
Chapter 5

Stokes Equation

5.1 Mathematical Formulations

We introduce some notations: Let v = (v1, v2)
T or v = (v1, v2, v3)

T . When

n = 2 we define

curlv =
∂v2
∂x

−
∂v1
∂y

,

curl η =
(

∂η
∂y ,−

∂η
∂x

)

.

In fact, curlv is obtained by imbedding v into R
3, take 3D curl, then take the

third component. For scalar function η, curl η the is same as imbedding η into

R
3 as (0, 0, η), take 3D curl, then take the first two components.

When n = 3 the curl of 3 -dim vector is defined as usual

curl v = ∇× v =
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∂z
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∣

(5.1)

curl (curlφ) = −∆φ, n = 2

curl (curl v)

curl (curlv)

}

= −∆v + grad ( divv)
n = 3

n = 2

1
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We define

grad p =

(

∂p/∂x1

∂p/∂x2

)

, div τ =

(

∂τ11/∂x1 + ∂τ12/∂x2

∂τ21/∂x1 + ∂τ22/∂x2

)

,

divv = ∂v1/∂x1 + ∂v2/∂x2, Grad v =

(

∂v1/∂x1 ∂v1/∂x2

∂v2/∂x1 ∂v2/∂x2

)

.

We also define

curlv =

(

curl v1

curl v2

)

, ∆u =

(

∆u1

∆u2

)

.

Theorem 5.1.1. Let Ω be simply connected. Then u ∈ (L2(Ω))n satisfies

curl u = 0

iff there exists p ∈ H1(Ω) s.t u = grad p.

For any two square matrices A,B we write

A : B =
∑

i,j

aijbij.

We also define special tensors

δ =

(

1 0

0 1

)

, χ =

(

0 −1

1 0

)

, and tr(τ ) = τ : δ = τ11 + τ22.

Let

Grad u = ∇u =

(

∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2

)

. (5.2)

Finally,

ǫ(v) =
1

2
[Grad v + (Grad v)t], ǫij(u) =

1

2
(
∂ui
∂xj

+
∂uj
∂xi

)

is called deviatoric or deformation tensor. Let Ω be a domain in R
n(n = 2, 3)

with its boundary Γ := ∂Ω.
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The Navier-Stokes equations for a viscous fluid is are as follows:

∂ui
∂t

+

n
∑

j=1

uj
∂ui
∂xj

− 2ν
∑

j

∂ǫij(u)

∂xj
+
∂p

∂xi
= fi(1 ≤ i ≤ n) in Ω, (5.3)

divu = 0 (incompressible), (5.4)

u = g on Γ. (5.5)

Here u is the velocity of the fluid, ν > 0 is the viscosity and p is the pressure;

(Here we assume p and ν are normalized so we may assume ρ = 1) and the

vector f represents body forces per unit mass. If we introduce the stress tensor

σij := −pδij + 2νǫij(u) we have a simpler form :

∂u
∂t + (u · ∇)u− divσ = f in Ω,

divu = 0 in Ω,

u = g on Γ.

(5.6)

Here the first term is interpreted as

(u · ∇)v = ei
∑

j

uj
∂vi
∂xj

=
∑

j

uj
∂v

∂xj
.

Note that if divu = 0, the following identity holds

∑

j

∂ǫij(u)

∂xj
=

1

2

∑

j

(

∂2ui
∂x2j

+
∂2uj
∂xi∂xj

)

=
1

2
∆ui, for each i (5.7)

so that the equation can be written as



















∂u
∂t + (u · ∇)u− ν∆u+ grad p = f in Ω,

divu = 0 in Ω,

u = g on Γ.

(5.8)

Remark 5.1.2. If we define uv = u⊗v = (uivj)i,j, then when divu = 0, we

see that the nonlinear term (u · ∇)u can be written as ∇ · (u⊗ u).

We only consider the steady-state case and assume that u is so small that

we can ignore the non-linear convection term uj
∂ui

∂xj
. Thus, we have the Stokes

equation:
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−ν∆u+ grad p = f in Ω,

divu = 0 in Ω,

u = g on Γ.

