tz)e = [(a11u2) (2 + ) = (a11uz) (@ — 5)]/h
Nonuniform meshes
_ h3 3 (3)
u(r+ha) = u(x)+ houg(x) + Fuge + gpu'> +--- xhy
2 3

ulx—hy) = u(z)— hjug(x) + %um - %u(g) e X ha

hiu(z + he) — hau(x — hy)

hih
= (h1 — ho)u(x) + 2h1houg(z) + ——2

(ha — hi)ugg + -

() = hiu(x 4+ he) — hou(x — hy) — (h1 — ho)u(z)
N 2h1 ha
This is only first order accurate. To consider the second derivatives, we shall lose

O(h) accuracy. To get a second order method multiply two equations respectively
by h?, h3 and subtract to get

+O(h)

hiu(@ + ha) — (hf + h3)u(z) — hju(z — ha)

312 p3p2
= (hoh? + h1h3)ugs(z) + (% + %) max |u”].

Hence u,, is seconder order accurate.
Assume the differential operator is of the form(with v > 0)

Liu] = —[uge + uyy| +yu=f
whose discretized form
Lp[U] = aoU(x,y) — arU(x + h,y) +--- = F(z,y)
4402 —1 -1 0 Uy
i -1 44 ~h 0 -1 U | I
h? -1 0 4 + vh? -1 Us |
0 -1 -1 4 + ryh? Uy

satisfies
(1) Lpu] = Llu] + O(h?) as h — 0. u is true solution.
(2) AU = F + Bdy, Au = [Au — yu + O(h?)] + Brdy
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AU —u) =O0(h?) =«

Then the discretization error U — u = A has the form ~!e(depends on h) and
satisfies

U = ull < A7 - Jlell < [A7HIO0R?)

If we put D = diagA = {ai1,...,ann}, then DYA(U — u) = D 'e. Write
D7'A = I + B, where B is off diagonal. Then we know ||B|loc = ﬁ < 1if
7> 0. Thus (D71A)~! = (I + B)~! exists and

2
< 1 < 4+’y2h
1 —||Blleo vh

(D" A) oo = [T+ B) Mo
Hence

2 2
IU = oo < (D1 A) o - | D efloe < 201

~ k2 '4+7h20(h2)20(h2)_>0

Thus, we have proved the following result.
Theorem 1.3.1. Let

(1) ue C*Q)

(2) r>0

(3) uniform mesh
Then ||U — ul|o = O(h?) as h — 0.

Generally, when A, B, C are not constant, we can still put the problem into
a conservative form as follows:

Liu] = Augy + 2Bugy + Cuyy + Duy + Euy + Fu+ G =0

V7. (g g) Vu— (Ag + By — D)ug — (By + C, — E)uy + Fu + G,

where V = (8%8%) . so that Vu = <z@’> If Ay+ B, — D =0and By +C, — E,
Y
it is self-adjoint.
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Treating the cross term like u,,

hm_17h
Assume gy = Uy, we approximate a% 8u by 6969U" where 60U (P) = w

is the central difference. Then from
U"(N) - U"(S)
2Ay

0r7h _
6,U"(P) =
and forward -backward difference formula we get

505077 — L UMNE) - UMNW) UMSE)-U"(SW)
vTET 24, 2Ax 2Ax

Change of variable method to eliminate the cross term

One can transform the variable so that the resulting equation in new variable
does not have cross term.

Lemma 1.3.2. Let s = s(z,y), t = t(z,y) be a coordinate transform which is

locally one-to-one onto. Denote its derivative by g((;;)) = PT, Jacobian matriz.

Then we have

Uz | |usSz +uty| us| _
Vst = [“y] a [“ssy"‘“tty] =P [“t] = Ven v

In other words,

_ (000 _ (G gt g e Z (3 a) (9199 —
Vi) _(3/ay>_< .%+g_;.% —\ o g_; 9/t =P Vs

Hence V%; 0 = V%; B PT and we see that

JIFFR

vr DAY (@)t = v@t)PTAPv(s,t)u.

(m7

If A is symmetric, there exists a P such that PT AP = diagonal = {dy,d>}.

