
Chapter 2

Finite Element Spaces -

General Theory

2.1 FEM

Trinagluation

Consider a variational formulation for second elliptic p.d.e

a(u, v) = f(v), ∀v ∈ V. (2.1)

Let Ω be an open bounded set in Rd with Lipschitz-continuous boundary and

let Th be a triangulation of Ω, Th = {K : element}. Let Vh be a certain

approximate subspace of V , usually a space of piecewise polynomials such

that for each K ∈ Th,

PK = {vh|K : vh ∈ Vh}

consists of polynomials on K. There exists a basis for Vh whose functions have

small support. We write Xh = Xh(Ω,Th, Vh) and call it the finite element

space. We shall usually use Xh to mean the space Vh.

Three basic ingredients of finite element space are.

(FEM 1)[Triangulation] Ω is subdivided into a finite number of subsets

K(diam (K) ≤ h), called finite element in such a way that

(Th1) Ω̄ = ∪K∈ThK

(Th2) Each K ∈ Th is a closed polyhedron and
◦
K is nonempty
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(Th3) For any two elements K1,K2, we have either K1 = K2 or
◦
K1 ∩

◦
K2 = ∅

(Th4) For each K ∈ Th. the boundary ∂K is Lipschitz continuous

(Th5) If f = K1 ∩ K2 6= ∅ then f is either a common face, side, or vertex of

K1 and K2.

(FEM 2) The functions in PK are polynomials or close to polynomials so

that the resulting linear system is sparse or structured(to insure linear system

is easily solvable).

(FEM 3) There exists a canonical basis for Vh whose functions have small

support and can be easily described.

We usually write Hm(K) for Hm(
◦
K).

We assume each element K is obtained as K = FK(K̂) where K̂ is a

reference element and FK is an invertible affine map: FK(x̂) = BK x̂+ bK , BK

being a nonsingular matrix. (When FK is not affine, we have more general

shape, but we do not consider them here). We consider two cases:

(Simplex) The reference polyhedron K̂ is the unit d-simplex, i.e, the triangle with

vertices (0, 0), (1, 0), (0, 1) (when d = 2) or tetrahedron with vertices

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) (when d = 3).

(Unit cube) The reference polyhedron K̂ is the unit d-cube, i.e, the rectangle [0, 1]d.

As a consequence,K is parallelogram (when d = 2) or parallelepiped.(when

d = 3)

2.2 Piecewise Polynomial spaces

Recall: For α = (α1, · · · , αd), (αi ∈ Z+), let |α| =
∑d

i=1 αi and

xα = xα1

1 · · · xαd

d , ∂αu = ∂α1

1 · · · ∂αd

d u =
∂|α|u

∂xα1

1 · · · ∂xαd

d

.

Now we define Xh which approximate the infinite dimensional space X and

satisfies above conditions. Let Pk be the set of all polynomials of degree less

than equal to k in variables x1, · · · , xd and Qk be the set of all polynomials of

degree less than equal to k in each variable x1, · · · , xd. Then for any p ∈ Pk,

we see

p(x1, · · · , xd) =
∑

Cαx
α1

1 · · · xαd

d , α1 + · · ·+ αd ≤ k.
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The multi-index α = (α1, · · · , αd) satisfies α0 + α1 + · · · + αd = k for some

nonnegative integer α0. Thus the number of distinct terms are the same as the

number of choosing k elements from the set R = {1, x1, x2, · · · , xd} allowing

repetition. So we have

dim Pk = d+1Hk =

(
d+ k

k

)
= d+kCk, dim Qk = (k + 1)d. (2.2)

Set

PK = {vh|K : vh ∈ Xh}.

We define the most commonly used spaces Xh as

Xh = Xk
h := {vh ⊂ C0(Ω̄), vh|K ∈ Pk,∀K ∈ Th}, K triangular (2.3)

Xh = Xk
h := {vh ⊂ C0(Ω̄), vh|K ∈ Qk,∀K ∈ Th}, K rectangular (2.4)

Proposition 2.2.1. A function v : Ω → R belongs to H1(Ω) iff

(1) v|K ∈ H1(K) for each K ∈ Th;

(2) for each common face f = K1 ∩ K2, the trace on f of v|K1
and v|K2

coincides. In other words, v ∈ C0(Ω).

Proof. Note that Ω =
⋃
K. Let v ∈ Xh. Suppose conditions (1), (2) holds.

We need to show that for each i = 1, · · · , d, the derivatives ∂v/∂xi exists and

belongs to L2(Ω). By definition of weak derivative, we must find functions

vi ∈ L2(Ω) such that

∫

Ω
viφ = −

∫

Ω
v∂iφ, ∀φ ∈ D = C∞

0 (Ω).

A natural candidate is vi defined by vi|K = ∂i(v|K) on each K. Indeed, for

each K with Lipschitz continuous boundary ∂K we have by Green’s formula,

∫

K
∂i(v|K)φdx = −

∫

K
v|K∂iφdx+

∫

∂K
v|Kφni,Kds,

where ni,K is the i-th component of the unit outward normal vector along ∂K.
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Summing over all finite elements,

∑

K

∫

K
∂i(v|K)φdx = −

∑

K

∫

K
v|K∂iφdx+

∑

K

∫

∂K
v|Kφni,Kds (2.5)

= −
∑

K

∫

K
v∂iφdx = −

∫

Ω
v∂iφdx (2.6)

=

∫

Ω

∑

K

∂i(v|K)χKφdx ≡

∫

Ω
viφdx. (2.7)

The second sum on the rhs of first equation vanishes since either ∂K is a por-

tion of ∂Ω, or ∂K is adjacent to some other triangle so that the contributions

from the adjacent elements cancel each other by (2). Thus the functions de-

fined by vi :=
∑

K ∂i(v|K)χK ∈ L2(Ω) are the desired function. Conversely, if

v ∈ H1(Ω) then (1) holds trivially. Moreover,

∂i(v|K) = (∂iv)|K , i = 1, · · · , d.

Now for ∀φ ∈ D

∫

Ω
(∂iv)φdx = −

∫

Ω
v∂iφdx = −

∑

K

∫

K
v|K∂iφdx

= −
∑

K

∫

∂K
v|Kφni,Kds+

∑

K

∫

K
∂i(v|K)φdx

= −
∑

K

∫

∂K
v|Kφni,Kds+

∑

K

∫

K
(∂iv)|Kφdx

= −
∑

K

∫

∂K
v|Kφni,Kds+

∫

Ω
(∂iv)φdx.

Hence we get
∑

K

∫
∂K v|Kφni,Kds = 0. Let K1 and K2 be any two elements

having f as the common edge. If we restrict φ to have support on a neighbor-

hood of the common edge, then we have

∫

f
(v|K1

− v|K2
)φni,fds = 0, i = 1, · · · , d,

where ni,f is the common unit normal vector to f . From this we see (2) is

satisfied.

Remark 2.2.1. (1) Vh may not be a subspace of V = H1
0 (Ω), say in the

case of curved boundary.
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(2) The Bilinear form and linear form in the discrete problem are usually

replaced by some approximation. This is the case when numerical inte-

gration is used.

By a conforming finite element method, we mean the finite element method

for which Vh is a subspace of V and the bilinear form of the discrete problem

are identical to the original one.

2.3 Degrees of freedom, Shape functions of finite

elements

A d-simplex in Rd is the convex hull K of (d + 1) points ai ∈ Rd, which are

called vertices. We assume that they do not degenerate, i.e.,

K =

{
x =

d+1∑

i=1

λiai, 0 ≤ λi ≤ 1,

d+1∑

i=1

λi = 1

}

where

Aλ =

(
x

1

)
, A =

(
a1, a2, · · · , ad+1

1, 1, · · · , 1

)

is a nonsingular system.