(5.9)

5.1.1 A weak formulation

Let

V = {v ∈ H1
0 (Ω)

n, divv = 0}

and L2
0(Ω) be the space of all L2(Ω) functions q such that

∫

Ω q dx = 0.

Multiply (5.9) by v ∈ H1
0 (Ω)

n and integrate by parts, we obtain

(ν∇u,∇v)− (p, divv) = (f ,v).

Define

a(u,v) := ν
n
∑

i,j=1

(

∂ui
∂xj

,
∂vi
∂xj

)

= ν

∫

Ω
gradu : gradv dx (5.10)

b(v, q) := −(q, divv). (5.11)

Then we have the equivalent weak (abstract) form of (5.9) : Find u ∈

H1(Ω)n s.t.











a(u,v) + b(v, p) = 〈f ,v〉 for all v ∈ H1
0 (Ω)

n,

b(u, q) = 0 for all q ∈ L2
0(Ω),

u = g on Γ.

(5.12)

We can find a function ug ∈ H1(Ω)n such that

divug = 0 on Ω, ug = g on Γ

so that u can be decomposed as u = w + ug,w ∈ H1
0 (Ω)

n. With

〈ℓ,v〉 := 〈f ,v〉 − a(ug,v)

the problem (5.12) is equivalent to : Find a unique pair of functions (w, p) ∈
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H1
0 (Ω)

n × L2
0(Ω) such that

{

a(w,v) + b(v, p) = 〈ℓ,v〉 for all v ∈ H1
0 (Ω)

n

b(w, q) = 0 for all q ∈ L2
0(Ω).

(5.13)

This problem actual has a unique solution by Corollary 5.1.5 below. Further-

more, we have the following :

‖u‖1 + ‖p‖0 ≤ C(‖f‖−1 + ‖g‖1/2,Γ). (5.14)

5.1.2 A General result

Now let us put problem (5.13) into general framework of chap 4: We set

X = H1
0 (Ω)

n, M = L2
0(Ω).

Let X and M be two Hilbert spaces with norms ‖ · ‖X and ‖ · ‖M and let X ′

and M ′ be their dual spaces. As usual, we denote 〈·, ·〉 be the duality pairing

between X and X ′ or M and M ′.

Introduce bilinear forms

a(·, ·) : X ×X → R, b(·, ·) : X ×M → R

with norms

‖a‖ = sup
u,v

a(u, v)

‖u‖X‖v‖X
, ‖b‖ = sup

v∈X,µ∈M

b(v, µ)

‖v‖X‖µ‖M
.

We consider the following two variational problem called problem

(Q): Given ℓ ∈ X ′ and χ ∈M ′, find a pair (u, λ) ∈ X ×M such that

a(u, v) + b(v, λ) = 〈ℓ, v〉 for all v ∈ X (5.15)

b(u, µ) = 〈χ, µ〉 for all µ ∈M. (5.16)

In order to study (Q), we associate two linear operators A ∈ L(X;X ′) and

B ∈ L(X;M ′) defined by

〈Au, v〉 = a(u, v) for all u, v ∈ X (5.17)

〈Bv, µ〉 = b(v, µ) for all v ∈ X,µ ∈M. (5.18)
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Let B′ ∈ L(M ;X ′) be dual operators defined by

〈

B′µ, v
〉

= 〈µ,Bv〉 = b(v, µ), v ∈ X,µ ∈M. (5.19)

With these, the problem can be written as:

Find (u, λ) ∈ X ×M such that

Au+B′λ = ℓ in X ′ (5.20)

Bu = χ in M ′. (5.21)

We set V = Ker(B) and more generally define

V (χ) = {v ∈ X;Bv = χ}.

Note that V = V (0).

Now problem (Q) can be changed into equivalent form (P):

Find u ∈ V (χ) such that

a(u, v) = 〈ℓ, v〉 , v ∈ V. (5.22)

Define the polar set V 0 by

V 0 = {g ∈ X ′;< g, v >= 0, ∀v ∈ V }.