If we choose s(z,y), t(z,y) so that % = PT then

0 ou 0 ou
T —
Ve AV @ = 5 (d%) o <d25> |

Example 1.3.3. Transform the problem wu,; + 4uzy + uyy = 0 so that it does
not have cross term.
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1 2
Since A = <2 1), its eigenvalues are 3, —1 with corresponding eigenvectors

1,1) and (1,—1), we see that with P = ol , we have
1 -1
T (3 0
P AP = (0 1)

Hence the transformed equation is

0  Ou 0 Ou
25525 ~ 2 ar)

1 1 O0s/0x 0s/0y\ s x
PT:(1-4)2<$Um:aUm)'” s=atyt=v—y () =P()

If s = constant, ds = s, dv + sy dy = 0, so the s = constant line is described

as j—g = —‘;—z = —%. Likewise, if ¢ = constant, dt = t,dx + t,dy = 0 .. g—g =

=0.

COSA —sin A

Lt _ Py _
Paz” It p [sin)\ cos A\

], s =xcosA —ysin\, t = xsin A + ycos A,
bcot 2\ = 5* when A is [a b].
b ¢

1.3.2 Treatment of irregular boundaries(Dirichlet boundary con-
ditions

A

~——1

Figure 1.2: Qy,, o regular, x irregular

Let €2 be a domain with grid. Let €2; be the set of all grid points in €.

Definition 1.3.4. Two points P, () on the grid are said to be properly adjacent
if they are adjacent and the line segment connecting P, () belongs to ).
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Let €} be the set of all regular points, i.e. the set of all points P € €} such
that its four adjacent points belong to €2 and they are properly adjacent to P.
Let ), = Qp, — Q) be the set of all irregular points.

In the following, we let E be the east neighbor point of P in 2 and let W
be the west neighborhood point of P in €y, etc.

Method 1

We form the difference equation LpU" = f at all regular points only while we
let U"(P) = ¢g(Q) if P is an irregular point. Here Q = P if P € 99. Otherwise,
Q is a point of 9N closest to P. Here U"(P) is not an unknown.

Method 2(Collatz-linear interpolation)

| % ha

W/V' P E

Figure 1.3: Near irregular boundary

We form L,U" = f" at all points of Q, as follows: First we form L,U" = fh
at all regular points of Q. If P € 0, is an irregular point lying near west part
of 99, take the point of intersection W’ of the line segment EP with 0. Then
we let

hl h hQ /
= U(E) + Wr).
hi 4+ ha (E) hi + ha wW)

Now append this equation to the difference equation. If E happens to belong to
09 also, then U"(P) is completely determined, hence we do not need to append
it to the difference equation.

Uh(p)

Remark 1.3.5. The last equation has nothing to do with the differential equation
itself, thus it may break certain properties of matrix.
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Method 3(Shortley-Weller)

For an irregular point P, we set

24 h __717h h —u(W!
%(P)éz(U (E)hQU S (P)hl (W)>/(h1+h2).

Advantage: This equation comes from the differential equation, thus preserv-
ing(hopefully) certain properties of the matrix(like positive definiteness, banded
structure, diagonal dominance). But usually symmetry breaks down.

Method 4

Let P be an irregular point whose west neighbor point W lies outside of €.
Assuming v is defined at W, we use extrapolation to get to get UM(W) =
aUMW') + BU(P), where W’ is the point of intersection of the line segment
from P with 0Q. (o = 2,8 = —22=M hy = h and hy is the distance from P
to the boundary.) We substitute U"(W) in the difference equation. (It is called

fictitious point method)

Neumann or Robin boundary condition(regular point)

Figure 1.4: regular boundary point

Consider the boundary condition of type g—z +~yu = gon 9. Let P be a
regular boundary point(boundary point lying on the grids). If the boundary is
vertical line, then use one sided difference to get

uh(p) — UME)
h

and append it to the difference equation.

+7(P)UM(P) = g(P)



20 CHAPTER 1. FINITE DIFFERENCE METHOD

. . . uhE)-U"(W
If P is an irregular boundary point(figure 1.3), use %—FW(P)U}’ (P) =
g(P). Now solve it for U (W) and substitute it into the difference equation at P

to get a new equation.

S (-UM(S) ~ UMW) + 4U(P) ~ UM (N) ~ U(B)) = £(P)

If P is near corner do the same for north and south derivative.

