
Chapter 7

Transcendental Functions

7.1 Inverse functions and their derivatives

One to one function

A function is one -to- one on a domain if f(x1) 6= f(x2) whenever x1 6= x2 in

D.

(1) f(x) =
√
x for x > 0

(2) y = x2 is not one-to-one on [−1, 1] but is one-to-one on [0,m].

A test for one-one-one function: A function y = f(x) is one-one-one if its

graph intersects each horizontal line at most once.

Definition 7.1.1. Suppose f is one-one-one function on D with range R.

Then the inverse function f−1 is defined by

f−1(a) = b if f(b) = a

The domain of f−1 is R and range is D.

Example 7.1.2. y = x2

sol. Since x =
√
y. We interchange x, y obtain, y =

√
x.

f−1 ◦ f(x) = x, f ◦ f−1(y) = y

75
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Definition 7.1.3. y = loga x is the inverse of exponential function y = ax

log10 x is written as log x, loge x is written as lnx. lnx is called natural

logarithm and

y = lnx iff ey = x

In particular, if x = e we get ln e = 1.

Inverse trig functions
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Figure 7.4: y = cos−1 x

Example 7.1.4. Half life of Polonium 210. The time for radioactive substance

required to decay by half is independent of the initial quantity. y = y0e
−kt.

So t = ln 2/k. For Polonium 210, k = 5 · 10−3.

In chapter 2 we introduced natural logarithmic function as the inverse

of the exponential function ex, where the number e was chosen to satisfy
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certain slope condition. In this chapter, we introduce an alternative theory

for exponential and log. function.

Definition 7.1.5. A function f is one-to-one on a domain D if f(x1) 6= f(x2)

whenever x1 6= x2.

Definition 7.1.6. Suppose a function f is one-to-one on a domain D with

range R. The inverse function f−1 exists and is defined by

f−1(b) = a if f(a) = b.

The domain of f−1 is R and range is D.

We have

(f−1 ◦ f)(x) = x, x ∈ D, (f ◦ f−1)(y) = y, y ∈ R.

Derivatives of inverse function

Theorem 7.1.7. Suppose f is differentiable in I. If f ′(x) is never zero, then

f−1 exists, differentiable. Furthermore for a ∈ I, f(a) = b,

(f−1)′(b) =
1

f ′(f−1(b))
=

1

f ′(a)
. (7.1)

Set y = f(x). Then the inverse function is x = f−1(y), and its derivative is

dx

dy

∣
∣
∣
∣
y=f(a)

=
1

dy/dx|x=a

, a ∈ I

Proof. Differentiate x = (f−1 ◦ f)(x) = f−1(f(x)) = f−1(y) w.r.t x using the

Chain rule, we have

1 = (f−1)′(f(x))f ′(x).

Setting x = a, we see 1 = (f−1)′(f(a))f ′(a). Thus

(f−1)′(b) = 1/f ′(a).

Usually, we use the notation y = f−1(x). The graph of y = f(x) and that

of y = f−1(x) are symmetric w.r.t the line y = x.
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f(x)
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Figure 7.5: Slope of inverse function
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Figure 7.6: Graph of inverse functions, Graph of lnx and ex

Example 7.1.8. (1) f(x) = x7 + 8x3 + 4x− 2. Find (f−1)′(−2).

(2) f(x) = sin−1 x. Find f ′.

sol. (1) Since f ′ = 7x6 + 24x2 + 4 ≥ 4 inverse f−1 exists. Since f(0) = −2

we have

(f−1)′(−2) = (f−1)′(f(0)) =
1

f ′(0)
=

1

4
.

(2) y = sin−1 x, x = sin y. Hence

d

dx
sin−1 x =

dy

dx
=

1

dx/dy
=

1

(d/dy) sin y

=
1

cos y
=

1
√

1− sin2 y
=

1√
1− x2

.
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e

ln x =
∫ x

1

1

t
dt

y = ln x

y = 1

x

y = ex

Figure 7.7: Graph of lnx and ex

7.2 Natural logarithms (defined as integral)

Definition 7.2.1. For x > 0, the (natural) logarithmic function is defined by

lnx =

∫ x

1

1

t
dt.

Thus by fundamental theorem,

d

dx
lnx =

1

x
. (7.2)

If u(x) is any positive differentiable function,

d

dx
lnu(x) =

1

u

du

dx
. (7.3)

Definition 7.2.2. The number e is that number satisfying

ln(e) =

∫ e

1

1

t
dt = 1.

The derivative of the natural logarithmic function

The derivative of natural logarithmic function is by its definition and funda-

mental theorem of calculus, for x > 0

d

dx

∫ x

1

1

t
dt =

1

x
.
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One can show similar formula holds for x < 0. In fact, we have

d

dx
ln |x| = 1

x
, x 6= 0. (7.4)

Properties of logarithms

For b > 0, x > 0

(1) ln bx = ln b+ lnx

(2) ln b
x = ln b− lnx

(3) ln 1
x = − lnx

(4) lnxr = r lnx (For rational number r).

Consider
d

dx
ln(bx) =

1

x
=

d

dx
lnx

So by above result,

ln(bx) =
1

x
= lnx+ C

Place x = 1 to see C = ln b.

