Chapter 7

Transcendental Functions

7.1 Inverse functions and their derivatives

One to one function

A function is one -to- one on a domain if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$ in D.

(1)
$$f(x) = \sqrt{x}$$
 for $x > 0$

(2) $y = x^2$ is not one-to-one on [-1, 1] but is one-to-one on [0, m].

A test for one-one-one function: A function y = f(x) is one-one-one if its graph intersects each *horizontal line* at most once.

Definition 7.1.1. Suppose f is one-one function on D with range R. Then the inverse function f^{-1} is defined by

$$f^{-1}(a) = b$$
 if $f(b) = a$

The domain of f^{-1} is R and range is D.

Example 7.1.2. $y = x^2$

sol. Since $x = \sqrt{y}$. We interchange x, y obtain, $y = \sqrt{x}$.

$$f^{-1} \circ f(x) = x, \quad f \circ f^{-1}(y) = y$$

Definition 7.1.3. $y = \log_a x$ is the inverse of exponential function $y = a^x$

 $\log_{10} x$ is written as $\log x$, $\log_e x$ is written as $\ln x$. $\ln x$ is called *natural logarithm* and

$$y = \ln x$$
 iff $e^y = x$

In particular, if x = e we get $\ln e = 1$.

Inverse trig functions

Figure 7.3: $y = \cos x$

Figure 7.4: $y = \cos^{-1} x$

 π

-1

Example 7.1.4. Half life of Polonium 210. The time for radioactive substance required to decay by half is independent of the initial quantity. $y = y_0 e^{-kt}$. So $t = \ln 2/k$. For Polonium 210, $k = 5 \cdot 10^{-3}$.

In chapter 2 we introduced natural logarithmic function as the inverse of the exponential function e^x , where the number e was chosen to satisfy certain slope condition. In this chapter, we introduce an alternative theory for exponential and log. function.

Definition 7.1.5. A function f is one-to-one on a domain D if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Definition 7.1.6. Suppose a function f is one-to-one on a domain D with range R. The **inverse function** f^{-1} exists and is defined by

$$f^{-1}(b) = a$$
 if $f(a) = b$.

The domain of f^{-1} is R and range is D.

We have

$$(f^{-1} \circ f)(x) = x, \quad x \in D, \quad (f \circ f^{-1})(y) = y, \quad y \in R.$$

Derivatives of inverse function

Theorem 7.1.7. Suppose f is differentiable in I. If f'(x) is never zero, then f^{-1} exists, differentiable. Furthermore for $a \in I$, f(a) = b,

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))} = \frac{1}{f'(a)}.$$
(7.1)

Set y = f(x). Then the inverse function is $x = f^{-1}(y)$, and its derivative is

$$\left. \frac{dx}{dy} \right|_{y=f(a)} = \frac{1}{dy/dx|_{x=a}}, \quad a \in I$$

Proof. Differentiate $x = (f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y)$ w.r.t x using the Chain rule, we have

$$1 = (f^{-1})'(f(x))f'(x).$$

Setting x = a, we see $1 = (f^{-1})'(f(a))f'(a)$. Thus

$$(f^{-1})'(b) = 1/f'(a).$$

Usually, we use the notation $y = f^{-1}(x)$. The graph of y = f(x) and that of $y = f^{-1}(x)$ are symmetric w.r.t the line y = x.

Figure 7.5: Slope of inverse function

Figure 7.6: Graph of inverse functions, Graph of $\ln x$ and e^x

Example 7.1.8. (1) $f(x) = x^7 + 8x^3 + 4x - 2$. Find $(f^{-1})'(-2)$.

(2) $f(x) = \sin^{-1} x$. Find f'.

sol. (1) Since $f' = 7x^6 + 24x^2 + 4 \ge 4$ inverse f^{-1} exists. Since f(0) = -2 we have

$$(f^{-1})'(-2) = (f^{-1})'(f(0)) = \frac{1}{f'(0)} = \frac{1}{4}.$$

(2) $y = \sin^{-1} x, x = \sin y$. Hence

$$\frac{d}{dx}\sin^{-1}x = \frac{dy}{dx} = \frac{1}{dx/dy} = \frac{1}{(d/dy)\sin y} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{1-x^2}}$$

Figure 7.7: Graph of $\ln x$ and e^x

7.2 Natural logarithms (defined as integral)

Definition 7.2.1. For x > 0, the (natural) logarithmic function is defined by

$$\ln x = \int_1^x \frac{1}{t} \, dt.$$

Thus by fundamental theorem,

$$\frac{d}{dx}\ln x = \frac{1}{x}.\tag{7.2}$$

If u(x) is any positive differentiable function,

$$\frac{d}{dx}\ln u(x) = \frac{1}{u}\frac{du}{dx}.$$
(7.3)

Definition 7.2.2. The number e is that number satisfying

$$\ln(e) = \int_{1}^{e} \frac{1}{t} \, dt = 1.$$

The derivative of the natural logarithmic function

The derivative of natural logarithmic function is by its definition and fundamental theorem of calculus, for x > 0

$$\frac{d}{dx}\int_{1}^{x}\frac{1}{t}dt = \frac{1}{x}.$$

One can show similar formula holds for x < 0. In fact, we have

$$\boxed{\frac{d}{dx}\ln|x| = \frac{1}{x}, \quad x \neq 0.}$$
(7.4)

Properties of logarithms

For b > 0, x > 0

- (1) $\ln bx = \ln b + \ln x$
- (2) $\ln \frac{b}{x} = \ln b \ln x$

(3)
$$\ln \frac{1}{x} = -\ln x$$

(4) $\ln x^r = r \ln x$ (For rational number r).

Consider

$$\frac{d}{dx}\ln(bx) = \frac{1}{x} = \frac{d}{dx}\ln x$$

So by above result,

$$\ln(bx) = \frac{1}{x} = \ln x + C$$

Place x = 1 to see $C = \ln b$.

Proof of Log rule $\ln x^r = r \ln x$

Consider (assuming r is rational)

$$\frac{d}{dx}\ln x^{r} = \frac{1}{x^{r}}\frac{d}{dx}(x^{r}) = \frac{1}{x^{r}}rx^{r-1} = \frac{r}{x} = \frac{d}{dx}(r\ln x)$$

Thus $\ln x^r$ and $r \ln x$ have same derivative and we have

$$\ln x^r = r \ln x + C,$$

for some constant C. To find the constant C, we let x = 1. Then C = 0.