For d = 2,K is a triangle and for d = 3, K is a tetrahedron. The unique

solution λi, (1 ≤ i ≤ d+ 1) of





∑d+1
j=1 aijλj = xi

∑d+1
j=1 λj = 1

(2.8)

are called the barycentric coordinates of x ∈ Rd. The barycenter or center of

gravity of a simplex K is the point of K whose all barycentric coordinates are
1

d+1 . Let Pi be the set of all polynomials of total degree i.

Example 2.3.1. Each p ∈ P1 is completely determined by its values at ai, 1 ≤

i ≤ d+ 1.

We say the parameters that uniquely determines the function in the space

PK are called degrees of freedom and use ΣK to denote the set of degrees of

freedom.

Example 2.3.2. Refer to figure 2.3.
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λ1(a12) = λ1(a13) =
1

2
, λ1(a23) = 0

Figure 2.1: barycentric coordinate of 1 dim and 2 dim

(1) For a point y on the bisecting line, we have

y = µx+(1−µ)a3 = µ(λa1+(1−λ)a2)+(1−µ)a3 := λ1a1+λ2a2+λ3a3.

(2) The barycentric coordinate λ1 of a12 is 1/2 and that of any point on the

line segment a2a3 is zero!

d-simplex of type 1-linear functions

dimP1(K) = d+ 1, (2.9)

ΣK = {p(ai), 1 ≤ i ≤ d+ 1}, (2.10)

p =
d+1∑

i=1

p(ai)λi, ∀p ∈ P1, (2.11)

where λi is the barycentric coordinates and in this case satisfy λi(aj) = δij .

Hence {λi}
3
i=1 is a basis for P1(K). For the reference element K̂, we have

λ1(x, y) = 1− x− y, λ2(x, y) = x, λ3(x, y) = y. (2.12)

d-simplex of type 2-quadratic functions

Define aij :=
1
2 (ai + aj), i < j.

dimP2(K) =
(d+ 1)(d + 2)

2
, (2.13)

ΣK = {p(ai), p(aij), 1 ≤ i < j ≤ d+ 1}, (2.14)

p =
d+1∑

i=1

λi(2λi − 1)p(ai) +
∑

i<j

4λiλjp(aij), (2.15)
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where λk satisfy λk(aij) =
1
2(δik + δkj), 1 ≤ i < j ≤ d+ 1.

d-simplex of type 3-cubic functions

Define aiij :=
1
3(2ai + aj) for i 6= j, and aijk := 1

3(ai + aj + ak) for i < j < k.

dimP3(K) =
(d+ 1)(d + 2)(d+ 3)

6
, (2.16)

ΣK = {p(ai), p(aiij), 1 ≤ i 6= j ≤ d+ 1, p(aijk), 1 ≤ i < j < k ≤ d+ 1}

p =
d+1∑

i=1

λi(3λi − 1)(3λi − 2)

2
p(ai) +

∑

i 6=j

9λiλj(3λi − 1)

2
p(aiij)

+
∑

i<j<k

27λiλjλkp(aijk). (2.17)

In general, dim Pk(K) =

(
d+ k

k

)
= d+kCk.

Associated finite element space

Impose a condition on the Triangulation (Th 5): Any face of any d-simplex K1

in the triangulation is either a subset of ∂Ω or a face of another d-simplex K2

in the triangulation.

Given a triangulation Th, we can associate a natural finite element space

Xh satisfying for v ∈ Xh in type (1)

(1) the restriction vK is in PK = P1(K) for each K ∈ Th.

(2) v is completely determined by its values at all vertices of the triangula-

tion.

For v ∈ Xh in type (2)

(1) the restriction vK is in PK = P2(K) for each K ∈ Th.

(2) v is completely determined by its values at all vertices and all the mid-

points of the edges of the triangulation.

In all cases, a function v in Xh is determined by the degrees of freedom

Σh = {p(ai),ai ∈ Nh} (2.18)
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Here Nh is certain finite set of points of Ω̄. Now consider canonical basis

functions satisfying

φi(aj) = δij ,

then such functions form a basis and has small support.

• First the linear basis functions are (cf. figure 2.3)

p1 = 1− x− y, p2 = x, p3 = y.

• The quadratic functions on triangle are (cf. figure 2.3):

p1 = (1− 2x− 2y)(1− x− y) (2.19)

p2 = 4x(1 − x− y) (2.20)

p3 = x(2x− 1) (2.21)

p4 = 4y(1 − x− y), etc. (2.22)

What are p5, p6 ?

Now d-rectangles, say unit square(or cubes).

• Rectangles of type 1, PK = P1[0, 1]⊗P1[0, 1], dim PK = 2d. Its elements

are bilinear; p1 = x(1 − y), p2 = (1 − x)(1 − y), p3 = (1 − x)y, p4 = xy.

Notice that they are constructed so that the nodal values are either zero

or one.

• Rectangles of type 2, PK = P2[0, 1]⊗P2[0, 1], dim PK = 3d. Its elements

are biquadratic;

p1 = (1− x)(1 − y)(1− 2x)(1 − 2y) (2.23)

p2 = x(1− y)(1 − 2x)(1 − 2y) (2.24)

p3 = xy(1− 2x)(1 − 2y) (2.25)

p4 = y(1− x)(1 − 2x)(1 − 2y), etc. (2.26)

One can also consider rectangles of type 3 or type 3’ for which interior

nodes all deleted.
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Figure 2.2: Linear and quadratic element on reference triangle
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Figure 2.3: Linear and quadratic element on reference rectangle

Interpolation operator

Let us denote a finite element (K,P,Σ) as triples where Σ is a set of linearly

independent linear forms φi, say point evaluation at ai or derivatives at ai.

Such {φi} are called the dual basis. With N= degrees of freedom, we assume

for each φi, there exists a unique pj ∈ PK such that φi(pj) = δij .

Given a function v ∈ K → R sufficiently smooth, we let

ΠKv =

N∑

i=1

φi(v)pi.

This equals
∑N

i=1 v(ai)pi if φi is the dual basis corresponding to the nodal

values. Note that Πhp = p, ∀p ∈ P . This is called the P -interpolant of the

function v. The reference version Π̂K̂ is similarly defined.

The global interpolation Πhu is similarly defined, and called the Xh-

interpolation.
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Affine families of finite elements.

A family of finite elements is called an affine family if all its elements are

affine equivalent to a single reference element. The concept of an affine family

of finite element is important because

(1) In practical computations, most of work involved in the computation of

the coefficients of linear system is performed on a reference finite element,

not on a generic finite element.

(2) For such affine families, an elegant interpolation theory can be developed,

which is the basis of the most convergence theorems.

Notation :Π̂K(v) = ΠK(v) ◦ FK .

Example 2.3.3. (1) Assume PK = P1(K), the linear element. The basis

functions are

p1 = 1− x− y, p2 = x, p3 = y.

Since the nodal basis functions satisfy p̂i = pi ◦ FK we obtain

Π̂K(v) =
∑

v(ai)(pi ◦ FK) =
∑

v(FK(âi))p̂i =
∑

v̂(âi)p̂i = Π̂K̂(v̂).

(2.27)

(2) Suppose we are given a triple (K,P,Σ) of triangle of type (2). Let K̂

be a triangle(called a reference triangle) with vertices âi and midpoint

âij = (âi + âj)/2. Let

Σ̂ = {p(âi), i = 1, 2, 3, p(âij), 1 ≤ i < j ≤ 3}.

They are given so that (K̂, P̂ , Σ̂), P̂ = P2(K̂) is also a triangle of type

2. Given K ∈ Th let FK = BK x̂ + bK : K̂ → K be the unique affine

mapping such that

FK(âi) = ai, 1 ≤ i ≤ 3.

Then automatically it follows that

FK(âij) = aij, 1 ≤ i < j ≤ 3.