Lemma 5.1.3. The followings are equivalent: (i) There is a constant β > 0

such that

inf
µ∈M

sup
v∈X,

b(v, µ)

‖v‖X‖µ‖M
≥ β > 0. (5.23)

(ii) The operator B′ is an isomorphism from M onto V 0 and

‖B′µ‖X′ ≥ β‖µ‖M . (5.24)

(ii) The operator B is an isomorphism from V ⊥ onto M ′ and

‖Bv‖M ′ ≥ β‖v‖X . (5.25)

Theorem 5.1.4. The problem (Q) has a unique solution if (i) πA is an iso-

morphism from V onto V ′(p. 59) and (ii) there is a constant β > 0 such



5.1. MATHEMATICAL FORMULATIONS 7

that

inf
µ∈M

sup
v∈X,

b(v, µ)

‖v‖X‖µ‖M
≥ β > 0. (5.26)

Corollary 5.1.5. Assume that a(·, ·) is coercive on V , i.e., there exists a

constant α > 0 such that

a(v, v) ≥ α‖v‖2X , ∀v ∈ V. (5.27)

Then problem (Q) has unique solution if and only if b(·, ·) satisfies inf-sup

condition.

Now let us put problem (5.9) into general framework of chap 4.: We set

X = H1
0 (Ω)

n, M = L2
0(Ω).

The choice M = L2
0(Ω) is a matter of convenience and we can just as well take

M = L2(Ω)/R.

Finite dimensional problem

p 123. Girault - Raviart, ‘Finite element approximation of the Navier-Stokes

equations’.

Now change every space to finite dimensional one. Let

Xh ⊂ X, Mh ⊂M

be finite dimensional subspace with certain approximation properties.

As in the continuous case, we associate two linear operatorsAh ∈ L(X;X ′
h),

Bh ∈ L(X;M ′
h) and B

′
h ∈ L(M ;X ′

h) defined by

〈Ahu, vh〉 = a(u, vh) for all vh ∈ Xh, u ∈ X, (5.28)

〈Bhv, µh〉 = b(v, µh) for all µh ∈Mh, v ∈ X, (5.29)
〈

vh, B
′
hµ
〉

= b(vh, µ) for all vh ∈ Xh, µ ∈M. (5.30)

We define the finite dimensional analogue of V :

Vh(χ) = {vh ∈ Xh; b(vh, µh) =< χ,µh >,µh ∈Mh}.
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Figure 5.1: Nodes for CR nonconforming FEM

We set

Vh = Vh(0) = Ker(Bh) ∩Xh = {vh ∈ Xh; b(vh, µh) = 0, µh ∈Mh}.

Caution: Vh 6⊂ V and Vh(χ) 6⊂ V (χ), since Mh is a proper subspace of M .

We now define the approximate problem.

(Qh): For ℓh given in X ′
h and χh ∈ M ′

h, find a pair (uh, λh) in Xh ×Mh

such that

a(uh, vh) + b(vh, λh) = 〈ℓh, vh〉 , ∀vh ∈ Xh (5.31)

b(uh, µh) + c(λh, µh) = 〈χh, µh〉 , ∀µh ∈Mh. (5.32)

Now problem (Qh) can be changed into the equivalent problem.

(Ph): Find uh ∈ Vh(χ) such that

a(uh, vh) = 〈ℓ, vh〉 , vh ∈ Vh. (5.33)

5.1.3 Mapping to reference element

If φ̂ is any scalar function defined over K̂(K̂), we associate a function on

K(pull back) by

φ = φ̂ ◦ F−1
K . (5.34)

Hence

∇φ = B−T
K ∇φ̂ ◦ F−1

K , ∇φ̂ = BT
K∇φ ◦ FK . (5.35)
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5.1.4 Matrix representation

A simplest choice (Xh,Mh) is (Pn
1 , P0). In this case, the matrix Ah is just

two copies of scalar Laplacian. For Bh, we test the following for vh = (v1, v2)

associated with edges 2, 3, 7, 10, 12, 13, 14, 15 only. It suffices to test vh =

(v1, 0) only.