Neumann or Robin boundary condition(irregular point)

A/

Figure 1.5: irregular boundary point

We let C be a grid point not in 9Qp,. Draw a normal line to 9Q and let C”
be the point of intersection with 9. Now treat C' as a grid point. Extend C'C’
to the closest grid line consisting of AB, letting A’ denote the intersection of
extension and the segment AB. Use
u - u(C)-UMA
uory = ( )W( )
ke = (1-o)UMA)+oUM0)
= PO 4 (UM = ¢(C)
where U"(A’) is obtained by interpolation.
U4 = (1 —a)UMA) + aU"(B)

This is an equation involving unknowns U"(A), U"(B) and U"(C).
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Example 1.3.6.
—Viu+ @+ Hu =402 -z —y+4xy)e”?, 0<z,y<l1

where u(z,y) = [10—20{(z — £)*+ (y— 3)?}]e*¥ on the boundary. Compare with

h =02 5 x 5 mesh U — ul|loo = 0.0506
=0.1 10 x 10 = 0.0140
=0.05 20 x 20 = 0.0035

error is O(h?).
Assuming the error is of the form [|[U — ul|cc = M A%, we see

|Up —ul  Mh®

= = 2%
10, —ull = (B
These are computable with u replaced by Uy, . and
|Un — ul /
a =log log 2
1, —ul

Theorem 1.3.7 (Maximum Principle). Assume A is positive definite sym-
metric, ¢ > 0. Let u be the solution of elliptic p.d.e. given by

Z@x [Z ”8 }+cu-0——VTAVu+cu

Then for (x,y) € int

<
u(e.y)] < s Ju,y)

. Assume ¢ > 0. There exists orthogonal matrix P such that PTAP =
diag{dy, ds}. If u has a positive maximum at some interior point @ = (z*,y*) of

), then define
s T
pr
(1) =77 (;)

so that Llu] = —V(,)PTAPV(spu+cu = 0. At Q, us(Q) = w(Q) = 0,
uss(Q) < 0 and uy(Q) < 0. Hence

Liu) = —(dius)s(Q) — (daug)4(Q) + c(Q)u(Q) =0
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Remembering, d; > 0, do > 0, cu > 0 this is a contradiction. Similarly, u cannot
have negative minimum.

Now if ¢ > 0 not ¢ > 0 we consider a perturbation. Choose « so large that
L[e®®] = —(d1a? + dga? — ¢)e™® < 0 and let v = u + Fe®®,

Lv] = L[u] + EL[e**] <0 forall E >0.

Suppose v has a pos. max. at @), an interior point of Q. Then L[v] = —djvss(Q) —
dav(Q) + c(Q)v(Q) > 0, a contradiction. Hence u(z,y) < v(z,y) < maxgo{u +
Ee®**}. Let E — 0. Then

< .
u(z,y) < maxu
O
Applying maximum principle to u and —u, we obtain the following result.
Corollary 1.3.8. If
Lu] = 0 in Q
u = 0 on 0%,
then u = 0.
As a consequence we have uniqueness of solution.
Corollary 1.3.9. If u1, us satisfy
Llu;] = 0 in Q
U = g on 0L,
then u1 = us.

A symmetric, positive definite system satisfying L[u] < 0 has a unique solu-
tion.

Theorem 1.3.10 (Discrete max. principle). Let the grid function U satisfy
the finite difference equation Ly[U] =3 o A(P,Q)U(Q) =0, i.e,

A(P, P)U(P)+A(P, E)U(E)+A(P,S)U(S)+ A(P, N)U(N)+A(P,W)U(W) = 0

for each mesh point P, where coefficient A(P, Q) are generated by finite difference
method(e.g, p.955) and A is pos. def. weakly diagonally dominant.
Then

i P)<U(P") < P Il Px € int £y,
PglalghU( ) < U( )_PrgaagzchU( ), for all Px € intQy,
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Proof|. Solving for U(P), we have

UP) = ap ) —AP.QU(Q)

Q#P
Thus AP.0)
vl s 3 |5E s s 1U(Q)] < e V@)
since [A(P, P)| > ) |A(P, X)|. O

Q#P
Corollary 1.3.11.

U =0 on 082
implies U = 0.
Theorem 1.3.12. Discrete maz. principle also hold if Ly[U] < 0.

. Assume U(pg) > U(p) for all p € 9Qp,, po € Q. Then

AU (po) = 25 U 1) +U(p)] + 15U ) + Upo)] = 2055 + 3,)U (o).

T Yy T Y

But ApU = —Ly[U] > 0. Hence

which means U(pg) = U(p,), v = 1,2,3,4. Repeat the argument for each p,
instead of pg until we arrive at the boundary point of 2. Then we get

U(p) =U(po), Vp € QU
which is a contradiction to the assumption. O

Note. Minimum principle is obtained when L[U] > 0.

