
Chapter 2

Variational Formulation

2.1 Boundary Value problems

Example 2.1.1 (One dim’l problem).

−u′′ = f on I ≡ (0, 1), with B.C. u(0) = u(1) = 0.

Multiply a test function v ∈ H1
0 (I) and integrate

(−u′′, v) = −
∫ 1

0
u′′vdx

= −[u′v]10 +

∫ 1

0
u′v′dx =

∫ 1

0
fvdx.

Thus we have

(u′, v′) = (f, v), v ∈ V = H1
0 (I).

We will replace the space H1
0 (I) by a finite dimensional space Sh(I) of con-

tinuous, piecewise linear functions on I.

xi−1 xi xi+1

φi−1 φi φi+1

Figure 2.1: Basis in one-dimension
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Let hi = xi − xi−1, Ii = [xi−1, xi]. Let uh =
∑n−1

j=1 cjφj , where φi ∈ Sh(I)

is the Lagrange basis function associated with the note xi. Then substituting

into (??), we obtain

n−1
∑

j=1

∫ 1

0
cjφ

′
j(x)φ

′
i(x)dx =

∫ 1

0
f(x)φi(x)dx, i = 1, 2, · · · , n− 1.

Hence we obtain the matrix equation

Ahuh = fh,

where

(Ah)ij = Aij =

∫ 1

0
φ′
j(x)φ

′
i(x)dx, fi =

hi−1 + hi
2

f(xi).

If we use a uniform spacing, then a typical row of Ah is [· · · , 0,−1, 2,−1, 0 · · · ].
This matrix is the same as the one from FDM (up to the factor of h2).

A typical row of Ah is

(

· · · , 0,− 1

hi−1
,

1

hi−1
+

1

hi
,− 1

hi
, 0, · · ·

)

Example 2.1.2. k = 2 quadratic basis. The basis function associate with the

nodes are

φi(x) =































1 + 3

(

x− xi
hi

)

+ 2

(

x− xi
hi

)2

if xi−1 ≤ x < xi

1− 3

(

x− xi
hi+1

)

+ 2

(

x− xi
hi+1

)2

if xi ≤ x < xi+1,

0 otherwise

, i = 0, 1, · · · , n

(2.1)

Here hi = xi − xi−1. The basis function associate with the mid pts are

φi−1/2(x) =











1− 4

(

x− xi−1/2

hi

)2

if xi−1 ≤ x < xi

0 otherwise

, i = 1, · · · , n (2.2)

Then

φi(xk) =

{

1 if i = k

0 otherwise
, i, k = 0, 1/2, 1, · · · , n− 1, n− 1/2, n (2.3)
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xi−1 xi xi+1

φi−1 φiφi−1/2

Figure 2.2: Basis in one-dimension, k = 2

2.1.1 The Poisson equation in R
2

Let Ω be a bounded domain in R
2 and ∂Ω denote its boundary.

We say a function u defined on Ω is a classical solution of the Poisson

equation with homogeneous boundary condition if u ∈ C2(Ω), u ∈ C(Ω̄) and

u satisfying










−∆u(x, y) = f(x, y) for (x, y) ∈ Ω

u(x, y) = 0 for (x, y) ∈ Γ1

∂u
∂ν (x, y) = 0 for (x, y) ∈ Γ2,

(2.4)

where ∆ is the Laplacian operator and Γ1 ∪ Γ2 = ∂Ω and Γ1 ∩ Γ2 is a set of

measure zero. It is well known that for sufficiently smooth boundary, there

exists a unique classical solution of (2.4) provided that Γ1 is measurable with

positive measure.

We will assume that Ω is a normal domain, i.e., it admits the application

of divergence theorem:

∫

Ω

∂u

∂xi
dxdy =

∫

∂Ω
uνids, i = 1, 2 u ∈ C1(Ω̄), (2.5)

where νi are the components of unit outward normal vector to ∂Ω.

Fact: Every polygonal domain or a domain with piecewise smooth bound-

ary is a normal domain.

As a consequence of (2.5) we have the Green’s Formula.

∫

Ω
v∆udxdy =

∫

∂Ω
v
∂u

∂ν
ds −

∫

Ω
∇u · ∇vdxdy. (2.6)

Suppose that u is a classical solution of (2.4) and that v ∈ V = {φ ∈ C∞(Ω) :

φ = 0 on Γ1}. Since v = 0 on Γ1 and ∂u
∂ν = 0 on Γ2, we see (2.6) yields

−
∫

Ω
v∆udxdy =

∫

Ω
∇u · ∇vdxdy := a(u, v).
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Hence u satisfy

a(u, v) = (f, v) v ∈ V, (2.7)

where (f, v) =
∫

Ω fvdxdy. a(u, v) is a bilinear form defined on H1(Ω) and is

called the Dirichlet integral associated with the Laplace operator −∆.

The space V can be shown to be dense in H1
Γ1
(Ω) = {v ∈ H1(Ω) : v = 0 on

Γ1}. It is not difficult to show that (2.7) actually holds for every v ∈ H1
Γ1
(Ω),

i.e,

a(u, v) = (f, v) v ∈ H1
Γ1
(Ω). (2.8)

We now define a generalized (weak) solution u ∈ H1
Γ1
(Ω) of (2.4) as a function

u in H1
Γ1
(Ω) which satisfy (2.8). We will show the existence and uniqueness

of this weak solution using the Lax-Milgram theorem(Later). First, let u, v ∈
H1

Γ1
(Ω), then

a(u, v) =

∫

Ω
∇u · ∇vdxdy ≤ ‖u‖1‖v‖1

so that condition (i) of the Lax-Milgram theorem holds. Now the second con-

dition of the Lax-Milgram theorem holds by the Poincaré inequality. Clearly,

for f ∈ L2(Ω), the linear form (f, v) defines a bounded linear functional on

H1
Γ1
(Ω). Hence there exists a unique u ∈ H1

Γ1
(Ω) such that (2.8) holds. More-

over ‖u‖1 ≤ c‖f‖. More can be said about the solution if the boundary is

smoother and f assures more regularity: For example, if ∂Ω is of class Cr and

f ∈ Hr−2(Ω), then

u ∈ Hr(Ω) ∩H1
Γ1
(Ω) (2.9)

and

‖u‖r ≤ C‖f‖r−2. (2.10)

Results such as (2.9) and (2.10) are known as elliptic regularity estimates.

An example of FEM

Example 2.1.3 (Poisson problem-Dirichlet BC.).

−∆u = f in Ω

u = 0 on ∂Ω.

Assume Ω = [0, 1]2 and that we divide Ω into 2n2 right triangles of length

h. Let S0
h(Ω) be the space of continuous, piecewise linear on each element sat-
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Figure 2.3: Standard nodal Lagrange local basis

Figure 2.4: Finite element meshes

isfying zero boundary condition. Let uh =
∑

ujφj where φj is the nodal(tent

shape) basis function satisfying φj(xi) = δij . Then multiply φi and integrate

by part to get

∫

Ω

∑

j

uj∇φj · ∇φi dxdy =

∫

Ω
fφi dx, for each i = 1, 2, · · · .

Writing a(φi, φj) =
∫

Ω∇φj · ∇φidxdy, we get

∑

j

a(φi, φj)uj = (f, φi).

In matrix form, it is

Au = f , Aij = a(φj , φi).

A is called the ‘stiffness’ matrix.
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Example 2.1.4 (Neumann problem).

−∆u+ u = f in Ω
∂u
∂n = g on Γ = ∂Ω.

(2.11)

Note in this case u is unknown at the boundary. So we set V = H1(Ω)(not

H1
0 (Ω)!).

1

(−∆u, v) + (u, v) = (∇u,∇v) + (u, v)− < g, v >Γ= (f, v).

So the variational problem is: (N) Find u ∈ H1 such that

a(u, v) = (f, v)+ < g, v >Γ, v ∈ H1,

where a(u, v) = (∇u,∇v) + (u, v).

Show: If u ∈ C2 is the solution of (N) then it is the solution of (2.11).

Proof. Let u be the solution of (N). Then for v ∈ H1

a(u, v) = (−∆u, v) +

∫

Γ

∂u

∂n
v + (u, v) = (f, v)+ < g, v >Γ .

∫

Ω
(−∆u+ u− f)v =

∫

Γ
(g − ∂u

∂n
)vds, v ∈ H1.

Restrict to v ∈ H1
0 . Then we get

−∆u+ u− f = 0 in Ω.

Hence we have
∫

Γ
(g − ∂u

∂n
)vds = 0, v ∈ H1

which proves g = ∂u
∂n . The condition ∂u

∂n = g is called the natural boundary

condition. (Look at the space V , we did not impose any condition, but we got

B.C naturally from the variational formulation.)

More general Boundary Conditions

We consider a mixed BC. i.e., on one part, the Dirichlet condition is imposed,

while on the other part Neumann condition is imposed. We also consider more

1If g = 0, we have a physically insulated boundary.
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general coefficients,

Example 2.1.5. Assume there exists two positive constants p0, p1 s.t. 0 <

p0 ≤ p(x, y) ≤ p1. Consider

−∇ · p∇u = f in Ω

u = 0 on Γ1 (2.12)

∂u

∂n
= g on Γ2 := ∂Ω\Γ1.

Let V1 = VΓ1 = {v ∈ H1(Ω), v|Γ1 = 0}. If v ∈ V1,

(−∇ · p∇u, v) = −
∫

Γ
p
∂u

∂n
vds+

∫

Ω
p∇u · ∇vdxdy

= −
∫

Γ2

p
∂u

∂n
vds +

∫

Ω
p∇u · ∇v dxdy = (f, v).

The variational formulation is: Find u satisfying the Dirichlet condition such

that

a(u, v) = f̃∗(v), ∀v ∈ V1, (2.13)

where a(u, v) = (p∇u,∇v) and f̃∗(v) = (f, v)+ < pg, v >Γ2 .

Exercise 2.1.6. A fundamental solution of the PDE is the solution of

(LyG(x, y))(x, y) = δ0(y − x), x, y ∈ R
2,

in the distributional sense. Greens function of a PDE is a fundamental solu-

tion satisfying the boundary conditions. Greens functions are distributions.

(1) (10pts) In this problem we study Green’s function

(a) Find a function G ∈ H1
0 (I) satisfying

(G′, v′) = v(xi), for all v ∈ H1
0 (I). (2.14)

(b) Assuming G′′ exists in some sense, interpret

−(G′′, v) = v(xi), for v ∈ C(I)

This means

−G′′(x) = δ(xi)
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where δ(xi) the Dirac function. So we have a Green’s function.

(c) Using this show we show that in one dimensional case, uh(xi) =

u(xi) for each node.