The integral $\int (1/u) du$

To evaluate the following integral

$$\int \frac{f'(x)}{f(x)} dx \tag{7.5}$$

we use the substitution u = f(x), du = f'(x)dx to see

$$\int \frac{f'(x)}{f(x)} dx = \int \frac{1}{u} du = \ln|u| + C = \ln|f(x)| + C.$$
(7.6)

Example 7.2.3.

$$\int_{\pi/6}^{\pi/2} \frac{5\cos\theta}{2+\sin\theta} d\theta = \int_{1/2}^{1} \frac{5}{2+u} du$$

= $5\ln(2+u)|_{1/2}^{1}$
= $5(\ln 3 - \ln \frac{5}{2}) = 5\ln\frac{6}{5}.$

Integral of $\tan x$, $\cot x$, $\sec x$ and $\csc x$

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx$$
$$= -\int \frac{du}{u}$$
$$= -\ln|u| + C$$
$$= -\ln|\cos x| + C$$
$$= \ln \frac{1}{|\cos x|} + C$$
$$= \ln|\sec x| + C.$$

For $\sec x$ we need special trick:

$$\int \sec x \, dx = \int \sec x \frac{(\sec x + \tan x)}{(\sec x + \tan x)} \, dx$$
$$= \int \frac{(\sec^2 x + \sec x \tan x)}{\sec x + \tan x} \, dx$$
$$= \int \frac{du}{u}$$
$$= \ln |u| + C$$
$$= \ln |\sec x + \tan x| + C.$$

For $\csc x$ we do similarly. Thus we have

$$\int \sec x \, dx = \ln |\sec x + \tan x| + C$$
$$\int \csc x \, dx = -\ln |\csc x + \cot x| + C.$$

Logarithmic Differentiation

Example 7.2.4. Find dy/dx if $y = \frac{(x^2+1)^{1/3}(x-3)^{1/2}}{x+5}$.

sol. We take the logarithm and then take derivative to get

$$\ln y = \ln \left(\frac{(x^2 + 1)^{1/3} (x - 3)^{1/2}}{x + 5} \right)$$

= $\frac{1}{3} \ln(x^2 + 1) + \frac{1}{2} \ln(x - 3) - \ln(x + 5)$
 $\frac{y'}{y} = \frac{1}{3} \frac{2x}{x^2 + 1} + \frac{1}{2} \frac{1}{x - 3} - \frac{1}{x - 5}$
 $y' = \frac{(x^2 + 1)^{1/3} (x - 3)^{1/2}}{x + 5} \left(\frac{1}{3} \frac{2x}{x^2 + 1} + \frac{1}{2} \frac{1}{x - 3} - \frac{1}{x - 5} \right)$

7.3 Exponential function e^x

Definition 7.3.1. Define the (natural) exponential function $e^x = exp(x) := \ln^{-1} x$ as the inverse function of $\ln x$. Thus

$$y = exp(x) \Leftrightarrow x = \ln y.$$

Thus

$$exp(\ln x) = x, (x > 0)$$

$$\ln(exp(x)) = x.$$
(7.7)

It turns out that when x is a rational number m/n, $exp(m/n) = e^{m/n} = \sqrt[n]{e^m}$.

The derivative of e^x

 $f(x) = \ln x$. The derivative of its inverse function $y = f^{-1}(x) = e^x$ is

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

= $\frac{1}{1/y}$
= y
= e^x .

Alterative way: Let $y = e^x$. Implicit differentiation w.r.t. x gives

$$\ln y = x$$

$$\frac{1}{y}\frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = y = e^x.$$

Antiderivative of e^x

$$\int e^x dx = e^x + C. \tag{7.8}$$

Theorem 7.3.2 (Laws of exponents). (1) $e^x e^y = e^{x+y}$.

(2) $e^{-x} = \frac{1}{e^x}$. (3) $\frac{e^x}{e^y} = e^{x-y}$. (4) $(e^x)^r = e^{rx}$.

Example 7.3.3. Sketch the graph of $x^{1/x}$. To do this, we first investigate the behavior of the function as $x \to 0^+$ and $x \to \infty$. To study the limit, we take the logarithm:

$$\lim_{x \to \infty} \ln x^{1/x} = \lim_{x \to \infty} \frac{\ln x}{x} = 0.$$

Hence

$$\lim_{x \to \infty} x^{1/x} = \exp(\lim_{x \to \infty} \frac{\ln x}{x}) = e^0 = 1.$$

Meanwhile

$$\lim_{x \to 0^+} \ln x^{1/x} = \lim_{x \to 0^+} \frac{\ln x}{x} = -\infty.$$

Hence

$$\lim_{x \to 0^+} x^{1/x} = \exp(\lim_{x \to 0^+} \frac{\ln x}{x}) = e^{-\infty} = 0.$$

To see the local extrema, take the derivative and find the critical point. $f'(x) = (1 - \ln x)/x^2 = 0$ for x = e. By checking the sign of f'(x) near x = e, we conclude x = e is a point of local maximum.

Figure 7.8: Graph of $y = x^{1/x}$

Derivatives of Power function

We prove the following theorem which was stated earlier.

Theorem 7.3.4. For any real r, it holds that

$$\frac{d}{dx}u^r = u^{r-1}\frac{du}{dx}.$$

Proof. Since $u^r = e^{r \ln u}$ we have

$$\frac{d}{dx}u^r = ru^r \frac{d\ln u}{dx} = ur^r \frac{1}{u} \frac{du}{dx} = ru^{r-1} \frac{du}{dx}$$

Example 7.3.5. Differentiate $f(x) = x^x, x > 0$

sol. Write $f(x) = x^x = e^{x \ln x}$. So $f'(x) = \frac{d}{dx}(e^{x \ln x})$ $= (e^{x \ln x})\frac{d}{dx}(x \ln x)$ $= e^{x \ln x}(\ln x + x \cdot \frac{1}{x})$

The number e was defined a number satisfying $\ln e = 1$. Hence

 $= x^x(\ln x + 1).$

$$e = \ln^{-1}(1) = exp(1) \tag{7.9}$$

it is known that $e = 2.718281828 \cdots$.

Example 7.3.6. Find the point where the line through of origin y = mx is tangent to the graph of $y = \ln x$.

sol. We must have $m = \frac{1}{x}$ and $mx = \ln x$. Hence we get $m = \frac{1}{e}$ and x = e.