Theorem 1.3.13. Let u be the solution of Lu] = —VTAVu + cu = 0 in Q
and u = g on OS) and let U be the finite sequence of grid functions satisfying
Ly(U) = 0, where Lp(u) = O(h%), o > O(truncation error). If A is constant,
diagonally dominant, positive definite, then ||U — ul|oc = O(h®) as h — 0.
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. Let w = U — u, then Ljjw] = Lp[U] — Ly[u] = —Lp[u] and w = 0 on
09Q. Let s(x,y) = r? — (x — x0)? — (y — yo)? with (z0,70) € int, r chosen so
large that the circle s = 0 contains Q. Then Ly[s| = L[s] because s is quadratic.
(compute it)

L[s] = —-VTAVs+cs=—a115.0 — (a12 + a21)Szy — A22Syy + €S
= 2(a11 + ag2) + cs > 2(a11 + ag2).

There exist M > 0 such that |Lp[u]| < Mh® by the hypothesis Lp[u] = O(h®).

We see that

Mh®s(z,y) o
[42(@1 —|—a22)] > Mh® > |Lpu]l|.

Also
Mh%s(z,y)

L |[tw —
" [ 2(a11 + ag2)

} = tLp[w] — Lp[ ] < FLpfu] - Mh* <0
(Recall w = U —u and Lp[w] = —Ly[u] and w = 0 on 09)

Since the discrete maximum principle also holds if Ly, (U) = 0 is replaced by
Lh[U] S Oa

Mh%s Mh%s Mh® .
max [t — ———| < max | — ———| = —————mins < 0.
PeQ 2((111 + agg) PecoQ 2((111 + agg) 2(0,11 + agg) 15)9)
Thus |w| < % and
= Ul = oo < 522" o Mh
u— = ||lw - maxs < ——m——.
> 7 2(ann tae) @ T 2(an + a2)

1.3.3 Convection -diffusion equation

Consider another type of differential equation, namely a special case of convection
diffusion equation.
— €Uy + auy = f

u(0) = ug, u(l) =uy

or with Neumann condition «/(1) = 0 if a(1) > 0. If we use the central difference
scheme for the first order derivative, we get

—Uh . +oUr— U uh. —uh
6< z—1+ i H—l) +a i+1 7

-1 h
h2 2h = fi
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Thus the sum of off diagonal elements is

> aij| =
i#i

i_i‘
h2  2hl

e+a’+
h? = 2h

If a,h is fixed and € — 0, it becomes a/h, while a; = 2¢/h? — 0. Thus the
resulting matrix is not diagonally dominant and it causes a lot of problems. For
example, the resulting linear system is not positive definite and hence it may be
more difficult to solve. But, most importantly, the resulting discretization does
not yield an accurate approximation to the problem. One way to fix this situation
is to keep the Peclet number : % < 2 so that the sum of off diagonal elements is
less than 2¢/h? = a;. The disadvantage of this scheme is that small h enlarges
the size of discrete equation.

1.3.4 Numerical Difficulties

(1) The iterative method may fail to converge
(2) The solution may exhibit oscillation which are physically unrealistic

(3) Taking small mesh size means large problem size which take more time to
solve.

1.3.5 Upwind difference scheme

An alternative way to avoid this difficulty is to use backward difference for u, for
a > 0 and forward difference for u, for a < 0. This method of choosing difference
scheme is called upwind difference scheme. For a > 0

—Ulr | +2U0r - U Ul —uh
6( i—1 hzz i+1 +a i i—1 _ fzh

h

G et (e ) ot - o) o

The resulting system is irreducibly diagonally dominant, thus it is an M-matrix
and hence Jacobi method works.

The following examples are taken from (K.W. Morton-Numerical Solution of
convection-Diffusion problems, Chapman Hall, 1996)
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Example 1.3.14.

—eAu+b-u=0on (0,1) x (0,1)
with

b = b(cos 6, sin )

for 0 < 6 < 5 and discontinuous inflow boundary condition

u(O,y):{ 0, y€(0,3)

1, ye (3]

and g—z = 0 on the rest of the boundary. This leads to an internal layer along
Y= % + xtanf and a boundary layer at z = 1 for y > % + tan § when tan < %

Example 1.3.15 (Heat equation).

%—{—b'u = €eAuon Qx (0,7)
u(z,y,0) = up(z,y)

where ug(z,y) is a circular cone type centered at (1,0) with

b = b(wy, —wx)

with exact inflow boundary are needed.