Proof of Log rule ln xr = r ln x

Consider (assuming r is rational)

d

dx
lnxr =

1

xr
d

dx
(xr) =

1

xr
rxr−1 =

r

x
=

d

dx
(r lnx)

Thus lnxr and r lnx have same derivative and we have

lnxr = r lnx+ C,

for some constant C. To find the constant C, we let x = 1. Then C = 0.

The integral
∫
(1/u)du

To evaluate the following integral

∫
f ′(x)

f(x)
dx (7.5)
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we use the substitution u = f(x), du = f ′(x)dx to see

∫
f ′(x)

f(x)
dx =

∫
1

u
du = ln |u|+C = ln |f(x)|+ C. (7.6)

Example 7.2.3.

∫ π/2

π/6

5 cos θ

2 + sin θ
dθ =

∫ 1

1/2

5

2 + u
du

= 5 ln(2 + u)|11/2
= 5(ln 3− ln

5

2
) = 5 ln

6

5
.

Integral of tan x, cotx, sec x and csc x

∫

tanx dx =

∫
sinx

cos x
dx

= −
∫

du

u

= − ln |u|+ C

= − ln | cos x|+ C

= ln
1

| cos x| + C

= ln | sec x|+ C.

For sec x we need special trick:

∫

secx dx =

∫

secx
(sec x+ tanx)

(sec x+ tanx)
dx

=

∫
(sec2 x+ sec x tan x)

sec x+ tanx
dx

=

∫
du

u

= ln |u|+ C

= ln | sec x+ tanx|+ C.
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For csc x we do similarly. Thus we have

∫
secx dx = ln | sec x+ tanx|+ C

∫
cscx dx = − ln | csc x+ cot x|+ C.

Logarithmic Differentiation

Example 7.2.4. Find dy/dx if y = (x2+1)1/3(x−3)1/2

x+5 .

sol. We take the logarithm and then take derivative to get

ln y = ln

(

(x2 + 1)1/3(x− 3)1/2

x+ 5

)

=
1

3
ln(x2 + 1) +

1

2
ln(x− 3)− ln(x+ 5)

y′

y
=

1

3

2x

x2 + 1
+

1

2

1

x− 3
− 1

x− 5

y′ =
(x2 + 1)1/3(x− 3)1/2

x+ 5

(
1

3

2x

x2 + 1
+

1

2

1

x− 3
− 1

x− 5

)

7.3 Exponential function ex

Definition 7.3.1. Define the (natural) exponential function ex = exp(x) :=

ln−1 x as the inverse function of lnx. Thus

y = exp(x) ⇔ x = ln y.

Thus
exp(lnx) = x, (x > 0)

ln(exp(x)) = x.
(7.7)

It turns out that when x is a rational number m/n, exp(m/n) = em/n = n
√
em.
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The derivative of ex

f(x) = lnx. The derivative of its inverse function y = f−1(x) = ex is

(f−1)′(x) =
1

f ′(f−1(x))

=
1

1/y
= y

= ex.

Alterative way: Let y = ex. Implicit differentiation w.r.t. x gives

ln y = x

1

y

dy

dx
= 1

dy

dx
= y = ex.

Antiderivative of ex

∫

exdx = ex + C. (7.8)

Theorem 7.3.2 (Laws of exponents). (1) exey = ex+y.

(2) e−x = 1
ex .

(3) ex

ey = ex−y.

(4) (ex)r = erx.

Example 7.3.3. Sketch the graph of x1/x. To do this, we first investigate the

behavior of the function as x → 0+ and x → ∞. To study the limit, we take

the logarithm:

lim
x→∞

lnx1/x = lim
x→∞

lnx

x
= 0.

Hence

lim
x→∞

x1/x = exp( lim
x→∞

lnx

x
) = e0 = 1.

Meanwhile

lim
x→0+

lnx1/x = lim
x→0+

lnx

x
= −∞.
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Hence

lim
x→0+

x1/x = exp( lim
x→0+

lnx

x
) = e−∞ = 0.

To see the local extrema, take the derivative and find the critical point. f ′(x) =

(1 − lnx)/x2 = 0 for x = e. By checking the sign of f ′(x) near x = e, we

conclude x = e is a point of local maximum.

1

2

1 2 3 4 5 6 7 8

b

local max

Figure 7.8: Graph of y = x1/x

Derivatives of Power function

We prove the following theorem which was stated earlier.

Theorem 7.3.4. For any real r, it holds that

d

dx
ur = ur−1du

dx
.

Proof. Since ur = er lnu we have

d

dx
ur = rur

d lnu

dx
= urr

1

u

du

dx
= rur−1du

dx
.

Example 7.3.5. Differentiate f(x) = xx, x > 0
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sol. Write f(x) = xx = ex lnx. So

f ′(x) =
d

dx
(ex lnx)

= (ex lnx)
d

dx
(x lnx)

= ex lnx(lnx+ x · 1
x
)

= xx(lnx+ 1).

The number e was defined a number satisfying ln e = 1. Hence

e = ln−1(1) = exp(1) (7.9)

it is known that e = 2.718281828 · · · .

Example 7.3.6. Find the point where the line through of origin y = mx is

tangent to the graph of y = lnx.

sol. We must have m = 1
x and mx = lnx. Hence we get m = 1

e and x = e.