Thus rather than prescribing such a family by the data K,PK and ΣK ,

we give just one reference element (K̂, P̂ , Σ̂) and the affine mapping FK .
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Then the generic element (K,P,Σ) is given by :

K = FK(K̂) (2.28)

PK = {p : K → R : p = p̂ ◦ F−1
K , p̂ ∈ P̂} (2.29)

ΣK = {p(FK(âi)), 1 ≤ i ≤ 3, p(FK(âij)), 1 ≤ i < j ≤ 3}. (2.30)

In fact any two Lagrangian finite elements of the same type are affine

equivalent. In this example PK = P2(K) because FK is affine.

2.4 Interpolation error

Let Ω̄ = ∪Kh be a polygonal and let Vh ⊂ V (= C0(Ω)).

Theorem 2.4.1 (Cea’s lemma). The solution uh of the variational problem

a(uh, v) = (f, v), ∀v ∈ Vh satisfies

‖u− uh‖1,Ω ≤ C inf
χ∈Vh

‖u− χ‖1,Ω.

Proof. By Poincaré inequality, there is a constant α such that

α‖v‖21,Ω ≤ a(v, v), v ∈ H1
0 (Ω).

Thus we have, for any vh ∈ Vh

α‖u− uh‖
2
1,Ω ≤ a(u− uh, u− uh)

= a(u− uh, u− vh)

≤ M‖u− uh‖1,Ω‖u− vh‖1,Ω,

where we used the orthogonality of FEM solution uh:

a(uh − u, vh) = 0,∀vh ∈ Vh.

Canceling the factor ‖u− uh‖1,Ω, we obtain the result.

In one dimensional case with piecewise linear elements, it is known that

the infimum is attained when χ = Πhu, the Xh-interpolation. But in general,

it is hard to find such χ. Instead Cea’ lemma shows

‖u− uh‖1,Ω ≤ C‖u−Πhu‖1,Ω.
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We shall show ‖u−Πhu‖1,Ω ≤ O(hs) for some s. Taking into account that we

are using the ‖ · ‖1,Ω norm and that (Πhu)|K = ΠKu, we have

‖u−Πhu‖1,Ω = (
∑

K

‖u−Πhu‖
2
1,K)1/2.

Thus the estimate of the global error is reduced to the estimate of the local

error ‖u−Πhu‖1,K .

A typical result we will prove is : For a finite element which can be em-

bedded in an affine family and whose PK -interpolation leaves the polynomials

of degree k invariant, (equiv., Pk(K) ⊂ PK), there exists a C independent of

K and v such that

|v −ΠKv|m,K ≤ C
hk+1
K

ρmK
|v|k+1,K , 0 ≤ m ≤ k + 1,

where hK is diameter of K and ρK is the maximum of diameters of spheres

inscribed in K.

Proposition 2.4.1. Let Ω and Ω̂ be any affine equivalent open set. For

v ∈ Hm(Ω) define v̂ = v ◦ FΩ. Then v̂ ∈ Hm(Ω̂) and there is a constant C

such that

|v̂|m,Ω̂ ≤ C‖B‖m|detB|−1/2|v|m,Ω, ∀v ∈ Hm(Ω), (2.31)

and

|v|m,Ω ≤ C‖B−1‖m|detB|1/2|v̂|m,Ω̂, ∀v̂ ∈ Hm(Ω̂). (2.32)

Proof.
∂v̂

∂x̂i
=
∑

k

∂v

∂xk

∂xk
∂x̂i

,
∂2v̂

∂x̂i∂x̂j
=
∑

k,ℓ

∂2v

∂xk∂xℓ

∂xk
∂x̂i

∂xℓ
∂x̂j

.

In other words,

v̂x̂i
= xk,ivxk

, v̂x̂ix̂j
= xk,ivxkxℓ

xℓ,j.

Since (xk,i)k,i = B and (vxk
)k = grad v, (vxkxℓ

)k,ℓ = D2v, · · · , we have

ˆgrad v̂ = Bt grad v, and D̂2v̂ = BtD2vB, · · · .

For each α with |α| = m

∫
|∂αv̂|2dx̂ ≤ C‖B‖2m|J |−1

∫
|∂αv|2dx.
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Summing over all |α| = m we get (2.31).

Proposition 2.4.2. The following hold:

C‖B‖ ≤
hΩ
ρ̂
, ‖B−1‖ ≤

ĥ

ρΩ
. (2.33)

Proof. Note that ‖B‖ = 1
ρ̂ sup‖ξ‖=ρ̂ ‖Bξ‖. For each ξ with ‖ξ‖ = ρ̂, find

two points x̂, ŷ ∈ Ω̂ such that x̂ − ŷ = ξ. Since BΩξ = FΩ(x̂) − FΩ(ŷ) we

have ‖BΩξ‖ ≤ hΩ and the first estimate follows. The second inequality is

similar.

Corollary 2.4.2.

|v̂|m,K̂ ≈ Chm−1|v|m,K , 0 ≤ m ≤ k + 1, ∀v ∈ Hm(Ω). (2.34)

Now we need to estimate the semi norm of (v −ΠΩv) in H
m(Ω).

Proposition 2.4.3 (Deny-Lions Lemma, Cialet. p115). For k ≥ 0 we have a

const C(Ω) such that

inf
p∈Pk

‖v + p‖k+1,Ω ≤ C(Ω)|v|k+1,Ω, ∀v ∈ Hk+1(Ω). (2.35)

\phantom {...} command leaves the contents as blanks.

2.4.1 Polynomial preserving operators

Theorem 2.4.3. Let 0 ≤ m ≤ k + 1, k ≥ 0. Let W k+1,p(Ω̂) →֒Wm,q(Ω̂) and

Π̂ : W k+1,p(Ω̂) →Wm,q(Ω̂) be a linear mapping such that

Π̂p̂ = p̂, ∀p̂ ∈ Pk(Ω̂). (2.36)

For any open set Ω affine equivalent to Ω̂, define ΠΩv through the relation:

Π̂Ωv = Π̂v̂, ∀v̂ ∈W k+1,p(Ω̂),∀v ∈W k+1,p(Ω). (2.37)

Then there exists a constant C(Π̂, Ω̂) such that

|v −ΠΩv|m,Ω ≤ C(Π̂, Ω̂)m(Ω)1/q−1/ph
k+1

ρm
|v|k+1,p,Ω, v ∈W k+1,p(Ω). (2.38)
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Proof. Using polynomial invariance, we have

v̂ − Π̂v̂ = (I − Π̂)(v̂ + p̂), ∀v̂ ∈W k+1,p(Ω̂), ∀p̂ ∈ Pk(Ω̂).

From which we have that

|v̂ − Π̂v̂|m,q,Ω̂ ≤ ‖(I − Π̂)‖L inf
p̂∈Ω̂

‖v̂ + p̂‖k+1,p,Ω̂ (2.39)

≤ C(Π̂, Ω̂)|v̂|k+1,p,Ω̂ (2.40)

by Proposition 2.4.3. Here ‖(I − Π̂)‖L denotes the operator norm-we assume

it is bounded- see p.123 of Ciarlet. From (2.32) we have

|v −Πv|m,Ω ≤ C‖B−1‖m| det (B)|1/2|v̂ − Π̂v̂|m,Ω̂. (2.41)

Thus combining this with (2.40), (2.33) and using ‖B‖ ≤ h/ρ̂, ‖B−1‖ ≤ ĥ/ρ

and the fact that ρ̂ and ĥ are independent of h, we obtain (2.38).

2.4.2 Interpolation errors |v − Πhv|m,p,K for affine families

Throughout this section we assume the following (H1), (H2) and (H3).

Definition 2.4.4. (H1) (p. 124) A family of triangulation Th is regular if

there is σ > 1 such that

(i) maxK
hK

ρK
≤ σ and

(ii) hK approaches zero.

In other words, the family of elements (K,PK ,ΣK),K ∈ Th is a regular family

of elements.

(H2) All finite elements (K,PK ,ΣK),K ∈ ∪Th are affine equivalent to a

single reference element (K̂, P̂ , Σ̂).