1.4 Parabolic p.d.e’s

Consider a heat equation on a bar.

Ut = Uy, 0< <1, 0O0<t<T.

Theorem 1.4.1 (Maximum principle). If u satisfies the above condition for
t<T, then

min hl=m< min u < ma u < M = ma h
{f.9:h} T 0<2<1,0<t<T T nggl,o)éth - x{f.9,h}
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9(t) Q h(t)

Figure 1.6: Domain

. Putv=u+ Ez%, E >0

Ov B 0%

If v attains a maximum at ) € int {2, then

vt(Q) =0,

Thus (vt — v35)(Q) > 0, a contradiction. Hence v has maximum at a boundary
point of Q2
u(z,t) <v(x,t) <maxv(z,t) < M+ E.

Since E was arbitrary, the proof is complete. For minimum, use —F instead of
E. O

More general parabolic p.d.e.
up = Augy + Dug, + Fu+ G

FD.M Explicit - - - write down the values of grid function
o Implicit - - - variables implicitly representing the value

Let the grid be given by

ro<r] <x2 < - <axnx1 =1, x; =1th, uniform grid
= o <t1 < -- tj:jki
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Explicit method

U j41=Uiy
7J+}€ Jo Uy
Uit1,; —2U;,j+Ui—1,; -
2 = Uzgy
Uijt1 = AUizrj + (1 = 20)Uij + AUipa

where \ = k/h2.
Stability: Error doesn’t accumulate. In this case solution remains bounded
as time goes on.

Theorem 1.4.2. If u is sufficiently smooth, then

oo = MR 008w b0

and
u(z,t+ k) —u(z,t)

k

Uy —

‘:O(k) as k—0

Theorem 1.4.3. Suppose u is sufficiently smooth, and satisfies

Uy = Ugy O<z<l, t>0
u(z,0) = f(z)
u(0,t) = g(t)
u(l,t) = h(t).

If U; ; is the solution of the explicit finite difference scheme, then for 0 < A < %,

max [u; ; — Ui j| = O(h* + k) as h,k—0,
0]

i.e, finite difference solution converges to the true solution.

u = g1(y) u = g2(y)

h__bh Bh b
u=f(z)

Figure 1.7:
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. Put wi; = u(xs,t;). Then from

(1) SR+ O(R)

WUjg1.7 — 2U; 5 + Ui s
R ()

we get

k
Ui j+1 = Uij + ﬁ(“iﬂ,j = 2u;j + ui1;) + k(O(k) + O(h?)).

Hence
Ujj+1 = )\UZ’_LJ‘ + (1 — 2/\)ui7j + /\ui+1,j + Ck‘(k + h2)

Let the discretization error be w; ; = u;; — U;; so that
Wi 41 = )\w,-,Lj + (1 — 2)\)wm + )\wi+1,j + O(k‘2 + /ﬂhQ).

Since 0 < A < %, 0 <1-—2X< 1, three coefficient are positive and their sum is
1. (convex combination) We see

]wi,j+1| < A]wi_1,j| + (1 — 2)\)”11)2'73" +)\’wi+17j‘ —|—M(k‘2 —|—k’h2) for some M > 0.
If we define ||w;|| = maxi<ij<n |w;;|, then

lwitall < llwjll + M (k* + kh?)
< wja|| + 2M (k2 + kh?) < -+ < |lwo|| + (j + 1) M (k2 + kR?).

Since |lwpl|| = 0,
w1l < G+ DM (k+h?) <TM(k+h?), (G+1)k<T.

In fact,
2

1 k
M = - — :
nggnll,%);th(Q e + 12 [tz )
Remark 1.4.4. If A > %, the solution may not converge.
Exercise 1.4.5. Prove the formula is unstable for A > % Let

u(z,0) = {5’ T

with g=h=0
0, g

o= N|—

RIS
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Ujs1 =i+ (1= 20U + AUirs - A=k/h?
\Uij+1l = MUz + @A =D|U; ;| + MUi—1,j], 1<i< N -1

Hence
N-1 N-2 N-1 N
D Uijial = AD  Uiprgl+ @A = 1)) Uil + A [Uical,
i=1 =1 i=1 =2

since U(xi,t) = 0,4 =1,N. Let S(t;) = S~ |U(i,5)|- Then
S(tjr1) = (AA=1)S(t;) = (AA=1)*S(t;1) = --- = (AA=1)7T15(0) = (4A—1)7 e,

Since the number of nonzero U; ; for each j is 2j 4 1, there is a point (x,,t;) such
that

1 1 .
U ti)| > ——=S(t;) = ——(4Xx—1)7 -
which diverges as j — oo since 4\ — 1 > 1.