We test the equation for (0, φ2), where φ2 is the scalar basis function

associated with the node 2. Since

φ2 =







2y−h
h in K1

3h−2y
h in K4

Or φ2(x, y) = φ̂2 ◦ F
−1
K1

on K1 and φ2(x, y) = φ̂2 ◦ F
−1
K4

on K4. Here

FK1
=

(

−h 0

0 −h

)(

x̂

ŷ

)

+

(

h

h

)

, FK4
=

(

h 0

0 h

)(

x̂

ŷ

)

+

(

0

h

)

We see

< Bvh, ph > = b(vh, ph) = −( divvh, ph)K1∪K4

= −

∫

K1

2

h
p1 −

∫

K4

−
2

h
p4 = −h(p1 − p4)

Similarly, since

φ12 =







2x+2y−h
h in K0

3h−2x−2y
h in K1

if we test the equation for vh = (φ12, 0),

< Bvh, ph > = −( divvh, ph)K0∪K1

= −

∫

K0

2

h
p0 −

∫

K1

−
2

h
p1 = −h(p0 − p1)

Since

φ7 =







2x−h
h in K1

3h−2x
h in K2

< Bvh, ph > = −

∫

K1

2

h
p1 −

∫

K2

−
2

h
p2 = −h(p1 − p2)
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Bt = (B1, B2)
t is 16 × 8 matrix, see (5.53), but if we only see the rows of Bt

corresp to (φ, 0) (x-component basis ftns) they are like 8× 8 matrix

Bt
1 = −h

































0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0

0 0 0 0 0 1 −1 0

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1

































exer. Write down entries of B corresponding to basis function of type (0, φ).

5.1.5 Error estimate

Theorem 5.1.6. (A) Assume Vh(χ) is nonempty and there exists a constant

α > 0 such that

a(vh, vh) ≥ α‖vh‖
2
X , ∀vh ∈ Vh. (5.36)

(B) the discrete inf-sup condition hold

sup
vh∈Xh

b(vh, µh)

‖vh‖X
≥ β∗‖µh‖M > 0, ∀µh ∈Mh. (5.37)

Then the problem (Ph) has a unique solution uh ∈ Vh(χ) and there is a constant

C > 0 such that Then there is a unique solution (uh, λh) of the problem (Qh)

‖u−uh‖X +‖λ−λh‖M ≤ C2

{

inf
vh∈Xh

‖u− vh‖X + inf
µh∈M

‖λ− µh‖M

}

. (5.38)

Checking the discrete inf-sup condition

Lemma 5.1.7. The the discrete inf-sup condition (5.37) holds with a constant

β∗ > 0 independent of h if and only if there exists an operator Πh ∈ L(X;Xh)

satisfying

b(v −Πhv, µh) = 0, ∀µh ∈Mh,v ∈ X (5.39)

and

‖Πhv‖X ≤ C‖v‖X , ∀v ∈ X. (5.40)
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Proof. Assume such Πh exists. Then by ‖Πhv‖X ≤ C‖v‖X , we see

sup
vh∈Xh

b(vh, µh)

‖vh‖X
≥ sup

v∈X

b(Πhv, µh)

‖Πhv‖X

= sup
v∈X

b(v, µh)

‖Πhv‖X

≥
1

C
sup
v∈X

b(vh, µh)

‖v‖X

≥
β

C
‖µh‖M .

5.1.6 Error Estimate

Hypothesis

(1) There exists an operator rh : Hm+1(Ω)n ∩H1
0 (Ω)

n → Xh such that

‖v − rhv‖1 ≤ Chm‖v‖m+1, ∀v ∈ Hm+1(Ω)n 1 ≤ m ≤ l. (5.41)

(2) There exists an operator Sh : L2(Ω) →Mh such that

‖q − Shq‖0 ≤ Chm‖q‖m, ∀q ∈ Hm(Ω)n, 0 ≤ m ≤ l. (5.42)

(3) (Uniform inf-sup condition) For each qh ∈Mh there exists vh ∈ Xh such

that

(qh, divvh) = ‖qh‖
2
0, (5.43)

|vh|1 ≤ C‖qh‖0, (5.44)

where C > 0 is independent of h, qh and vh.