(2) (10pts) For this and the next problem, assume u0 = g = 0. Show the

solution of (2.13) satisfies (2.12).

(3) (10pts) Show that we have an equivalent minimization problem : Find

u ∈ V1 such that F (u) ≤ F (v) for all v where

F (v) =
1

2
a(v, v) − (f, v)− < pg, v >Γ2 .

(Hint) Take derivative of F (u + ǫv) w.r.t ǫ and set it to 0 at ǫ = 0 to

obtain (2.13).

Exercise 2.1.7. (1) (trace thm) (10pts) Let Ω be a unit square. Assuming

the trace of v exists along the boundary, show that

(
∫

Γ
v2ds

)1/2

≤ C‖v‖H1 , ∀v ∈ H1(Ω).

(2) (10pts) Show that

‖v‖2L2(Ω) ≤ C1|v|21,Ω + C2

∣

∣

∣

∣

∫

Ω
v dx

∣

∣

∣

∣

2

. (2.15)

(Hint: first assume v ∈ C1(Ω). )

Lemma 2.1.8. Suppose that w ∈ L1(0, a), w(x) ≥ 0, a ≥ b > 0; then we have

∫ b

0
dr′
∫ a

0
dr′(r − r′)

∫ r

r′
w(x)dx ≤ C0

∫ a

0
w(x)dx, (2.16)

where C0 = (4a2b− 4ab2+ b3) for a ≥ 2b and C0 = (a3+ b3)/8 for b ≤ a ≤ 2b.

Proof. We have, using integration by parts,
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∫ b

0
dr′
∫ a

0
dr′(r − r′)

∫ r

r′
w(x)dx

≤
∫ b

0

[

(a− r′)2

2

∫ a

r′
w(x)dx +

r′2

2

∫ r′

0
w(x)dx

]

w(r)−
∫ a

0
dr

[∫ b

0

(r − r′)2

2
dr′
]

≤
[

C

2
− min

0≤r≤a

∫ b

0

(r − r′)2

2
dr′
]
∫ a

0
w(x)dx

where C =
∫ b
0 max((a− r′)2, r′2)dr′ =

∫ b
0 (a − r′)2dr′ = (a3 − (a − b)3)/3,

for a ≥ 2b and C =
∫ a/2
0 (a − r′)2dr′ +

∫ b
a/2 rdr

′ = (a3 + 4b3)/3 for a ≤ 2b.

min0≤r≤a

∫ b
0

(r−r′)2

2 dr′ = min(3br2 − 3b2r + 4b3) = −b3/4 and we get (2.16).

Lemma 2.1.9. Let K = [0, 1] × [0, 1]. We have

‖v‖20 ≤
1

4
|v|21 +

∣

∣

∣

∣

∫

K
v(ξ, η)dξdη

∣

∣

∣

∣

2

,∀v ∈ H1(K) (2.17)

Proof. It is enough to prove (2.17) for v ∈ C2. For any (s, t), (s′, t′) ∈ K,

v2(s, t) + v2(s′, t′)− 2v(s, t)v(s′, t′) =

(
∫ s

s′

∂v

∂ξ
(ξ, t)dξ +

∫ t

t′

∂v

∂ξ
(s′, η)dη

)2

≤ 2

[

(s − s′)

∫ s

s′

(

∂v

∂ξ
(ξ, t)

)2

dξ + (t− t′)

∫ t

t′

(

∂v

∂η
(s′, η)

)2

dη

]

Integrating over (s, t), (s′, t′) ∈ K on K, from Lemma 3.2 and now with a =

b = 1, we get (2.17).

2.2 Variational formulation of BVP

In many cases, second order BVP can be cast into a minimization problem of

certain (nonlinear) functional.

Definition 2.2.1. Let V be a set in a Hilbert space. Let B(u0, ǫ) = {u ∈ V :

‖u−u0‖ < ǫ} be a neighborhoodof u0. Let f be a real valued function defined

on V . We say u0 ∈ V is a local minimizer of f if there exists an ǫ > 0 such

that f(u0) ≤ f(u), ∀u ∈ B(u0, ǫ). If f(u0) < f(u), ∀u ∈ B(u0, ǫ) we say

u0 ∈ V is a strong local minimizer of f .
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Definition 2.2.2. u0 ∈ V is called a global minimizer of f if f(u0) ≤ f(u), ∀u ∈
V.

Definition 2.2.3. Let u, η ∈ V with ‖η‖ = 1. Suppose there is a t0 > 0 such

that the function defined by g(t) = f(u + tη), |t| < t0 has continuous m-th

derivative, then the m-th directional derivative of f at u is

f (m)(u; η) = g(m)(0) =
dmf(u+ tη)

dtm
|t=0.

Definition 2.2.4. If f (1)(u0; η) = 0, ∀η ∈ V, ‖η‖ = 1, then f is stationary at

u0.

Theorem 2.2.5. Suppose there exists a u0 ∈ V such that f (1)(u0; η) exist for

all direction η. If u0 is a local minimizer of f , then f is stationary at u0.

Proof. By Taylor expansion, f(u0 + tη) = f(u0)+ tf (1)(u0; η)+ o(t), ‖η‖ = 1.

Suppose f (1)(u0; η) is nonzero, say positive for some η. then there exists a t0

such that tf (1)(u0; η) + o(t) < 0, for −t0 < t < 0. Hence every nhd of u0 has

a point u = u0 + tη such that f(u) < f(u0), which is a contradiction.

Conversely we have

Theorem 2.2.6. Suppose f is C2 and u0 is a stationary point of f . Suppose

f (2)(u0; η) ≥ 0 for all direction η. Then u0 is a local minimizer of f .

2.2.1 Euler- Lagrange equation

Green’s identities: Let Ω be a domain in R
2 with piecewise smooth boundary.

We have for u, v ∈ C ′(Ω̄),

∫

Ω
uvxdxdy =

∫

∂Ω
uvν1ds−

∫

Ω
uxvdxdy (2.18)

∫

Ω
uvydxdy =

∫

∂Ω
uvν2ds−

∫

Ω
uyvdxdy. (2.19)

Apply this to each component of ~v = (v1, v2) and add to get

∫

Ω
u∇ · ~vdxdy =

∫

∂Ω
u~v · ~νds−

∫

Ω
∇u · ~vdxdy.

Now if ~v is replaced by ∇v

∫

Ω
u∆vdxdy =

∫

∂Ω
u
∂v

∂ν
ds−

∫

Ω
∇u · ∇vdxdy.
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Interchanging u and v and subtracting,

∫

Ω
(u∆v − v∆u)dxdy =

∫

∂Ω
(u

∂v

∂ν
− v

∂u

∂ν
)ds,

where ~ν = (ν1, ν2) is the outward unit normal vector to ∂Ω.

A minimizer of a functional

Given a continuous function α defined on ∂Ω, we let

Vα = {v ∈ C2(Ω̄) : v = α on ∂Ω}

be the set of admissible functions. Then the corresponding test space is

V0 = {v ∈ C2(Ω̄) : v = 0 on ∂Ω}.

Consider a functional

f(u) =

∫

Ω
F (x, y, u, ux, uy)dxdy, u ∈ Vα.

We get a condition for stationary point for f by letting its first order directional

derivative to be zero for all η ∈ V0, i.e,

f (1)(u; η) =

∫

Ω
(
∂F

∂u
η +

∂F

∂ux
ηx +

∂F

∂uy
ηy)dxdy = 0. (2.20)

Integrating by parts, we have

∫

Ω

[

∂F

∂u
− ∂

∂x

(

∂F

∂ux

)

− ∂

∂y

(

∂F

∂uy

)]

ηdxdy (2.21)

+

∫

∂Ω

(

ν1
∂F

∂ux
+ ν2

∂F

∂uy

)

ηds = 0, ∀η ∈ V0. (2.22)

Since η = 0 on ∂Ω, the line integral vanishes and hence get

∫

Ω

[

∂F

∂u
− ∂

∂x

(

∂F

∂ux

)

− ∂

∂y

(

∂F

∂uy

)]

ηdxdy = 0, ∀η ∈ V0 (2.23)

which in turn implies

∂F

∂u
− ∂

∂x

(

∂F

∂ux

)

− ∂

∂y

(

∂F

∂uy

)

= 0 in Ω. (2.24)
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This is called the Euler Lagrange equation. The boundary condition u = α is

called essential boundary condition. To find the natural boundary condition,

consider V = {v ∈ C2(Ω̄)}. From (2.21) the second term is zero since V0 ⊂ V .

Thus (2.24) still holds. Now from (2.21) again, we have

∫

∂Ω

(

ν1
∂F

∂ux
+ ν2

∂F

∂uy

)

ηds = 0, ∀η ∈ V.

Since η ∈ V can have nonzero boundary conditions, we have

ν1
∂F

∂ux
+ ν2

∂F

∂uy
= 0 on ∂Ω.

This is natural boundary condition.

Example 2.2.7. Consider a functional f(u) defined on V0 by

f(u) =

∫
[

1

2
p(x, y)(u2x + u2y) +

1

2
q(x, y)u2 − r(x, y)u

]

dxdy. (2.25)

Here

F (x, y, u, ux, uy) =
1

2
p(x, y)(u2x + u2y) +

1

2
q(x, y)u2 − r(x, y)u.

Thus Its Euler-Lagrange equation is

−(pux)x − (puy)y + qu = r. (2.26)

The natural boundary condition is

p(ν1ux + ν2uy) = p
∂u

∂ν
= 0 on ∂Ω. (2.27)

We have shown the solution of the pde (2.26) is a minimizer (in the classical

sense) of the functional (2.25) on V0. It turns out that the minimizer u satisfies

natural boundary condition. The existence, uniqueness of the solution will be

shown in the next section in Sobolev setting.

In some problems the boundary condition may be imposed on some part

of the boundary, say, on Γ1 ⊂ ∂Ω. Let

Vg = {v ∈ C2(Ω̄) : v = g on Γ1}.
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In this case the space of test function is

VΓ1 = {v ∈ C2(Ω̄) : v = 0 on Γ1}.

Then from (2.21), we have

ν1
∂F

∂ux
+ ν2

∂F

∂uy
= 0 on Γ2 = Γ− Γ1.

Boundary conditions of different type on different portion of boundary are

called mixed boundary conditions.

More general boundary condition

Suppose u satisfies p∂u
∂ν + σu = 0 on ∂Ω. Now we have to modify f(u) so that

its stationary point satisfies the given boundary condition. Let

f(u) =

∫

Ω
F (x, y, u, ux, uy)dxdy +

∫

∂Ω
G(x, y, u)ds, u ∈ C2(Ω̄).

