
Chapter 1

Preliminary

1.1 2nd order linear p.d.e. in two variables

General 2nd order linear p.d.e. in two variables is given in the following form:

L[u] = Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G, in Ω

where Ω is an open set in R
2. According to the relations between coefficients,

the p.d.es are classified into 3 categories, namely,

elliptic if AC −B2 > 0, A, C has the same sign and B is small
hyperbolic if AC −B2 < 0
parabolic if AC −B = 0

Furthermore, if the coefficients A,B and C are constant, it can be written as

[
∂

∂x
,
∂

∂y
]

[

A B
B C

] [∂u
∂x
∂u
∂y

]

+Dux + Euy + Fu = G.

Auxiliary condition










B.C. - Dirichlet, Neumann, Robin

I.C.

Interface Cond

The condition u = g0 on Γ0 ⊂ ∂Ω is called the Dirichlet B.C., the condition
∂u
∂n = g1 on Γ1 ⊂ ∂Ω is called the Neumann B.C., the condition α∂u

∂n + u =
g2 on Γ2 ⊂ ∂Ω is called the Robin B.C. If some of these conditions are mixed,
we say it is a mixed B.C.

Dirichlet Problem

In general, 2nd order linear p.d.e. in R
d can be given in the following conve-

nient form:

L[u] = −
∑d

i,j=1
∂
∂xi

(

aij
∂u
∂xj

)

+ cu = −∇ · A∇u+ cu = f in Ω

BC’s
(1.1)

1
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A = (aij)
d
i,j=1 is the coefficient matrix. The equation will be elliptic if A

is positive definite. Here u maybe electromagnetic potential, displacement
of elastic membrane, temperature, concentration of chemical component, or
pressure of a fluid(in porous media), etc.

Notations

∂iu =
∂u

∂xi
, ∂iju =

∂2u

∂xj∂xi
,∆ = (∂11 + · · · ∂dd)

so that
∇u = (∂1u, · · · , ∂du)

T , ∇ · v = (∂1v1 + · · ·+ ∂dvd)

represent, and a new vector field.

∆ : Laplace operator = ∇ · ∇ = ∇2

C(Ω), C1(Ω), C(Ω̄), Ck(Ω̄), C(∂Ω)

• behavior near boundary

• Equation (1.1) holds in an open set Ω.

Definition 1.1.1 (Classical solution). Assume f ∈ C(Ω), g ∈ C(∂Ω). A
function u is called a classical solution if ∈ C2(Ω) ∩ C(Ω̄).

We say a pde is “well posed” if a solution exists and the solution depends
continuously on the data. There are basically two class of method to discretize
it,

(1) Finite Difference method

(2) Finite Element method

1.2 The Maximum Principle

In this section, we assume L is symmetric positive definite, i.e, the matrix A
is symmetric positive definite.

Theorem 1.2.1 (Maximum Principle). Assume A is positive definite sym-
metric, c ≥ 0. Let u be the solution of elliptic p.d.e. given by

L[u] = −
∑

ij

∂

∂xi

[

aij
∂u

∂xj

]

+ cu = −∇A∇u+ cu = f ≤ 0 in Ω

u = g on ∂Ω

Then we have
|u(x, y)| ≤ max

(x,y)∈∂Ω
|u(x, y)|, (x, y) ∈ Ω
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Proof. Assume c > 0. By positive definite, there exists orthogonal matrix P
depending on (x, y) such that P TAP = diag{d1, d2} where d1, d2 > 0. If u has
a positive maximum at some interior point Q = (x∗, y∗) of Ω, then define

(

s
t

)

= P T (x∗, y∗)

(

x
y

)

so that L[u] = −∇(s,t)P
TAP∇(s,t)u + cu = 0. At Q, us(Q) = ut(Q) = 0,

uss(Q) ≤ 0 and utt(Q) ≤ 0. Hence

L[u] = −d1uss(Q)− d2utt(Q) + c(Q)u(Q) = f ≤ 0

Remembering, d1 > 0, d2 > 0, cu > 0 this is a contradiction. Similarly, u
cannot have negative minimum.

Now if c ≥ 0 not c > 0 we consider a perturbation. Choose α so large that
L[eαx] = −(d1α

2 + d2α
2 − c)eαx < 0 and let v = u+ Eeαx.

L[v] = L[u] + EL[eαx] < 0 for all E > 0.

Suppose v has a pos. max. at Q, an interior point of Ω. Then L[v] =
−d1vss(Q) − d2vtt(Q) + c(Q)v(Q) ≥ 0, a contradiction. Hence u(x, y) ≤
v(x, y) < max∂Ω{u+Eeαx}. Let E → 0. Then

u(x, y) ≤ max
∂Ω

u.