Theorem 5.1.8. Under the Hypothesis the solution of the problem(5.31) sat-

isfies

‖u− uh‖1 + ‖p − ph‖0 ≤ Chm{‖u‖m+1 + ‖p‖m}. (5.45)

Remark 5.1.9. One can expect one higher order for L2 error estimate by

duality technique.

‖u− uh‖0 ≤ Ch{|u− uh|1 + inf ‖p − ph‖0}. (5.46)
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Stabilization. (Verfürth note) We may add the following term δKh
2( div [∆u+

∇p]− div f) to the second equation for each element K.

5.2 Solver

Assembly of A and B

One way to look at the eq. is

−∆u1 + px = f1 (5.47)

−∆u2 + py = f2 (5.48)

(u1)x + (u2)y = 0. (5.49)

With b1(u1, p) = −((u1)x, p), b2(u2, p) = −((u2)y, p), its weak form is

a(u1, v1) + b1(v1, p) = f1 (5.50)

a(u2, v2) + b2(v2, p) = f2 (5.51)

b1(u1, q) + b2(u2, q) = 0 (5.52)

In matrix, Let 2nv = dimXh, np = dimMh. Then for nv × nv matrix A and

np × nv matrix B







A 0 Bt
1

0 A Bt
2

B1 B2 0













Ux

Uy

P






=







F1

F2

0






(5.53)

If we use Uzawa we do not need explicit B. Instead only need action of

b(vh, ph) for given vh and ph.

Standard Uzawa

Let p0h given. Let small ǫ > 0 be fixed (ǫ = 1.5 in Verfüth note). Solve for

m = 0, 1, · · · , until ‖pm+1
h − pmh ‖ is sufficiently small.

a(um+1
h ,vh) + b(vh, p

m
h ) = (f ,vh)− a(ug,vh), vh ∈ Xh

b(um+1
h , q) + δc(pmh , q) =

1

ǫ
(pm+1

h − pmh , q) + δχh(q), q ∈Mh

Normalize pm+1
h each step so that it belongs to M = L2

0(Ω).
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Auh +BTph = ℓh (5.54)

Buh − δCph = −δχh. (5.55)

Thus in matrix form we have

(

A BT

B −δC

)(

u

p

)

=

(

ℓh

−δχh

)

(5.56)

Standard Uzawa-Again

(1) Given: an initial guess p0 for the pressure, a tolerance Tol > 0 and a

relaxation parameter ǫ > 0.

(2) Apply a few Gauss-Seidel iterations (fix pmh ) to the linear system

Aum
h = ℓh −BTpmh

and denote the result by um+1
h . Compute

pm+1
h = pmh + ǫ(Bum+1

h − δCpmh + δχh)

(3) Stop if

‖Aum+1
h +BTpm+1

h − ℓh‖+ ‖Bum+1
h − δCpm+1

h + δχh‖ ≤ Tol

5.2.1 Improved Uzawa-cg MG

Solve the first equation for u (you may use multigrid) as

uh = A−1(ℓh −BT ph)

and insert into the second eq.

BA−1(ℓh −BTph)− δCph = −δχh

This gives

Aph := [BA−1BT + δC]ph = BA−1ℓh + δχh := f̃ . (5.57)
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One can show that A is SPD and the condition number is O(1), hence

we can Apply conjugate gradient method to this system Aph = f̃ . This algo-

rithm requires evaluation of A−1f̃ where one can use a fast algorithm such as

mutligrid method.

The next task is how to construct spaces Xh and Mh which satisfy the

hypotheses. The CG-algorithm in general breaks down for non-symmetric or

indefinite systems. However, there are various variants of the CG-algorithm

which can be applied to these problems. A naive approach consists in applying

the CG-algorithm to the squared system LT
kLkxk = LT

k bk. This approach can-

not be recommended since squaring the systems squares its condition number.

A more efficient algorithm is the stabilized bi-conjugate gradient algorithm,

shortly Bi-CG-stab. The underlying idea roughly is to solve simultaneously

the original problem Lkxk = bk and its adjoint LT
k yk = bTk .