The number e as a limit

Theorem 7.3.7. The number e satisfies

$$e = \lim_{x \to 0} (1+x)^{1/x}.$$

Proof. If $f(x) = \ln x$. Then $f'(1) = \frac{1}{x}|_{x=1} = 1$. By definition of derivative

$$1 = f'(1) = \lim_{x \to 0^+} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0^+} \ln[(1+x)^{\frac{1}{x}}]$$
$$= \ln[\lim_{x \to 0^+} (1+x)^{\frac{1}{x}}].$$

Now exponentiate.

The general exponential function a^x

Since $a = e^{\ln a}$ for any positive number a, we can define a^x by

$$a^{x} = e^{\ln a^{x}}$$
$$= e^{x \ln a}$$
$$= e^{(\ln a)x}.$$

Definition 7.3.8. If a is a positive number and x is any number, we define

$$a^x = e^{x \ln a}.$$
(7.10)

Since $\ln e^x = x$ for all real x, we have

$$\ln x^{n} = \ln(e^{n\ln x}) = n\ln x, x > 0.$$

One can also use the definition of $\ln x = \int_1^x dt$ to prove it.

Example 7.3.9. [Power rule] The derivative of x^n for any number n:

$$\frac{d}{dx}x^n = \frac{d}{dx}e^{n\ln x} \ (x > 0)$$
$$= e^{n\ln x} \cdot \frac{d}{dx}(n\ln x)$$
$$= x^n \cdot \frac{n}{x}$$
$$= nx^{n-1}.$$

Derivative of a^x

By definition, $a^x = e^{x \ln a}$. Thus

$$\frac{d}{dx}a^x = \frac{d}{dx}e^{x\ln a} = \ln a(e^{x\ln a}) = a^x\ln a$$

and

$$\frac{d}{dx}a^u = a^u \ln a \frac{du}{dx}$$
(7.11)

General logarithmic function $\log_a x$

 $y = \log_a x$ is defined as the inverse function of $y = a^x (a > 0, a \neq 1)$. Thus

$$\log_a x = y \Leftrightarrow a^y = x$$

$$\log_a(a^x) = x$$
, for all x, and $a^{(\log_a x)} = x, (x > 0)$

 $\log_{10} x$ is written as $\log x$ and called *common logarithmic function*

Properties

- (1) Product rule: $\log_a xy = \log_a x + \log_a y$.
- (2) Quotient rule: $\log_a \frac{x}{y} = \log_a x \log_a y$.
- (3) Product rule: $\log_a \frac{1}{y} = -\log_a y$.
- (4) Power rule: $\log_a x^y = y \log_a x$.

Inverse properties

- (1) Base a: $a^{\log_a x} = x$, $\log_a(a^x) = x(a > 0, a \neq 1, x > 0)$.
- (2) Base e: $e^{\ln x} = x$, $\ln(e^x) = x(x > 0)$.

Derivative of $\log_a x$

We have

$$\log_a x = \frac{\ln x}{\ln a}.\tag{7.12}$$

So

$$\frac{\frac{d}{dx}\log_a x = \frac{1}{x\ln a}}{\frac{d}{dx}\log_a u = \frac{1}{u\ln a}\frac{du}{dx}}$$
(7.13)

Logarithmic Differentiation

Find dy/dx if $y = \frac{(x^2+1)^{1/3}(x-3)^{1/2}}{x+5}$. **Example 7.3.10.** (1) $\int_0^2 \frac{2x}{x^2-5} dx = \ln |u|_{-5}^{-1}$. (2) $\int_{-\pi/2}^{\pi/2} \frac{4\cos\theta}{3+2\sin\theta} d\theta = \int_1^5 \frac{2}{u} du$.

7.4 Exponential change and separable differentiable equations

The decay of radioactive material or money earning interests in bank account, temperature between a cup of hot water and room air it sits, etc follows the law of *exponential change* Suppose y(t) denotes some quantity which changes according to the exponential law: The rate of change of y is proportional to y.

$$\frac{dy}{dt} = ky$$

with I.C. Then $y = Ae^{kt}$.

Example 7.4.1. Assume a disease is spreading "Entero virus", "A.I" Let y be the number of people infected by disease. Assume we cure people as much as possible. Then dy/dt is proportional to y.(The more people, the more infected, the more cured) Suppose for each year the number is reduced by 20% and 10,000 people infected today, how many years will it take to reduce to 1,000?

sol. $y = Ae^{kt}$, A = 10,000 Since it is reduced by 0.2 each year, we see

$$0.8 = e^{k \cdot 1} \to k = \ln 0.8 < 0$$

So we have $y = 10,000e^{(\ln 0.8)t}$ we want $10,000e^{(\ln 0.8)t} = 1,000$. So $e^{(\ln 0.8)t} = \frac{1}{10}$. $\ln(0.8)t = \ln(0.1)$. $t = \frac{\ln(0.1)}{\ln(0.8)} \approx 10.32$ yrs.

Example 7.4.2 (Half life of a radioactive material). $y_0 e^{-kt} = \frac{1}{2}y_0$. so $t = \ln 2/k$.

Example 7.4.3 (Carbon 14). It is estimated the half life of Carbon 14 is 5700 yrs. AS wooden artifact was found from an ancient site. This contains carbon 14 about 10% less than the living tree. How old is the site? $k = \ln 2$ Half life is $\ln 2/5700$. $y = y_0 e^{-kt} = 0.9y_0$ So $e^{-kt} = 0.9$ or $t = -5700 \frac{\ln 0.9}{\ln 2} = 866$ yrs.

Example 7.4.4 (Law of Cooling). If H is the temperature of an object and H_s the surrounding temperature. Then the rate of change(cooling) is proportional to the temperature difference. Thus

$$\frac{dH}{dt} = -k(H - H_s).$$

Solving

$$H - H_s = (H_0 - H_s)e^{-kt}.$$

A boiled egg at 98° is put in the sink of 18° to cool down. In 5 min, the egg was 38° . how much longer will it take to reach 20° ?

sol.

$$H - 18 = (98 - 18)e^{-kt}, \quad H = 18 + 80e^{-kt}.$$

Set H = 38, t = 5. Then $e^{-5k} = 1/4$ and

$$k = -\frac{\ln 1/4}{5} = 0.2 \ln 4 \approx 0.28.$$
$$H = 18 + 80e^{-(0.2\ln 4)t}.$$

Solving $t \approx 13$ min.