Applying maximum principle to u and −u, we obtain the following result.

Corollary 1.2.1. If

L[u] = 0 in Ω

u = 0 on ∂Ω,

then u ≡ 0.

As a consequence we have uniqueness of solution.

Corollary 1.2.2. If u1, u2 satisfy

L[ui] = f in Ω

ui = g on ∂Ω,

then u1 = u2.

Corollary 1.2.3 (Continuous dependence of boundary data). If u1, u2 are
the solutions of pde with two different boundary values. Then

sup
Ω

|u1(x)− u2(x)| ≤ sup
∂Ω

|u1(x)− u2(x)|.
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1.3 Finite Difference Method

Let u(x) be a function defined on Ω ⊂ R
n. Let Ui,j be the function defined over

discrete domain {(xi, yj)} (such points are grid points) that may approximate
ui,j = u(xi, yj). Such functions are called grid functions.

Difference operator

∂+Ui =
Ui+1 − Ui

hi+1
, forward difference

∂−Ui =
Ui − Ui−1

hi
, backward difference

∂0Ui =
Ui+1 − Ui−1

hi + hi+1
, central difference

∂2Ui =
2(∂+ − ∂−)

hi + hi+1
, central 2nd difference

Example 1.3.1. Note that

∂+Ui =
Ui+1 − Ui

hi+1
= ∂0Ui+1/2, central difference at xi+1/2

∂−Ui =
Ui − Ui−1

hi
= ∂0Ui−1/2, central difference at xi−1/2

H.W 1. We can interpret ∂2Ui as a central difference 2
∂0Ui+1/2−∂0Ui−1/2

hi+hi+1
.

Derive the truncation error.

Example 1.3.2. Consider the following second order two point boundary value
problem :

−u′′(x) = f(x), BC. u(a) = c, u(b) = d.

Assume a mesh a = x0 < x1 < · · · < xN = b,∆xi = xi+1 − xi = h. Replacing
the derivative by a difference quotient, we obtain

−
ui−1 − 2ui + ui+1

h2
+O(h2) = f(xi), i = 1, · · ·N − 1, u0 = c, uN = d

Dropping the error term, we obtain a system of linear equations in the approx-
imate values Ui:

−
Ui−1 − 2Ui + Ui+1

h2
= fi = f(xi), i = 1, · · ·N − 1, U0 = c, UN = d.

This is an (N − 1)× (N − 1) matrix equations.

h−2













2 −1
−1 2 −1

. . .
−1 2 −1

−1 2

























U1

·
·
·

UN−1













=













f1
·
·
·

fN−1













+ h−2













c
0
0
0
d
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Above equation can be written as LhU
h = F h, where Uh = (U1, · · · , UN−1)

and F h = (fi)+ boundary terms. It is called a difference equation for a given
differential equation.

Exercise 1.3.1. Write down a matrix equation for the same problem with
second boundary condition changed to the normal derivative condition at b, i.e,
u′(b) = d. If one uses first order difference for derivative, we lose accuracy.

We need an extra equation in this case. There are several choices:

(1) Use first order backward difference scheme

UN − UN−1

h
= d

and append this to the last eq.( first order)

(2) Assume the D.E. holds at the end point and use central difference equa-
tion by using a fictitious point UN+1 :

−
1

h2
(UN−1 − 2UN + UN+1) = f(1) (1.2)

1

2h
(UN+1 − UN−1) = d (1.3)

Substitute the last eq. into first eq., we have

UN − UN−1

h2
=

d

h
+

f(1)

2
. (1.4)

The matrix is still symmetric; Eq. (1.4) can be viewed as centered
difference approximation to u′(xn − h

2 ) and rhs as the first two terms of
Taylor expansion

u′(xn −
h

2
) = u′(xn)−

h

2
u′′(xn) + · · ·

(3) Approximate u′(1) by higher order scheme such as

uN−2 − 4uN−1 + 3uN
2h

= d.

In this case one has second order truncation error (Show it) but the
matrix loses symmetry.

Exercise 1.3.2. (1) Solve above D.E. (Dirichlet and Neumann) with f =
2 − 6x so that u = x − x2 + x3 and the following BCs (with h = 1/n,
n = 5, 10, 20, 40). Report the error ‖u− uh‖∞ = maxi |(u− uh)(xi)|.