Stable pair for Stokes equation

For Stokes equation, we need to choose pair of spaces so that inf-sup condition

holds. Assume Th consists of triangles. Typically we use P2 for the velocity

and P1 for the pressure. Another choice is P1-nonconforming for velocity and

P0 for pressure(Called C-R(Crouzeix-Raviart-1973) element).

(P2, P1) pair -Taylor Hood

We can show the inf-sup condition and we have

‖u− uh‖h + ‖p− ph‖0 ≤ Ch2{‖u‖2 + ‖p‖1}. (5.58)

(P n
1 , P0) pair- Crouzeix- Raviart

Let P0 be the space of all functions which are piecewise constant on each T .

We have

‖u− uh‖h + ‖p− ph‖0 ≤ Ch{‖u‖2 + ‖p‖1}. (5.59)

5.2.2 II.3. Petrov-Galerkin stabilization

The mini element revisited.
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Table 5.1: Summary of 2D triangular elements
b velocity

pressure

Name Sketch LBB Order Remarks

P1P0
b

b

b

N 1 Rarely used

Pn
1 P0

b

b
b

Y 1 C-R, not for natural BC.

P+
1 P1 (mini)

b

b

b

b

Y 1 cubic bubble

P1P1 (4 patch macro)
b

b

b

b

b
b

Y 1 iso P2-P1

PkPk−1 (Taylor-Hood)
b

b

b

b

b
b

Y 2 P2P1 engineer’s favor

Pk ⊕Bk+1P
−1
k−1

b

b
b

b

b

b

Y 2 C-R P+
2 P

−1
1

Table 5.2: Pressure given by circle in the interior means discontinuous.

5.2.3 Stabilization

Motivated by mini element, we can solve the following eq. with P1/P1 pair.











−ν∆u+ grad p = f in Ω,

divu− α∆p = −αdiv f in Ω,

u = g on Γ.

(5.60)

Taking into account that ∆uT vanishes elementwise (for mini), the discrete

problem does not change if we also add the term α∆divu to the left-hand side

of the second equation. This shows that in total we may add the divergence

of the momentum equation as a penalty. For the general form see, Verfurth

note. (also my paper with Kwon)
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5.3 Numerical method for Navier Stokes equation

5.3.1 Picard’s iteration

−∆um+1 +∇pm+1 = f − (um · ∇)um in Ω,

divum+1 = 0 in Ω,

um+1 = g on Γ.

(5.61)

5.3.2 Newton’s method

Consider
−∆u+ (u · ∇)u+∇p = f in Ω,

divu = 0 in Ω,

u = g on Γ.

(5.62)

Linearize (or correct with) um+1 = um + δu to see

−∆um+1 + (um+1 · ∇)(um + δu) +∇pm+1 = f in Ω,

−∆um+1 + (um+1 · ∇)um + (um · ∇)δu+∇pm+1 + (δu)2 = f in Ω,

−∆um+1 + (um+1 · ∇)um + (um · ∇)(um+1 − um) +∇pm+1 =̇ f in Ω.

(5.63)

Thus we define the Newton iteration as : Given initial guess u0, p0 solve the

following for m = 0, 1, · · · ,, say with Uzawa for each m until convergence.

−∆um+1 +∇pm+1 +(um+1 · ∇)um

+(um · ∇)um+1 = f + (um · ∇)um in Ω

divum+1 = 0 in Ω,

um+1 = g on Γ.

(5.64)

The Newton iteration converges quadratically. However, the initial guess must

be close to the sought solution, otherwise the iteration may diverge. To avoid

this, one can use a damped Newton iteration.

5.3.3 Projection scheme for Navier-Stokes eq... Chorin 68

See Jie Shen note IMS NUS.pdf. Consider the Full Navier Stokes problem:

∂u
∂t + (u · ∇)u− divσ = f in Ω,

divu = 0 in Ω,

u = g on Γ.

(5.65)
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The original projection method, proposed by Chorin [12] and Temam [69],

was motivated by the idea of operator splitting, its semi-discrete version.

Remark 5.3.1. The above scheme has only 1/2 -order for velocity in L2(0, T ;H1)

due to the nonphysical boundary condition ∂pk+1

∂n |Γ = 0.