The number e as a limit

Theorem 7.3.7. The number e satisfies

e = lim
x→0

(1 + x)1/x.

Proof. If f(x) = lnx. Then f ′(1) = 1
x |x=1 = 1. By definition of derivative

1 = f ′(1) = lim
x→0+

ln(1 + x)− ln 1

x
= lim

x→0+
ln[(1 + x)

1

x ]

= ln[ lim
x→0+

(1 + x)
1

x ].

Now exponentiate.
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The general exponential function ax

Since a = eln a for any positive number a, we can define ax by

ax = elnax

= ex ln a

= e(ln a)x.

Definition 7.3.8. If a is a positive number and x is any number, we define

ax = ex ln a . (7.10)

Since ln ex = x for all real x, we have

lnxn = ln(en lnx) = n lnx, x > 0.

One can also use the definition of lnx =
∫ x
1 dt to prove it.

Example 7.3.9. [Power rule] The derivative of xn for any number n:

d

dx
xn =

d

dx
en lnx (x > 0)

= en lnx · d

dx
(n lnx)

= xn · n
x

= nxn−1.

Derivative of ax

By definition, ax = ex lna. Thus

d

dx
ax =

d

dx
ex ln a = ln a(ex ln a) = ax ln a

and
d

dx
au = au ln a

du

dx
(7.11)
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General logarithmic function loga x

y = loga x is defined as the inverse function of y = ax(a > 0, a 6= 1). Thus

loga x = y ⇔ ay = x

loga(a
x) = x, for all x, and a(loga x) = x, (x > 0)

log10 x is written as log x and called common logarithmic function

Properties

(1) Product rule: loga xy = loga x+ loga y.

(2) Quotient rule: loga
x
y = loga x− loga y.

(3) Product rule: loga
1
y = − loga y.

(4) Power rule: loga x
y = y loga x.

Inverse properties

(1) Base a: aloga x = x, loga(a
x) = x(a > 0, a 6= 1, x > 0).

(2) Base e: elnx = x, ln(ex) = x(x > 0).

Derivative of loga x

We have

loga x =
lnx

ln a
. (7.12)

So
d
dx loga x = 1

x ln a
d
dx loga u = 1

u ln a
du
dx

(7.13)

Logarithmic Differentiation

Find dy/dx if y = (x2+1)1/3(x−3)1/2

x+5 .

Example 7.3.10. (1)

∫ 2

0

2x

x2 − 5
dx = ln |u|−1

−5.

(2)

∫ π/2

−π/2

4 cos θ

3 + 2 sin θ
dθ =

∫ 5

1

2

u
du.
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7.4 Exponential change and separable differentiable

equations

The decay of radioactive material or money earning interests in bank account,

temperature between a cup of hot water and room air it sits, etc follows the

law of exponential change Suppose y(t) denotes some quantity which changes

according to the exponential law: The rate of change of y is proportional to

y.
dy

dt
= ky

with I.C. Then y = Aekt.

Example 7.4.1. Assume a disease is spreading ”Entero virus”, ”A.I” Let y

be the number of people infected by disease. Assume we cure people as much

as possible. Then dy/dt is proportional to y.(The more people, the more

infected, the more cured) Suppose for each year the number is reduced by

20% and 10,000 people infected today, how many years will it take to reduce

to 1, 000?

sol. y = Aekt, A = 10, 000 Since it is reduced by 0.2 each year, we see

0.8 = ek·1 → k = ln 0.8 < 0

So we have y = 10, 000e(ln 0.8)t we want 10, 000e(ln 0.8)t = 1, 000. So e(ln 0.8)t =
1
10 . ln(0.8)t = ln(0.1). t = ln(0.1)

ln(0.8) ≈ 10.32 yrs.

Example 7.4.2 (Half life of a radioactive material). y0e
−kt = 1

2y0. so t =

ln 2/k.

Example 7.4.3 (Carbon 14). It is estimated the half life of Carbon 14 is 5700

yrs. AS wooden artifact was found from an ancient site. This contains carbon

14 about 10% less than the living tree. How old is the site? k = ln 2 Half life

is ln 2/5700. y = y0e
−kt = 0.9y0 So e−kt = 0.9 or t = −5700 ln 0.9

ln 2 = 866 yrs.

Example 7.4.4 (Law of Cooling). IfH is the temperature of an object andHs

the surrounding temperature. Then the rate of change(cooling) is proportional

to the temperature difference. Thus

dH

dt
= −k(H −Hs).
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Solving

H −Hs = (H0 −Hs)e
−kt.

A boiled egg at 98o is put in the sink of 18o to cool down. In 5 min, the egg

was 38o. how much longer will it take to reach 20o?

sol.

H − 18 = (98− 18)e−kt, H = 18 + 80e−kt.

Set H = 38, t = 5. Then e−5k = 1/4 and

k = − ln 1/4

5
= 0.2 ln 4 ≈ 0.28.

H = 18 + 80e−(0.2 ln 4)t.

Solving t ≈ 13 min.

Separable Differential Equations

A general differential equation is given in the form

dy

dx
= f(x, y) (7.14)

with certain initial condition such as y(x0) = y0. Such equation is called

separable if f is expressed as a product of a function of x and a function of

y, i.e,
dy

dx
= g(x)H(y).