The condition for stationary point is

∫

Ω

[

∂F

∂u
− ∂

∂x

(

∂F

∂ux

)

− ∂

∂y

(

∂F

∂uy

)]

ηdxdy (2.28)

+

∫

∂Ω

(

ν1
∂F

∂ux
+ ν2

∂F

∂uy
+

∂G

∂u

)

ηds = 0, ∀η ∈ V0. (2.29)

Now the natural boundary condition is

ν1
∂F

∂ux
+ ν2

∂F

∂uy
+

∂G

∂u
= 0 on ∂Ω.

Example 2.2.8. Let G = 1
2σ(x, y)u

2. Then the natural boundary condition

becomes
∂u

∂ν
+

σ

p
u = 0.

This kind of boundary condition is called boundary condition of third type or

Robin condition.

Exercise 2.2.9. What change have to be made if we want the B.C. holds

only on Γ1(a portion of the boundary) ?
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2.2.2 Existence, Uniqueness of a Weak solution

In this section we rephrase previous discussions in a weaker sense. We deal

weak solutions in Sobolev spaces.

Example 2.2.10. Consider

−∇ · p∇u+ qu = f in Ω

u = 0 on Γ1 (2.30)

∂u

∂n
= 0 on Γ2 := ∂Ω\Γ1.

Let

V = {v ∈ H1(Ω); v = 0 on Γ1},

where Γ1 ⊂ ∂Ω is nontrivial and f ∈ L2(Ω). The associated functional is

F (u) =
1

2
a(u, u) − f̃(u),

where

a(u, v) =

∫

Ω
p∇u · ∇v + quv dxdy, v ∈ V (2.31)

f̃(v) =

∫

Ω
fv dxdy, v ∈ V. (2.32)

Its minimizer should satisfy (2.20). Thus the variational form for this problem

is

a(u, v) = f̃(v), v ∈ V. (2.33)

For the existence and the uniqueness, we need a theorem. Let H be a

Hilbert space equipped with a norm ‖ · ‖.

Theorem 2.2.11. [Lax-Milgram] Let a(·, ·) : H ×H → R be a bilinear form

satisfying

(1) |a(u, v)| ≤ C‖u‖H‖v‖H for all u, v ∈ H. (Bounded)

(2) ρ‖u‖2H ≤ a(u, u) for some constant ρ > 0. (Coercive)

(3) f̃ is a bounded linear functional.



2.2. VARIATIONAL FORMULATION OF BVP 15

Then there exists a unique solution u ∈ H satisfying

a(u, v) = f̃(v).

Furthermore, there is a positive constant C s.t.

‖u‖H ≤ C‖f̃‖. (2.34)

Also, if a is symmetric, then it is a unique minimizer of the functional

F (u) =
1

2
a(u, u) − f̃(u).

From this result we can prove the existence, uniqueness of the solution of

the pde.

Now we can verify the a form in the above examples satisfy the conditions

of Lax-Milgram.

Lemma 2.2.12. (Friedrich’s first inequality) If Γ1 is nontrivial, there is a

constant α > 0 such that

∫

Ω
|∇u|2dxdy ≥ α

∫

Ω
u2dxdy, v ∈ V.

If Γ1 = ∂Ω, we have Poincaré inequality.

By the Lemma, a(u, u) is coercive. Boundedness is easy to show. Now by

Lax-Milgram lemma, there exists a unique solution u ∈ V such that

a(u, v) = f̃(v), v ∈ V.

One can easily see that u satisfies (2.30). Also,

‖f̃‖ ≤ ‖f‖0 (the rhs of (2.30))

Example 2.2.13. If we choose H = H1
Γ1

= {v ∈ H1, v|Γ1 = 0} and consider

−∆u = f in Ω (2.35)

u = 0 on Γ1 (2.36)

∂u

∂ν
= 0 on ∂Ω− Γ1. (2.37)
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Example 2.2.14. (Robin condition) Next we consider Robin problem.

−∆u = f in Ω (2.38)

∂u

∂ν
+ σu = 0 on Γ = ∂Ω, (2.39)

where σ ∈ C(Γ), f ∈ L2(Ω), 0 < σ0 ≤ σ(x, y) ≤ σ1, (x, y) ∈ Γ. Then its

corresponding variational problem is

a(u, v) =

∫

Ω
∇u · ∇v dxdy +

∫

∂Ω
σuvds, v ∈ V = H1(Ω) (2.40)

f̃(v) =

∫

Ω
fv dxdy, v ∈ V. (2.41)

To show that this is equivalent to the p.d.e. above, we need some prelimi-

nary concepts as below.

Lemma 2.2.15. (Trace theorem) For any u ∈ H1(Ω), the restriction of u to

∂Ω exists and belongs to L2(∂Ω) and satisfies

∫

∂Ω
u2ds ≤ β‖u‖21, ∀u ∈ H1(Ω).

Lemma 2.2.16. (Friedrich’s second inequality) If Γ1 ⊂ ∂Ω is nontrivial, there

is a constant α > 0 such that

∫

Ω
|∇u|2dxdy +

∫

Γ1

u2ds ≥ α‖u‖21, ∀u ∈ H1(Ω).

By Friedrich’s 2nd inequality, one can easily show the coerciveness:

a(u, u) ≥ αmin(σ0, 1)‖u‖21, ∀u ∈ H1(Ω).

(Note the difference between two versions of Friedrich’s inequality.) For bound-

edness, we note that

a(u, u) ≤
∫

Ω
|∇u|2dxdy + σ1

∫

Γ
u2ds ≤ ‖u‖21.

by the trace theorem.

Remark 2.2.17. Note that if σ(x, y) ≡ 0 on Γ then (2.38) becomes pure

Neumann problem, and a is not coercive. To see this, we note Green’s second
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identity:
∫

Ω
(u∆v − v∆u) dxdy =

∫

∂Ω
(u

∂v

∂ν
− v

∂u

∂ν
)ds.

Set v = 1. Then

−
∫

Ω
∆u dxdy =

∫

Ω
gdxdy = −

∫

∂Ω

∂u

∂ν
ds = 0.

Hence the partial differential equation has a solution only if g satisfies the

consistency condition:
∫

Ω f dxdy = 0.

2.2.3 More general coefficient

Example 2.2.18. Let V = HΓ1 = {v ∈ H1(Ω), v = 0 on Γ1 ⊂ ∂Ω}. Consider
: find u ∈ V satisfying

a(u, v) = f̃(v), ∀v ∈ V, (2.42)

where

a(u, v) :=

∫

Ω

2
∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
dxdy +

∫

Ω
cuv dxdy, v ∈ V (2.43)

f̃(v) =

∫

Ω
fv dxdy, v ∈ V, (2.44)

and aij = aji ∈ C(Ω̄), c ∈ C(Ω̄), c ≥ 0, f ∈ L2(Ω). Assume there exists a

constant λ > 0 such that

∑

i,j

aijξiξj ≥ λ
∑

i

ξ2i , ∀(x, y) ∈ Ω, ξi ∈ R.

(This is equivalent to: eigenvalues of {aij} are positive.) Hence we have

a(u, u) ≥ ρ‖u‖21, u ∈ V. The corresponding boundary value problem is

Lu = f in Ω (2.45)

u = 0 on Γ1 (2.46)

∂u

∂νL
= 0 on ∂Ω − Γ1, (2.47)
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where Lu = −∑i,j
∂

∂xi

(

aij
∂u
∂xj

)

+ cu and ∂u
∂νL

is the conormal derivative de-

fined by
∂u

∂νL
=
∑

i,j

νiaij
∂u

∂xj
. (2.48)

Exercise 2.2.19. (1) Derive (2.48) from (2.42).

2.2.4 Inhomogeneous boundary condition

Consider

Lu = f in Ω (2.49)

u = g on ∂Ω, (2.50)

where Lu = −(pux)x − (puy)y + qu on Ω. Take V = H1
0 (Ω) and let

a(u, v) =

∫

Ω
(puxvx + puyvy + quv)dxdy, v ∈ V (2.51)

f̃(v) =

∫

Ω
fv dxdy. (2.52)

Let H1
g (Ω) = {u ∈ H1(Ω);u = g on ∂Ω}.

2.2.5 Question

(1) Given a function u ∈ H1(Ω) how do we define its restriction to ∂Ω?

(2) Given a function g ∈ H1(Ω) does there exist u ∈ H1(Ω) such that the

restriction of u to ∂Ω is g?

The first question is answered by the trace and trace inequality. The answer

to the next question is true if and only if g ∈ H1/2(∂Ω).

Now the functional to be minimized is

F (u) =
1

2
a(u, u)− f̃(u), u ∈ H1

g (Ω).

SinceH1
g (Ω) is not a linear space, Lax-Milgram lemma does not apply. Instead,

for any fixed ug ∈ H1
g (Ω), we can write

H1
g (Ω) = {u ∈ H1(Ω) : u = w + ug, w ∈ H1

0 (Ω)}
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and define

Fg(w) = f̃(w + ug)− f̃(ug) (2.53)

=
1

2
a(w + ug, w + ug)− f̃(w + ug)−

1

2
a(ug, ug)− f̃(ug)(2.54)

=
1

2
a(w,w) + a(ug, w)− f̃(w) (2.55)

=
1

2
a(w,w) − f̃g(w) (2.56)

where f̃g(w) := f̃(w)−a(ug, w). Now Lax-Milgram lemma asserts that there

exists a unique element u0 ∈ H1
0 (Ω) (minimizer of f̃g(w)) such that

a(u0, v) = f̃g(v), v ∈ H1
0 (Ω)

and hence

a(u0 + ug, v) = f̃(v), v ∈ H1
0 (Ω).

Let u = u0 + ug, then u ∈ H1
g (Ω) and satisfies

a(u, v) = f̃(v), v ∈ H1
0 (Ω).

It is easy to verify that u0 minimizes Fg over H1
0 (Ω). Since

a(u, v) − f̃(v) = (Lu− f, v), v ∈ H1
0 (Ω),

u is the generalized solution of (2.49), (2.50).

Nonhomogenous Robin Condition

In this case, we have instead of (2.50),

uν + σ(x, y)u = ξ(x, y) on ∂Ω, (2.57)

where σ(x, y) ∈ C(∂Ω), ξ(x, y) ∈ L2(∂Ω) and 0 < σ0 ≤ σ(x, y) ≤ σ1.