Separable Differential Equations

A general differential equation is given in the form

$$\frac{dy}{dx} = f(x, y) \tag{7.14}$$

with certain initial condition such as $y(x_0) = y_0$. Such equation is called **separable** if f is expressed as a product of a function of x and a function of y, i.e,

$$\frac{dy}{dx} = g(x)H(y).$$

We rewrite it in the form

$$\frac{dy}{dx} = \frac{g(x)}{h(y)}$$

and obtain

$$\int h(y) \, dy = \int g(x) \, dx. \tag{7.15}$$

Example 7.4.5. Solve

$$\frac{dy}{dx} = (1+y)e^x, \ y > -1.$$
(7.16)

Separate variables,

$$\frac{dy}{1+y} = e^x dx$$

$$\int \frac{dy}{1+y} = \int e^x dx$$

$$\ln(1+y) = e^x + C.$$

7.5 Intermediate form aand L'Hopital's Rule

L'Hopital's Rule

When f(a) = g(a) = 0 or $f(a) = g(a) = \infty$, the limit

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

cannot be found by directly substituting a. In this case we can use L'Hopital's Rule.

Theorem 7.5.1 (L'Hopital's Rule: First form). Suppose f(a) = g(a) = 0 that f'(a), g'(a) exist and $g'(a) \neq 0$ then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}.$$

Proof.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} (f(x) - f(a))/(x - a)}{\lim_{x \to a} (g(x) - g(a))/(x - a)} = \frac{f'(a)}{g'(a)}.$$

Example 7.5.2. (1)
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} \left(\frac{0}{0}\right) = \frac{1/2\sqrt{1+x}}{1} \Big|_{x=0} = \frac{1}{2}.$$

(2) $\lim_{x \to 1} \frac{x^2-1}{x-1} \left(\frac{0}{0}\right) = \frac{2x}{1} \Big|_{x=1} = 2.$

Example 7.5.3. (1)
$$\lim_{x \to (\pi/2)^{-}} \frac{\cos x}{\sin x - 1} \left(\frac{0}{0} \right) = \lim_{x \to (\pi/2)^{-}} \frac{-\sin x}{\cos x} = -\infty.$$

(2)
$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) (\infty - \infty) = \lim_{x \to \infty} \frac{x - \sin x}{x \sin x} \left(\frac{0}{0} \right).$$
$$= \lim_{x \to 0} \frac{1 - \cos x}{\sin x + x \cos x} \left(\frac{0}{0} \right) = \lim_{x \to 0} \frac{\sin x}{2 \cos x - x \sin x} = \frac{0}{2} = 0.$$

Theorem 7.5.4 (L'Hopital's Rule:Stronger form). Suppose that f(a) = g(a) = 0 and f, g are differentiable on (a, b). (The case f'(c) = g'(c) = 0 is allowed) and that $g'(x) = \neq 0$ for $x \neq a$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

as long as the rhs limit exists.

The proof is based on the following result.

Theorem 7.5.5 (Cauchy's Mean value theorem). Suppose f and g are conti in [a,b], diff 'ble in (a,b). If $g' \neq 0$ on (a,b) then $g(b) \neq g(a)$ and there exist $c \in (a,b)$ such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Proof. Suppose g(b) = g(a) then by Mean value theorem

$$g'(c) = \frac{g(b) - g(a)}{b - a} = 0$$

for some $c \in (a, b)$. This contradict to $g' \neq 0$. So, $g(b) \neq g(a)$. Next consider the function F defined by

$$F(x) = f(x) - f(a) - \left(\frac{f(b) - f(a)}{g(b) - g(a)}\right)(g(x) - g(a)).$$

We apply Rolle's theorem to F. Hence there exist $c \in (a, b)$ such that F'(c) = 0. Since

$$F'(c) = f'(c) - \left(\frac{f(b) - f(a)}{g(b) - g(a)}\right)g'(c) = 0$$

we have

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Proof. First show

$$\lim_{x \to c^+} \frac{f(x)}{g(x)} = \lim_{x \to c^+} \frac{f'(x)}{g'(x)}.$$

When c < x < b use thm 7.5.5(Cauchy' MVT) on [c, x]. Then there is $d \in (c, x)$ s.t.

$$\frac{f'(d)}{g'(d)} = \frac{f(x) - f(c)}{g(x) - g(c)} = \frac{f(x)}{g(x)}$$

and $d \to c^+$ as as $x \to c^+$

$$\lim_{x \to c^+} \frac{f(x)}{g(x)} = \lim_{d \to c^+} \frac{f'(d)}{g'(d)}$$
$$= \lim_{x \to c^+} \frac{f'(x)}{g'(x)}.$$

The following can be shown the same way.

$$\lim_{x \to c^{-}} \frac{f(x)}{g(x)} = \lim_{x \to c^{-}} \frac{f'(x)}{g'(x)}.$$

One sided intermediate form

Example 7.5.6. (1) $\lim_{x \to 0^+} \frac{\sin x}{x^2} = \lim_{x \to 0^+} \frac{\cos x}{2x} = \infty.$

(2)
$$\lim_{x \to 0^{-}} \frac{\sin x}{x^2} = \lim_{x \to 0^{-}} \frac{\cos x}{2x} = -\infty$$

Intermediate form $\infty/\infty, \ \infty \cdot 0, \ \infty - \infty$

Example 7.5.7.

- (1) $\lim_{x \to 0} x \sin \frac{1}{x}$
- (2) $\lim_{x \to 0^+} \sqrt{x} \ln x$

(3)
$$\lim_{x \to (\pi/2)^{-}} \frac{\tan x}{1 + \tan x} \left(\frac{\infty}{\infty}\right) = \lim_{x \to (\pi/2)^{-}} \frac{\sec^2 x}{\sec^2 x} = 1.$$
(4)
$$\lim_{x \to \infty} \frac{\pi/2 - \tan^{-1} x}{1 + \tan^2 x} \left(\frac{1}{2}\right) = \lim_{x \to \infty} \frac{-1/(1 + x^2)}{1 + \tan^2 x}$$

(4)
$$\lim_{x \to \infty} \frac{\pi/2 - \tan^{-1} x}{1/x} \left(\frac{0}{0}\right) = \lim_{x \to \infty} \frac{-1/(1+x^2)}{-1/x^2}$$
$$= \lim_{x \to \infty} \frac{x^2}{1+x^2} \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{2x}{2x} = 1.$$