We rewrite it in the form

dy

dx
=

g(x)

h(y)

and obtain ∫

h(y) dy =

∫

g(x) dx. (7.15)

Example 7.4.5. Solve

dy

dx
= (1 + y)ex, y > −1. (7.16)
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Separate variables,

dy

1 + y
= exdx

∫
dy

1 + y
=

∫

exdx

ln(1 + y) = ex + C.

7.5 Intermediate form aand L’Hopital’s Rule

L’Hopital’s Rule

When f(a) = g(a) = 0 or f(a) = g(a) = ∞, the limit

lim
x→a

f(x)

g(x)

cannot be found by directly substituting a. In this case we can use L’Hopital’s

Rule.

Theorem 7.5.1 (L’Hopital’s Rule: First form). Suppose f(a) = g(a) = 0 that

f ′(a), g′(a) exist and g′(a) 6= 0 then

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

Proof. lim
x→a

f(x)

g(x)
=

limx→a(f(x)− f(a))/(x − a)

limx→a(g(x) − g(a))/(x − a)
=

f ′(a)

g′(a)
.

Example 7.5.2. (1) lim
x→0

√
1 + x− 1

x

(
0

0

)

=
1/2

√
1 + x

1

∣
∣
∣
∣
x=0

=
1

2
.

(2) lim
x→1

x2 − 1

x− 1

(
0

0

)

=
2x

1

∣
∣
∣
∣
x=1

= 2.

Example 7.5.3. (1) lim
x→(π/2)−

cosx

sinx− 1

(
0

0

)

= lim
x→(π/2)−

− sinx

cos x
= −∞.

(2) lim
x→0

(
1

sinx
− 1

x

)

(∞−∞) = lim
x→∞

x− sinx

x sinx

(
0

0

)

.

= lim
x→0

1− cos x

sinx+ x cos x

(
0

0

)

= lim
x→0

sinx

2 cos x− x sinx
=

0

2
= 0.
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Theorem 7.5.4 (L’Hopital’s Rule:Stronger form ). Suppose that f(a) =

g(a) = 0 and f, g are differentiable on (a, b). (The case f ′(c) = g′(c) = 0

is allowed) and that g′(x) = 6= 0 for x 6= a. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

as long as the rhs limit exists.

The proof is based on the following result.

Theorem 7.5.5 (Cauchy’s Mean value theorem ). Suppose f and g are conti

in [a, b], diff’ble in (a, b). If g′ 6= 0 on (a, b) then g(b) 6= g(a) and there exist

c ∈ (a, b) such that
f(b)− f(a)

g(b)− g(a)
=

f ′(c)

g′(c)

Proof. Suppose g(b) = g(a) then by Mean value theorem

g′(c) =
g(b) − g(a)

b− a
= 0

for some c ∈ (a, b). This contradict to g′ 6= 0. So, g(b) 6= g(a). Next consider

the function F defined by

F (x) = f(x)− f(a)−
(
f(b)− f(a)

g(b) − g(a)

)

(g(x) − g(a)).

We apply Rolle’s theorem to F . Hence there exist c ∈ (a, b) such that F ′(c) =

0. Since

F ′(c) = f ′(c)−
(
f(b)− f(a)

g(b)− g(a)

)

g′(c) = 0

we have
f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
.

Proof. First show

lim
x→c+

f(x)

g(x)
= lim

x→c+

f ′(x)

g′(x)
.

When c < x < b use thm 7.5.5(Cauchy’ MVT) on [c, x]. Then there is

d ∈ (c, x) s.t.
f ′(d)

g′(d)
=

f(x)− f(c)

g(x)− g(c)
=

f(x)

g(x)
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and d → c+ as as x → c+

lim
x→c+

f(x)

g(x)
= lim

d→c+

f ′(d)

g′(d)

= lim
x→c+

f ′(x)

g′(x)
.

The following can be shown the same way.

lim
x→c−

f(x)

g(x)
= lim

x→c−

f ′(x)

g′(x)
.

One sided intermediate form

Example 7.5.6. (1) lim
x→0+

sinx

x2
= lim

x→0+

cos x

2x
= ∞.

(2) lim
x→0−

sinx

x2
= lim

x→0−

cos x

2x
= −∞

Intermediate form ∞/∞, ∞ · 0, ∞−∞

Example 7.5.7.

(1) lim
x→0

x sin
1

x

(2) lim
x→0+

√
x lnx

(3) lim
x→(π/2)−

tan x

1 + tanx

(∞
∞
)

= lim
x→(π/2)−

sec2 x

sec2 x
= 1.

(4) lim
x→∞

π/2− tan−1 x

1/x

(
0

0

)

= lim
x→∞

−1/(1 + x2)

−1/x2

= lim
x→∞

x2

1 + x2

(∞
∞
)

= lim
x→∞

2x

2x
= 1.

(5) lim
x→π/2

sec x

1 + tanx

(6) lim
x→∞

lnx

2
√
x
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Wrong use of L’Hopital’s rule

lim
x→∞

π/2− tan−1 x

1/x

(
0

0

)

= lim
x→∞

−1/(1 + x2)

−1/x2

= lim
x→∞

x2

1 + x2

(∞
∞
)

= lim
x→∞

2x

2x
= 1.