(H3) All finite elements (K,PK ,ΣK),K ∈ ∪Th are class C0.

Specializing the above results to finite elements, we obtain estimates of the

interpolation errors |v −ΠKv|m,p,K . For simplicity, we take p = q = 2 below.

For regular families, i.e, hK ≤ σρK , we have for 0 ≤ m ≤ k + 1 :

Theorem 2.4.5. In addition to (H1), (H2) and (H3) assume there are inte-

gers 0 ≤ s ≤ k such that

Pk(K̂) ⊂ P̂ ⊂ H1(K̂),Hk+1(K̂) →֒ Cs(K̂), (2.42)
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where s is the maximal order of partial derivatives appearing in the definition

of the set Σ̂. Then there exists a const independent of h such that

|v −ΠKv|m,K ≤ Chk+1−m|v|k+1,K , m = 0, 1, (2.43)

(∑

K

‖v −Πhv‖
2
m,K

)1/2

≤ Chk+1−m|v|k+1,Ω, m = 0, 1. (2.44)

Proof. Note the boundedness of ‖(I − Π̂)‖L(independent of K), i.e,

‖Π̂v̂‖m,q,K̂ ≤ C(K̂, P̂ , Σ̂)‖v̂‖k+1,p,K̂. (2.45)

Use theorem 2.4.3 for K̂ = Ω̂,K = Ω. The result is a restatement of (2.44).

2.5 Interpolation theory-Bramble Hilbert lemma

We let Wm,p(Ω) the space of all functions u ∈ Lp(Ω) for which all partial

derivatives of u up to order m belong to Lp(Ω), equipped with the norm




‖u‖m,p,Ω =

(∑
|α|≤m

∫
Ω |∂αu|pdx

)1/p
, if 1 ≤ p <∞,

‖u‖m,∞,Ω = max|α|≤m{‖∂αu‖∞} if p = ∞.

The space Wm,p(Ω) is a Banach space. We shall also consider the semi-norms




|u|m,p,Ω =

(∑
|α|=m

∫
Ω |∂αu|pdx

)1/p
, if 1 ≤ p <∞,

|u|m,∞,Ω = max|α|=m{‖∂αu‖∞}, if p = ∞.

The Sobolev space Wm,p
0 (Ω) is the closure of the space D(Ω) in the space

Wm,p(Ω). We let

Hm(Ω) =Wm,2(Ω) and Hm
0 (Ω) =Wm,2

0 (Ω), (2.46)

‖u‖m,2,Ω = ‖u‖m,Ω, |u|m,2,Ω = |u|m,Ω. (2.47)

The following proposition is almost the same as Deny-Lion Lemma. But in

this note it will be used to estimate the consistency error (e.g., estimate the

quadrature error).

Proposition 2.5.1. [Bramble-Hilbert lemma, p192 Ciarlet] Let Ω be an open
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subset of Rd with Lipschitz-continuous boundary. For some integer m,k ≥ 0

and let ℓ be a continuous linear form on the space W k+1,p(Ω) such that

ℓ(p) = 0, ∀p ∈ Pk(Ω). (2.48)

Then for v ∈W k+1,p(Ω), we have

|ℓ(v)| ≤ C(Ω)‖ℓ‖∗k+1,p,Ω inf
p∈Pk

‖v + p‖k+1,p,Ω ≤ C|v|k+1,p,Ω, ∀v ∈W k+1,p(Ω),

(2.49)

where ‖ · ‖∗k+1,p,Ω is the norm of the dual space of W k+1,p(Ω).

Proof. Let v be a function in the space W k+1,p(Ω). We have

|ℓ(v)| = |ℓ(v + p)| ≤ ‖ℓ‖∗k+1,p,Ω‖v + p‖k+1,p,Ω for any p ∈ Pk(Ω),

and the result follows by proposition 2.4.3(Deny-Lion).

In particular, if we let ℓ(v) = |(I −ΠΩ)(v)|m,p,Ω, then we have

|v −ΠΩv|m,p,Ω ≤ ‖I −ΠΩ‖
∗ inf
p∈Pk

‖v + p‖k+1,p,Ω.

Notice the difference between B-H and Deny-Lion lemma and subsequent ar-

gument. The Bramble-Hilbert lemma is more general.

Definition 2.5.1. Let 0 < α ≤ 1. We say f is Hölder continuous (order α) if

|f(x)− f(y)| ≤ C|x− y|α

for all x, y in the domain. When α = 1 it is called Lipschitz continuous.

Define Cm,α(Ω̄) to be the space of all functions in Cm(Ω̄) whosem-th deriva-

tives satisfy the Hölder continuity. We equip it with the norm

‖v‖Cm,α(Ω̄) := ‖v‖m,∞Ω̄ + max
|β|=m

sup
x 6=y∈Ω̄

|∂βv(x)− ∂βv(y)|

‖x− y‖α

and we call it the Hölder spaces of order 0 < α ≤ 1.

Theorem 2.5.2. (Sobolev Imbedding Theorem) For all integers m ≥ 0 and



2.6. ESTIMATE IN H1 ERROR : ‖U − UH‖1,Ω 69

all 1 ≤ p ≤ ∞,

Wm,p(Ω) →֒ Lq(Ω) with
1

q
=

1

p
−
m

n
, if m <

n

p
, (2.50)

Wm,p(Ω) →֒ Lq(Ω) for all q ∈ [1,∞), if m =
n

p
, (2.51)

Wm,p(Ω) →֒ C0,m−n/p(Ω̄), if
n

p
< m <

n

p
+ 1, (2.52)

Wm,p(Ω) →֒ Ck,m−n/p(Ω̄), if
n

p
+ k < m <

n

p
+ k + 1, (2.53)

Wm,p(Ω) →֒ C0,α(Ω̄) for all 0 < α < 1, if m =
n

p
+ 1, (2.54)

Wm,p(Ω) →֒ C0,1(Ω̄), if
n

p
+ 1 < m. (2.55)

Theorem 2.5.3. (Kondrasov theorems) We have the compact injections

Wm,p(Ω)
c
→֒ Lq(Ω) for all 1 ≤ q < p∗ with

1

p∗
=

1

p
−
m

n
, if m <

n

p
, (2.56)

Wm,p(Ω)
c
→֒ Lq(Ω) for all q ∈ [1,∞), if m =

n

p
, (2.57)

Wm,p(Ω)
c
→֒ C0(Ω̄), if m >

n

p
. (2.58)

The compact injection H1(Ω)
c
→֒ L2(Ω) is called the Rellich theorem.

2.6 Estimate in H
1 error : ‖u− uh‖1,Ω

Theorem 2.6.1. Let u be the solution of variational problem belong to Hk+1(Ω)

and uh be the finite element solution. Under the same assumption as Theorem

2.4.5, we have

‖u− uh‖1,Ω ≤ Chk|u|k+1,Ω. (2.59)

Proof. Use Cea’s Lemma and the estimate in the interpolation error.

2.7 Estimate of the L
2 error : ‖u − uh‖0,Ω - Aubin

Nitsche lemma

We shall derive L2 error estimate from H1 error estimate (Theorem 3.2.2).

We get a pickup of h. For this, we note that H1
0 →֒ L2. We show
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Theorem 2.7.1. (Aubin-Nitsche lemma) We have

‖u− uh‖0 ≤M‖u− uh‖1 sup
g∈L2

{
1

‖g‖0
inf
φh

‖φg − φh‖1

}
, (2.60)

where for any g ∈ L2, φg ∈ H1
0 is the unique solution of the variational prob-

lem:

a(v, φg) = (g, v),∀v ∈ H1
0 . (2.61)

Proof. First of all, notice that

‖u− uh‖0 = sup
g∈L2

|(g, u − uh)|

‖g‖0
. (2.62)

The solution of (2.61) satisfy

a(u− uh, φg) = (g, u − uh),

while

a(u− uh, φh) = 0, ∀φh ∈ Vh.