(a) u(0) = 0, u(1) = 1
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u = g1

u = g1

u = g1

∂u

∂n
= g2

x1 x2 x3 x7

x4 x5 x6 x8

(0, 0) (1, 0)

(0, 1)

b b b

b b b

Figure 1.1: Grid for the Neumann problem

(b) u(0) = 0, u′(1) = 2

(2) Write down the stiffness matrix of 2D problem, Ω = [0, 1] × [0, 1] with
Neumann condition at x = 1 on the unit square with 3 × 3 grid. i.e.,
∂u
∂n = g2 along x = 1. Label the node x1, x2, x3 lexicographically from the
bottom row.(excluding the boundary) There are two possibilities to treat
the Neumann condition: One is to use backward difference. Another is
to assume fictitious values and use central difference, then incorporate
them into the five point stencil. In other words, use ux=̇

u7−u2
2h = g2(1,

1
3 )

and substitute into the stencil, the third equation becomes

1

h2
(−2u2 + 4u3 − u6) = (f +

2

h
g2)(1,

1

3
).

1.3.1 Convergence of Finite Difference Method

For u ∈ C4, use the Taylor expansion about xi

u(xi+1) = u(xi) + hiu
′(xi) +

h2i
2
u′′(xi) +

h3

6
u(3)(xi) +

h4

24
u(4)(ξ1), ξ1 ∈ (xi, xi+1)

u(xi−1) = u(xi)− hiu
′(xi) +

h2i
2
u′′(xi)−

h3

6
u(3)(xi) +

h4

24
u(4)(ξ2), ξ2 ∈ (xi, xi+1).

Assume hi = hi+1 and we substitute the solution of differential equation
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into the difference equation. Using −u′′ = f we obtain

(−ui−1 + 2ui − ui+1)

h2
− f(xi)

=
1

h2
(−ui + hu′i −

h2

2
u′′i +

h3

6
u(3) −

h4

24
u(4)(ξ1) + 2ui)

+
1

h2
(−ui − hu′i −

h2

2
u′′i −

h3

6
u(3) −

h4

24
u(4)(ξ2))− f(xi)

= −u′′i − f(xi)−
h2

24
(u(4)(ξ1) + u(4)(ξ2)) truncation error

=
h2

12
max |u(4)|.

Given a pde Lu = f with B.C, we associate a finite difference scheme

LhU
h = F h.

We let τh = Lhu− F h and call it the truncation error.

Definition 1.3.1. We say a difference scheme is consistent if the truncation
error approaches zero as h approaches zero, in other words, if

τh = Lhu− F h → 0

in some norm.

Truncation error measures how well the difference equation approximates
the differential equation. But it does not measure the actual error in the
solution. Let η = u− Uh be the actual discretization error. Then we have

Lhη = Lh(u− Uh) (1.5)

= Lhu− F h = τh. (1.6)

Definition 1.3.2. Lh is said to be stable if L−1
h is bounded, i.e, Lh is stable

if there is a constant C > 0 independent of h such that

‖Uh‖ ≤ C‖F h‖ for all h > 0.

Definition 1.3.3. A finite difference scheme is said to converge if

‖Uh − u‖ → 0 as h → 0.

If ‖u− Uh‖ = O(hp) then we say the order of convergence is p.

Theorem 1.3.3 (P. Lax). Given a consistent scheme, stability is equivalent
to convergence.
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Proof. Assume the stability. From Lhu − f = τh, LhU
h − F h = 0, we have

Lh(u− Uh) = τh. Then,

‖u− Uh‖ = ‖L−1
h ◦ Lh(u− Uh)‖ ≤ C‖Lh(u− Uh)‖ = C‖τh‖ → 0.

Hence the scheme converges. Now we show that a convergent scheme is stable.
From the theory of p.d.e, we know ‖u‖ ≤ C‖f‖. Hence

‖Uh‖ ≤ ‖Uh − u‖+ ‖u‖ ≤ C‖f‖+O(τh) = C‖F h‖+O(τh).

1.4 FDM for Elliptic equation in 2D

Consider the following elliptic problem:

−∆u = f in Ω
u = g1 on Γ1

∂u
∂n = g2 on ∂Ω\Γ1.

(1.7)

More generally, we may consider

L[u] = −(a11ux)x − (a22uy)y + cu = f, (with B.C.).

We solve it by the Finite Difference Method. We assume Ω = (0, a)× (0, b)
is a rectangular domain. Divide it by horizontal and vertical grid lines x =
ih1(i = 1, · · · , ℓ − 1) and y = jh2(j = 1, · · · ,m − 1), where h1 = a/ℓ and
h2 = b/m for some integers ℓ,m. For simplicity we assume a, b are given so
that h := h1 = h2. Let the discrete domain be defined as

Ωh = {(ih, jh)|i = 1, · · · , ℓ− 1, j = 1, · · · ,m− 1},

∂Ωh is obviously defined and we let Ω̄h = Ωh ∪ ∂Ωh. The F.D. discretization
consists of the following steps:

(1) Approximate the D.E. −(uxx + uyy) = f by a finite difference at each
interior mesh pt.