In this case we can find limit as follows:

lim
x→∞

√
9x+ 1√
4x+ 1

=

√

lim
x→∞

9x+ 1

4x+ 1
=

√

9

4
=

3

2
.

lim
x→0

1− cos x

x+ x2
= lim

x→0

sinx

1 + 2x
= 0 6= lim

x→0

cos x

2
.

As the last equation shows, we cannot use L’Hopital’s rule when the quotient

has a limit.

Intermediate form 0∞, ∞0, ∞−∞

Example 7.5.8. Use continuity

If lim ln f(x) = L then f(x) = lim eln f(x) = eL.

(1) lim
x→0+

(1 + x)1/x

(2) lim
x→∞

x1/x

(3) limx→0

(
1

sinx − 1
x

)

7.6 Inverses trigonometric functions

b

b

1

−1

y = sin x

x

y

π
2

−π
2

Figure 7.9: y = sinx

b

b

1−1

y = sin−1 x

x

y

−π
2

π
2

Figure 7.10: y = sin−1 x
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b

b1

−1

y = cos x

x

y

π
2

π

Figure 7.11: y = cos x

b

b

1−1

y = cos−1 x

x

y

π
2

π

Figure 7.12: y = cos−1 x

Arcsine and Arccosine functions

Since the trig functions are not one-to-one in general, the inverse functions do

not exist. However, if we restrict the domain properly so that the functions

are one-to-one, we can define the inverses.

First consider the function y = sinx. The function sinx : [−π/2, π/2] →
[−1, 1] is one-to-one on [−π/2, π/2]. We choose this interval to define its

inverse function. Define

y = sin−1 x : [−1, 1] −→ [−π/2, π/2].

whenever x = sin y for y ∈ [−π/2, π/2]. Its graph is given in Figure 7.10. The

inverse sine function sin−1 x is sometimes written as arcsinx.

In order to define inverse cosine function, we restrict the domain of y =

cos x to [0, π]. Then we define cos−1 x as

y = cos−1 x : [−1, 1] −→ [0, π].

whenever cos y = x for any x ∈ [0, π]. The graph of cos−1 x is as figure 7.12.

It is also written as arccos x.

Example 7.6.1. (1) sin−1(1/2) = π/6

(2) sin−1(1) = π/2

Example 7.6.2. (1) cos−1(1/2) = π/3

(2) cos−1 0 = π/2
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x

θ

1

1

x > 0

θ

x 1

1

x < 0

Figure 7.13: θ = cos−1 x

Inverse of tan x

The function tan x is one to one on (−π/2, π/2), thus we define its inverse

function.

y = tan−1 x : R −→ (−π/2, π/2)

iff tan y = x. See Figure 7.15. It is als written as arctan x.

Example 7.6.3. (1) tan−1(1) = π/4

(2) tan−1(0) = 0.

1
2

3
−
1

−
2

−
3

y = tan x

x

y

x = π/2x = −π/2

Figure 7.14: y = tan x

1 2 3−1−2−3

y = tan−1 x

O
x

y
y = π/2

y = −π/2

Figure 7.15: y = tan−1 x

Inverses of sec x, cot x, csc x

Let us look at the inverse of sec x first:

Inverses of cot x, csc x are similarly defined.



96 CHAPTER 7. TRANSCENDENTAL FUNCTIONS

y = secx

b

b1

2

3

−1

−2

−3

y = cos x

x

y

π
2

π
1 2 3−1−2−3

b

b

O

π

−π

A

B

y = sec−1 x

x

y

Figure 7.16: y = sec x and y = sec−1 x

sec−1 x : R− (−1, 1) → [0, π] − {π/2}

cot−1 x : R → (0, π).

csc−1 x : R− (−1, 1) → [−π/2, π/2] − {0}

Identities involving arcsine and arccosine

Example 7.6.4.

sin−1 x+ cos−1 x =
π

2
, cos−1 x+ cos−1(−x) = π.

Proposition 7.6.5. The following relations hold.

cos−1 x = (π/2) − sin−1 x

cot−1 x = (π/2) − tan−1 x

csc−1 x = (π/2) − sec−1 x

cot−1 x = tan−1(1/x)

sec−1 x = cos−1(1/x)

csc−1 x = sin−1(1/x)



7.6. INVERSES TRIGONOMETRIC FUNCTIONS 97

1
2

3
−
1

−
2

−
3

O

y = cot x

x

y

π

1 2 3−1−2−3 O

y = cot−1 x

x

y

y = π

π
2

Figure 7.17: y = cot x and y = cot−1 x

Example 7.6.6. (1) Find sin(cos−1(3/5))

(2) Simplify tan(sin−1 a)

sol. (1) Let θ = cos−1(3/5). Then cos θ = 3/5 and 0 ≤ θ ≤ π. Hence

sin θ =

√

1− 9

25
=

4

5
.

(2) Let θ = sin−1 a. Then sin θ = a and −π/2 ≤ θ ≤ π/2.

cos θ =
√

1− a2.

Hence

tan θ = sin θ/ cos θ = a/
√

1− a2. (7.17)

Derivative of inverse functions

Example 7.6.7. Find the derivative of sin−1 x and sin−1 u, where u = u(x).