Thus

a(u− uh, φg − φh) = (g, u− uh), ∀φh ∈ Vh,

and therefore,

|(g, u − uh)| ≤M‖u− uh‖1 inf
φh

‖φg − φh‖1. (2.63)

The conclusion now follows from (2.62).

Note that in (2.61) the order of arguments are interchanged. Problem

(2.61) is a special case of the general problem: Given any element g ∈ V , find

φ ∈ V such that

a(v, φ) = g(v), ∀v ∈ V.

Such a problem is called the adjoint problem of (2.1).

A second order boundary value problem whose variational formulation is

(2.1), resp. (2.61) is said to be regular if the following conditions holds:

(1) For any f ∈ L2, resp. any g ∈ L2, the corresponding solution uf , resp.

ug, is in H
2 ∩ V .
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(2) There exists a constant C such that

‖uf‖2,Ω ≤ C‖f‖0,Ω, ∀f ∈ L2(Ω), (2.64)

‖φg‖2,Ω ≤ C‖g‖0,Ω, ∀g ∈ L2(Ω). (2.65)

Remark 2.7.2. Consider (2.1). Then without the regularity assumption we

only know that

α‖uf‖1,Ω ≤ ‖f‖∗ = sup
v∈V

|f(v)|

‖v‖1,Ω
(2.66)

= sup
v∈V

|
∫
fvdx|

‖v‖1,Ω
≤ ‖f‖0,Ω, ∀f ∈ L2(Ω). (2.67)

Theorem 2.7.3. In addition to (H1), (H2), and (H3), assume s = 0, d ≤ 3,

and that for some k ≥ 1 the solution u is in the space Hk+1(Ω) and the

inclusion

Pk(K̂) ⊂ P̂ ⊂ H1(K̂) (2.68)

hold. Then if the adjoint problem is regular, there exists a constant C inde-

pendent of h such that

‖u− uh‖0,Ω ≤ Chk+1|u|k+1,Ω. (2.69)

Proof. Since d ≤ 3, the inclusion H2(K̂) →֒ C(K̂) holds. Applying Theorem

2.7.1 and inequality (2.65), we obtain, for each g ∈ L2(Ω),

inf
φh∈Vh

‖φg − φh‖1,Ω ≤ ‖φg −Πhφg‖1,Ω ≤ Ch‖φg‖2,Ω ≤ Ch‖g‖0,Ω.

Combining this with (2.60) yields

‖u− uh‖0,Ω ≤ Ch‖u− uh‖1,Ω.

2.8 Noncoercive forms

Let V and H be Hilbert spaces with V ⊂ H and

‖u‖H ≤ ‖u‖V , u ∈ V. (2.70)
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Let A(·, ·) be a bounded bilinear form on V × V , i.e,

|A(u, v)| ≤ β‖u‖V ‖v‖V , u, v ∈ V. (2.71)

Let Vn,= 1, 2, · · · , be a sequence of finite dimensional subspace of V and

suppose that there exist positive constants ρ and γ such that

ρ‖u‖V − γ‖u‖H ≤ sup
v∈Vn

|A(u, v)|

‖v‖V
, u ∈ Vn. (2.72)

Finally, suppose there exists a sequence of positive numbers {δn}with limn→∞ δn =

0, and such that for every en ∈ V satisfying

A(en, φ) = 0, ∀φ ∈ Vn,

then it is true that

‖en‖H ≤ δn‖en‖V . (2.73)

Theorem 2.8.1. Let u ∈ V be given and consider the problem of finding

un ∈ Vn such that

A(u− un, φ) = 0, φ ∈ Vn. (2.74)

If conditions (2.70)-(2.73) hold, then there exists an integer N0, independent

of u, such that (2.74) has a unique solution un for all n ≥ N0. Moreover,

there exist a constant C such that

‖u− un‖V ≤ Cminχ∈Vn ‖u− χ‖V (2.75)

‖u− un‖H ≤ Cδnminχ∈Vn ‖u− χ‖V . (2.76)

Proof. Assume un ∈ Vn is a solution of (2.74). Then

A(un − χ, v) = A(u− χ, v), ∀χ, v ∈ Vn.

Hence from (2.71) and (2.72),

ρ‖un − χ‖V − γ‖un − χ‖H ≤ sup φ∈Vn

‖φ‖V =1
|A(un − χ, φ)|

= sup φ∈Vn

‖φ‖V =1
|A(u− χ, φ)|

≤ β‖u− χ‖V , ∀χ ∈ Vn.

(2.77)
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We may assume γ ≥ 0. By (2.73) with en = u− un, we get

(ρ− γδn)‖u− un‖V ≤ ρ‖u− un‖V − γ‖u− un‖H .

By triangle inequality

ρ‖u− un‖V − γ‖u− un‖H ≤ ρ‖u− χ‖V + γ‖u− χ‖H (2.78)

+(ρ‖χ− un‖V − γ‖χ− un‖H). (2.79)

Combining, using (2.77), we have

(ρ− γδn)‖u− un‖V ≤ ρ‖u− χ‖V + γ‖u− χ‖H + β‖u− χ‖V (2.80)

≤ (ρ+ γ + β)‖u− χ‖V , χ ∈ Vn. (2.81)

The estimate ‖u−χ‖H ≤ ‖u−χ‖V comes from (2.70). Since lim δn = 0, there

exists an integer N0 such that δn ≤ ρ/(2γ) for n ≥ N0. Then

‖u− un‖V ≤ C‖u− χ‖V , χ ∈ Vn,

where C = 2 (ρ+γ+β)
ρ . Thus (2.75) holds. (2.76) follows immediately from

(2.73).

So far we have shown that if un ∈ Vn is a solution of (2.74), then there

exists N0 such that (2.75) and (2.76) holds. Now we shall show existence and

uniqueness by proving uniqueness.

We now show uniqueness:

Assume un and vn are two solutions of (2.74), wn = un − vn satisfies

A(wn, φ) = 0, φ ∈ Vn.

Then wn is a solution of (2.74) for the case u = 0. Then from (2.75),

‖wn‖V ≤ C min
χ∈Vn

‖0 − χ‖V = 0.

Thus un = vn, when n > N0. Now we need to show the existence of un. We

rewrite (2.74) as

A(un, φ) = G(φ), ∀φ ∈ Vn,

where G(φ) = A(u, φ). But in the case of finite dimension, existence is equiv-
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alent to uniqueness.

(1) An Observation Concerning Ritz-Galerkin Methods with Indefinite Bi-

linear Forms, Alfred H. Schatz, Math. comp. Vol. 28, No. 128, 1974,

959-962.

(2) Some new error estimates for RITZ-GALERKIN methods with minimal

regularity assumptions, A H. SCHATZ and J. WANG, Math. comp.

Vol. 65, 1996, Pages 19-27.

Remark 2.8.2. I. In applications, V is usually taken as H1(Ω) and H is

L2(Ω). Then (2.73) implies that the L2-error goes to zero faster than the

H1(Ω)-error. Note that assumption (2.72) is implied by either one of the

following:

(2.72)’ A(·, ·) is coercive;

(2.72)” there exist constants ρ > 0 and γ such that

ρ‖u‖2V − γ‖u‖2H ≤ A(u, u), u ∈ V. (2.82)

Example 2.8.3. Let V = H1
0 (Ω), and

A(u, v) = (Lu, v) + (bT∇u, v) + (cu, v),

with G(v) = (g, v), v ∈ V. With the assumption that bi ∈ C1(Ω̄), we can

show that

∣∣∣∣
∫

Ω
bT∇uvdxdy

∣∣∣∣ ≤
n∑

i=1

∫

Ω

∣∣∣∣bi
∂u

∂xi
v

∣∣∣∣ dxdy (2.83)

≤ b1‖v‖
n∑

i=1

‖
∂u

∂xi
‖ ≤ b1n‖u‖1‖v‖1. (2.84)

and hence A(u, v) is bounded. Further we can show that

∫

Ω
(bT∇u)udxdy = −

1

2

∫

Ω
(∇ · b)u2dxdy

and it follows that

A(u, u) = (Lu, u) + (φ, u2)
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where φ = c− 1
2 div · b. Hence with c0 = max |φ|, we have

A(u, u) ≥ ρ‖u‖21 − c0‖u‖
2, u ∈ H1

0 (Ω). (2.85)

This is a special case of G̊arding’s inequality.