Considering the alternating sign, one can see the solution alternates: j =0
UZ'71 = (1 - 2)\)6, Ui_171 = )\6, Ui+171 = Xe

Uia =2\ + (1 —20)2%6,U;_12 = (1 — 2\)e + (1 — 2\)e = 3Xe(1 — 2)) < 0.
Stability of linear system

1—2X A ... 0 9(t5)
Ut,j+1 \ Loy - Ut 0
: = : + :
Un-1,+1 0 N A UN-1, 0
A 1 -2\ h(tj)

In vector form, Uj;q = AUj + Gj. Assume G; =0, j =1,2,.... Let 4 be an
eigenvalue of A. Then by G-disk theorem,

[T—2X\—p| < 2X
—2\ < 1-2X—p <2A
=2\ < 1422 +p<2)
1—-4x < pu<1

Ifo< A< %, then —1 < p < 1, hence stable. If A > %, then |u| > 1 is possible. So
the scheme may be unstable. The following example show it is actually unstable.
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Example 1.4.6 (Issacson, Keller). Try v(x,t) = Re(e!®*~**) = cos ax - e %t
B Lov(@t+AY) —o(z,t) vl + Ax,t) —20(z,t) +v(z — Az, i)
vt tae = At Ax?
- e A —1\  cos(ax + aAx) — 2cos ax + cos (ax — aAx) -t
At Ax?
B e‘“’At—l_ZcosaA:c—2
B ’ At Ax?
1
= o(z, t)Kt{e_wAt — [(1 = 2X) + 2X cos aAz]}
1 A
= v(z, t)Kt [e_“’m - (1 — 4\ sin? %)]
wAt

Thus v is a solution of the difference equation provided w and « satify e~ =
1 — 4\ sin? %‘x.
With I.C. v(z,0) = cos auz, solution becomes

5 Az ar
2

v(x,t) = cos axe ! = cosax (1 — 4Asin

Clearly, for all A < %, |v(z,t)] < 1. However, if A > %, then for some Az, we
have |1 — 4Asin? O‘Qﬂ‘ > 1. So wv(z,t) becomes arbitrarily large for sufficiently
large t/At. Since every even function has a cosine series, we may give any even
function f(z) of the form f(z) =), B, cos(2"mz) to get an unstable problem.

Implicit Finite Difference Method.

Given a heat equation

w0.8) — g(B) t>0
u(l,t) = h(t)
u(z,0) = f(z), 0<zx<1

We discretize it by implicit difference method.

Uijt1 = Uij _ Uit1j+1 = 2Uij41 + Uic1j41
At Az?

Multiply by At, then with A\ = At/Ax?, we have

Uij+1 = Uiy = AUitj41 — 20U jp1 + AUi-1,j4+1
~U;; = Ais1,j+1 — (L +20)U; jp1 + AUi—q 41 j=1...,N -1
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This yields a system of N — 1 unknowns in {Ufl"j_l,_l},f\;_ll.

[(1+2)) =X 0 1
[ =AU j11 |
0 ~Uy - (1+2X)) -
v = -
0 *UNfl,] 0
[ —AUN,j+1 A
I 0 “A (142
Ui,j1
o .
UN-1j+1

Theorem 1.4.7. The implicit finite difference scheme is stable for all X =
At/Az%. (solution remains bounded,).

. For each j, let Uy ;) ; be chosen so that |Uy; ;| > [Uijl, i =1,...,N—1.
We choose ig = k(j + 1) in the following relation.

Uijs1r = Uiy + MUit1541 = 2Ui 1 + Uisr i ;-

Then
(1 +20)Uigj+1 = Uig,j + MUigt1,5+1 + Uig—1,5+1}
for 1 <4¢ < N — 1. Taking absolute values,

(14 2X0)|Uig 11| < Uiy,

+ A|Uigs1,j+1] + [Uig—1,5411) < |Uig 31 + 2MUsg 41|

Thus |Ui0,j+1| S |Ui0,j| S |Uk(j),j’ and hence |Ui,j+1| S |Ui0,j+1‘ S ‘Uk(j),j| fOI‘
1<i<N -1, and |U; j+1| £ M = max{f,g,h}, for i =0 or N, by boundary
condition. Repeat the same procedure until we hit the boundary.