Method 1. Use Theorem 7.1.7. Let f(x) = sinx. Its inverse function is
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1
2

3
−
1

−
2

−
3

y = cscx

x

y

π/2−π/2

1 2 3−1−2−3

b

b

y = csc−1 x

x

y
π
2

−π
2

Figure 7.18: y = csc x and y = csc−1 x

p

cos−1 x

1 x

sin−1 x

Figure 7.19: relation between sin−1 x and cos−1 x

y = f−1(x) = sin−1 x. Hence we see

(f−1)′(x) =
1

f ′(f−1(x))
=

1

f ′(y)

=
1

cos y

=
1

√

1− sin2 y

=
1√

1− x2
.

Thus d
dx sin

−1 x = 1√
1−x2

and by Chain rule, d
dx sin

−1 u(x) = 1√
1−u2

du
dx .

Method 2. Note that

y = sin−1 x ⇔ sin y = x.
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Take derivative of this function w.r.t x (assuming y is a function of x). Thus

sin y = x
(

d

dy
sin y

)
dy

dx
=

d

dx
(x)

cos y
dy

dx
= 1.

Hence

dy

dx
=

1

cos y

=
1

√

1− sin2 y

=
1√

1− x2
.

Example 7.6.8. Find the derivative of tan−1 x.

From y = tan−1 x, we see by Theorem 7.1.7

(f−1)′(x) =
1

f ′(y)

=
1

1 + tan2 y

=
1

1 + x2
.

Thus (f−1)′(x) = 1
1+x2 .

Example 7.6.9. Find the derivative of y = sec−1 x, |x| ≥ 1.

sol. Let y = sec−1 x. Then x = sec y. (Refer to 7.16). Taking derivative

w.r.t x, we get 1 = sec y tan y(dy/dx). Thus

dy

dx
=

1

sec y tan y
.

We need to change it to expression in x. From, trig. identity we have

x2 = sec2 y = tan2 y + 1, hence tan y = ±
√

x2 − 1.
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For x > 1, we choose positive sign, tan y =
√
x2 − 1. Hence, we have

dy

dx
=

1

x
√
x2 − 1

, x > 1.

For x < −1, we choose negative sign tan y = −
√
x2 − 1 to get

dy

dx
=

1

−x
√
x2 − 1

, x < −1.

Hence
d

dx
sec−1 x =

1

|x|
√
x2 − 1

, |x| > 1.

Proposition 7.6.10. The derivatives of inverse trig. functions :

(1)
d

dx
sin−1 x =

1√
1− x2

(2)
d

dx
cos−1 x = − 1√

1− x2

(3)
d

dx
tan−1 x =

1

1 + x2

(4)
d

dx
csc−1 x = − 1

|x|
√
x2 − 1

, |x| > 1

(5)
d

dx
sec−1 x =

1

|x|
√
x2 − 1

, |x| > 1

(6)
d

dx
cot−1 x = − 1

1 + x2
.

Integrals related to inverse trigonometric functions

Proposition 7.6.11. The following integral formulas hold:

(1)
∫

dx√
1−x2

= sin−1 x+ C

(2)
∫

dx
1+x2 = tan−1 x+ C

(3)
∫

dx
x
√
x2−1

= sec−1 |x|+ C

Example 7.6.12.

∫
du

a2 + u2
.
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sol. Use substitution u = a tan θ, du = a sec2 θ dθ to get

∫
du

a2 + u2
=

∫
a sec2 θ dθ

a2 sec2 θ
=

∫
dθ

a

=
θ

a
+ C

=
1

a
tan−1 u

a
+ C.

Example 7.6.13. Find

∫
√

a2 − u2 du, (a > 0).

sol. Use u = a sin θ, du = a cos θ dθ to get

∫
√

a2 − u2 du =

∫

a cos θ · a cos θ dθ

=
a2

2

∫

(1 + cos 2θ) dθ

=
a2

2

(

θ +
sin 2θ

2

)

+ C =
a2

2
(θ + sin θ cos θ) + C

=
a2

2

(

sin−1 u

a
+

u

a

√

1− u2

a2

)

+ C

=
a2

2
sin−1 u

a
+

1

2
u
√

a2 − u2 + C.

Example 7.6.14. Find

∫
du√

u2 − a2
, (|u| > a > 0).

sol. Let u = a sec θ

u2 − a2 = a2(sec2 θ − 1)

= a2 tan2 θ,

du = a sec θ tan θ dθ.
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Then

∫
du√

u2 − a2
=

∫
a sec θ tan θ dθ

a| tan θ|

=







∫

sec θ dθ (0 < θ < π/2)

−
∫

sec θ dθ (π/2 < θ < π)

=

{

ln | sec θ + tan θ|+ C (0 < θ < π/2)

− ln | sec θ + tan θ|+ C (π/2 < θ < π)

=







ln

∣
∣
∣
∣
∣

u

a
+

√
u2 − a2

a

∣
∣
∣
∣
∣
+ C (u > a)

− ln

∣
∣
∣
∣
∣

u

a
−

√
u2 − a2

a

∣
∣
∣
∣
∣
+ C (u < −a).