Let H = L2(Ω). Then assumption (2.70) is satisfied and (2.85) yields (3)”.

Hence (2.72) is also satisfied. We conclude from Theorem 2.8.1 and remark

that if there exists û ∈ H1
0 (Ω) such that

A(u, v) = G(v), ∀v ∈ H1
0 (Ω),

then for any family of subspaces {VN} ⊂ H1
0 (Ω) satisfying assumption (2.73),

the Galerkin solution uN exists and has the properties

‖u− uN‖1 ≤ C min
χ∈VN

‖u− χ‖1, ‖u− uN‖ ≤ δNC min
χ∈VN

‖u− χ‖1,

where u is the generalized solution of the boundary value problem

−∇K∇u+ bT∇u+ cu = g in Ω, (2.86)

u = 0 on ∂Ω. (2.87)

Note that we do not assume that c(x) ≥ 0. Note that if c0 < ρ, then A(·, ·)

is coercive, the Lax-Milgram lemma is applicable, and the existence of u is

guaranteed.

Exercise 2.8.4. (1) (10pts) Show that if either (2.72)’ or (2.72)” holds then

(2.73) holds.

(2) (10pts) Prove G̊arding’s inequality without the assumption on the smooth-

ness of b. (Estimate the first order term directly and arithmetic-geometric

inequality.)

(3) (10pts) Show that (2.72) holds for the above example directly.

2.9 Eigenvalues and miscellany

This part of note is from Quarteroni and Valli. p.195. Here d = 2, 3 is the

dimension of Ω.
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Definition 2.9.1. A family of triangulation Th is quasi-uniform if it is regular

and there is τ > 0 such that

min
K

hK ≥ τh. (2.88)

Here h = maxhK ,K ∈ Th.

Proposition 2.9.2. Let Th be quasi-uniform family of triangulation of Ω.

There exists constants C1, C2 such that for vh ∈ Vh, vh =
∑
ηiφi,

C1h
d|η|2 ≤ ‖vh‖

2
0 ≤ C2h

d|η|2. (2.89)

Proof. Since Th is regular, for any given finite element node, the number of

elements sharing the node is bounded uniformly with resp. to h. Hence it

suffices to show that

C∗
1h

d
T∑

i=1

η2i ≤

∫

K
v2h ≤ C∗

2h
d

T∑

i=1

η2i . (2.90)

Here T is the number of degrees of freedom associated with K. First we show

it for reference element and then use v̂ = vh ◦FK , where FK is the affine map

from K̂ to K. Thus

v̂ =

T∑

i=1

ηiφ̂i.

Define for v̂ 6= 0,

ψ(v̂) :=

∫
K̂ v̂2

∑T
i=1 η

2
i

.

This function is clearly positive and continuous and hence ψ(v̂) has positive

minimum and maximum (C∗
1 , C

∗
2 ) on the unit sphere: S1 = {v̂ ∈ V : ‖v̂‖0 =

1}. Since it is homogeneous of zero degree, i.e, ψ(tη) = ψ(η) for t > 0, we

have for any v̂ 6= 0, the scaled function v̂
‖v̂‖0

belongs to the unit sphere, and

hence we have

0 < C∗
1 ≤ ψ(

v̂

‖v̂‖0
) = ψ(v̂) ≤ C∗

2 .

Hence

C∗
1

T∑

i=1

η2i ≤

∫

K̂
v̂2 ≤ C∗

2

T∑

i=1

η2i , ∀v̂ 6= 0. (2.91)
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This clearly holds for v̂ = 0. An alternative proof maybe:

(v̂, v̂) = (
T∑

i=1

ηiφ̂i,
T∑

i=1

ηiφ̂i)

= ηTMη, Mij = (φ̂i, φ̂j).

Since M is nonsingular, the function ηTMη is continuous on RT\{0}. Con-

sidering on the unit sphere, we deduce there are positive constants µm, µM

independent of h such that

µm|η|2 ≤ ηTMη ≤ µM |η|2.

Thus, we obtain (2.91). Considering the integral
∫
K v2h, we see

∫

K
v2h dx =

∫

K
(v̂ ◦ F−1

K )2 dx =

∫

K̂
v̂2|detBK | dx̂. (2.92)

Choosing vh = 1 we have

|det BK | =
meas(K)

meas(K̂)
≤ ChdK .

On the other hand, since the family Th is regular, we have

|det BK | ≥ ChdK .

This together with (2.91), (2.92), we obtain (2.90).

Proposition 2.9.3 (Inverse inequality). Let Th be quasi-uniform family of

triangulation of Ω. There exists constants such that for vh ∈ Vh,

‖∇vh‖
2
0 ≤ Ch−2‖vh‖

2
0. (2.93)

Proof. It suffices to prove

∫

K
|∇vh|

2 ≤ Ch−2

∫

K
v2h. (2.94)

Again on the reference element, we consider

ψ∗(v̂) :=

∫
K̂ |∇v̂|2∫
K̂ |v̂|2

.
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Since it is homogeneous of zero degree, bounded, hence by the same argument

as before, ∫

K
|∇vh|

2 ≤ C‖B−1
K ‖2

∫

K
v2h ≤

C

ρ2K

∫

K
v2h.

Now the regularity of triangulation and (2.90) gives the result.

Now we turn to the estimate the spectral condition number of A. Writing

vh =
∑
ηiφi, we have

(Aη,η)

|η|2
=
a(vh, vh)

|η|2
. (2.95)

Since A(·, ·)1/2 is equiv to H1-norm, we have by (2.89) and (2.92),

αC1h
d ≤

(Aη,η)

|η|2
≤ γC2h

d(1 + C3h
−2). (2.96)

Hence
λM
λm

≤ C(1 + C3h
−2) = O(h−2).

More precisely, we have shown that any eigenvalue of A satisfies

αC1h
d ≤ λ ≤ γC2h

d(1 + C3h
−2).

Now we compare the spectrum of A and the spectrum of bilinear form a(·, ·).

Since

a(wh, vh) = λ(wh, vh), vh ∈ Vh.

Thus (2.96) is equivalent to

α ≤
a(wh, wh)

‖wh‖20
= λ ≤ γ

‖wh‖
2
1

‖wh‖20
≤ γC2(1 + C3h

−2). (2.97)

Hence the eigenvalues of a satisfy α ≤ λ ≤ γC2(1 + C3h
−2). Notice the extra

factor hd appearing in the spectrum of the stiffness matrix A. For this reason,

sometimes A is scaled by h−d so that the spectrum is equivalent to a(·, ·). This

is a correct finite dimensional approximation of elliptic operator, which has

eigenvalues in (α,∞).

Example 2.9.4. We consider

−∆u = f in Ω

u = 0 on ∂Ω.
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When the unit square is divided by n equal intervals along x-axis and y-axis,

then the corresponding matrix A scaled by h−2 is (n − 1) × (n − 1)block-

diagonal matrix of the form:

A =
1

h2




B −I 0 · · ·

−I B −I 0

−I
. . .

. . .

. . . B −I

· · · 0 −I B




(2.98)

where

B =




4 −1 0 · · ·

−1 4 −1 0

−1
. . .

. . .