If u ∈ H1(Ω) is a weak solution of (2.49),(2.57), then integration by parts,

(Lu− f, v) = a(u, v)− f̃(v) −
∫

∂Ω
puνvds (2.58)

= a(u, v)− f̃(v) −
∫

∂Ω
p(ξ − σu)vds, v ∈ H1(Ω). (2.59)
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Let

â(u, v) = a(u, v) +

∫

∂Ω
pσuv ds, u, v ∈ H1(Ω) (2.60)

f̂(v) = f̃(v) +

∫

∂Ω
pξv ds, v ∈ H1(Ω). (2.61)

Then we have

â(u, v) = f̂(v), ∀v ∈ H1(Ω). (2.62)

Apply Lax-Milgram lemma (Check conditions) to (2.60) to get a unique u ∈
H1(Ω) satisfying (2.62).

One can show the solution of this problem satisfies (2.49) and (2.57). In-

deed, using integration by parts and setting v ∈ H1
0 (Ω), we can see that u

satisfies (2.49). Hence we have

∫

∂Ω
p(uν + σu− ξ)vds = 0, v ∈ H1(Ω).

This shows that u satisfies the nonhomogenous B.C. (2.57).

Exercise 2.2.20. (1) (10pts) Apply Lax-Milgram to show the existence of

solution for (2.35).

(2) (10pts) Show that the solution of (2.2.18) satisfies (2.43)-(2.44).

2.3 Ritz-Galerkn Method

For the simplicity of presentation, we assume Ω is a polygonal domain. Con-

sider

−∆u = f in Ω (2.63)

u = 0 on ∂Ω. (2.64)

Assume Ω is partitioned by triangles. Let Sh be a finite dimensional subspaces

of H1
0 (Ω). The finite element problem is to find a uh ∈ Sh satisfying

a(uh, vh) = f̃(vh), vh ∈ Sh. (2.65)
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W. Ritz(1908) used polynomials of higher degree to solve the variational prob-

lem in a finite dimensional subspace.

(1) Ritz, W. Neue Methode zur Losung gewisser Randwertaufgaben. Gesellschaft

der Wissenschaften zu Gottingen: Math.-physik. Klasse: Nachrichten.

Gottingen, 1908..

(2) Galerkin, B. G. Sterzhni i plastinki: Riady v nekotorykh voprosakh up-

rugogo ravnovesiia sterzhnei i plastinok. Vestnik inzhenerov, 1915, vol.

1, no. 19, pp. 897-908

Let uh =
∑N

j=1 ujφj . Then (2.65) becomes

a(
N
∑

j=1

ujφj, φi) = f(φi), i = 1, ..., N.

In matrix form we have

A · ~u = ~f, (2.66)

where Aij = a(φj , φi), ~u = (u1, · · · , uN ) and ~fi =
∫

fφidxdy. Such a matrix

A is called the stiffness matrix and ~f is called a load vector. A is SPD and

hence the system has a unique solution.

2.3.1 Choice of Sh and its basis

Thus far we have no assumption on the shape (support, degrees, etc.) of basis

functions. Basic idea is to choose a nice basis {φi} for Sh so that

(1) Easy to construct A

(2) A is sparse (To save storage and computations)

(3) The condition number of the matrix A is not too large.

Often, we use continuous functions which are piecewise linear on triangular

elements. Note that in this case, Aij 6= 0 only if the node i, j are adjacent.

Thus the matrix is sparse.
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2.3.2 Inhomogeneous boundary conditions

Consider solving

−∆u = f in Ω

u = g on ∂Ω.

From earlier discussions, the variational formulation is to find a u = u0 + ug,

where u0 ∈ H1
0 satisfies

a(u0, v) = f̃(v)− a(ug, v), v ∈ H1
0 ,

where ug is any function in H1
g (Ω) = {u ∈ H1(Ω), u = g on ∂Ω}. Then the

FEM amounts to finding u0h ∈ Sh such that

a(u0h, vh) = f̃(vh)− a(uhg , vh), vh ∈ Sh. (2.67)

Here uhg is an finite element approximation to ug. In matrix form,

A · ~u = ~f∗, (2.68)

where f∗
i = f̃(φi)− a(uhg , φi). Assume the number of unknowns on the bound-

ary is p and let {φj}N+p
j=N+1 are the piecewise linear basis associated with the

boundary. One often try to approximate ug in the form uhg =
∑N+p

j=N+1 cjφj so

that

uhg (xj , yj) = g(xj , yj), (xj, yj) ∈ ∂Ωh(boundary nodes). (2.69)

In particular, if φj are Lagrange basis so that φj(xi, yi) = δij , then ug ca be

replaced by
∑N+p

j=N+1 ujφj .

2.4 Finite Element Method -A Concrete Ritz-Galerkin

method

2.4.1 Finite element basis functions

We assume Ω̄ is subdivided by a non-overlapping elements, say triangles or

rectangles of certain regular shape. For a mesh generator, see

http://www.cs.cmu.edu/q̃uake/triangle.html
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Notations

• L: Total number of elements

• M : Total number of nodes

• T : Number of nodes in a single element

• Kℓ: ℓ = 1, 2, · · · , L the elements

• Ni = (xi, yi): the nodes

• K̂: the standard(reference) element

b

b

b1 2

3

linear basis

b b b

b b

b

1 2 3

4 5

6

quadratic basis

b b

bb

1 2

3 4

rectangle elt

b b

bb

1 2

3 4

rectangle elt

Figure 2.5: Reference element and nodes

1 2 3

4 5 6

7 8 9

1

2

3

4

Figure 2.6: Global numbering of Elements(in red ) and nodes

Since the support of φi is usually a small subset of Ω̄, we say that φi

has local support. A rough geometrical description of φi is that of a ”tent”

centered about Ni. The floor of the tent is the support of φi. If Ni /∈ ∂Ω = Γ,

φi vanishes on the boundary of its support.

By definition, a function u belongs to SM = Sh if and only if it can be

expressed as

u(x, y) =
M
∑

i=1

uiφi(x, y), (x, y) ∈ Ω̄.

Each u is a continuous, piecewise polynomial over Ω̄.
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Interpolation

Define the interpolation Ih : C(K) → Sh(K) by the conditions (Ihu)(ai) =

u(ai) for all i = 1, · · · , T . Piecewise linear element was introduced by Courant(1943),

Prager and Synge(1947). It is often better than higher order functions when

the solution has less regularity. For any u ∈ C(Ω̄) let uI ∈ SM be defined by

uI(x, y) =

M
∑

i=1

u(Ni)φi(x, y), (x, y) ∈ Ω̄.

The function uI is the interpolant of u in SM .

For error analysis we need to view uI as interpolant of u ∈ Hp(Ω). But

a function in Hp(Ω) is actually an equivalence class of functions defined a.e,

u(Ni) is not well-defined.

An equivalent class can contain at most one continuous function. If it does

contain such function, we shall define u(Ni) to be the value of that function

at Ni. According to the Sobolev embedding theorem,

Hp(Ω) ⊂ C0(Ω), p ≥ 1 if one space dimension

Hp(Ω) ⊂ C0(Ω), p ≥ 2 if two or three space dimension .

Define k and m to be the greatest integers such that

Pk(Ω̄) ⊂ VM ⊂ Cm−1(Ω̄) (2.70)

is satisfied, where Pk(Ω̄) denote the space of all polynomials of degree k

on Ω̄)(global, not piecewise). In this case, if u ∈ Pk(Ω̄) uI(x, y) = u(x, y),

∀(x, y) ∈ Ω, i.e, all polynomial of degree ≤ k are interpolated exactly in VM .

”This property makes k the fundamental parameter in the error analysis”.

Regarding m, m must be ≥ 1(continuous). If m = 1, VM 6⊂ C1(Ω). To

achieve C1, one has to enlarge basis function(Assign more than one basis

function at some of the nodes) so that not only uI interpolates the values of

u but certain derivatives of uI interpolates the corresponding derivatives of u.

This is known as ”Hermite interpolation” in contrast to Lagrange interpolation

which interpolates values of u only.

In general, a function in Cm−1(Ω̄) does not does not belong to Hm(Ω)

since there exists nowhere differentiable continuous functions. If u is piecewise
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x̂

ŷ

b b

b

1 2

3 φ̂(x̂)
φ(x) = φ̂ ◦ F−1(x)

F (x̂) = Bx̂+ a1

B = [a2 − a1,a3 − a1] (3D - same)

b

b

b

a1

a2

a3

Figure 2.7: Reference triangle and the mapping

polynomial in Cm−1(Ω̄) then it belongs to

Hm(Ω)

Also,

Hm+1(Ω) ⊂ Cm−1(Ω)

In general, this does not hold since there exists nowhere differentiable

continuous functions. If m = 1, then VM is appropriate for 2nd order elliptic

problem, called ”conforming”. Referring to the figure (2.7), the nodal basis

functions are

φ̂1 = 1− x̂− ŷ, φ̂2 = x̂, φ̂3 = ŷ. (2.71)

Example 2.4.1. Piecewise linear basis on triangular element. First, on the

standard refernce basis element K̂,

φ̂r(x̂, ŷ) = ĉ1r + ĉ2r x̂+ ĉ3r ŷ, r = 1, 2, 3.

Let the local basis function on a general element Kℓ be give by

φℓ
r(x, y) = c1r,ℓ + c2r,ℓx+ c3r,ℓy, (x, y) ∈ Kℓ, ℓ = 1 · · · , L, r = 1, 2, 3.

It is nothing but the restriction of global basis function φiℓr
(x, y), i = 1, · · · ,M .

Since x is related to x̂ by the affine map (See figure 2.6)

[

x

y

]

= Fℓ

[

x̂

ŷ

]

=

[

b11x̂+ b12ŷ + a1

b21x̂+ b22ŷ + a2

]

≡ Bℓx̂+ d̂ℓ, (2.72)

we have

φℓ
r(x, y) = φ̂r(x̂, ŷ) = φ̂r ◦ F−1

ℓ (x, y).
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We use conventional counterclockwise ordering as local ordering. Is is easy to

see that

B = [a2 − a1,a3 − a1].

Example 2.4.2. Piecewise quadratic basis on triangular elements(fig. 2.5).

φr(x, y) = c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2.

The corresponding standard basis functions on half of K̂ = [−1, 1]2 are:











φ̂1(x̂, ŷ) = (1− x̂− ŷ)(1− 2x̂− 2ŷ), φ̂4(x̂, ŷ) = 4x̂ŷ

φ̂2(x̂, ŷ) = x̂(2x̂− 1), φ̂5(x̂, ŷ) = 4(1− x̂− ŷ)ŷ

φ̂3(x̂, ŷ) = ŷ(2ŷ − 1), φ̂6(x̂, ŷ) = 4(1− x̂− ŷ)x̂











The same transformation (2.72) maps K̂ onto Kℓ with mid-edge of K̂ to the

mid-edge of Kℓ. We used the ordering of vertex nodes first and then the

mid-edge opposite to the nodes 1,2 and 3 points as nodes 4,5 and 6.