Last integrals can be simplified as follows:

ln

∣
∣
∣
∣
∣

u

a
+

√
u2 − a2

a

∣
∣
∣
∣
∣
= ln

∣
∣
∣u+

√

u2 − a2
∣
∣
∣− ln a.

− ln

∣
∣
∣
∣
∣

u

a
−

√
u2 − a2

a

∣
∣
∣
∣
∣
= ln

∣
∣
∣
∣

a

u−
√
u2 − a2

∣
∣
∣
∣

= ln

∣
∣
∣
∣
∣

a(u+
√
u2 − a2)

(u−
√
u2 − a2)(u+

√
u2 − a2)

∣
∣
∣
∣
∣

= ln

∣
∣
∣
∣
∣

a(u+
√
u2 − a2)

a2

∣
∣
∣
∣
∣
= ln

∣
∣
∣
∣
∣

u+
√
u2 − a2

a

∣
∣
∣
∣
∣

= ln
∣
∣
∣u+

√

u2 − a2
∣
∣
∣− ln a.

Hence ∫
du√

u2 − a2
= ln

∣
∣
∣u+

√

u2 − a2
∣
∣
∣+ C ′.
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7.7 Hyperbolic function

Any function f(x) can be written as even part and odd part:

f(x) =
f(x) + f(−x)

2
︸ ︷︷ ︸

even part

+
f(x)− f(−x)

2
︸ ︷︷ ︸

odd part

.

In particular, ex can be written as

ex =
ex + e−x

2
+

ex − e−x

2
. (7.18)

Each of the functions on the right hand side is useful and thus has a name:

Definition 7.7.1 (hyperbolic function). 1

coshx =
ex + e−x

2
, hyperbolic cosine

sinhx =
ex − e−x

2
, hyperbolic sine

tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x
, hyperbolic tangent

coth x =
1

tanhx
=

ex + e−x

ex − e−x
, hyperbolic cotangent

sech x =
1

coshx
=

2

ex + e−x
, hyperbolic secant

csch x =
1

sinhx
=

2

ex − e−x
. hyperbolic cosecant.

Some identities of hyperbolic functions:

Proposition 7.7.2.

(1) sinh 2x = 2 sinhx cosh x

(2) cosh 2x = cosh2 x+ sinh2 x

1hyperbolic functions have many things in common with trig. functions. We can define
trig. functions sin x and cos x using complex numbers. We define eiθ = cos θ + i sin θ. Then
e−iθ = cos θ − i sin θ and hence

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
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1

−1

1−1

x

y

0

y = cosh x

y = sinhx

y = ex

2
y = e−x

2

y = − e−x

2

x

y

0

y = 1

y = −1

y = coth x

y = coth x

y = tanh x

x

y

0

y = 1

y = coshx

y = sechx
x

y

0

y = csch x

y = sinhx

Figure 7.20: hyperbolic functions

(3) sinh2 x =
cosh 2x− 1

2

(4) cosh2 x =
cosh 2x+ 1

2

(5) cosh2 x− sinh2 x = 1

(6) tanh2 x = 1− sech2 x

(7) coth2 x = 1 + csch2 x

Derivatives and integrals of hyperbolic functions

Proposition 7.7.3.

(1)
d

dx
(sinhu) = coshu

du

dx

(2)
d

dx
(cosh u) = sinhu

du

dx

(3)
d

dx
(tanh u) = sech2 u

du

dx
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(4)
d

dx
(coth u) = − csch2 u

du

dx

(5)
d

dx
(sech u) = − sech u tanhu

du

dx

(6)
d

dx
(csch u) = − csch u coth u

du

dx

Proposition 7.7.4.

(1)

∫

sinhu du = cosh u+ C

(2)

∫

cosh u du = sinhu+ C

(3)

∫

sech2 u du = tanhu+C

(4)

∫

csch2 u du = − coth u+ C

(5)

∫

sech u tanhu du = − sech u+ C

(6)

∫

csch u coth udu = − csch u+ C

Example 7.7.5. (1) The indefinite integral of sinh2 x can be computed just

as that of sin2 x.

∫ 1

0
sinh2 x dx =

∫ 1

0

cosh 2x− 1

2
dx

=
1

2

[
sinh 2x

2
− x

]1

0

=
sinh 2

4
− 1

2
.

(2) Using the definition of sinhx

∫ ln 2

0
4ex sinhx dx =

∫ ln 2

0
4ex

ex − e−x

2
dx =

∫ ln 2

0
(2e2x − 2) dx

=
[
e2x − 2x

]ln 2

0

= 3− 2 ln 2.
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Inverse hyperbolic functions

The function y = sinhx is 1-1 and defined on (−∞,∞) having values in

(−∞,∞). So (the inverse hyperbolic sine) y = sinh−1 x is defined on (−∞,

∞).

The function y = coshx restricted to [0,∞) is 1-1 and its image is [1,∞).

Hence (the inverse hyperbolic cosine) y = cosh−1 is defined on [1,∞) having

values in [0,∞).

The function y = sech x restricted to [0,∞) is one-to-one, having values in

(0, 1]. Hence its inverse function y = sech−1 x is defined on (0, 1]. Meanwhile

y = tanhx, y = coth x, y = csch x are one-to-one on (−∞,∞). Hence their

inverses y = tanh−1 x, y = coth−1 x, y = csch−1 x are defined accordingly.