The improved projection type scheme appears to be, the so called pressure-

correction scheme introduced in [26] (K. Goda. A multistep ...cavity flows. J.

C. P., 1979.). Its first-order version reads :

Find ũk+1 by solving

ũ
k+1−u

k

δt − ν∆ũk+1 + (uk · ∇)ũk+1 +∇pk = f(tk+1) in Ω,

ũk+1|Γ = 0.
(5.66)

Then find (pk+1,uk+1) from

u
k+1−ũ

k+1

δt +∇(pk+1 − pk) = 0,

∇ · uk+1 = 0,

uk+1 · n|Γ = 0.

(5.67)

By taking the divergence of the first equation in (5.67), we find that the second

step is equivalent to

∆(pk+1 − pk) = 1
δt∇ · ũk+1, ∂(pk+1−pk)

∂n |Γ = 0,

uk+1 = ũk+1 − δt∇(pk+1 − pk).
(5.68)

..... It is also shown that the above scheme is first-order accurate for the

velocity in L∞(0, T ;L2)∩L2(0, T ;H1) and pressure in L2(0, T ;L2). A popular

second-order version reads







3ũk+1−4uk+u
k−1

2δt + (2uk − uk−1) · ∇ũk+1 − ν∆ũk+1 +∇pk = f(tk+1),

ũk+1|∂Ω = 0.

(5.69)

then find (pk+1,uk+1) by



















3uk+1−3ũk+1

2δt +∇(pk+1 − pk) = 0,

divuk+1 = 0

uk+1 · n|∂Ω = 0.

(5.70)

(To solve again take divergence as before) The above scheme is second-order
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for the velocity in the L2(0, T ;L2(Ω))-norm.

5.4 Stream-function formulation

The discrete velocity fields computed by the methods of the previous sections

in general are not exactly incompressible. It is only weakly incompressible. In

this section we will consider a formulation of the Stokes equations which leads

to conforming solenoidal discretizations. This advantage, of course, has to be

paid for by other drawbacks. Throughout this section we assume that Ω is a

two dimensional, simply connected polygonal domain.

5.4.1 The curl operators

We need two curl-operators:

curlφ = (−
∂φ

∂y
,
∂φ

∂x
), curlv = (

∂v1
∂y

−
∂v2
∂x

) (sgn is diffent from usual)

(Stokes-2D)

∫

Ω
curluh · ξ dx =

∫

Ω
uhcurl ξ dx−

∫

∂Ω
u · τξ ds (5.71)

The following deep mathematical result is fundamental: A vector-field v : Ω →

R
2 is solenoidal, i.e. divv = 0, if and only if there is a unique stream-function

φΩ → R : such that v = curlφ in Ω and φ = 0 on Γ.

5.4.2 Stream-function formulation of the Stokes equations

Let (u, p) be the solution of the Stokes equations with force f and homogeneous

boundary conditions and denote by ψ the stream function corresponding to

u. Since

u · t = 0 on Γ,

we conclude that in addition

∂ψ

∂n
= t · curlψ = 0 on Γ.
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Inserting this representation of u in the momentum equation and applying the

operator curl we obtain

curl f = curl(−∆u+∇p) (5.72)

= −∆(curlu) + ∆(∇p) (5.73)

= −∆(curl(curlψ)) = ∆2ψ (5.74)

This proves that the stream function solves the biharmonic equation with

homo. BC.
∆2ψ = curl f in Ω

φ = 0 on ∂Ω
∂φ
∂n = 0 on ∂Ω

How about two phase in this form? Change this to MFVM Conversely, one

can prove: If solves the above biharmonic equation, there is a unique pressure

p with mean-value 0 such that u = curlψ and p solve the Stokes equations.

In this sense, the Stokes equations and the biharmonic equation are equiva-

lent. Remark II.5.1. Given a solution ψ of the biharmonic equation and the

corresponding velocity u = curlψ the pressure is determined by the equation

f +∆u = ∇p. But there is no constructive way to solve this problem. Hence,

the biharmonic equation is only capable to yield the velocity field of the Stokes

equations.