Example 2.4.3. (Piecewise bilinear basis on rectangular elements) Let

φr(x, y) = c1 + c2x+ c3y + c4xy.

Then the standard basis functions on K̂ are

φ̂1(x̂, ŷ) =
1

4
(1− x̂)(1 − ŷ), φ̂2(x̂, ŷ) =

1
4 (1 + x̂)(1 − ŷ) (2.73)

φ̂3(x̂, ŷ) =
1

4
(1 + x̂)(1 + ŷ), φ̂4(x̂, ŷ) =

1
4(1− x̂)(1 + ŷ). (2.74)

2.4.2 Assembly of stiffness matrix

Consider

−∇ · p∇u+ qu = f in Ω (2.75)

u = g on Γ1 (2.76)

uν + σu = ξ on Γ2, Γ = Γ1 ∪ Γ2. (2.77)

Let

H1
g (Ω) = {v ∈ H1(Ω) : v = g on Γ1} (affine space)

H1
Γ1
(Ω) = {v ∈ H1(Ω) : v = 0 on Γ1} (linear space)
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Find u ∈ H1
g (Ω) such that

a(u, v) = f̃(v), ∀v ∈ H1
Γ1
(Ω), (2.78)

where

a(u, v) =

∫∫

(puxvx + puyvy + quv) dx+

∫

Γ2

pσuv ds (2.79)

= (p∇u,∇v) + (qu, v)+ < pσu, v >Γ2 (2.80)

and

f̃(v) = (f, v)+ < pξ, v >Γ2 (2.81)

= f̃(v)+ < pξ, v >Γ2 (2.82)

Then as shown before, the solution u minimizes the functional

f(u) =
1

2
a(u, u) − f̃(u) ∀u ∈ H1

g (Ω). (2.83)

If ug is any function in H1
g (Ω) one have

H1
g (Ω) = H1

0 (Ω) + ug = {u ∈ H1(Ω) : u = u0 + ug, u0 ∈ H1
Γ1
(Ω)}

and (2.78) is equivalent to finding u0 ∈ H1
Γ1
(Ω) such that

a(u0, v) = f̃(v)− a(ug, v), ∀v ∈ H1
Γ1
(Ω) (2.84)

Let Th = {Kℓ} be a triangulation of the domain Ω and let

2.5 Outline of Programming

VN = span{φi linear on each element , φi ∈ H1
Γ1
(Ω)}.

Let us list some notations:

• L: Total number of elements

• M : Total number of nodes

• Γ1: the part of boundary where Dirichlet condition is imposed
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• M1: the number of nodes on Γ1

• J1: the index set of nodes on Γ1 (Dirichlet condition)

• Γ2: the part of boundary where Neumann condition is imposed

• L2: the number of element edges on Γ2

• N : number of nodes in Ω ∪ Γ2 (Total unknowns)

• J : index set of nodes in Ω ∪ Γ2

• Q: number of integration points in each element

To form a finite element matrix, we need to replace (2.84) by a finite dimen-

sional analog: Find uh := uh,0 + uhg s.t.

a(uh,0, v) = f̃(v) − a(uhg , v), ∀v ∈ VN , (2.85)

where

uh,0 =
∑

j∈J
ujφj

and ug is replaced by a P. L. function satisfying the BC(at least weakly.) We

usually choose

uhg =
∑

i∈J1

giφi so that uhg (Ni) = g(Ni).

Even though uhg 6∈ H1
g (Ω), it would suffice our purpose.

A tip for the boundary nodes

When Γ̄1 ∩ Γ̄2 6= ∅, it is important for application to

(1) place nodes at the end points of Γ̄1.

(2) assign nodes to Γ̄1 rather than to Γ2.

Assembly of stiffness matrix

We usually compute so called element stiffness matrix and sum them over all

elements to assemble the global stiffness matrix, denoted by A here. From

(2.85) we have

a(uh,0, φi) =
∑

j∈J
uj

∫

Ω
(p∇φj · ∇φi + qφjφi) +

∑

j∈J
uj

∫

Γ2

pσφjφids, i ∈ J ,
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and

F ∗
i := f̃(φi)− a(uhg , φi) =

∫

Ω
fφi +

∫

Γ2

pξφi ds−
∑

j∈J1

g(Nj)a(φj , φi), i ∈ J .

Hence we get

Au = F ∗, u = (uj)j∈J

where

Aij =

∫

Ω
(p∇φj · ∇φi + qφjφi) +

∫

Γ2

pσφjφids.

Some general issues:

(1) Input data : Ω,Γ1,Γ2, p, g1, ξ, coefficients, etc.

(2) Construction and representation of Th

(3) Computation of element stiffness matrix aK and fK

(4) Assembly of global stiffness matrix A, F ∗

(5) Linear solver for the system Au = F ∗

(6) Presentation of result. Discrete L2, H1-error. Numerical Table, order of

convergence, graphics.

Remark on (2): quasi uniform—essentially the same size, but it is desirable

to vary the size of triangle—adaptive or successive refinement. Conforming:

vertex should not lie in the interior of an edge.

We need to compute Aij.

(1) Aij := a(φj , φi)Ω, i, j = 1, · · · ,M

(2) Fi := F (φi)Ω, i = 1, · · · ,M

(3) Aij := Aij + a(φj , φi)Γ2 , i, j = 1, · · · ,M

(4) Fi := Fi + F (φi)Γ2 , i = 1, · · · ,M

(5) For j ∈ J1:

(a) Fi := Fi − g(Nj)Aij , i ∈ J
(b) Aij := 0 = Aji, i ∈ J
(c) Aji := 0, i ∈ J1, i 6= j
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(d) Fj := g(Nj);Ajj = 1

A =

N N1
























A11 ∗ ∗
∗ . . . ∗ O

∗ ∗ ANN

O

1 0 0

0
. . . 0

0 0 1

























N

N1

(2.86)

Step (1), (2) are related to the interior nodes, Step (3), (4) are related to

the natural BC. while step (5) is related to the essential BC. Since Aij is

symmetric, the computation in (1), (3) and (5) are done for j = 1, · · · , i only
to save time and memory. (For details see Axellson p. 185)

Remark 2.5.1. (1) We used full matrix notation Aij for simplicity of pre-

sentation; However, one need to exploit the sparseness of the matrix to save

memory. So it may be nice to provide a M × 5(for 5 point stencil) matrix and

store nonzero Ai,j. One can write a class file to define matrix-function that

looks like A(i, j) but has single array structure of length 5M .

(2) The true number of unknowns are N , not M. The (d) of step (5) means

we append the following trivial equations next to the N ×N equations;

u(Ni) = g(Ni), i ∈ J1

2.5.1 Computation of a(φi, φj) elementwise.

Note that

a(φi, φj) =
∑

K

∫

K
(p∇φi · ∇φj + qφiφj) +

∑

K

∫

K̄∩Γ2

pσφiφjds :=
∑

K

aKij ,

where the summation runs through the common support of φi and φj . We

compute this entry by computing the contribution of aK(φi, φj), called the

element stiffness matrix for each element K. However, note the index given

here is global index. In the code we use local index corresponding to the global

index.

Notations:
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Z: M × 2 matrix, Z(i, j), j = 1, 2, are the (x, y) coordinates of the node

i - vertex coordinates table.

T : 3× L matrix, T (α, ℓ), α = 1, 2, 3, denotes the global node number of

local α-th node of ℓ-th triangle - element node table.

A triangulation Th may be represented by two matrices Z : 2×M matrix and

T : 3× L matrix.

Definition 2.5.2 (lexicographic order). If A = {1, 2} and B = {a, b, c}. Then
the lexicographic order of the set A×B is

(1, a), (1, b), (1, c), (2, a), (2, b), (2, c).

Example 2.5.3. Let us divide a unit square by 4× 4 uniform meshes where

each sub-rectangle is subdivided by the diagonal of slope −1. See figure 2.5.3.

Label all the vertex nodes linearly starting for the bottom row as 1, 2, 3, · · · , 25,
and lexicographically as (1, 1), (1, 2), · · · , (2, 1), (2, 2), · · · also. Label the ele-

ments from lower left corner as K1\K2, K3\K4, K5\K6,· · · .
Compute the element stiffness matrix for each triangle, and add all the

contribution to three vertices as K runs through all element. If i = j, K runs

through all element having the node i as a vertex. If i 6= j, K runs through

all element having the line segment īj as an edge. In this way, we assemble

the global matrix A collecting the contribution form each element.

For example, let K = K11. The global indices for its vertices are 7, 8 and

12. For the element matrix we need to compute aK(φi, φj) for i, j = 7, 8, 12.

aK11 = aK(φ7, φ7) =

∫

K
(−1

h
,−1

h
) · (−1

h
,−1

h
) = 1

aK12 = aK(φ7, φ8) =

∫

K
(−1

h
,−1

h
) · ( 1

h
, 0) = −1

2

aK13 = aK(φ7, φ12) =

∫

K
(−1

h
,−1

h
) · (0, 1

h
) = −1

2

aK22 = aK(φ8, φ8) =

∫

K
(
1

h
, 0) · ( 1

h
, 0) =

1

2

aK23 = aK(φ8, φ12) =

∫

K
(
1

h
, 0) · (0, 1

h
) = 0

aK33 = aK(φ12, φ12) =

∫

K
(0,

1

h
) · (0, 1

h
) =

1

2
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(a) Rectangular domain
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Γ1
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Γ1

∂u
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(b) L-shape, mixed BC, unknowns at b
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3
12

3

Figure 2.8: Label of elements and vertices

Here we used the notation :

aK(φi, φj) =

∫

K
p∇φi · ∇φj dx. (2.87)

The element stiffness matrix aK11 (corresponding to the vertices 7,8 and 12)

is






1, −1
2 , −1

2

−1
2 ,

1
2 , 0

−1
2 , 0, 1

2






= aK11

α,β

Generate element matrices for all element Kℓ, ℓ = 1, 2 · · · , L add its con-

tribution to all pair of vertices (i, j). Note that T is the 3 × L matrix whose

ℓ-th column denotes the three global indices of vertices of ℓ-th element. For

example, T (·, 11) = [7, 8, 12]t.

ZT =

[

0 0.25 0.5 0.75 1.0 0 0.25 · · ·
0 0.0 0.0 0.0 0.0 0.25 0.25 · · ·

]

(2.88)

T =







1 7 2 8 · · · 12 7 · · ·
2 6 3 7 · · · 11 8 · · ·
6 2 7 3 · · · 7 12 · · ·






(2.89)

If we use CR element, we will need(later) a 3×L matrix E whose ℓ-th column
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denotes the three global indices of edges of ℓ-th element.