(5)
$$\lim_{x \to \pi/2} \frac{\sec x}{1 + \tan x}$$

(6)
$$\lim_{x \to \infty} \frac{\ln x}{2\sqrt{x}}$$

Wrong use of L'Hopital's rule

$$\lim_{x \to \infty} \frac{\pi/2 - \tan^{-1} x}{1/x} \left(\frac{0}{0}\right) = \lim_{x \to \infty} \frac{-1/(1+x^2)}{-1/x^2}$$
$$= \lim_{x \to \infty} \frac{x^2}{1+x^2} \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{2x}{2x} = 1.$$
In this case we can find limit as follows:

$$\lim_{x \to \infty} \frac{\sqrt{9x+1}}{\sqrt{4x+1}} = \sqrt{\lim_{x \to \infty} \frac{9x+1}{4x+1}} = \sqrt{\frac{9}{4}} = \frac{3}{2}.$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x + x^2} = \lim_{x \to 0} \frac{\sin x}{1 + 2x} = 0 \neq \lim_{x \to 0} \frac{\cos x}{2}.$$

As the last equation shows, we cannot use L'Hopital's rule when the quotient has a limit.

Intermediate form 0^{∞} , ∞^0 , $\infty - \infty$

Example 7.5.8. Use continuity

If $\lim \ln f(x) = L$ then $f(x) = \lim e^{\ln f(x)} = e^{L}$.

(1) $\lim_{x \to 0^+} (1+x)^{1/x}$

(2)
$$\lim_{x \to \infty} x^{1/x}$$

(3)
$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$

7.6 Inverses trigonometric functions

Figure 7.9: $y = \sin x$

Figure 7.10: $y = \sin^{-1} x$

Figure 7.11: $y = \cos x$

Arcsine and Arccosine functions

Since the trig functions are not one-to-one in general, the inverse functions do not exist. However, if we restrict the domain properly so that the functions are one-to-one, we can **define** the inverses.

First consider the function $y = \sin x$. The function $\sin x : [-\pi/2, \pi/2] \rightarrow$ [-1,1] is one-to-one on $[-\pi/2, \pi/2]$. We choose this interval to define its inverse function. Define

$$y = \sin^{-1} x \colon [-1, 1] \longrightarrow [-\pi/2, \pi/2].$$

whenever $x = \sin y$ for $y \in [-\pi/2, \pi/2]$. Its graph is given in Figure 7.10. The inverse sine function $\sin^{-1} x$ is sometimes written as $\arcsin x$.

In order to define inverse cosine function, we restrict the domain of $y = \cos x$ to $[0, \pi]$. Then we define $\cos^{-1} x$ as

$$y = \cos^{-1} x \colon [-1, 1] \longrightarrow [0, \pi].$$

whenever $\cos y = x$ for any $x \in [0, \pi]$. The graph of $\cos^{-1} x$ is as figure 7.12. It is also written as $\arccos x$.

Example 7.6.1. (1) $\sin^{-1}(1/2) = \pi/6$

(2)
$$\sin^{-1}(1) = \pi/2$$

Example 7.6.2. (1) $\cos^{-1}(1/2) = \pi/3$

(2) $\cos^{-1}0 = \pi/2$

Inverse of $\tan x$

The function $\tan x$ is one to one on $(-\pi/2, \pi/2)$, thus we define its inverse function.

$$y = \tan^{-1} x \colon \mathbb{R} \longrightarrow (-\pi/2, \pi/2)$$

iff $\tan y = x$. See Figure 7.15. It is als written as $\arctan x$.

Example 7.6.3. (1) $\tan^{-1}(1) = \pi/4$

(2) $\tan^{-1}(0) = 0.$

Figure 7.14: $y = \tan x$

Inverses of $\sec x$, $\cot x$, $\csc x$

Let us look at the inverse of $\sec x$ first:

Inverses of $\cot x$, $\csc x$ are similarly defined.

Figure 7.16: $y = \sec x$ and $y = \sec^{-1} x$

$$\sec^{-1} x : \mathbb{R} - (-1, 1) \to [0, \pi] - \{\pi/2\}$$
$$\cot^{-1} x : \mathbb{R} \to (0, \pi).$$
$$\csc^{-1} x : \mathbb{R} - (-1, 1) \to [-\pi/2, \pi/2] - \{0\}$$

Identities involving arcsine and arccosine

Example 7.6.4.

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}, \quad \cos^{-1} x + \cos^{-1}(-x) = \pi.$$

Proposition 7.6.5. The following relations hold.

$\cos^{-1}x$	=	$(\pi/2) - \sin^{-1} x$
$\cot^{-1} x$	=	$(\pi/2) - \tan^{-1} x$
$\csc^{-1} x$	=	$(\pi/2) - \sec^{-1} x$
$\cot^{-1} x$	=	$\tan^{-1}(1/x)$
$\sec^{-1} x$	=	$\cos^{-1}(1/x)$
$\csc^{-1} x$	=	$\sin^{-1}(1/x)$

Figure 7.17: $y = \cot x$ and $y = \cot^{-1} x$

Example 7.6.6. (1) Find $\sin(\cos^{-1}(3/5))$

(2) Simplify $\tan(\sin^{-1} a)$

sol. (1) Let $\theta = \cos^{-1}(3/5)$. Then $\cos \theta = 3/5$ and $0 \le \theta \le \pi$. Hence

$$\sin \theta = \sqrt{1 - \frac{9}{25}} = \frac{4}{5}.$$

(2) Let $\theta = \sin^{-1} a$. Then $\sin \theta = a$ and $-\pi/2 \le \theta \le \pi/2$.

$$\cos\theta = \sqrt{1 - a^2}$$

Hence

$$\tan \theta = \sin \theta / \cos \theta = a / \sqrt{1 - a^2}. \tag{7.17}$$

Derivative of inverse functions

Example 7.6.7. Find the derivative of $\sin^{-1} x$ and $\sin^{-1} u$, where u = u(x). Method 1. Use Theorem 7.1.7. Let $f(x) = \sin x$. Its inverse function is

Figure 7.18: $y = \csc x$ and $y = \csc^{-1} x$

Figure 7.19: relation between $\sin^{-1} x$ and $\cos^{-1} x$

 $y = f^{-1}(x) = \sin^{-1} x$. Hence we see

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{f'(y)}$$
$$= \frac{1}{\cos y}$$
$$= \frac{1}{\sqrt{1 - \sin^2 y}}$$
$$= \frac{1}{\sqrt{1 - x^2}}.$$