Ui g1l < Uk il < -+ < [Ug(o)0l < M =max(f,g,h)
O
Using the matrix formulation: We check the eigenvalues of the system
AUjy1 = Uj + G

Eigenvalue of A satisfies | + (1 4+ 2))| < 2X by G-disk theorem. From this, we
see || > 1 and hence the eigenvalues of A~! is less than one in absolute value.
Thus

Ujp1 < Ail(Uj + Gj) == Aij*lU[) + Aij*lGQ + A7j72G1 + -4 AilGj.
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U < HAZH ol + A7 - max || Gy |

1
1— A=Y
remain bounded. Note. A does not have —1 as eigenvalues and all the eigenvalues
are positive real.

Theorem 1.4.8. For sufficiently smooth u, we have
luij — Uij| = O(h* +k) as h and k—0 (for all \)
. Let u;j = u(z;,t;) be the true solution. Then we have

Ui j+1 = Ui

1
= gt g = Ui Ui} + OB+ E)

Let w; j = u;; — U; ; be the discretization error. Then

wijr1 = Wij+ Mwip1 41 — 2w j11 + wi—141} + O(kh? + k?)
(I +2Nwijr1 = wij+ M1 + Awim 11 + O(kh? + k?)
Let ||w;|| = max; |w; j|. Then

(14 20w | < llwgl] + 20wy || + O(kA2 + 1)

and so
(L4 22w ]| < ooy} + 27wy || + O(kh? + &),
Thus
lwjrill < llwyll + C(kh® + &?)
< ol +C(F + 1E(E+ h2)
< |lwoll + CT(k + h?) = CT(k + h?)
fort=(G+1)k<T. O

1.4.1 Discretization of parabolic p.d.e, General Case

Consider

ou 0  Ou 0, Ou
i gy - (g2 — in Q T
o 8x(p6x)+8y(p6y) yu+ f in Q x [0,T]

I.C. wu(z,y,0) = h(z,y)in Q
B.C. wu(z,y,t) = g(x,y,t) for (z,y) € ON.
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Uq,j+1 Ui—1,5+1 Uq, 541 Ui+1,5+1

Ui—1,j Ui, j Uit1,j Ui, j

Figure 1.8: forward backward Euler method Stencil

where ¢, p,, f are functions of z,y and t. Assume

O<p0 Sp(x7y7t)§p1
0 <H(z,yt) <«
0<co <c(z,y,t) <ec.

With U, = U(zi, yj, ) we have

_ 1
MpUy = mgz (Playe, Ul T 0012, Ul 1y = (00 + P10 UT;

+ agz Piin2Uli H 000Ul -1 = 07400 + P10 2) Uy ) = 7E5U7;
For 0 <6 <1, we let

n+1 n

[0 4+ (1 a)c;;]”Ttw = MU + (1= ) MUY + 0 f + (1—0) 7

For 6 = 0, we have

n+1 n
2 Yij — Ui

Ciij = MhUg?j + fz-’;’- forward Euler
For 6 = 1, we have
yrtl _pgn.
CZ+1thw = MhUZ;r 14 f;;“ backward Euler

For 0 = %, we have Crank-Nicolson.

Matrix formulations

For 6 =1,
el chtl
(] I— M i+l (] g0 ﬁn
(( At ) h) v A )Vt
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Ui—1,5+1 Wi+l Uitl,5+1
t=j+1

t=j

Ui—1,5 Ui, j Wit1,5

Figure 1.9: Crank-Nicolson method Stencil
For 6 = %,

c?jJrl 1 Fn+l Gj 1 e
=M, | O = (24 DMy ) O 4 S (F7 4+ P

At At 2 2

_ 1
where ¢;; = %(c?j“ + cf])

Exercise 1.4.9. (1) Consider a heat equation with k =1

Ut = kugy O<x<l, t>0
u(z,0) = f(z)
u(0,t) = g(t)

( 9(
u(l,t) = h(t).
where k > 0 is constant. If f(z) = cosmz, ¢(t) = 67%, h(t) = e

k
it has solution v = e_w_g cosmx. Use the following method to compute
numerical solution up to 7" = 1.0. Check ||lu — Ul|2 or ||lu — Ul|« for each

time step jAt.

(a) Explicit FDM with h =
(b) Implicit FDM with h =
and 1.6 .