E =







1 7 2 9 · · · 7 · · ·
6 14 8 15 · · · 8 · · ·
2 6 7 8 · · · 12 · · ·






(2.90)

Computation of element stiffness matrix

Let Kℓ ∈ Th be a fixed element. Then T (α, ℓ), α = 1, 2, 3, are the global num-

bering of vertices of Kℓ. The xi-coordinates of vertices are Z(T (α, ℓ), i), i =

1, 2. We note that the local element matrix is given by

aℓα,β := aKℓ
α,β =

∫

Kℓ

(p∇φα · ∇φβ + qφαφβ)dx+

∫

K̄ℓ∩Γ2

pσφαφβ ds,

bℓα =

∫

Kℓ

fφα dx−
∑

j∈J1

g(Nj)aKℓ
(φj , φα) +

∫

K̄ℓ∩Γ2

pξφα ds, α = 1, 2, 3.

Then the assembly of global stiffness matrix is as follows:

Assembly of global stiffness matrix

Assume Γ2 = ∅ for simplicity. Initially, set A(i, j) = 0,F(i) = 0, i, j =

1, · · · ,M . The for ℓ = 1, · · · , L do the following:

A(T (α,ℓ),T (β,ℓ)) = Ai,j =

∫

Ω
(p∇φj · ∇φi + qφjφi)dx =

∑

ℓ

aℓβα. (2.91)

Since (i, j) = (T (α, ℓ), T (β, ℓ)), the global index 7 corresponds to the local

index of K2, K3, K4, K11, f K10, K9 are given in the following table.

The global index 8 corresponds to the local index K4, etc. are also given.

With the notation in (2.87) we see

Table 2.1: correspdence
global index element

7 K2 K3 K4 K11 K10 K9

7 1 3 2 1 3 2

8 K4 K5 K6 K11 K12 K13

8 1 3 2 2 3 1
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A7,7 = aK2(φ7, φ7) + aK3(φ7, φ7) + aK4(·, ·) + aK9(·, ·) + aK10(·, ·) + aK
11
(·, ·)

= aK2
11 + aK3

33 + aK4
22 + aK9

22 + aK10
33 + aK11

11 =
1

2
+

1

2
+

1

2
+ 1 + 1 +

1

2
= 4

A7,8 = aK4
12 + aK11

21 = −1

2
− 1

2
= −1.

In other words, add contributions from L-th element stiffness matrix to its

corresponding basis. For example, on the K11, the entry aK11
αβ has contribution

to a7,7, a7,8, a7,12, a8,7, a8,8, a8,12, a12,7, a12,8, a12,12. Hence the code looks like

this:

for ℓ = 1, 2, · · · , L (outer loop)

for α = 1, 2, 3 do

for β = 1, 2, 3 do

A(T (β, ℓ), T (α, ℓ)) = A(T (β, ℓ), T (α, ℓ)) + aℓαβ
end

F(T (α, ℓ)) = F(T (α, ℓ)) + bℓα,

end

end (L loop)

For FEM software see the National Institute of Standards and Technology

(USA); http://www.netlib.org, http://gams.nist.gov

Finite element method (FEM) is a powerful and popular numerical method on

solving partial differential equations (PDEs), with flexibility in dealing with

complex geometric domains and various boundary conditions. MATLAB (Ma-

trix Laboratory) is a powerful and popular software platform using matrix-

based script language for scientific and engineering calculations. This project

is on the development of an finite element method package in MATLAB based

on an innovative programming style: sparse matrixlization. That is to refor-

mulate algorithms in terms of sparse matrix operations to make use of the

unique strength of MATLAB on fast matrix operations. iFEM, the resulting

package, is a good balance between simplicity, readability, and efficiency. It

will benefit not only education but also future research and algorithm devel-

opment on finite element method.

This package can be downloaded from http://ifem.wordpress.com/

2.6 Mid term Take Home Exam

Mid term take home exam Due Oct 28
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Exercise 2.6.1.
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Γ1
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e14

e9
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v7 v8 v9

v12 v13 v14

(a) Rectangular domain
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b b b
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v7 v8
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Γ1

Γ1

Γ1

∂u
∂n
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v11 v12 v13 v14 v15

v16

v17

v18

v19 v20 v21

(b) L-shape, mixed BC, unknowns at b

1 2

3
12

3

Figure 2.9: Label of elements and vertices

Refer to figure 2.8.1 (a). Write a FEM code for the problem (2.75 -2.77)

when Ω = [−1, 1]2, with the following data. Use the uniform grids of h =

2−k, k = 2, 3, · · · , 6. For all problems, q = σ = ξ = 0.

(1) Compute the 3 × 3 element stiffness matrix AK11 for the case p = 1 +

x+ 2y2 when k = 2(4 × 4 grid shown in the note above.)

(2) Print the entries of F (i), i = 4, 5, 6, 7 when k = 2 for p = 1 + x + 2y2,

f = −(1 + 4y) and g = 1 + x+ y on the boundary.

(3) Solve the problem for the case p = 1+x+2y2, g = 0 (Dirichlet condition

on ∂Ω) and u = x(1− x)y(1− y).

(4) Solve the problem for the case p = 1, u = 1 + x + 9y, f = 0. g = u|∂Ω
(Dirichlet condition on ∂Ω). Do you find any special phenomena?

(5) Draw the graph of solution uh of (3).

(6) Choose an exact solution of the form u(x, y) = rγ = (x2 + y2)γ/2 for (b)

with appropriately chosen γ > 0.

To solve the linear system use either Gauss-Seidel method or conjugate gradi-

ent method. Report discrete L2-norm defined by ‖u−uh‖h :=
√

h2
∑

i(u− uh)2(ci).

Here ci is the centroid of each element (triangle). Write the Table in a easily

verifiable manner (systematically) for h = 1/2k. Submit the paper report and

the coding(by email).
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x̂

ŷ

◦

◦◦

1

3
2

K̂

◦
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◦

1

4
2

K1

h1

h2

3

5

K2

Figure 2.10: reference element and real domain

2.6.1 P1 Nonconforming space of Crouzeix and Raviart

We introduce a P1 nonconforming finite element method for −∆u = f . As-

sume a quasi uniform triangulation of the domain by triangles is given. Con-

sider the space of all piecewise linear functions which is continuous only at mid

point of edges. Here the degree of freedom is located at mid point of edges.

Let Nh be the space of all functions which is linear on each triangle and

whose degrees of freedoms are determined







uh(m)|L = uh(m)|R when m is a mid point of interior edges

uh(m) = 0 when m is a mid point of boundary edges

Since uh is discontinuous, the a(uh, vh) =
∫

Ω∇uh ·∇vh dx- is not well defined.

So we define a discrete form ah as follows:

ah(uh, vh) =
∑

T∈Th

∫

T
∇uh · ∇vh dx (2.92)

The P1-nonconforming fem is: Find uh ∈ Nh such that

ah(uh, vh) = f(vh), ∀vh ∈ Nh.

Note that in general

ah(u, vh) 6= f(vh).
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x̂

ŷ

b b

b

1 2

3 φ̂(x̂)
φ(x) = φ̂ ◦ F−1(x)

F (x̂) = Bx̂+ a1

B = [a2 − a1,a3 − a1] (3D - same)

b

b

b

a1

a2

a3

Figure 2.11: Reference triangle and the mapping

We define a discrete norm on Nh by

‖uh‖1,h = ah(uh, uh)
1/2.

Assume the reference element K̂ = K1 with h1 = h2. Then the basis

functions are

φ̂1 = 1− 2y, φ̂2 = 2x+ 2y − 1, φ̂3 = 1− 2x. (2.93)

Consider K2. By mapping FK2(x̂) = BK x̂+ b we have

FK2

(

x̂

ŷ

)

=

(

0 −h1

h2 h2

)(

x̂

ŷ

)

+

(

h1

0

)

φ(x) = φ̂ ◦ (F−1
K (x)) = φ̂

[

1

h1h2

(

h2 h1

−h2 0

)(

x− h1

y

)]

= φ̂

(

x−h1
h1

+ y
h2

−x−h1
h1

)

According to mapping φ̂1 corresp to φ4, φ̂2 corresp to φ5 and φ̂3 corresp

to φ2. Since

φ̂1 = 1− 2ŷ, φ̂2 = 2x̂+ 2ŷ − 1, φ̂3 = 1− 2x̂ on k̂ = K̂1

we have

φ4 = 1 + 2
x− h1
h1

, φ5 =
2x

h2
− 1, φ2 = 1− 2

x+ y − h1
h1

on K2

Theorem 2.6.2 (Second Strang lemma). Under conditions given above, there
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exists a constant C independent of vh such that

‖u− uh‖h ≤ C

(

inf
vh∈Vh

‖u− vh‖h + sup
wh∈Vh

|ah(u,wh)− f(wh)|
‖wh‖h

)

.(2.94)

Proof. Let vh be an arbitrary element in Vh. Then

α‖uh − vh‖2h ≤ ah(uh − vh, uh − vh)

= a(u− vh, uh − vh) + f(uh − vh)− ah(u, uh − vh)

≤ M‖u− vh‖h‖uh − vh‖h + |f(uh − vh)− ah(u, uh − vh)|.

So

α‖uh − vh‖h ≤ CM‖u− vh‖h +
|f(uh − vh)− ah(u, uh − vh)|

‖wh‖h
≤ CM‖u− vh‖h + sup

wh∈Vh

|f(wh)− ah(u,wh)|
‖wh‖h

.

Now result follows from this and the triangle inequality

‖u− vh‖h ≤ ‖u− vh‖h + ‖uh − vh‖h.