Thus $\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$ and by Chain rule, $\frac{d}{dx}\sin^{-1}u(x) = \frac{1}{\sqrt{1-u^2}}\frac{du}{dx}$. Method 2. Note that

$$y = \sin^{-1} x \Leftrightarrow \sin y = x.$$

Take derivative of this function w.r.t x (assuming y is a function of x). Thus

$$\sin y = x$$

$$\left(\frac{d}{dy}\sin y\right)\frac{dy}{dx} = \frac{d}{dx}(x)$$

$$\cos y\frac{dy}{dx} = 1.$$

Hence

$$\frac{dy}{dx} = \frac{1}{\cos y}$$
$$= \frac{1}{\sqrt{1 - \sin^2 y}}$$
$$= \frac{1}{\sqrt{1 - x^2}}.$$

Example 7.6.8. Find the derivative of $\tan^{-1} x$.

From $y = \tan^{-1} x$, we see by Theorem 7.1.7

$$(f^{-1})'(x) = \frac{1}{f'(y)}$$

= $\frac{1}{1 + \tan^2 y}$
= $\frac{1}{1 + x^2}$.

Thus $(f^{-1})'(x) = \frac{1}{1+x^2}$.

Example 7.6.9. Find the derivative of $y = \sec^{-1} x$, $|x| \ge 1$.

sol. Let $y = \sec^{-1} x$. Then $x = \sec y$. (Refer to 7.16). Taking derivative w.r.t x, we get $1 = \sec y \tan y (dy/dx)$. Thus

$$\frac{dy}{dx} = \frac{1}{\sec y \tan y}.$$

We need to change it to expression in x. From, trig. identity we have

$$x^{2} = \sec^{2} y = \tan^{2} y + 1$$
, hence $\tan y = \pm \sqrt{x^{2} - 1}$.

For x > 1, we choose positive sign, $\tan y = \sqrt{x^2 - 1}$. Hence, we have

$$\frac{dy}{dx} = \frac{1}{x\sqrt{x^2 - 1}}, \quad x > 1.$$

For x < -1, we choose negative sign $\tan y = -\sqrt{x^2 - 1}$ to get

$$\frac{dy}{dx} = \frac{1}{-x\sqrt{x^2 - 1}}, \quad x < -1.$$

Hence

$$\frac{d}{dx}\sec^{-1}x = \frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| > 1.$$

Proposition 7.6.10.	The derivative	s of invers	e trig.	functions	:
---------------------	----------------	-------------	---------	-----------	---

$$(1) \ \frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}$$

$$(2) \ \frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1 - x^2}}$$

$$(3) \ \frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2}$$

$$(4) \ \frac{d}{dx} \csc^{-1} x = -\frac{1}{|x|\sqrt{x^2 - 1}}, \ |x| > 1$$

$$(5) \ \frac{d}{dx} \sec^{-1} x = \frac{1}{|x|\sqrt{x^2 - 1}}, \ |x| > 1$$

$$(6) \ \frac{d}{dx} \cot^{-1} x = -\frac{1}{1 + x^2}.$$

Integrals related to inverse trigonometric functions

Proposition 7.6.11. The following integral formulas hold:

(1)
$$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x + C$$

(2) $\int \frac{dx}{1+x^2} = \tan^{-1}x + C$
(3) $\int \frac{dx}{x\sqrt{x^2-1}} = \sec^{-1}|x| + C$

Example 7.6.12. $\int \frac{du}{a^2 + u^2}$.

7.6. INVERSES TRIGONOMETRIC FUNCTIONS

sol. Use substitution $u = a \tan \theta$, $du = a \sec^2 \theta \, d\theta$ to get

$$\int \frac{du}{a^2 + u^2} = \int \frac{a \sec^2 \theta \, d\theta}{a^2 \sec^2 \theta} = \int \frac{d\theta}{a}$$
$$= \frac{\theta}{a} + C$$
$$= \frac{1}{a} \tan^{-1} \frac{u}{a} + C.$$

Example 7.6.13. Find $\int \sqrt{a^2 - u^2} \, du$, (a > 0).

sol. Use $u = a \sin \theta$, $du = a \cos \theta \, d\theta$ to get

$$\int \sqrt{a^2 - u^2} \, du = \int a \cos \theta \cdot a \cos \theta \, d\theta$$
$$= \frac{a^2}{2} \int (1 + \cos 2\theta) \, d\theta$$
$$= \frac{a^2}{2} \left(\theta + \frac{\sin 2\theta}{2}\right) + C = \frac{a^2}{2} (\theta + \sin \theta \cos \theta) + C$$
$$= \frac{a^2}{2} \left(\sin^{-1} \frac{u}{a} + \frac{u}{a} \sqrt{1 - \frac{u^2}{a^2}}\right) + C$$
$$= \frac{a^2}{2} \sin^{-1} \frac{u}{a} + \frac{1}{2} u \sqrt{a^2 - u^2} + C.$$

Example 7.6.14. Find
$$\int \frac{du}{\sqrt{u^2 - a^2}}$$
, $(|u| > a > 0)$.

sol. Let $u = a \sec \theta$

$$u^{2} - a^{2} = a^{2}(\sec^{2}\theta - 1)$$
$$= a^{2}\tan^{2}\theta,$$
$$du = a\sec\theta\tan\theta\,d\theta.$$

Then

$$\int \frac{du}{\sqrt{u^2 - a^2}} = \int \frac{a \sec \theta \tan \theta \, d\theta}{a | \tan \theta |}$$
$$= \begin{cases} \int \sec \theta \, d\theta \quad (0 < \theta < \pi/2) \\ -\int \sec \theta \, d\theta \quad (\pi/2 < \theta < \pi) \end{cases}$$
$$= \begin{cases} \ln | \sec \theta + \tan \theta | + C \quad (0 < \theta < \pi/2) \\ -\ln | \sec \theta + \tan \theta | + C \quad (\pi/2 < \theta < \pi) \end{cases}$$
$$= \begin{cases} \ln \left| \frac{u}{a} + \frac{\sqrt{u^2 - a^2}}{a} \right| + C \quad (u > a) \end{cases}$$
$$= \begin{cases} \ln \left| \frac{u}{a} - \frac{\sqrt{u^2 - a^2}}{a} \right| + C \quad (u < -a). \end{cases}$$