(2) The unknown function u is replaced by the grid function Uh.

u(x+ h) = u(x) + hux(x) +
h2

2 uxx(x) +
h3

6 uxxx(x) +O(h4)
u(x− h) = . . .

u(x+ h)− 2u(x) + u(x− h)

h2
= uxx(x) +O(h2)

uxx(x, y)
.
= [u(x+ h, y)− 2u(x, y) + u(x− h, y)]/h2

uyy(x, y)
.
= [u(x, y + h)− 2u(x, y) + u(x, y − h)]/h2
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××

×

×

(x− h, y) (x, y) (x+ h, y)

(x, y − h)

(x, y + h)

Figure 1.2: 5-point Stencil

For each point (interior mesh pt), approximate ∇2u = ∆u by 5-point
stencil. It is called a Molecule, Stencil, Star, etc. By Girshgorin disc theorem,
the matrix is nonsingular. L[u] is called differential operator while Lh[u] is
called finite difference operator, e.g.,

Lh[u](x, y) = [−4u(x, y)+u(x+h, y)+u(x−h, y)+u(x, y+h)+u(x, y−h)]/h2

With uniform meshes

ux(x)
.
= u(x+h)−u(x−h)

2h

(ux)x(x)
.
=

ux(x+
h
2
)−ux(x−

h
2
)

h Central difference

Note that
ux(x+ h

2 ) =̇u(x+h)−u(x)
h

ux(x− h
2 ) =̇u(x)−u(x−h)

h

For a problem with variable coefficients a(x, y), we use central difference

(a11ux)x=̇[(a11ux)(x+
h

2
)− (a11ux)(x−

h

2
)]/h

Assume the differential operator is of the form(with c > 0):

L[u] ≡ −[uxx + uyy] + cu = f.

The discretized equation is
Lh[U

h] = F (x, y) where

Lh[U
h] =

1

h2









4 + ch2 −1 −1 0
−1 4 + ch 0 −1
−1 0 4 + ch2 −1
0 −1 −1 4 + ch2

















U1

U2

U3

U4









.
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(1) For the true solution u, we have Lh[u] = L[u] +O(h2)(truncation error)
as h → 0.

(2) LhU
h = F h +Bdy, Lhu = [−∆u+ cu+O(h2)] +Bdy.

We have
Lh(U

h − u) = τh = O(h2).

Let A be the matrix representation of Lh then with abuse of notations(e.g, u
is also treated as a vector of finite entries), the discretization error Uh − u =
A−1τh satisfies

‖Uh − u‖ ≤ ‖A−1‖ · ‖τh‖ ≤ ‖A−1‖O(h2).

If we can show ‖A−1‖ is bounded independent of h, we can show the con-
vergence of the scheme. We proceed as follows: If we put D = diagA =
{a11, . . . , ann}, then D−1A(Uh − u) = D−1τh. Write D−1A = I + B, where
B is off diagonal. Then we know ‖B‖∞ = 4

4+ch2 < 1 since c > 0. Thus

(D−1A)−1 = (I +B)−1 exists and

‖(D−1A)−1‖∞ = ‖(I +B)−1‖∞ ≤
1

1− ‖B‖∞
≤

4 + ch2

ch2
.

Hence

‖Uh−u‖∞ ≤ ‖(D−1A)−1‖∞·‖D−1τh‖∞ ≤
4 + ch2

ch2
·

h2

4 + ch2
O(h2) = O(h2) → 0.

Thus, we have proved the following result.

Theorem 1.4.1 (Convergence of FDM -special case). Assume

(1) u ∈ C4(Ω)

(2) c > 0

(3) uniform mesh

Then ‖Uh − u‖∞ = O(h2) as h → 0.

Note that FDM requires high regularity.

Checking the order of convergence

Assuming the error is of the form ‖Uh − u‖ = Mhα for some norm ‖ · ‖, we
see

‖Uh − u‖

‖Uh0 − u‖
=

Mhα

Mhα0
= (

h

h0
)α.

Hence

α = log

[

‖Uh − u‖

‖Uh0 − u‖

]/

log(
h

h0
).

If the exact solution u is not known, we replace u by Uhmin
for sufficiently

small hmin. Typically, we take h0 = h/2.
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Ω

s > 0

s < 0

Figure 1.3: Region for proving Error estimate

1.5 Sobolev Spaces

Multi-index

For α = (α1, · · · , αd), (αi ∈ Z
+), let |α| =

∑

i αi and

xα = xα1
1 · · · xαd

d , ∂αu = ∂α1
1 · · · ∂αd

d u =
∂|α|u

∂xα1
1 · · · ∂xαd

d

.