2.6.2 Integration using reference element

In practice K is in a general position. Hence we show how to compute the

integral

aKji =

∫

K
(p∇φi · ∇φj + qφiφj)dxdy

through a mapping to a fixed ”nice” reference element K̂. Let

x =

(

x

y

)

= F (x̂) =

(

f1(x̂, ŷ)

f2(x̂, ŷ)

)

(2.95)

be a one-to-one invertible map K̂ → K, Then any function and g(x) is related

to a function ĝ(x̂) defined on the reference element K̂ by

g(x) = g(F (x̂)) = ĝ(x̂).
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In particular, if it is affine then F (x̂) = Bx̂+ b. For a scalar function g, we

see
∫

K
g(x)dxdy =

∫

K̂
g(F (x̂))|JK |dx̂dŷ, (2.96)

where JK = det(DFK) = det(B). But for a gradient of a function, it is more

complicated: Noting that

∇̂ĝ = BT∇g, (2.97)

we see

∫

K
(p∇φi · ∇φj + qφiφj)dxdy =

∫

K̂
(p̂(B−T ∇̂φ̂i) · (B−T ∇̂φ̂j) + q̂φ̂iφ̂j)|J |dx̂dŷ,

(2.98)

where J is the determinant of B. To save computational cost in computing

(2.98) we do as follows: A little of algebra shows that (2.98) is

aKji =

∫

K̂

{

p̂

|J |
[

E1φ̂
i
x̂φ̂

j
x̂ − E2(φ̂

i
ŷφ̂

j
x̂ + φ̂i

x̂φ̂
j
ŷ) + E3φ̂

i
ŷφ̂

j
ŷ

]

+ |J |q̂φ̂iφ̂j

}

dx̂dŷ,

where

J = xx̂yŷ − xŷyx̂, E1 = x2ŷ + y2ŷ (2.99)

E2 = xx̂xŷ + yx̂yŷ, E3 = x2x̂ + y2x̂. (2.100)

Things to consider

(1) Use banded storage

(2) Use as many modules as possible.

(3) Iterative method or direct method ?

(4) Output. Check the error by discrete L2, H1-inner product. Graphics.

2.7 Three dim cube

We provide a method to subdivide a 3D cube into tetrahedra to triangularize

a box.
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O

v1

v2

v3

v4

v5

v6

v7

5 tetra w/ vertex O, v4, v2, v6, v5.

v1

v3

v5

v7

Inner tetra w/vertices v1, v3, v7, v5

Figure 2.12: Subdivision of Cube into 5 tetrahedra

2.7.1 Subdivision into 5 tetrahedra

Here 4 sub tetra with red vertex (90 deg corner) plus the one interior (Green,

blue).

From fig. 2.9, we see 5 Sub-tetra hedra with vertices at

(O, v1, v3, v7), (v4, v1, v5, v7), (v2, v1, v3, v5), (v6, v3, v7, v5), (v5, v1, v3, v7)

2.7.2 Subdivision into 6 tetrahedra

O

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Figure 2.13: Subdivision of Cube into 6 tetrahedra

From fig. 2.10, we see 3 sub-tetra hedra with vertices at

(v1, v5, v4, v6), (v1, v2, v5, v6), (v1, v2, v3, v6)
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2.8 Three dim cube -MG

Above subdivision of 3D cube into tetrahedra cannot(? at least difficult) be

used to apply MG since the k-level of tetrahedra are obtained from k-level of

box. Not easy to see nested ness of tetrahedra. So using the boxes are much

easier to apply MG. Then the problem with IFEM. How to describe cutting

the box with a surface ?

2.8.1 Numerical Integration

Abramowitz, Stegun. A software package in the public domain by Gautschi.

We replace integral by certain weighted sum of function values:

I =

∫

K
g(x, y)dxdy ≈

Q
∑

i=1

wig(x
i, yi)

where wi and (xi, xi) are independent of θ.

2.8.2 Quadrature for the interval I = [−1, 1]

∫

I
g(x, y)dxdy ≈

Q
∑

i=1

wig(x
i)

(1) (Gauss 2 pts). xi = − 1√
3
, 1√

3
, weight wi = 1, 1.

(2) (Gauss 3 pts). xi = −
√

3
5 , 0,

√

3
5 , weight wi =

5
9 ,

8
9 ,

5
9 .

2.8.3 Quadrature for a triangle

We assume the reference triangle K̂ is the right triangle with vertices at (0, 0),

(1, 0) and (0, 1).

Example 2.8.1. Q = 1. (exact for P1). Quadrature point for K̂ is (13 ,
1
3),

w = 1
2 .

∫

K
gdxdy ≈ |K|g(1

3
,
1

3
).

Example 2.8.2. Q = 3. (exact for P2). Quadrature points are (12 , 0), (
1
2 ,

1
2 )

and (0, 12) w = 1
6 . Thus

∫

K
gdxdy ≈ |K|

3

[

g(
1

2
, 0) + g(

1

2
,
1

2
) + g(0,

1

2
)

]

.
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b

Q = 1(P1)

b

b

b

Q = 3(P2)

b

b

b

b

b

b
b

Q = 7(P3)

Figure 2.14: Quadrature points for triangle

Another one: Gaussian quadrature of degree 2 for the standard triangle

∫

K
gdxdy ≈ |K|

3

[

g(
1

6
,
1

6
) + g(

2

3
,
1

6
) + g(

1

6
,
2

3
)

]

.

Example 2.8.3 (Quadrature for triangle). Q = 7 (exact for P3).

|K|
60



3

3
∑

i=1

g(vi) + 8

3
∑

i<j

g(vij) + 27g(v123)



 .

Another Q = 4

−27

96
g(

1

3
,
1

3
) +

25

96

[

g(
2

15
,
11

15
) + g(

2

15
,
2

15
) + g(

11

15
,
2

15
)

]

.

Here 2
15 ,

11
15 can be replaced by 1

5 ,
3
5 resp.

2.8.4 Quadrature for a Rectangle

Example 2.8.4. Q̂ = [−1, 1] × [−1, 1].

(1) Q = 1. (Gaussian quadrature) The point is (0, 0) and w = 4. It is exact

for Q1.

(2) Q = 4. (Product of quadrature) The points are (± 1√
3
,± 1√

3
) and w = 1.

Exact for Q3.

(3) Q = 5.

1

3
[g(−1,−1) + g(−1, 1) + g(1,−1) + g(1, 1) + 8g(0, 0)]

is exact for P3.
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b

Q = 1(Q1)

b

b

b

b

Q = 4(Q3) Gaussian

b b

bb

b

Q = 5(P3)

b b

bb

b b b

b

b

Q = 9(Q3) Simpson

Figure 2.15: Quadrature points for the rectangle

(4) Q = 9. (Product of Simpson’s rule).

1

9

[

∑

g(±1,±1) + 4
∑

(g(±1

2
, 0) + g(0,±1

2
)) + 16g(0, 0)

]

is exact for Q3.

(5) Q = 9. (Product of Gauss 3 pts). xij = −
√

3
5 , 0,

√

3
5 , weight wij =

5
9 ,

8
9 ,

5
9 .





3
∑

i,j=1

wijg(xij)





is exact for Q5.

2.8.5 Quadrature for a circle

Example 2.8.5 (Quadrature for the circle of radius h). Q = 4(exact up to

Q3).
∫∫

C
g(x, y)dxdy = πh2

4
∑

i=1

wig(xi, yi) +O(h4),

where (xi, yi) = (±h/2,±h/2) and wi = 1/4.

Example 2.8.6 (Quadrature for the circle of radius h). Q = 7(exact to P5)

(x1, y1) =(0, 0) (xi, yi) = (±
√

2/3, 0), i = 2, 3 (2.101)

(xi, yi) = (±h/
√
6,±h/

√
2), i = 4, · · · , 7 (2.102)

w1 = 1/4, wi = 1/8, i = 2 : 7.
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b b

b

b

Q = 4(Q3)

b b

b b

b bb

Q = 7(P5)

Figure 2.16: Quadrature points for the circle

2.9 Stokes Equation

Notations.

curl(curl φ) = −∆φ, n = 2

curl (curl v)

curl (curlv)

}

= −∆v+ grad (∇v)
n = 3

n = 2.

We define

grad p =

(

∂p/∂x1

∂p/∂x2

)

, div τ =

(

∂τ11/∂x1 + ∂τ12/∂x2

∂τ21/∂x1 + ∂τ22/∂x2

)

,

divv = ∂v1/∂x1 + ∂v2/∂x2, Grad v =

(

∂v1/∂x1 ∂v1/∂x2

∂v2/∂x1 ∂v2/∂x2

)

.

curlv =
∂v2
∂x

− ∂v1
∂y

, curl η =
(

∂η
∂y ,−

∂η
∂x

)

curl v =

(

curl v1

curl v2

)

.

We also define

δ =

(

1 0

0 1

)

, χ =

(

0 −1

1 0

)

, and tr(τ ) = τ : δ.

For two matrices τ , δ we write

τ : δ =
2
∑

i=1

2
∑

j=1

δijτij .
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Also define deviatoric or deformation tensor

ǫ(u) =
1

2
(∇u+∇uT ), and ǫij(u) =

1

2
(
∂ui
∂xj

+
∂uj
∂xi

).

Let Ω be a domain in R
n(n = 2, 3) with its boundary Γ := ∂Ω. The Navier-

Stokes equations for a viscous fluid is are as follows:

∂ui
∂t

+

n
∑

j=1

uj
∂ui
∂xj

− 2ν
∑

j

∂ǫij(u)

∂xj
+

∂p

∂xi
= fi(1 ≤ i ≤ n) in Ω,(2.103)

divu = 0 (incompressible),(2.104)

u = g on Γ. (2.105)

Here u is the velocity of the fluid, ν > 0 is the viscosity and p is the pressure;

(Here we assume p and ν are normalized so we may assume ρ = 1) and the

vector f represents body forces per unit mass. If we introduce the stress tensor

σij := −pδij + 2νǫij(u) we have a simpler form :

∂u
∂t + (u · ∇)u− divσ = f in Ω,

divu = 0 in Ω,

u = g on Γ.

(2.106)

Here the first term is interpreted as

(u · ∇)v = ei
∑

j

uj
∂vi
∂xj

=
∑

j

uj
∂v

∂xj
.

Note that if divu = 0, the following identity holds

∑

j

∂ǫij(u)

∂xj
=

1

2

∑

j

(

∂2ui
∂x2j

+
∂2uj

∂xi∂xj

)

=
1

2
∆ui, for each i (2.107)

so that the equation can be written as



















∂u
∂t + (u · ∇)u− ν∆u+ grad p = f in Ω,

divu = 0 in Ω,

u = g on Γ.

(2.108)

We only consider the steady-state case and assume that u is so small that
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we can ignore the non-linear convection term uj
∂ui
∂xj

. Thus, we have the Stokes

equation:











−ν∆u+ grad p = f in Ω,

divu = 0 in Ω,

u = g on Γ.

(2.109)

2.10 Newton for NS System

Steady state Navier Stokes equation is following











−µ∆u+ u · ∇u+∇p = f on Ω

∇ · u = g on Ω

u = q on ∂Ω.

Newton iteration is following. Initial guess u0 = 0, p0 = 0 are given.

Suppose un and pn is given. We do the Newton iteration until the residual is

smaller than the tolerance.

Suppose un+1 = un + ũ and pn+1 = pn + p̃.