Last integrals can be simplified as follows:

$$\ln\left|\frac{u}{a} + \frac{\sqrt{u^2 - a^2}}{a}\right| = \ln\left|u + \sqrt{u^2 - a^2}\right| - \ln a.$$

$$-\ln\left|\frac{u}{a} - \frac{\sqrt{u^2 - a^2}}{a}\right| = \ln\left|\frac{a}{u - \sqrt{u^2 - a^2}}\right|$$
$$= \ln\left|\frac{a(u + \sqrt{u^2 - a^2})}{(u - \sqrt{u^2 - a^2})(u + \sqrt{u^2 - a^2})}\right|$$
$$= \ln\left|\frac{a(u + \sqrt{u^2 - a^2})}{a^2}\right| = \ln\left|\frac{u + \sqrt{u^2 - a^2}}{a}\right|$$
$$= \ln\left|u + \sqrt{u^2 - a^2}\right| - \ln a.$$

Hence

$$\int \frac{du}{\sqrt{u^2 - a^2}} = \ln \left| u + \sqrt{u^2 - a^2} \right| + C'.$$

7.7 Hyperbolic function

Any function f(x) can be written as even part and odd part:

$$f(x) = \underbrace{\frac{f(x) + f(-x)}{2}}_{\text{even part}} + \underbrace{\frac{f(x) - f(-x)}{2}}_{\text{odd part}}.$$

In particular, e^x can be written as

$$e^{x} = \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2}.$$
(7.18)

Each of the functions on the right hand side is useful and thus has a name:

Definition 7.7.1 (hyperbolic function).¹

$$\cosh x = \frac{e^x + e^{-x}}{2}, \text{ hyperbolic cosine}$$

$$\sinh x = \frac{e^x - e^{-x}}{2}, \text{ hyperbolic sine}$$

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \text{ hyperbolic tangent}$$

$$\coth x = \frac{1}{\tanh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}, \text{ hyperbolic cotangent}$$

$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}, \text{ hyperbolic secant}$$

$$\operatorname{csch} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}. \text{ hyperbolic cosecant}.$$

Some identities of hyperbolic functions:

Proposition 7.7.2.

- (1) $\sinh 2x = 2 \sinh x \cosh x$
- (2) $\cosh 2x = \cosh^2 x + \sinh^2 x$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

¹hyperbolic functions have many things in common with trig. functions. We can define trig. functions $\sin x$ and $\cos x$ using complex numbers. We define $e^{i\theta} = \cos \theta + i \sin \theta$. Then $e^{-i\theta} = \cos \theta - i \sin \theta$ and hence

Figure 7.20: hyperbolic functions

- (3) $\sinh^2 x = \frac{\cosh 2x 1}{2}$ (4) $\cosh^2 x = \frac{\cosh 2x + 1}{2}$ (5) $\cosh^2 x - \sinh^2 x = 1$ (6) $\tanh^2 x = 1 - \operatorname{sech}^2 x$
- (7) $\operatorname{coth}^2 x = 1 + \operatorname{csch}^2 x$

Derivatives and integrals of hyperbolic functions

Proposition 7.7.3.

(1)
$$\frac{d}{dx}(\sinh u) = \cosh u \frac{du}{dx}$$

(2) $\frac{d}{dx}(\cosh u) = \sinh u \frac{du}{dx}$
(3) $\frac{d}{dx}(\tanh u) = \operatorname{sech}^2 u \frac{du}{dx}$

7.7. HYPERBOLIC FUNCTION

(4)
$$\frac{d}{dx}(\coth u) = -\operatorname{csch}^2 u \frac{du}{dx}$$

(5) $\frac{d}{dx}(\operatorname{sech} u) = -\operatorname{sech} u \tanh u \frac{du}{dx}$
(6) $\frac{d}{dx}(\operatorname{csch} u) = -\operatorname{csch} u \coth u \frac{du}{dx}$

Proposition 7.7.4.

(1)
$$\int \sinh u \, du = \cosh u + C$$

(2)
$$\int \cosh u \, du = \sinh u + C$$

(3)
$$\int \operatorname{sech}^2 u \, du = \tanh u + C$$

(4)
$$\int \operatorname{csch}^2 u \, du = -\coth u + C$$

(5)
$$\int \operatorname{sech} u \tanh u \, du = -\operatorname{sech} u + C$$

(6)
$$\int \operatorname{csch} u \coth u \, du = -\operatorname{csch} u + C$$

Example 7.7.5. (1) The indefinite integral of $\sinh^2 x$ can be computed just as that of $\sin^2 x$.

$$\int_0^1 \sinh^2 x \, dx = \int_0^1 \frac{\cosh 2x - 1}{2} \, dx$$
$$= \frac{1}{2} \left[\frac{\sinh 2x}{2} - x \right]_0^1$$
$$= \frac{\sinh 2}{4} - \frac{1}{2}.$$

(2) Using the definition of $\sinh x$

$$\int_0^{\ln 2} 4e^x \sinh x \, dx = \int_0^{\ln 2} 4e^x \frac{e^x - e^{-x}}{2} \, dx = \int_0^{\ln 2} (2e^{2x} - 2) \, dx$$
$$= \left[e^{2x} - 2x\right]_0^{\ln 2}$$
$$= 3 - 2\ln 2.$$

Inverse hyperbolic functions

The function $y = \sinh x$ is 1-1 and defined on $(-\infty, \infty)$ having values in $(-\infty, \infty)$. So (the inverse hyperbolic sine) $y = \sinh^{-1} x$ is defined on $(-\infty, \infty)$.

The function $y = \cosh x$ restricted to $[0, \infty)$ is 1-1 and its image is $[1, \infty)$. Hence (the inverse hyperbolic cosine) $y = \cosh^{-1}$ is defined on $[1, \infty)$ having values in $[0, \infty)$.

The function $y = \operatorname{sech} x$ restricted to $[0, \infty)$ is one-to-one, having values in (0, 1]. Hence its inverse function $y = \operatorname{sech}^{-1} x$ is defined on (0, 1]. Meanwhile $y = \tanh x, \ y = \coth x, \ y = \operatorname{csch} x$ are one-to-one on $(-\infty, \infty)$. Hence their inverses $y = \tanh^{-1} x, \ y = \operatorname{coth}^{-1} x, \ y = \operatorname{csch}^{-1} x$ are defined accordingly. The graphs are as in figure 7.21.