Weak Derivative

We denote the inner product
∫

Ω u(x)v(x)dx on L2(Ω) by (u, v).

Definition 1.5.1. (1) Let u ∈ L2(Ω). Given a multi-index α, we say u has
a weak derivative (of order α) if there exists a function v ∈ L2(Ω) such
that

∫

Ω
vφ dx = (−1)|α|

∫

Ω
u∂αφdx (1.8)

for all φ ∈ C∞
0 (Ω). In this case we write ∂αu = v. Such a derivative is

unique in L2(Ω).

(2) For a vector field q = (L2(Ω))d, we say the weak divergence of q is well
defined if there exist a function v ∈ L2(Ω) satisfying

∫

Ω
vφ dx = −

∫

Ω
q · ∇φdx (1.9)

for all φ ∈ C∞
0 (Ω). In this case we let ∇ · q = v.

1.5.1 Sobolev Spaces

Let m ∈ Z
+. The Sobolev space Hm(Ω) is the set of all functions u in L2(Ω)

which possess weak-derivatives ∂αu ∈ L2(Ω) for all |α| ≤ m. On Hm(Ω), we
define the inner product

(u, v)m =
∑

|α|≤m

(∂αu, ∂αv) for u, v ∈ Hm(Ω) (1.10)
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with the corresponding norm

‖u‖m = ‖u‖Hm(Ω) =
(

∑

|α|≤m

∫

Ω
|∂αu|2dx

)1/2
:= (u, u)1/2m . (1.11)

The norm ‖ · ‖m is called a Sobolev norm.

Theorem 1.5.1. The space Hm(Ω) equipped with the inner product (·, ·)m
and the norm ‖ · ‖m is a Hilbert space.

Exercise 1.5.2. (1) Define the weak gradient of a function u ∈ L2(Ω).

(2) Show that there exist a sequence un ∈ C(0, 1), ‖un‖0 ≤ 1 but ‖un‖1 → ∞
as → ∞

(3) Let V = C1(Ω), Ω = (0, 1). Show that there is a Cauchy sequence {un}
in V such that un → u = xα(1− x)α, 1

2 < α < 1, but u 6∈ V . Thus V is
not complete with respect to the norm ‖ · ‖1.

Theorem 1.5.3. (Sobolev imbedding Lemma) Let m,k ∈ Z. If m > k + n
2

and the domain has sufficiently smooth boundary ∂Ω, then every function u ∈
Hm(Ω) is equivalent to a function in Ck(Ω). Furthermore, there is a constant
C independent of u such that

sup
|α|≤k

‖∂αu‖∞ ≤ C‖u‖m. (1.12)

There is an alternative definition of Sobolev spaces. Let V be the space
of function u ∈ Cm(Ω) such that ‖u‖m < ∞. Then V is a normed linear space
and its completion under the norm ‖ · ‖ is just Hm(Ω).
Let H1

0 (Ω) be the completion of C∞
0 (Ω) under the same norm. Then we have

Theorem 1.5.4. The space H1
0 (Ω) consists of the functions u ∈ H1(Ω) which

satisfy u = 0 (a.e.) on the boundary of Ω.

We have the obvious inclusion:

L2(Ω) = H0(Ω) ⊃ H1(Ω) ⊃ H2(Ω) ⊃ · · ·

Analogous Sobolev spaces can be defined with Lp(Ω) norms with p 6= 2. These
are denoted by Wm,p and Wm,p

0 . We need the following results which we
assume without proof.

Theorem 1.5.5. The spaces C1(Ω̄) and C1
0 (Ω̄) are dense in H1(Ω) and H1

0 (Ω)
resp.

Theorem 1.5.6. (Poincaré inequality)
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(1) Let Ω be the square the domain [0, d] × [0, d] ⊂ R
2. Then we have

‖u‖20 ≤ d2|u|21 + d−2

(
∫

Ω
u dx

)2

, ∀u ∈ H1(Ω) (1.13)

(2) Let Ω be a bounded domain in R
2 whose diameter is d. Then we have

‖u‖0 ≤ d|u|1, ∀u ∈ H1
0 (Ω), (1.14)

where |u|m is the semi norm
(
∑

|α|=m

∫

Ω |∂αu|2dx
)1/2

.

Proof. HW. Hint: prove them for u ∈ C1(Ω̄) (resp. C1
0 (Ω̄)) and use Theorem

1.5.5.