The graphs are as in figure 7.21.

x

y
y = sinh x

y = sinh−1 x

x

y

y = cosh x

y = cosh−1 x

y = x

x

y

y = sech−1 x

y = sech x, x ≥ 0

y = x

x

y

y = cschx

y = csch−1 x

y = x

x

y
y = tanh−1 x

y = tanhx

y = x

x

y

y = cothx

y = coth−1 x

y = x

Figure 7.21: Inverse hyperbolic functions
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Proposition 7.7.6. Inverse hyperbolic functions can be represented by log

functions.

(1) sinh−1 x = ln
(
x+

√

x2 + 1
)
, −∞ < x < ∞

(2) cosh−1 x = ln
(
x+

√

x2 − 1
)
, x ≥ 1

(3) tanh−1 x =
1

2
ln

1 + x

1− x
, |x| < 1

(4) sech−1 x = ln

(
1 +

√
1− x2

x

)

, 0 < x ≤ 1

(5) csch−1 x = ln

(
1

x
+

√
1 + x2

|x|

)

, x 6= 0

(6) coth−1 x =
1

2
ln

x+ 1

x− 1
, |x| > 1.

Proof. (1) Let y = sinh−1 x.

x = sinh y =
ey − e−y

2
,

ey − e−y = 2x,

e2y − 2xey − 1 = 0,

ey = x+
√

x2 + 1. (Since x−
√

x2 + 1 is negative, we drop it.)

Hence y = ln(x+
√
x2 + 1).

(4) The formula for sech−1 x ≥ 0.

y = sech−1 x ⇒ sech y = x ⇒ x =
2

ey + e−y
,

ey + e−y =
2

x
,

e2y − 2

x
ey + 1 = 0,

ey =
1

x
±
√

1

x2
− 1 =

1±
√
1− x2

x
.

We choose positive sign and set y := ln

(

1+
√
1−x2

x

)

, 0 < x ≤ 1.
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Useful identities of inverse hyperbolic functions

Proposition 7.7.7.

(1) sech−1 x = cosh−1 1

x

(2) csch−1 x = sinh−1 1

x

(3) coth−1 x = tanh−1 1

x

This holds from definition. For example, if 0 < x ≤ 1, then

sech

(

cosh−1 1

x

)

=
1

cosh
(
cosh−1 1

x

) =
1
(
1
x

) = x.

Derivatives of inverse hyperbolic functions

Proposition 7.7.8.

(1)
d(sinh−1 u)

dx
=

1√
1 + u2

du

dx

(2)
d(cosh−1 u)

dx
=

1√
u2 − 1

du

dx
, u > 1

(3)
d(tanh−1 u)

dx
=

1

1− u2
du

dx
, |u| < 1

(4)
d(coth−1 u)

dx
=

1

1− u2
du

dx
, |u| > 1

(5)
d(sech−1 u)

dx
=

−du/dx

u
√
1− u2

, 0 < u < 1

(6)
d(csch−1 u)

dx
=

−du/dx

|u|
√
1 + u2

, u 6= 0

Proof. (5) We verify the formula for sech−1 x.

y = sech−1 x ⇒ sech y = x,

− sech y tanh y
dy

dx
= 1,

dy

dx
= − 1

sech y tanh y
,

= − 1

x
√
1− x2

, 0 < x ≤ 1.
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Integrals of inverse hyperbolic functions

Proposition 7.7.9.

(1)

∫
du√
1 + u2

= sinh−1 u+ C

(2)

∫
du√
u2 − 1

= cosh−1 u+ C, u > 1

(3)

∫
du

1− u2
=







tanh−1 u+ C, if |u| < 1,

coth−1 u+ C, if |u| > 1

(4)

∫
du

u
√
1− u2

= − sech−1 |u|+ C = − cosh−1

(
1

|u|

)

+C

(5)

∫
du

u
√
1 + u2

= − csch−1 |u|+ C = − sinh−1

(
1

|u|

)

+ C

7.8 Relative Rate of Growth

Definition 7.8.1. Suppose f(x), g(x) are positive for sufficiently large x.

(1) f grows faster than g as x → ∞ if

lim
x→∞

f(x)

g(x)
= ∞.

(2) f grows at the same rate as g as x → ∞ if

lim
x→∞

f(x)

g(x)
= L, for some postive finite number L.

Example 7.8.2. (1) ex grows faster than x3 as x → ∞

(2) 3x grows faster than 2x as x → ∞

(3) x grows faster than lnx as x → ∞.

Order and Oh-notation

Definition 7.8.3. A function f(x) is of smaller order than g(x) as x → ∞ if

lim
x→∞

f(x)

g(x)
= 0.
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In this case we write f = o(g).

Definition 7.8.4. Suppose f(x), g(x) are positive for sufficiently large x.

Then a function f(x) is a most the order of g(x) as x → ∞ if there is a

positive number (not necessarily integer) M for which

lim
x→∞

f(x)

g(x)
≤ M

for sufficiently large x. In this case we write f = O(g).

Example 7.8.5. (1) lnx = o(x) as x → ∞

(2) x2 = o(x3) as x → ∞

(3) x+ sinx = O(x)