Figure 7.21: Inverse hyperbolic functions

Proposition 7.7.6. Inverse hyperbolic functions can be represented by log functions.

(1) $\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}), \quad -\infty < x < \infty$ (2) $\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}), \quad x \ge 1$ (3) $\tanh^{-1} x = \frac{1}{2} \ln \frac{1 + x}{1 - x}, \quad |x| < 1$ (4) $\operatorname{sech}^{-1} x = \ln\left(\frac{1 + \sqrt{1 - x^2}}{x}\right), \quad 0 < x \le 1$

(5)
$$\operatorname{csch}^{-1} x = \ln\left(\frac{1}{x} + \frac{\sqrt{1+x^2}}{|x|}\right), \quad x \neq 0$$

(6) $\operatorname{coth}^{-1} x = \frac{1}{2}\ln\frac{x+1}{x-1}, \quad |x| > 1.$

Proof. (1) Let $y = \sinh^{-1} x$.

$$x = \sinh y = \frac{e^y - e^{-y}}{2},$$

$$e^y - e^{-y} = 2x,$$

$$e^{2y} - 2xe^y - 1 = 0,$$

$$e^y = x + \sqrt{x^2 + 1}.$$
 (Since $x - \sqrt{x^2 + 1}$ is negative, we drop it.)

Hence $y = \ln(x + \sqrt{x^2 + 1}).$

(4) The formula for sech⁻¹ $x \ge 0$.

$$y = \operatorname{sech}^{-1} x \quad \Rightarrow \quad \operatorname{sech} y = x \Rightarrow x = \frac{2}{e^y + e^{-y}},$$
$$e^y + e^{-y} = \frac{2}{x},$$
$$e^{2y} - \frac{2}{x}e^y + 1 = 0,$$
$$e^y = \frac{1}{x} \pm \sqrt{\frac{1}{x^2} - 1} = \frac{1 \pm \sqrt{1 - x^2}}{x}.$$

We choose positive sign and set $y := \ln\left(\frac{1+\sqrt{1-x^2}}{x}\right), \quad 0 < x \le 1.$

Useful identities of inverse hyperbolic functions

Proposition 7.7.7.

- (1) $\operatorname{sech}^{-1} x = \cosh^{-1} \frac{1}{x}$ (2) $\operatorname{csch}^{-1} x = \sinh^{-1} \frac{1}{x}$
- (3) $\operatorname{coth}^{-1} x = \tanh^{-1} \frac{1}{x}$

This holds from definition. For example, if $0 < x \leq 1$, then

$$\operatorname{sech}\left(\cosh^{-1}\frac{1}{x}\right) = \frac{1}{\cosh\left(\cosh^{-1}\frac{1}{x}\right)} = \frac{1}{\left(\frac{1}{x}\right)} = x.$$

Derivatives of inverse hyperbolic functions

Proposition 7.7.8.

$$(1) \ \frac{d(\sinh^{-1}u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx}$$

$$(2) \ \frac{d(\cosh^{-1}u)}{dx} = \frac{1}{\sqrt{u^2-1}} \frac{du}{dx}, \quad u > 1$$

$$(3) \ \frac{d(\tanh^{-1}u)}{dx} = \frac{1}{1-u^2} \frac{du}{dx}, \quad |u| < 1$$

$$(4) \ \frac{d(\coth^{-1}u)}{dx} = \frac{1}{1-u^2} \frac{du}{dx}, \quad |u| > 1$$

$$(5) \ \frac{d(\operatorname{sech}^{-1}u)}{dx} = \frac{-du/dx}{u\sqrt{1-u^2}}, \quad 0 < u < 1$$

$$(6) \ \frac{d(\operatorname{csch}^{-1}u)}{dx} = \frac{-du/dx}{|u|\sqrt{1+u^2}}, \quad u \neq 0$$

Proof. (5) We verify the formula for sech⁻¹ x.

$$y = \operatorname{sech}^{-1} x \quad \Rightarrow \quad \operatorname{sech} y = x,$$

- sech $y \tanh y \frac{dy}{dx} = 1,$
$$\frac{dy}{dx} = -\frac{1}{\operatorname{sech} y \tanh y},$$

$$= -\frac{1}{x\sqrt{1-x^2}}, \quad 0 < x \le 1.$$

Integrals of inverse hyperbolic functions

Proposition 7.7.9.

$$(1) \int \frac{du}{\sqrt{1+u^2}} = \sinh^{-1} u + C$$

$$(2) \int \frac{du}{\sqrt{u^2 - 1}} = \cosh^{-1} u + C, \quad u > 1$$

$$(3) \int \frac{du}{1 - u^2} = \begin{cases} \tanh^{-1} u + C, & \text{if } |u| < 1, \\ \coth^{-1} u + C, & \text{if } |u| > 1 \end{cases}$$

$$(4) \int \frac{du}{u\sqrt{1 - u^2}} = -\operatorname{sech}^{-1} |u| + C = -\cosh^{-1} \left(\frac{1}{|u|}\right) + C$$

$$(5) \int \frac{du}{u\sqrt{1 + u^2}} = -\operatorname{csch}^{-1} |u| + C = -\sinh^{-1} \left(\frac{1}{|u|}\right) + C$$

7.8 Relative Rate of Growth

Definition 7.8.1. Suppose f(x), g(x) are positive for sufficiently large x.

(1) f grows faster than g as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty.$$

(2) f grows at the same rate as g as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L, \text{ for some postive finite number } L.$$

Example 7.8.2. (1) e^x grows faster than x^3 as $x \to \infty$

- (2) 3^x grows faster than 2^x as $x \to \infty$
- (3) x grows faster than $\ln x$ as $x \to \infty$.

Order and Oh-notation

Definition 7.8.3. A function f(x) is of smaller order than g(x) as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

In this case we write f = o(g).

Definition 7.8.4. Suppose f(x), g(x) are positive for sufficiently large x. Then a function f(x) is a most the order of g(x) as $x \to \infty$ if there is a positive number (not necessarily integer) M for which

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} \le M$$

for sufficiently large x. In this case we write f = O(g).

Example 7.8.5. (1) $\ln x = o(x)$ as $x \to \infty$

- (2) $x^2 = o(x^3)$ as $x \to \infty$
- $(3) \ x + \sin x = O(x)$