. . . 4 −1

· · · 0 −1 4




is (n − 1) × (n − 1) matrix. In fact this A is the representation w.r.t to

the discrete L2 inner product (·, ·)h :=
∑

i h
2uivi. The eigenvectors (up to

constant) of (n− 1)2 × (n− 1)2 matrix A are

xνµ(x, y) = sin(νπx) sin(µπy), (2.99)

with the corresponding eigenvalues

λνµ = 4h−2(sin2(νπh/2) + sin2(µπh/2)), 1 ≤ ν, µ ≤ n− 1. (2.100)

2.10 Inverse inequalities

In this section, in addition to regularity of Th, assume that it is quasi-uniform,

i.e, there is a positive number τ > 0 such that

min
K

hK ≥ τh, ∀h > 0.

Theorem 2.10.1. Let Th satisfy the hypothesis (H1) and (H2) and let

l ≤ m and P̂ ⊂Wm,p(K̂).
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Then we have

(∑

K

|vh|
p
m,p,K

)1/p

≤ Chl−m

(∑

K

|vh|
p
l,p,K

)1/p

, ∀vh ∈ Xh. (2.101)

Proof. Given vh ∈ Xh, we have by Proposition 2.4.1,

|v̂K |l,p,K̂ ≤ C‖BK‖l| det (B)|−1/p|vh|l,p,K, (2.102)

|vh|m,p,K̂ ≤ C‖B−1
K ‖l|det (B)|1/p|v̂K |m,p,K , (2.103)

where the function v̂K is the standard correspondence with the function vh|K .

Define the space

N̂ = {p̂ ∈ P̂ ; |p̂|l,p,K̂ = 0} =




0 if l = 0,

P̂ ∩ Pl−1(K̂) if l ≥ 1.

Since l ≤ m, |p̂|m,p,K̂ = 0 for p̂ ∈ N̂ and hence

‖
.
p̂‖m,p,K = inf

ŝ∈N̂
|p̂ − ŝ|m,p,K

is a norm over the quotient space P̂ /N̂ . Since this quotient space is finite

dimensional, this norm is equivalent to the quotient norm ‖ · ‖l,p,K̂ therefore

there exists a constant C such that

|p̂|m,p,K̂ = ‖
.
p̂‖m,p,K̂ ≤ C‖p̂‖l,p,K̂. (2.104)

By regularity and inverse property, we obtain from (2.103) and (2.104) and

Theorem 3.1.3,

|vh|m,p,K ≤ Chl−m|vh|l,p,K . (2.105)

Summing over all elements,

(∑

K

|vh|
p
m,p,K

)1/p

≤ Chl−m

(∑

K

|vh|
p
l,p,K

)1/p

.
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2.11 Fractional order interpolation

See Hitchhiker’s Guid to fractional Sobolev space.

Define
◦
W

k

p(Ω) = C∞
0 (Ω),

where the closure is taken w.r.t W k
p (Ω) norm.

Definition 2.11.1. For s < 0 and 1 < p < ∞, define W s
p (Ω) := (

◦
W

−s

q (Ω))′

where 1/p + 1/q = 1. The norm is

|u|pW s
p (Ω) = sup

v 6=0

< u, v >Ω

‖v‖W−s
q (Ω)

Definition 2.11.2. For 0 < s < 1, define

|u|pW s
p (Ω) =

∫ ∫
|u(x) − u(y)|p

|x− y|n+sp
dx dy.

This is a semi norm, together L2 norm it makes a norm on W s
p (Ω).

[f ]θ,p,Ω :=

(∫

Ω

∫

Ω

|f(x)− f(y)|p

|x− y|θp+n
dx dy

) 1

p

.

Let s > 0 be not an integer and set θ = s− ⌊s⌋ ∈ (0, 1). Using the same idea

as for the Holder spaces, the Sobolev-Slobodeckij space[7] W s,p(Ω) is defined

as

W s,p(Ω) :=

{
f ∈W ⌊s⌋,p(Ω) : sup

|α|=⌊s⌋
[Dαf ]θ,p,Ω <∞

}
.

It is a Banach space for the norm

‖f‖W s,p(Ω) := ‖f‖W ⌊s⌋,p(Ω) + sup
|α|=⌊s⌋

[Dαf ]θ,p,Ω.

If Ω is suitably regular in the sense that there exist certain extension

operators, then also the Sobolev-Slobodeckij spaces form a scale of Banach

spaces, i.e. one has the continuous injections or embeddings

W k+1,p(Ω) →֒W s′,p(Ω) →֒ W s,p(Ω) →֒W k,p(Ω), k 6 s 6 s′ 6 k + 1.
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There are examples of irregular Ω such that W 1,p(Ω) is not even a vector

subspace of W s,p(Ω) for 0 < s < 1.

From an abstract point of view, the spaces W s,p(Ω) coincide with the real

interpolation spaces of Sobolev spaces, i.e. in the sense of equivalent norms

the following holds:

W s,p(Ω) =
(
W k,p(Ω),W k+1,p(Ω)

)
θ,p
, k ∈ N, s ∈ (k, k + 1), θ = s− ⌊s⌋

Theorem 2.11.3.

inf ‖f − c‖α,T ≤ Ch1−α‖f‖1,T , 0 < α < 1.

Lemma 2.11.4. For g in H1(K)

|g|α,T ≤ Chn−1−α|g|1,T , 0 < α < 1.

Proof. Let η = x/h, ξ = y/h. Then with p = 2 in the definition

|g|2α,T =

∫

T

∫

T

|g(x) − g(y)|2

|x− y|2+2α
dxdy

= h2n−n−2α

∫

T̂

∫

T̂

|ĝ(x)− ĝ(y)|2

|η − ξ|n+2α
dηdξ

= hn−2α|ĝ|2
α,T̂

≤ Chn−2α|ĝ|2
1,T̂

= Ch2n−2−2α|g|21,T .

Remark: This is fractional Poincaré inequality with average zero.

2.11.1 Trace theorem

Theorem 2.11.5 (Trace theorem-Orane Jecker ppt). Let Ω be Ck−1,1 domain.

For 1
2 < s ≤ k the trace operator

γ : Hs(Ω) → Hs− 1

2 (Γ)

is bounded. There exists C > 0 s.t

‖γv‖
Hs− 1

2 (Γ)
≤ C‖v‖Hs(Ω). (2.106)
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Theorem 2.11.6 (Inverse trace theorem). The trace operator γ has a right

inverse:

E : Hs− 1

2 (Γ) → Hs(Ω)

satisfying (γ ◦ E)w = w for all w ∈ Hs− 1

2 (Γ). There exists C > 0 s.t

‖Ew‖Hs(Ω) ≤ C‖w‖
Hs− 1

2 (Γ)
(2.107)

for all w ∈ Hs(Ω).

Remark: γ is surjective and has E is injective.

Lemma 2.11.7. Let φ ∈ H1(Ω). Then there exists a constant C > 0 such

that

‖φ‖L2(∂Ω) ≤ C(Ω)‖φ‖
1/2
L2(Ω)

‖φ‖
1/2
H1(Ω)

. (2.108)

Lemma 2.11.8. Let φ ∈ H1(T ) and T e ⊂ ∂T . Then there exists a constant

C > 0 such that

‖φ‖0,T e ≤ C
{
‖φ‖0,T

(
h−1‖φ‖0,T + ‖∇φ‖0,T

)}1/2
≤ C

(
h−1‖φ‖20,T + h‖∇φ‖20,T

)1/2
.

Proof. Standard trace theorem and scaling argument give the result.

The followings hold by a slight modification.

Lemma 2.11.9. There exist positive constants C0, C1, C2 independent of the

function v such that for all v ∈ Pk(T ),

‖v‖21,T ≤ C0h
−2‖v‖20,T , ‖v‖20,∂T ≤ C1h

−1‖v‖20,T (2.109)

and for all v ∈ H1(T )

‖v‖20,e ≤ C2(h
−1‖v‖20,T + h|v|21,T ). (2.110)

2.12 Nonconforming Finite element method

One basic assumption on finite element space is

Vh ⊂ V = H1
0 (Ω). (2.111)
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We consider two cases where this condition is violated. First case arises when

we approximate smooth domain by triangles. In this case boundary condition

cannot be met exactly; Vh ⊂ H1(Ω) but Vh 6⊂ H1
0 (Ω).