You can use either Gauss-Seidel type of iteration method or LU-decomposition
to solve the system of equations arising in the implicit method.

%, 2%, for k = Ah? where X\ = 0.2,0.4 and 0.6.
15> 35, for k = Ah? where A = 0.2,0.4, 0.6, 0.8

1.5 Hyperbolic Equation

{Ut + a1z + ajpvy = by (1.1)

Vt + ao1Uy + a99v; = by
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where a; ; and u, v and function of (z,t).
u(z,0) = f(x) t>0
v(z,0) = g(x) —o00< T <00
Let w = [u,v]T, b= [b1,b2]", A ={a;;}. Then the D.E. is of the form
Wi+ AW, =b.

Equation (2.94) is called hyperbolic, if there exist a P such that P~'AP =
diag{\1, A2} where \;(z,t) are real and distinct. Let Z = [21, z2]” be related to
W by W = PZ, then

PZ 4+ PZi+ A(P,Z + PZ,) = b
PZ;+ APZ, = b—(Pi+AP,)Z
Zi+ P 'APZ, = P 'b— (P, + AP,)Z} = f(x,t,2).

Componentwise,
(Zi)e + NilZi)z = Bi, i=1,2.
Let z;(t) be the solution of the o.d.e.

dl‘i
dt

= \i(x;,t) such that x;(t") = 2™

Let Z;(t) = Zi(x;(t),t) be defined along the curve % = X;(z;,t) (called charac-
teristics). Then

0Z; 0Z;

dZi _ 822' dJ?Z' aZi 9%
Ox ot

i ox dat | ot

= N\i(z;(t),1t)

= ﬂz ("EU L, Z)
Thus Z;(x;(t),t) solve the o.d.e (p.d.e on the characterstics) with
Z;(0) = Z,-(wi(O), 0) = (P*1W)i(xi(0),0).

The shaded part is called the “Domain of dependence” of (z*,¢*) and its base
is called the “interval of dependence”.

A necessary condition for convergence: The numerical domain of dependence
must contain the analytic domain of dependence.

If the grid point is only in the inner region of the domain of dependence,
then changing f by f 4+ d, g by d+ d near the boundary yields the same solution
(numerical).
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Example 1.5.1. Plucked string of wave

Ut = CUy
Vg = Cly

Ut — gy = 0

u(z,0) = f(x)
ug(x,0) = cvg(x,0) = G(z)

A R ]

Eigenvalues of A are +¢. Corresponding to the eigenvector (_11),(%) Therefore,

(1)

If W = PZ, then

02, 92

c =0
c 0 B ot oz KY
Zt—i-(O _C>ch—0:>a272 32’2_0 z(t") ==z
ot ox
Along d;tl =c, ddif = —c, % = 0. Thus
zi1(t) =ct+z*—ct* = Zi(ct+z*—ct*t) =Zi(z*—ct*,0)
xo(t) =—ct+a*+ct* = Zo(—ct+a*+ct*t) = Zy(x* + ct*,0)

1 /1 -1 U
_ —1”7 _ -

[u(xv t) - U(xv t)] =

[u(z,t) +v(z,t)] =

Zi(z,t) = [f(a" = ct®) — g(a™ — ct”)]

N~ N~
N =N =

Zo(xz,t) = [(f(z* + ct™) + g(a™ + ct™)]
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Hence

u o, |11 [f@ =) — g(at — et?)
[v] (2 1) =ba= [—1 1] > [f(a:*+ct*)+g(:c*+ct*)}
[ flz* —ct*) — g(a* — ct*) + f(a* + ct*) + g(x* + ct¥) ]
—flx* —ct*) + g(z* — ct*) + f(z* + ct*) + g(z* + ct¥)

1
2
These are called D’Alembert solutions.

1.5.1 Method of Characteristics
Numerical procedure “See R.S. Varga” or “Y. Gregory” Chl6

dczi = )\z(xla t)7 L= 17 27

d(ii :ﬁi(xhtv ZhZQ)

Assume Z;(t, z) is known at t-th level (say by interpolation).
1st step: Find Py (Z1,t), Pa(Z2,t) by

¥ —

At

= \i(z*, t%), i=1,2 (Backward)

2nd step:
Zi(P~) — Zi(P)
At
solve for Z;(P*),i=1,2.

= Bi(P;, Z1(Fy), Z2(F;)) (Forward)

P*(z*,t
oo Py

Figure 1.10: Find 21, Z2