{

−µ∆(un + ũ) + (un + ũ) · ∇(un + ũ) +∇(pn + p̃) = f

∇ · (un + ũ) = g

By omitting high order term respect to ũ we obtain linear system for ũ

{

−µ∆ũ+ un · ∇ũ+ ũ · ∇un +∇p̃ = rn1
∇ · ũ = rn2 ,

where we define residual rn of the system of the residual at n − th iteration

by rn = (rn1 , r
n
2 ) = (f + µ∆un − un · ∇un −∇pn, g −∇ · un). Or write it as

−µ∆un+1 + un · ∇un+1 + un+1 · ∇un +∇pn+1 = f + un · ∇un

∇ · un+1 = 0

un+1 = 0 on Γ.

We discretize the problem on finite element space Mh = Vh ×Qh. Vh may

or may not be subspace of H1
0 (Ω), and Qh is subspace of L2(Ω)\{0}. For

velocity space Vh we use Q1-nonconforming element and pressure space Qh

we use P0 conforming element. After fully discretizing the system we obtain
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linear system

(

Ah BT
h

Bh 0

)(

ũh

p̃h

)

=

(

rn1,h
rn2,h.

)

(2.110)

with nonsymmetric matrix Ah. When µ gets smaller it means nonlinear term

of the Navier-Stokes equation dominates. At the discretized level, the Ah gets

highly nonsymmetric and system gets difficult to solve. The system (2.111)

can be solved by Uzawa method.

[un+1, pn+1] = Newton[un, pn]

(1) Solve for ũ and p with given (un, pn)

(

Ah BT
h

Bh 0

)(

ũh

p̃h

)

. =

(

rn1,h
rn2,h

)

. (2.111)

(2) Compute (un+1, pn+1) = (un + ũ, pn + p̃)

Process Newton iteration until rn is smaller than tolerance.

2.11 The Equations of Elasticity

Notations: Let H = (H1(Ω))3 and H0 = (H1
0 (Ω))

3. For u = (u1, u2, u3) ∈ H,

we let

divu =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

, ‖(u1, u2, u3)‖2H =
∑

i

‖ui‖2H1
0
.

Let

ǫij(v) =
1

2
(∂jvi + ∂ivj) =

1

2
(∇v +∇vT ) (2.112)

be the linearized strain tensor and the stress tensor be

σij(v) = λ

(

3
∑

k=1

ǫkk(v)

)

δij + 2µǫij(v), (1 ≤ i, j ≤ 3) (2.113)

or simply

σ(v) = 2µǫ(v) + λtr(ǫ(v))δ. (2.114)

Stress is defined as force per unit area.
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We use the following notation (matrix dot product)

ǫ(u) : ǫ(v) =

3
∑

i,j=1

ǫij(u)ǫij(v).

Pure displacement problem

The equation of elasticity in pure displacement problem is

−div {2µǫ(u) + λ tr(ǫ(u))δ} = f , in Ω,

u = g, on ∂Ω,
(2.115)

where λ and µ are Lamé constants. Since div (∇u)T = div ((divu)δ), the

first equation of (2.115) becomes

−div {µ∇u+ (µ + λ)(divu)δ} = f . (2.116)

Green’s formula

For any tensor σ = (σij) we have

−
∫

Ω
(∂jσij)vi dx =

∫

Ω
σij∂jvi dx−

∫

Γ
σijviνj ds. (2.117)

If σij = ∂jui then we have

−
∫

Ω
(∂2

j ui)vi dx =

∫

Ω
∂jui∂jvi dx−

∫

Γ
∂juiviνj ds. (2.118)

Summation give

−
∫

Ω
div (∇u) · v dx =

∫

Ω
∇u : ∇v dx−

∫

Γ
vT∇u · n ds. (2.119)

If, on the other hand, σ = (divu) δ, then we have (after Einstein summation

notation is used)

−
∫

Ω
(∂j(divu)δij)vi dx =

∫

Ω
divu δij∂jvi dx−

∫

Γ
divu δijviνj ds

=

∫

Ω
divudivv dx−

∫

Γ
divu(v · n) ds

=

∫

Ω
divudivv dx−

∫

Γ
tr(ǫ(u))v · n ds.(2.120)
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Hence by (2.119) and (2.120), the weak form for the pure displacement

problem is: find u ∈ H satisfying the BC and for all v ∈ H0

a(u,v) := µ

∫

Ω
∇u : ∇v dx+ (µ+ λ)

∫

Ω
divudivv dx = f(v). (2.121)

Pure traction problem

The pure traction problem is

−div {2µǫ(u) + λ tr(ǫ(u))δ} = f , in Ω,

σ(u) · n = g, on ∂Ω = Γ,
(2.122)

with compatibility condition:

∫

Ω
f · vdx+

∫

∂Ω
g · vds = 0, for v ∈ RM := {(a+ by, c− bx)}.

Here

σ(u) = 2µǫ(u) + λ tr(ǫ(u))δ.

Multiply v ∈ (H1(Ω))n and integrate by part (use (2.117) with ǫ in place

of σ ) to the first term of (2.122), we see

−2µ

∫

Ω

∑

i,j

∂ǫij(u)

∂xj
vi

= −2µ

∫

∂Ω

∑

i,j

ǫij(u)njvi + 2µ

∫

Ω

∑

i,j

ǫij(u)
∂vi
∂xj

.

Using symmetry of ǫij(u), we get

∑

i,j

ǫij(u)
∂vj
∂xi

=
∑

i,j

ǫji(u)
∂vj
∂xi

=
∑

i,j

ǫij(u)
∂vi
∂xj

. (2.123)
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Hence

−2µ

∫

Ω

∑

i,j

∂ǫij(u)

∂xj
vi

= −2µ

∫

∂Ω

∑

i,j

ǫij(u)njvi + µ

∫

Ω

∑

i,j

ǫij(u)(
∂vi
∂xj

+
∂vj
∂xi

)

= −2µ

∫

∂Ω

∑

i,j

ǫij(u)njvi + 2µ

∫

Ω

∑

i,j

ǫij(u)ǫij(v)

= −2µ

∫

∂Ω
ǫ(u)n · v + 2µ

∫

Ω
ǫ(u) : ǫ(v). (2.124)

Meanwhile the second term of (2.122) gives

λ

∫

Ω
divudivv dx− λ

∫

∂Ω
tr(ǫ(u))δn · v ds

= λ

∫

Ω
divudivv dx− λ

∫

∂Ω
tr(ǫ(u))v · n ds. (2.125)

Hence we get

a(u,v) := 2µ

∫

Ω
ǫ(u) : ǫ(v) dx + λ

∫

Ω
divudivv dx = f̄(v), (2.126)

where

f̄(v) =

∫

Ω
f · v dx+

∫

Γ
g · v ds. (2.127)

Notice that the boundary terms of (2.124) and (2.125) are included in rhs as

g. Thus formally we are solving

−
3
∑

j=1

∫

Ω
(∂jσij(u))vi =

∫

Ω
f̄ivi dx, i = 1, 2, 3. (2.128)

This together with the BC, we can check the weak form is equivalent to the

pure traction case.

Compatibility condition: use Fredholm alternative (or duality in Banach

operator):

R(A)⊥ = N(A∗).



2.11. THE EQUATIONS OF ELASTICITY 51

Ω−
Ω+

Γ

Ω−
Ω+

Γ

Figure 2.17: A domain Ω for the interface problem

f̄(v) = 0 ⇔ A∗v = 0 ⇔
⇔ ǫ(v) = 0 and divv = 0 ⇔ v ∈ RM.

If v ∈ RM then ǫ(v) = divv = 0. Hence
∫

Ω f · vdx +
∫

∂Ω g · vds = 0.

Conversely, Let ǫ(v) = 0 and divv = 0. Then

(

2v11 v12 + v21

v12 + v21 2v22

)

= 0 and v11 + v22 = 0.

Hence

v1 = g1(y) + a, v2 = g2(x) + c

for some constant a, c and ftns g1, g2 (not g above.) Further, v12 + v21 = 0

implies

g′1(y) + g′2(x) = 0

and hence

g′1(y) = b = −g′2(x).

This shows the compatibility condition holds precisely when v ∈ RM :=

{(a+ by, c− bx)}.

Exercise 2.11.1. What happens to the bilinear form if the domain consists of

two connected parts Ω = Ω+ ∪Ω− where the Lamé constants are different on

each of the domain, i.e., µ = µ±, λ = λ± on Ω± ? Also state an appropriate

conditions.
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Relation to Stokes equation

Meanwhile if we introduce p = −λtr(ǫ(u)) then

−div {2µǫ(u)}+∇p = f , in Ω,

div u = − p

λ
, in Ω,

u = g, on ∂Ω.

(2.129)

This is a mixed form. If λ → ∞ then div u = 0 hence we get Stoke problem.

2.12 Final take home exam - Due Dec 24

Consider the Stokes equation











−ν∆u+ grad p = f in Ω = [0, 1]2,

divu = 0 in Ω,

u = g on Γ,

(2.130)

The FEM form is (Qh): find a pair (uh, ph) in Xh ×Mh such that

a(uh,v) + b(v, ph) = (f ,vh)− a(ug,v), v ∈ Xh

b(uh, q) = 0, q ∈ Mh

Normalize ph so that it belongs to Mh = L2
0(Ω).

Here spaces are P1 nonconforming FEM of Crouzeix-Raviart for velocity and

piecewise constant for pressure.

(1) Choose your own exact solution pair (u, p) which satisfies divu = 0 and

obtain f and g by plugging them into the equation. For example, you

can choose any smooth scalar function φ(x, y) and take curlφ. Solve it

by FEM.

(a) Report ‖u−uh‖0, ‖u−uh‖1 and ‖p−ph‖0 for h = 1/4, 1/8, · · · , 1/26.
Write down the table. Make sure you are getting correct answer.

(b) Draw the graph of one component, say u1 of the velocity field uh =

(u1, u2).

(2) Solve the Stokes equation with f = 0 and the following BC and various
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ν = 1.0, 0.1, 0.01, 0.005.

g = (g1, g2) = (const, 0) on y = 1,g = 0 otherwise

(a) Draw the stream line (Use matlab or any graphic package) for each

case ν = 1.0, 0.1, 0.01, 0.005 or smaller.

Solver - Uzawa method

Solve it by Standard Uzawa method. Try various ǫ > 0 see which one is good.

Let p0h given. Solve for m = 0, 1, · · · , until ‖pm+1
h − pmh ‖ is sufficiently small.

a(um+1
h ,v) + b(v, pmh ) = (f ,vh)− a(ug,v), v ∈ Xh

b(um+1
h , q) =

1

ǫ
(pm+1

h − pmh , q), q ∈ Mh

Normalize pm+1
h each step so that it belongs to M = L2

0(Ω).