The other case (2.111) is violated arises when we use ”nonconforming” fem

of Crouzeix-Raviart. This can happen on a polygonal domain where boundary

conditions are exactly satisfied.
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Figure 2.4: Crouzeix-Raviart nonconforming basis
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2.12.1 Nonconforming FEM of Crouzeix-Raviart

With the usual triangulation Th, we define the space of piecewise linear finite

element space (whose element is not necessarily continuous)

Vh =




v : v|K in linear on K for all K

v is continuous at midpoint of edges and

v = 0 at the mid points on boundary edges


 .

Define bilinear form on Vh + V

ah(v,w) =
∑

K

∫

K
∇v · ∇w dx, (2.112)

and for v ∈ Vh we define the equivalent energy norm

‖v‖ah =
√
ah(v, v).

Then the discrete problem is : Find uh ∈ Vh satisfying

ah(uh, v) = F (v), v ∈ Vh. (2.113)

Note that ah(·, ·) reduces to a(·, ·) form on V . To check the consistency error

we see for w ∈ Vh

ah(u,w) − f(w) =
∑

K

∫

K
∇u · ∇w dx−

∫

K
fw dx

=
∑

K

[∫

∂K

∂u

∂n
w ds−

∫

K
∆uw dx

]
−

∫

K
fw dx

=
∑

K

∫

∂K

∂u

∂n
w ds =

∑

K

∑

e⊂∂K

∫

e

∂u

∂n
[w] ds.

Thus the consistency error is

ah(u− uh, vh) =
∑

K

∑

e⊂∂K

∫

e

∂u

∂n
[vh] ds. (2.114)

Let

(1) hK : the diameter of K

(2) ρK : the diameter of inscribed sphere of K
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(3) σ(K) = hK

ρK
.

Let u ∈ V satisfy

a(u, v) = F (v), v ∈ V (2.115)

and u ∈ Vh satisfy

ah(uh, v) = F (v), v ∈ Vh. (2.116)

Lemma 2.12.1 (Poincaré inequality). There exists a constant C > 0 s.t. for

all vh ∈ Vh

‖vh‖L2(Ω) ≤ Cah(vh, vh).

Lemma 2.12.2 (Second Strang lemma). Let u ∈ V and uh ∈ Vh be arbitrary.

Then

‖u− uh‖ah ≤ inf ‖u− vh‖ah + sup
vh

ah(u− uh, vh)

‖vh‖ah
.

Proof. For any w ∈ Vh

‖u− uh‖ah ≤ ‖u− w‖ah + ‖w − uh‖ah (2.117)

≤ ‖u− w‖ah + sup
vh

ah(w − uh, vh)

‖vh‖ah
. (2.118)

Choose ũ ∈ Vh satisfying

ah(u− ũ, vh) = 0, ∀vh ∈ Vh.

A consequence is that(an orthogonal projection)

‖u− ũ‖ah = inf
vh

‖u− vh‖ah . (2.119)

Proof of (2.119) For any χ ∈ Vh we have

‖u− ũ− χ‖2ah = ‖u− ũ‖2ah + ‖χ‖2ah − 2ah(u− ũ, χ)

= ‖u− ũ‖2ah + ‖χ‖2ah

≥ ‖u− ũ‖2ah .

So for any vh ∈ Vh

‖u− vh‖ah ≥ ‖u− ũ‖ah .

Now

ah(ũ− uh, vh) = ah(ũ− u+ u− uh, vh) = ah(u− uh, vh).
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Combining this with w = ũ in (2.118) we obtain the result.

Remark 2.12.3. In most applications we take u to be the solution and uh be

its fem solution. But the lemma holds for arbitrary pair u, uh.

Next we estimate the second term of (2.118).

Lemma 2.12.4. Let m,µ be integers with 0 ≤ m ≤ µ. Let Pµv̂ be a polyno-

mial of degree of freedom as we shall se. Then

∣∣∣∣
∫

e
φ(v − Pµv) ds

∣∣∣∣ ≤ Cσ(K)hm+1|φ|1,K |v|m+1,K (2.120)

for all φ ∈ H1(K) and v ∈ Hm+1(K).

Proof. Let us use reference element K̂. Assume

F : x̂ → F (x̂) = Bx̂+ b.

We can see ∫

e
φ(v − Pµv) ds = |B′|

∫

ê
φ̂(v̂ − Pµv̂) dŝ, (2.121)

where B′ is the matrix by crossing out the n-th row and column from B. So

consider the functional

φ̂→

∫

ê
φ̂(v̂ − Pµv̂) dŝ

which is continuous over H1(K̂) whose norm is less than

‖v̂ − Pµv̂‖ê

and vanishes on Pm. Then

∣∣∣∣
∫

ê
φ̂(v̂ − Pµv̂) dŝ

∣∣∣∣ =

∣∣∣∣
∫

ê
(φ̂− P 0φ̂)(v̂ − Pµv̂) dŝ

∣∣∣∣ (2.122)

≤ c1‖φ̂− P 0φ̂‖ê‖v̂ − Pµv̂‖ê (2.123)

≤ c2‖φ̂− P 0φ̂‖1,K̂‖v̂ − Pµv̂‖1,K̂ (2.124)

≤ C2|φ̂|1,K̂ |v̂|m+1,K̂ , (2.125)

where the last inequality follows from Bramble-Hilbert lemma. ((2.123) maybe
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skipped.) So

∣∣∣∣
∫

e
φ(v − Pµv) ds

∣∣∣∣ ≤ C3|det (B
′)| · |φ̂|1,K̂ |v̂|m+1,K̂ . (2.126)

Recall the scaling argument

|v̂|ℓ,K̂ ≤ |det (B′)|−1/2‖B′‖ · |v|ℓ,K for all v ∈ H1(K). (2.127)

So

∣∣∣∣
∫

e
φ(v − Pµv) ds

∣∣∣∣ ≤ C3|det (B
′)|·| det (B)|−1‖B‖m+2|φ|1,K |v|m+1,K . (2.128)

Check that

|det (B′)| ≤ |det (B)| · ‖B−1‖.

Combine all of above,

∣∣∣∣
∫

e
φ(v − Pµv) ds

∣∣∣∣ ≤ C3| det (B)|−1‖B‖m+2|φ|1,K |v|m+1,K , (2.129)

and noting

‖B‖ ≤
hK
ρK̂

, ‖B−1‖ ≤
hK̂
ρK

,

we get the result.

Applying this to consistency error term (2.114) with φ = ∂u
∂n we obtain

Theorem 2.12.5. We have

‖u− uh‖ah ≤ Ch|u|2,Ω. (2.130)

Proof. For the consistency error, we have from (2.114)

ah(u− uh, vh) =
∑

K∈Kh

<
∂u

∂n
, vh >∂K=

∑

K

∑

e⊂∂K

∫

e

∂u

∂n
[vh] ds, (2.131)

where vh ∈ Vh(Ω) and n is a unit outward normal vector on each ∂K. Since u

belongs to H2(Ω), and vh ∈ Vh has well-defined average value on the interior
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edges, and vanishing average on the boundary, we have, by Lemma 2.120

∑

K∈Kh

<
∂u

∂n
, vh >∂K =

∑

K∈Kh

∑

e⊂∂K

<
∂u

∂n
− (

∂u

∂n
)e, vh >e

≤
∑

K∈Kh

Ch

∣∣∣∣
∂u

∂n

∣∣∣∣
1,K

|vh|1,K

≤ Ch‖u‖H2(Ω)‖vh‖1,h. (2.132)

Combining this with Lemma 2.12.1, 2.12.2 and the approximation property of

the space Vh we obtain the result.
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